
A Dynamic Labeling Scheme using Vectors

Liang Xu, Zhifeng Bao, Tok Wang Ling

School of Computing, National University of Singapore
{xuliang, baozhife, lingtw}@comp.nus.edu.sg

Abstract. The labeling problem of dynamic XML documents has re-
ceived increasing research attention. When XML documents are subject
to insertions and deletions of nodes, it is important to design a labeling
scheme that efficiently facilitates updates as well as processing of XML
queries. This paper proposes a novel encoding scheme, vector encod-
ing which is orthogonal to existing labeling schemes and can completely
avoid re-labeling. Extensive experiments show that our vector encod-
ing outperforms existing labeling schemes on both label updates and
query processing especially in the case of skewed updates. Besides, it has
the nice property of being conceptually easy to understand through its
graphical representation.

1 Introduction

XML[6] has become a standard to represent and exchange data on the web, and
there is a lot of interest in query processing over XML data. The techniques
used to facilitate XML queries can be classified into two categories: structural
index approach[10] and labeling approach[12, 4, 11]. We focus on labeling ap-
proach which requires smaller storage space, yet efficiently determines ancestor-
descendant(A-D) and parent-child(P-C) relationships between any two nodes in
the XML documents.

Although most existing labeling schemes work well on querying static XML
documents, their performances degrade significantly for dynamic XML docu-
ments as updating requires re-labeling[12, 4, 11] or label size increases very fast
for skewed insertions although re-labeling can be avoided[8]. When XML docu-
ments are dynamic, it is of great interest to design a labeling scheme that can
avoid re-labeling while having controllable size for skewed insertions.

The main contributions of this paper are summarized as follows:

– We propose a novel compact labeling scheme: vector encoding which can be
applied to different labeling schemes and is easy to understand.

– Vector encoding completely avoids re-labeling for updates in XML doc.
– We conduct experiments to show that vector encoding performs better than

existing schemes, especially in the case of skewed insertions.

2 Related Work

Current labeling schemes include containment scheme[12], prefix scheme[4] and
prime scheme[11]. Due to space constraint we only focus on containment scheme
and QED encoding which are most relevant to this paper.

Based on containment labeling scheme[12], every node is assigned three
values: “start”, “end” and “level”. For any two nodes u and v, u is an ancestor
of v iff u.start < v.start and v.end < u.end. Node u is the parent of node
v iff u is an ancestor of v and v.level − u.level = 1. Although containment
scheme is efficient for determining A-D and P-C relationships, the insertion of a
node n will lead to re-labeling of all the ancestor nodes of n and all the nodes
after n in document order. To solve the re-labeling problem, [5] uses Float-point
values for the start and end of the intervals. However, in practice, Float-point
is represented physically with a fixed number of bits. As a result, at most 18
nodes can be inserted at a fixed place when consecutive integer values are used
for initial labeling.

[8] proposes a novel encoding method: QED encoding that completely
avoids re-labeling. Four numbers “0”, “1”, “2” and “3” are used for encoding
and each number is stored with two bits, i.e. “00”, “01”, “10” and “11”. The
number “0” is reserved as the separator. An important feature of QED is that
it is based on lexicographical order, i.e. “0” ≺ “1” ≺ “2” ≺ “3”. This encoding
scheme allows a QED code to be inserted between any two existing QED codes
while preserving lexicographical order. For example, “113” can be inserted be-
tween “112” and “12” whereas “1122” can be inserted between “112” and “113”.
QED encoding method is orthogonal to existing labeling schemes. However, the
label size of QED increases very fast in the event of skewed insertion. Especially
in the case that new codes are inserted after a fixed code, the size of the new
code increases by 2 bits per insertion.

3 Preliminaries

For the complete proofs of the theorems in this section, please refer to [9] which
is an extended version of this paper. We ignore most of the proofs due to space
constraint.

A vector is an object with magnitude and direction. A two dimensional vector
consists of binary tuples and is represented as (x, y). In this paper, to make
design simple and avoid precision problem, we only consider vector whose x and
y components are positive integers. Figure 1(a) gives a graphical interpretation
of a vector V that lies in the first quadrant of the X-Y plane.

Let A=(x1, y1) and B=(x2, y2) be two vector. Addition of A and B and
Multiplication of a scalar r and a vector A are defined as:

A + B = (x1 + x2, y1 + y2) (1)
r ·A = (r ∗ x1, r ∗ y1) (2)

Figure 1(b) shows the graphical representation of vectors A, B, A+B, 2·A+B
and A+2·B.

Definition 1. (Gradient) The Gradient of a vector V=(x, y) (denoted by
G(v)) is defined as y/x.

V=(x, y)

θθ

First Quadrant

X

Y

A=(a1,a2)

Y 2 A+B

A+2 B

B=(b1,b2)

X

A+B

(a) a vector in the first quadrant (b) vector addition

Fig. 1. Graphical representation of vector and vector addition

In Figure 1(a), vector V makes an angle Θ with the X axis. The Gradient of V
is y/x, or equivalently, tan(Θ).

Theorem 1. Given two vectors A=(x1, y1) and B=(x2, y2) in the first quadrant
of the x-y plane, G(A) > G(B) iff y1x2 > x1y2.

Example 1. G((19,5))=5/19; G((19,5))>G((16,3)) since 5× 16 > 19× 3.

It is important to note that although Gradient is defined in terms of division,
the comparison of the Gradients of two vectors can be done via multiplication.

Theorem 2. Let A, B, C be three vectors in the first quadrant of the x-y plane
such that C=A+B and G(A) > G(B), then G(A) > G(C) > G(B).

Proof. assume that A=(x1, y1) and B=(x2, y2), then C=(x1 + x2, y1 + y2).
Since G(A) > G(B), we have from Theorem 1, y1x2 > x1y2. Therefore,

G(C) =
y1 + y2

x1 + x2
=

y1x2 + y2x2

(x1 + x2)x2
>

x1y2 + y2x2

(x1 + x2)x2
=

y2

x2
= G(B) (3)

Similarly, we can prove that G(A) > G(C). Therefore, G(A) > G(C) > G(B).

Example 2. The sum of vectors (19,5) and (16,3) is (35,8), G((19,5))>G((35,8))
since 35× 5 > 19× 8; G((35,8))>G((16,3)) since 16× 8 > 35× 3.

Theorem 3. Let A, B be two vectors in the first quadrant of the x-y plane such
that G(A) > G(B), we can find infinite number of vectors whose Gradients are
between G(A) and G(B).

4 Vector Encoding
In this section, we introduce our vector encoding scheme which completely avoids
re-labeling upon insertion. Table 1 shows different encoding schemes for numbers
from 1 to 18. Details of how QED encoding is performed are in [8]. For vector
encoding, we first assign vector (1,0) to the start position in the range and (0,1)
to the end position. Then we work recursively by assigning the middle position of
the current range a vector that equals to the sum of two vectors that correspond
to the start and end position in each iteration. The formal encoding algorithm
is presented in Algorithm 1.

Decimal
number

QED vector Gradient (ac-
curate to 0.01)

Decimal
number

QED vector Gradient (ac-
curate to 0.01)

1 112 (1,0) 0 10 223 (1,1) 1
2 12 (5,1) 0.2 11 23 (3,4) 1.33
3 122 (4,1) 0.25 12 232 (2,3) 1.5
4 13 (3,1) 0.33 13 3 (3,5) 1.67
5 132 (2,5) 0.4 14 312 (1,2) 2
6 2 (2,1) 0.5 15 32 (2,5) 2.5
7 212 (5,3) 0.6 16 322 (1,3) 3
8 22 (3,2) 0.67 17 33 (1,4) 4
9 222 (4,3) 0.75 18 332 (0,1) +∞

Table 1. Comparison of different encoding schemes

Theorem 4. Let I and J be two decimal numbers and VI and VJ be their corre-
sponding vector codes generated by Algorithm 1, we have: I<J iff G(VI)<G(VJ).

Example 3. Given that the range of integers is from 1 to 18, we assign vector
(1,0) (of Gradient 0) to the start position in the range which is 1; and (0,1) (of
Gradient +∞) to the end position in the range which is 18, i.e. v(1)=(1,0) and
v(18)=(0,1). Next we apply Algorithm 1 to recursively encode the remaining
positions.

Iteration 1 The middle position in the range [1, 18] can be found by: middle =
d(1+18)/2e = 10. Hence v(middle)=v(10)=v(1) + v(18)=(1,0) + (0,1)=(1,1).

Iteration 2 Now that the range [1,18] is divided into two ranges:[1, 10] and
[10, 18]. The middle position of [1, 10] is d(1 + 10)/2e = 6; and the middle
position of [10, 18] is d(10 + 18)/2e = 14. Therefore v(6)=(1,0)+(1,1)=(2,1)
and v(14)=(1,1)+(0,1)=(1,2). This process continues until all the positions
are encoded, we omit the remaining iterations here.

Definition 2. (vector order) The order of vector encodings is based on the
numerical ordering of the Gradients of the vectors.

Table 1 also gives the Gradients of the vectors for each row (we define 1/0 to be
+∞). It can be seen that the numerical order of the Gradients indeed follow the
order of the decimal numbers. It is worth noting that the Gradients shown in
Table 1 are for illustration purpose only. From theorem 1, we can compare the
Gradients of two vectors using multiplication instead of division, our method
does not involve the calculation of Gradients and therefore does not suffer from
the float-point precision problem in [5].

4.1 Encoding Delimiters

When labels are stored for future reuse, we need to encode delimiters. 0 is re-
served as delimiter in QED whereas vector codes use UTF8[7] encoding to pro-
cess delimiters. In UTF8, a variable number of bytes are used to encode different
integer values. A vector V is stored sequentially as V.x, V.y where V.x and V.y
are encoded using UTF8 encoding.

Algorithm 1 VectorEncoding Algorithm 2 LabelTheLeafNodeToBeInserted

input: n is a positive integer input: n is the leaf node to be inserted
output: return the vector codes in vcode output: return V Containment label of n
for numbers from 1 to n //v1, v2 are two bounding vectors
//vcode is an array of n vectors //l is the level of n
1: vcode[0] = (1, 0) 1: if n has preceding sibling(s) v1=cps.endV
2: vcode[n− 1] = (0, 1) //cps is the closest preceding sibling of n
3: RecEncoding(vcode, 0, n− 1) 2: else v1=p.startV //p is the parent of n
4: return vcode 3: if n has following sibling(s) v2=cfs.startV
Procedure RecEncoding(vcode, start, end) //cfs is the closest following sibling of n
1: m = d(start + end)/2e 4: else v2=p.endV
2: if m == end return 5: return FindNewLabel(v1,v2,l)
3: mV = vcode[start] + vcode[end] Procedure FindNewLabel(v1,v2,l)
4: vcode[m] = mV 1: if GS(v1) > GS(v2)
5: RecEncoding(vcode, start, m) return (v1+v2,v1+2·v2,l)
6: RecEncoding(vcode, m, end) 2: else return (2·v1+v2,v1+v2,l)

4.2 Application of Vector Encoding Scheme

Our vector encoding scheme is orthogonal to specific labeling schemes. It can be
applied to existing labeling schemes while keeping the original labeling order.
In this paper we apply vector encoding scheme to containment scheme and the
resulting labeling scheme is called VContainment scheme.

Example 4. Figure 2 shows an example of applying vector encoding to contain-
ment scheme. The start and end value of the original containment labels are re-
placed by their corresponding vector codes (see Table 1 for details). The resulting
VContainment labels are of format (startV, endV, level) where startV , endV are
two vectors. It is easy to verify that the property of containment scheme holds.
For example, Node((2,3),(1,4),2) is the parent of node((3,5),(1,2),3) as G(2,3) <
G(3,5) < G(1,2) < G(1,4) and 2+1=3.

15,16,313,14,37,8,35,6,3

12,17,2

10,11,2

4,9,2

2,3,2

1,18,1

(2,5) (1,3) 3(3,5) (1,2) 3(5,3) (3,2) 3(5,2) (2,1) 3

(2,3) (1,4) 2

(1,1) (3,4) 2

(3,1) (4,3) 2

(5,1) (4,1) 2

(1,0) (0,1) 1

(a) containment labels (b) VContainment labels

Fig. 2. Applying vector encoding scheme to containment scheme

5 Support Updating

For dynamic XML documents, especially the ones that require frequent updates,
it is important to make the update cost as low as possible. One of the most

important features of vector encoding scheme is that it can completely avoid
re-labeling when updates take place. This section provides elaboration on how
vector encoding handles updates efficiently. We start by showing how updates
can be performed in VContainment scheme without re-labeling, then analyze
how updates can be optimized in a general context.

5.1 Updating in VContainment Scheme

With VContainment scheme, the deletion of a leaf node or an internal node
has no side effect. However, handling insertions may require some consideration.
First we introduce a definition which we use to measure the size of a vector.

Definition 3. (Granularity Sum) The Granularity Sum of a vector V = (x,
y) (denoted by GS(v)) is defined as x+y.

To find a vector between two vectors in vector order, we want its GranularitySum
to be as small as possible so that the resulting label size is small.

Inserting Leaf Node Assume all VContainment labels are of format (startV ,
endV , level). n is the node to be inserted and p is the parent of n. cps is
its closest preceding sibling(if exists). cfs is its closest following sibling(if
exists). If n is a leaf node, to maintain the correctness of VContainment
scheme, the following inequalities should hold.

1. G(p.startV) < G(n.startV) < G(n.endV) < G(p.endV)
2. G(cps.endV) < G(n.startV) 3. G(n.endV) < G(cfs.startV)

Note the second inequality is only applicable if n has preceding sibling(s),
and the third inequality is applicable if n has following sibling(s). In any
case, the startV and endV of n will be bounded by two vectors, we call
these two vectors bounding vectors. The new label of n can be found by
basically finding a pair of vectors between the two bounding vectors. Details
on how the label of n is found are presented in Algorithm 2.

Inserting Non-leaf Node The case that n is a non-leaf node is similar to the
previous case except that another inequality needs to be enforced. Assume
fc is the first child of n and lc is the last child of n.

4. G(n.startV) < G(fc.startV) < G(lc.endV) < G(n.endV)
We ignore the details of insertion of non-leaf node here.

The core operation of Algorithm 2 is to find two vectors between v1 and v2
in terms of vector order. In Algorithm 2, the two vectors are either v1 + v2 and
v1 + 2 · v2 or 2 · v1 + v2 and v1 + v2. Based on Theorem 2, we can prove in both
cases the two vectors are between v1 and v2 in vector order. Figure 1(b) shows
the graphical representation of the vectors. It can be observed that if we keep
inserting before or after a fixed node, the resulting label increases constantly by
the Granularity Sum of that node. Although this method is simple and efficient,
the resulting vector may not yield the minimum Granularity Sum. Analysis on
the optimization of insertion will be presented in the next subsection. There
is no re-labeling involved in the insertion, VContainment scheme can support
efficient updates without re-labeling any existing labels.

(1,0) (0,1) 1

(5,1) (4,1) 2

(3,1) (4,3) 2

(1,1) (3,4) 2

(2,3) (1,4) 2

(5,2) (2,1) 3 (5,3) (3,2) 3 (3,5) (1,2) 3 (2,5) (1,3) 3

A

B C

X

Y

V3

V4

V2

V1

(a) (b)

Fig. 3. Insertion in VContainment scheme

Example 5. In Figure 3(a), when inserting node A having both left sibling and
right sibling, its startV and endV are bounded by endV of its closest left
sibling and startV of its closest right sibling, i.e. (4,3) and (1,1). Moreover,
GS(1,1)=2<7=GS(4,3). Therefore, the startV of A is v1 + v2 = (5, 4) whereas
endV is v1+2 ·v2 = (6, 5). When inserting node B which has only left sibling, its
startV and endV are bounded by the endV of its closest left sibling the endV
of its parent, i.e. (1,4) and (0,1). Therefore, the startV of B is v1 + v2 = (1, 5)
whereas endV is v1+2·v2 = (1, 6). Similarly, when we continue to insert C as the
last child of the root, its startV is v1+v2 = (1, 7) and endV is v1+2·v2 = (1, 8).

5.2 Analysis on Insertion

When vector encoding scheme is applied to different labeling schemes including
containment scheme, the core operation of insertion is to find the vector between
two consecutive vectors in vector order. The choice is not unique, actually there
are infinitely many vectors possible(Theorem 3); however, to slow down the in-
crease rate of labels, we would want to find the vector that has the smallest
Granularity Sum possible. Although we can always use the sum of the two con-
secutive vectors, the resulting vector may not yield the minimum Granularity
Sum. Theoretically speaking, the vector that has the smallest Granularity Sum
can always be found through enumeration, but this can make insertion very ex-
pensive to perform. However, we have found that based on the relative positions
of the two consecutive vectors, it may be possible to optimize insertion without
incurring much additional computational cost. Assume the consecutive vectors
are A = (x1, y1), B = (x2, y2), the vector to be inserted is C = (x, y), insertion
may be optimized for the following cases.

Case 1 x1 = x2 or y1 = y2. For example, let A and B be V1 and V3 in Figure
3(b) respectively. Since x1 = x2, we can choose x = x1 and y to be an integer
between y1 and y2 when y1 > y2 + 1. When y1 = y2 + 1, we can choose C to
be the sum of A and B. The case when y1 = y2 is similar.

Case 2 (x1 < x2 and y1 > y2) or (x1 > x2 and y1 < y2). For example , let
A and B be V1 and V2 in Figure 3 (b) respectively. We can choose C to be
V3=(x1, y2) or V4=(x2, y1) since both V3 and V4 are between V1 and V2
in vector order. V3 may be preferred since it has smaller Granularity Sum.

6 Experiments and Evaluation

We have implemented the VContainment scheme in JAVA and used SAX from
Sun Microsystems as the XML parser. We compare our labeling scheme with
QED-containment scheme as they both completely avoid re-labeling. The up-
dating cost of previous labeling schemes[12, 4, 11] are much higher than QED as
re-labeling is very expensive to perform[8].

XMark[3], Shakespeare’s play[1], Treebank and DBLP[2] data sets have been
used to compare the performance of the labeling schemes. Our experiments are
performed on Pentium IV 3 GHz with 1G of RAM running on windows XP.

6.1 Label Generation

Data Set File No. of QED vector QED vector
Size(MB) Nodes(K) Time(Sec) Time(Sec) Size(MB) Size(MB)

XMark 0.55 8.5 0.142 0.018 0.05 0.06
Shakespeare’s play 2.16 49 0.86 0.26 0.31 0.39

Treebank 82 2437.7 33.8 9.1 19.2 27.0
DBLP 127 3332.1 50.9 14.6 26.9 37.8

Table 2. Comparison of label generation

To compare the label generation, we choose one of the documents from Shake-
speare’s play and enlarge it by 10 times. XMark document is generated using
scaling factor 0.005. The time needed to generate labels mostly depends on the
size the XML documents and the number of nodes in the XML documents. From
the results in Table 2, as the size of the data set gets larger, the generation time
of QED and vector labels increase accordingly. However, generating vector labels
is much faster than QED as its generation mostly consists of simple calculations.

6.2 Uniform and Skewed Insertions

All the four data set have been used to test the performance of the two labeling
schemes upon two kinds of insertions: uniform insertion and skewed insertion,
and showed similar trends. Here we present the results for XMark data set.

For uniform insertions, firstly we insert one node between every two consecu-
tive nodes. Then we gradually increase the insertions by one at a time up to six.
The results are shown in Figure 4(a) and (b). The vector labels are represented
using bit strings that correspond to the UTF8 representation of the labels to ac-
commodate dynamic increase in size. But the overhead of UTF8 encoding makes
the size of vector labels approximately 20 percent larger than that of QED (in-
cluding initial labels). The insertion time of QED however is about 50 percent
more than that of vector labels.

For skewed insertions, we keep inserting mail element after the last mail
element whose parent is mailbox. The results (Figure 4(c) and (d)) illustrate
more significant advantage of vector labels. The insertion time of QED is almost
four times of that of vector labels while the size of QED labels increases much
faster than vector labels upon insertions. Since for skewed insertions, the length
of the new QED label increases by 1 or 2 bits per insertion, while the size of the

new vector label remains unchanged unless its value exceeds the current range
in which case the label size increases by 1 byte. However, such increases occur
infrequently and the size of vector labels increases rather slowly upon skewed
insertions comparing with QED labels.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 8517 17034 25551 34068 42585 51102

In
se

rt
io

n
 T

im
e
(m

s)

Number of Insertions

QED
Vector

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 8517 17034 25551 34068 42585 51102

L
a
b

e
l

S
iz

e
(K

B
)

Number of Insertions

QED
Vector (UTF8)

(a) Uniform Insertion Time (b) Label Size after Uniform Insertion

 0

 50

 100

 150

 0 500 1000 1500 2000

In
se

rt
io

n
 T

im
e
(m

s)

Number of Insertions (Skewed)

QED
Vector

 0

 200

 400

 600

 800

 1000

 0 500 1000 1500 2000

L
a
b
e
l

S
iz

e
(K

B
)

Number of Insertions (Skewed)

QED
Vector (UTF8)

(c) Skewed Insertion Time (d) Label Size after Skewed Insertion

Fig. 4. Comparison of Uniform and Skewed Insertion for XMark data set

6.3 Query Time

We compare the query time using all the four data sets. Here we only present
the results for XMark data set due to space constraint, the other data sets show
similar results. The set of queries we used are shown in Figure 5(a). Figure 5(b),
(c) and (d) show the comparison of query time on the original data and the data
after uniform and skewed insertion. Notice that the time used for determining
A-D and P-C relationships only constitute a fraction of the whole query time. In
all these cases, query time of vector labels is faster than that of QED labels. The
difference is most significant for the case of skewed insertion as when the length
of QED label gets larger, lexicographical order is more expensive to compare.
The comparison we show here is independent of the algorithm that is used to
evaluate the queries. Basically all the algorithms involves determination of A-D
and P-C relationships which is more efficient to compute using vector labels.

7 Conclusion

In this paper, we have proposed a novel encoding scheme: vector encoding which
is easy to understand and can be applied to various existing labeling schemes to
completely avoid re-labeling. We have shown how it can be applied to contain-
ment scheme, and how insertions can be optimized. Finally it is experimentally
proved that vector encoding outperforms existing schemes on updates and query
processing especially in the case of skewed insertion.

Query ID Query

Q1 /site//mailbox//mail

Q2 //item//mail

Q3 //item/mailbox/mail

Q4 //item/mailbox/mail/text

Q5 //item[./mailbox]//mail

Q6 //item[./mailbox]//mail/text 0

 100

 200

 300

 400

 500

 600

 700

Q6Q5Q4Q3Q2Q1

E
v
a
lu

a
ti

o
n

 T
im

e
 (

m
s)

Vector

QED

(a) Test query set (b) Query time on original data

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

Q6Q5Q4Q3Q2Q1

E
v
a
lu

a
ti

o
n

 T
im

e
 (

m
s)

Vector

QED

 0

 100

 200

 300

 400

 500

 600

 700

Q6Q5Q4Q3Q2Q1

E
v
a
lu

a
ti

o
n

 T
im

e
 (

m
s)

Vector

QED

(c) Query time after uniform insertion (d) Query time after skewed insertion

Fig. 5. Comparison of query response time for XMark data set

We have focused on handling insertion in this paper. Currently we are ex-
tending our work to optimize both deletion and insertion. How to control the
label size in a dynamic XML document where deletion and insertion frequently
occur will be an interesting topic to explore.

References

1. NIAGARA Experimental Data. http://www.cs.wisc.edu/niagara/data.html.
2. University of Washington XML Repository . http://www.cs.washington.edu/ re-

search/xmldatasets/.
3. XMark - An XML Benchmark Project. http://monetdb.cwi.nl/xml/downloads.html.
4. S. Abiteboul, S. Alstrup, H. Kaplan, T. Milo, and T. Rauhe. Compact labeling

scheme for ancestor queries. SIAM J. Comput., 2006.
5. T. Amagasa, M. Yoshikawa, and S. Uemura. QRS: A Robust Numbering Scheme

for XML Documents. In ICDE, 2003.
6. T. Bray, J. Paoli, C.M.Sperberg-McQueen, E.Maler, and F. Yergeau. Extensible

markup language (XML) 1.0: fourth edition W3C recommendation 2006.
7. F.Yergeau. UTF8: A Transformation Format of ISO 10646. Request for Comments

(RFC) 2279. January 2003.
8. C. Li and T. W. Ling. QED: a novel quaternary encoding to completely avoid

re-labeling in XML updates. In CIKM, 2005.
9. X. Liang, B. Zhifeng, and T. L. Wang. A Dynamic Labeling Scheme using Vectors

(Extended). http://www.comp.nus.edu.sg/ xuliang/dlsv2007.pdf.
10. J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A database

management system for semistructured data. SIGMOD Record, 1997.
11. X. Wu, M. L. Lee, and W. Hsu. A Prime Number Labeling Scheme for Dynamic

Ordered XML Trees. In ICDE, 2004.
12. C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G. M. Lohman. On Sup-

porting Containment Queries in Relational Database Management Systems. In
SIGMOD, 2001.

