
Finding Missing Answers due to Object Duplication in
XML Keyword Search

Thuy Ngoc Le, Zhong Zeng, Tok Wang Ling

National University of Singapore
{ltngoc,zengzh,lingtw}@comp.nus.edu.sg

Abstract. XML documents often have duplicated objects, with a view to main-
taining tree structure. Once object duplication occurs, two nodes may have the
same object as the child. However, this child object is not discovered by the typi-
cal LCA (Lowest Common Ancestor) based approaches in XML keyword search.
This may lead to the problem of missing answers in those approaches. To solve
this problem, we propose a new approach, in which we model an XML docu-
ment as a so-called XML IDREF graph so that all instances of the same object
are linked. Thereby, the missing answers can be found by following these links.
Moreover, to improve the efficiency of the search over XML IDREF graph, we
exploit the hierarchical structure of the XML IDREF graph so that we can gen-
eralize the efficient techniques of the LCA-based approaches for searching over
XML IDREF graph. The experimental results show that our approach outper-
forms the existing approaches in term of both effectiveness and efficiency.

1 Introduction

Since XML has become a generally accepted standard for data exchange over the In-
ternet, many applications use XML to represent the data. Therefore, keyword search
over XML documents has attracted a lot of interests. The popular approach for XML
keyword search is the LCA (Lowest Common Ancestor) semantics [4], which was in-
spired by the hierarchical structure of XML. Following this, many extensions of the
LCA semantics such as SLCA [17], MLCA [13], ELCA [19] and VLCA [10] have been
proposed to improve the effectiveness of the search. However, since these approaches
only search up to find common ancestors, they may suffer from the problem of missing
answers as discussed below.

1.1 The problem of missing answers due to object duplication

XML permits nodes to be related through parent-child relationships. However, if the
relationship type between two object classes is many-to-many without using IDREF, an
object can occur at multiple places in an XML document because it is duplicated for
each occurrence in the relationship. We refer such duplication as object duplication.

Example 1 Consider an XML document in Figure 1 where the relationship type be-
tween student and course is many-to-many (m : n) and students are listed as chil-
dren of courses. When a student takes two courses, this student is repeated under

Course
2

Student
3

Lecturer
1

Student
4

SNo

S2

Name

Anna

Course
5

SNo

S1

Code

CS1

Name

Bill

Student
6

SNo

S2

Name

Bill

Code

CS2

SName

Albert

StaffID

L1

Interst

Cloud

Interst

XML

Interst

XML

Student
7

SNo

S3

Name

Tom

Interst

DB

Title

Cloud

Title

XML

Course
2

Student
3

Lecturer
1

Student
4

SNo

S2

Name

Anna

Course
5

SNo

S1

Code

CS1

Name

Bill

Student
6

SNo

S2

Name

Bill

Code

CS2

SName

Albert

StaffID

L1

Interst

Cloud

Interst

DB

Interst

DB

Student S2
8

(Virtual
IDREF)

Student
7

SNo

S3

Name

Tom

Interst

XML

Title

Cloud

Title

XML….. …..

Interst

XML

Figure 1: XML data tree

Course
2

Student
3

Lecturer
1

Student
4

SNo

S2

Name

Anna

Course
5

SNo

S1

Code

CS1

Name

Bill

Student
6

SNo

S2

Name

Bill

Code

CS2

SName

Albert

StaffID

L1

Interst

Cloud

Interst

XML

Interst

XML

Student
7

SNo

S3

Name

Tom

Interst

DB

Title

Cloud

Title

XML

Course
2

Student
3

Lecturer
1

Student
4

SNo

S2

Name

Anna

Course
5

SNo

S1

Code

CS1

Name

Bill

Student
6

SNo

S2

Name

Bill

Code

CS2

SName

Albert

StaffID

L1

Interst

Cloud

Interst

DB

Interst

DB

Student S2
8

(Virtual
IDREF)

Student
7

SNo

S3

Name

Tom

Interst

XML

Title

Cloud

Title

XML….. …..

Interst

XML

Figure 2: XML IDREF graph w.r.t. XML
data tree in Figure 1

both courses. For example, both courses <Course:CS1>1 and <Course:CS2> are
taken by <Student:S2>, which is repeated as the two groups of nodes, starting
at node 4 and node 6 under the two courses. This causes the duplication of object
<Student:S2>.

When object duplication happens, two nodes may have the same object as the child.
However, this common child object is not discovered by the LCA-based approaches
because they only search up from matching nodes for common ancestors, but never
search down to find common information appearing as descendants of matching nodes.
We call this incident as the problem of missing answers due to object duplication which
leads to loss of useful information as illustrated below.

Example 2 Consider keyword query {CS1, CS2} issued against the XML data in
Figure 1, where the keywords match object identifier of two courses (node 2 and node
5). The LCA-based approaches return only <Lecturer:L1> (node 1) as an answer.
However, as discussed in Example 1, object <Student:S2> is the common student
taking both matching courses and thus it should also be an answer. Intuitively, the two
courses are not only taught by the same lecturer (<Lecturer:L1>), but also taken
by the same student (<Student:S2>). As we can see, common information related to
query keywords appearing as both ancestors and descendants are meaningful to users.

Object duplication can be eliminated by ID/IDREF. However, to maintain the tree
structure for ease of understanding, readability and retrieval, XML designers may du-
plicate objects instead of using ID/IDREF. In practice, object duplication is a common
scheme for maintaining a view of tree structure. For example, suppose 300 students
take course A. Among them, 200 students also take another course B. Then, if students
are listed as children of courses, these 200 students are duplicated under both courses.
Many real XML datasets, including IMDb2 and NBA3 (used in experiments of XML
research works such as [16, 15]), contain object duplication. In IMDb, an actor or ac-
tress can play in many movies, and a company can produce several movies. In NBA, a

1
<Course:CS> denotes an object which belongs to object class Course and has object identifier CS1.

2 http://www.imdb.com/interfaces
3 http://www.nba.com

player can play for several teams in different years. Moreover, due to the flexibility and
exchangeability of XML, many relational datasets with many-to-many relationships can
be transformed to XML [3] with object duplication in the resulting XML documents.
Therefore, the problem of missing answers due to object duplication frequently happens
in XML keyword search and necessitates to be solved.

For an XML document with ID/IDREF, graph-based approaches such as [11, 7]
can provide missing answers due to object duplication. However, those graph-based
approaches can find such missing answers only if all objects are covered by ID/IDREF
mechanism. Otherwise, those graph-based approaches do not recognize instances of
the same object appearing in different places in an XML document. In such cases, they
cannot find missing answers either.

1.2 Our approach and contributions

In this paper, we propose an approach for keyword search over a data-centric XML
document which can find missing answers due to object duplication. The input XML
document in our approach can contain both objects under ID/IDREF mechanism and
duplicated objects. For the latter, we propose a virtual object node to connect all in-
stances of the same object via virtual IDREFs. The resulting model is called XML
IDREF graph. “Virtual” here means we do not modify XML documents and ID/IDREF
links are virtually created with the sole goal of finding missing answers.

A challenge appears when we have to deal with an XML IDREF graph, not a tree
anymore. Searching over an arbitrary graph-structured data has been known to be equiv-
alent to the group Steiner tree problem, which is NP-Hard [2]. In contrast, keyword
search on XML tree is much more efficient thanks to the hierarchical structure of XML
tree. This is because the search in an XML tree can be reduced to find LCAs of matching
nodes, which can be efficiently computed based on node labels.

We discover that XML IDREF graph is a special graph. Particularly, it is an XML
tree (with parent-child (PC) edges) plus a portion of IDREF edges. An IDREF edge
is an edge from a referring node to a referred node. Although these nodes refer to
the same object, we can treat them as having a parent-child relationship, in which the
parent is the referring node and the child is the referred node. This shows that XML
IDREF graph still has hierarchy, which enables us to generalize efficient techniques of
LCA-based approaches (based on the hierarchy) for searching over our proposed XML
IDREF graph. Thereby, we do not have to traverse the XML IDREF graph to process a
keyword query.
Contribution. In brief, we make the following contributions.

– We argue that LCA-based approaches, which only search up to find common ances-
tors, may miss meaningful answers due to object duplication. To find such missing
answers, we model an XML document as an XML IDREF graph, in which all in-
stances of the same object are connected by a virtual object node.

– We discover the hierarchical structure of an XML IDREF graph which distin-
guishes it from an arbitrary graph. Based on this hierarchical structure, we can
generalize techniques of the LCA-based approaches for an efficient search.

– The experimental results show that our approach outperforms both the graph-based
and LCA-based approaches in term of both effectiveness and efficiency.

Roadmap. The rest of the paper is organized as follows. We introduce data model and
answer model in Section 2. Our approach is described in Section 3. The experiment and
evaluation are provided in Section 4. We review related works in Section 5. Finally, we
conclude the paper in Section 6.

2 Data and answer model

2.1 Data model

In XML, an object can be referred to either by duplicating it under the referrer or by us-
ing ID/IDREF. The former causes object duplication whereas the latter does not. With
ID/IDREF, an object has only one instance, and other objects refer to it via ID/IDREF.
Without ID/IDREF, an object can be represented as many different instances. We pro-
pose virtual ID/IDREF mechanism, in which we assign a virtual object node as a hub
to connect all instances of the same object by using virtual IDREF edges. The resulting
model is called an XML IDREF graph which is defined as followed.

Definition 1 (XML IDREF graph) An XML IDREF graph G(V,E) is a directed, la-
beled graph where V and E are nodes and edges of the graph.

– V = V
R
∪ V

V
where V

R
and V

V
are real and virtual nodes respectively. A real

node is an object node in XML document. A virtual node is a virtual object node to
connect all instances of the same object in XML document.

– E = E
R
∪ E

V
where E

R
and E

V
are real edges and virtual edges respectively.

A real edge (can be a real PC edge or real IDREF edge) is an edge between two
real nodes. A virtual edge is the edge links an instance of a duplicated object (real
node) to a virtual object node.

For example, Figure 2 shows an XML IDREF graph with two virtual edges from
node 4 and node 6 to a virtual object node (node 8) because node 4 and node
6 are instances of the same object <Student:S2>.

XML permits some objects under ID/IDREF mechanism and some other objects
with duplication co-exist in an XML document. In this case, the resulting XML IDREF
graph has two types of IDREF: real and virtual. Thus, an XML IDREF graph may have
three types of edges: PC edge, real IDREF edge and virtual IDREF edge.
The hierarchical structure of XML IDREF graph. We observe that an XML IDREF
graph still has hierarchy with parent-child (PC) relationships represented as contain-
ment edges (PC edges) or referenced edges. This is because nodes in a referenced edge
can be considered as having PC relationship, in which the parent is the referring node
and the child is the referred node.
Importance of the hierarchical structure of XML IDREF graph. Once we discover
the hierarchical structure of an XML IDREF graph, we can inherit the efficient search
techniques of LCA-based approaches which based on the hierarchical structure of XML
tree. Thereby, we do not have to traverse the XML IDREF graph to process a keyword
query as graph-based search does. This brings a huge improvement on efficiency. With-
out the property of the hierarchy, generally, in graph-based search, matching nodes will
be expanded to all directions until they can connect to one another. In theory, there can

be exponentially many answers under the Steiner tree based semantics: O(2m) where
m is the number of edges in the graph. The graph-based search has been well known to
be equivalent to the group Steiner tree problem, which is NP-Hard [2].
Generating XML IDREF graph. An object instance in XML is usually represented by
a group of nodes, rooted at the object class tagged node, followed by a set of attributes
and their associated values to describe its properties. In this paper, we refer to the root
of this group node as an object node and the other nodes as non-object nodes. Hereafter,
in unambiguous contexts, we use object node as the representative for a whole object
instance, and nodes are object nodes by default. For example, matching node means
matching object nodes. Among non-object nodes, object identifier (OID) can uniquely
identify an object. To generate an XML IDREF graph from an XML document, we need
to detect object instances of the same object. Since an object is identified by object class
and OID, we assume that two object instances (object nodes as their representatives) are
of the same object if they belong to the same object class and have the same OID.

We assume that the data is consistent and we work on a single XML document.
Data integration, data uncertainty, and heterogeneous data are out of the scope of this
work. Object classes and OIDs can be discovered from XML schema and data by our
previous works [12], which achieve high accuracy (greater than 98% for object classes
and greater than 93% for OIDs). Therefore, we assume the task of discovering object
class and OID has been done. Interested readers can find more details in [12].

2.2 Answer model

Consider a n-keyword query Q = {k1, . . . , kn}. An answer to Q contains three kinds
of nodes: matching nodes, center nodes and connecting nodes. A matching node con-
tains keyword(s). A center node connects all matching nodes through some intermediate
nodes (called connecting nodes). Based on the hierarchical structure of XML IDREF
graph, there exist ancestor-descendant relationships among nodes in an XML IDREF
graph. Therefore, we can define an answer to Q as follows:

Definition 2 Given a keyword query Q = {k1, . . . , kn} to an XML IDREF graph G, an
answer to Q is a triplet 〈c,K, I〉, where c,K, and I are called the center node, the set of
matching nodes and the set of connecting nodes (or intermediate nodes) respectively.
K =

⋃n
1 ui where ui contains ki. An answer satisfies the following properties:

– (P1: Connective) For every i, c is an ancestor of ui or for every i, c is a descendant
of ui, i.e., c is either a common ancestor or a common descendant of ui’s.

– (P2: Informative) For any answer 〈c′,K′, I′〉 where K′ =
⋃n

1 u
′
i and u′i contains

ki:
• if c and c′ are both common ancestors of ui’s, and of u′i’s respectively, and c′

is a descendant of c, then ∀i ui /∈ K′.
• if c and c′ are both common descendant of ui’s, and of u′i’s respectively, and c′

is a ancestor of c, then ∀i ui /∈ K′.
– (P3: Minimal) It is unable to remove any node in an answer such that it still satisfies

properties P1 and P2.

Among nodes in an answer, the center node is the most important one because it
connects matching nodes through connecting nodes. It corresponds to both common

ancestors and common descendants (Figure 3(a)). Intuitively, common ancestors are
similar the LCA semantics while common descendants provide the missing answers.
We do not return the subgraph in Figure 3(b) because it may provide meaningless an-
swers. In other words, a center node has only incoming edges (common descendant), or
only outgoing edges (common ancestor), but not both.

…... Matching
node n

Matching
node 1 …... Matching

node n
Matching

node 1 …... Matching
node n

Matching
node 1 …... Matching

node n
Matching

node 1

…...

Center
node

Connecting
node n

Connecting
node 1

…... Matching
node n

Matching
node 1

…... Matching
node n

Matching
node 1

…... Connecting
node n

Connecting
node 1

Center
node

(center node is an
common ancestor)

(center node is an
common descendant)

…...

Center
node

Connecting
node n

Connecting
node 1

…... Matching
node n

Matching
node 1

(Not an answer)

(a) Answer cases

…... Matching
node n

Matching
node 1 …... Matching

node n
Matching

node 1 …... Matching
node n

Matching
node 1 …... Matching

node n
Matching

node 1

…...

Center
node

Connecting
node n

Connecting
node 1

…... Matching
node n

Matching
node 1

…... Matching
node n

Matching
node 1

…... Connecting
node n

Connecting
node 1

Center
node

(center node is an
common ancestor)

(center node is an
common descendant)

…...

Center
node

Connecting
node n

Connecting
node 1

…... Matching
node n

Matching
node 1

(Not an answer)

(b) Not answer cases

Figure 3: Illustration for answers

The second Property P2 of Definition 2 is to avoid overlapping information in an-
swers. Each answer needs to contribute new information by having its own set of match-
ing nodes, i.e., matching nodes of an answer cannot also be matching nodes of other
answers where the latter is an ancestors/descendants of the former one. This property is
similar to the constraint in the ELCA [19] semantics.

3 Our approach

Pre-processing

XML IDREF
graph

Original XML
document

ancestor lists and
descendant lists

Generating XML
IDREF graph

Indexing

Finding potential
center nodes

Finding center nodes

Tracking back
matching nodes and

looking up connecting
nodes

Answer
set

Runtime processing

Figure 4: The process of
our approach

Our approach takes a data-centric XML document as
the input, models it as an XML IDREF graph, and re-
turns answers as defined in Definition 2. In the input
XML document, objects under IDREF mechanism
and objects with duplication can co-exist.

The process of our approach, as shown in Fig-
ure 4, comprises of two major components for
pre-processing and runtime processing. For pre-
processing, there are two main tasks, namely gener-
ating XML IDREF graph (discussed in Section 2.1),
and indexing (will be discussed in Section 3.2). For
runtime processing, there are three main tasks, each
of which corresponds to a property of an answer in
Definition 2. Particularly, task 1 is to find potential
center nodes, task 2 is to find real center nodes, and
task 3 is to track back matching nodes and look up

connecting nodes. These steps will be discussed in Section 3.3. Before discussing de-
tailed techniques, we provide the overview of the approach at the conceptual level in
Section 3.1.

3.1 Overview of the approach

A. Features of our approach. Our approach has three main features: duplication-
aware, hierarchy-aware and object-orientation.
Duplication-aware. We recognize that there exists object duplication in XML doc-
uments. Thus, we model an XML document as an XML IDREF graph so that all in-
stances of the same object can be linked to a virtual object node. This enables us follows
these links to find missing answers.
Hierarchy-aware. We are aware of the hierarchical structure of an XML IDREF graph
and exploiting it in finding answers. This offers a great opportunity to improve the
efficiency of the search by generalizing the LCA-based techniques instead of doing a
general graph-based search.

Note that the above two features are the main focus of the paper. However, since
object orientation has been demonstrated to be useful in many areas of computation
(including database field), our approach also relies upon object orientation.
Object-orientation. All nodes of the same object instance can be grouped. Among
these nodes, object node is the most important one and should be chosen as the repre-
sentative of the group. Instead of working with all these nodes, we only work with the
representative of each group, i.e., the object node, and associate all non-object nodes
to the corresponding object node. This largely reduces search space and improve the
efficiency of the search.

B. Basic ideas of runtime processing. Our runtime processing has three main tasks
corresponding to three properties of an answer based on Definition 2. Firstly, we need
to find potential center nodes which can be either a common ancestor or a common de-
scendant of matching nodes. Secondly, we have to find center nodes which can provide
informative answers. Finally, we get full answers w.r.t. a center node by tracking back
matching nodes and looking up connecting nodes. Follows are theories behind the three
main tasks. Detailed techniques will be provided in Section. 3.3.
Finding potential center nodes. Consider a keyword query Q = {k1, . . . , kn}. Let
Anc(Q) be the set of common ancestors of Q, i.e., ∀u ∈ Anc(Q), u is a common
ancestor of {u1, . . . , un} where ui contains ki. Similarly, let Dec(Q) denote the set of
common descendants of Q. Based on Property P1 of Definition 2, obviously, we have
the following property:

Property 1 Given an answer 〈c,K, I〉 for a keyword query Q, the center node c ∈
Anc(Q) ∪Des(Q).

For a set of nodes, common descendants of these nodes can only be object nodes
(real or virtual) which is referred by some other node(s) by IDREF links. We call
them referred object node. Let Ref(k) is the set of referred object nodes w.r.t. k,
each of which is a descendant of some node containing k. For example, in Figure 2,

Ref(Cloud) = {8}. Let Ref(Q) be the set of referred object nodes w.r.t. Q. We have
the following property about common descendants.

Property 2 Given a keyword query Q, Des(Q) = Ref(Q).

By Property 1 and Property 2, Anc(Q) and Ref(Q) can provide potential cen-
ter nodes. Since Anc(Q) =

⋂n
1 Anc(ki), and Ref(Q) =

⋂n
1 Ref(ki), in order to find

Anc(Q) and Ref(Q), we use computation of set intersection. The computation of set
intersection has been used to find SLCA and ELCA in [18] and has been shown to be
more efficient than the traditional computation based on common prefix of labels when
dealing with XML tree.
Finding center nodes. Among potential center nodes, we identify real center nodes by
checking Property P2 of Definition 2, which infers that an answer should have its own
matching nodes from its ancestor/descendant answers to be informative. Let Des(c, k)
denote the set of descendants of node c which contains keyword k. Center Des(c)
denotes center nodes which are descendants of c. Content Des(c, k) denotes the set
of matching nodes w.r.t. all nodes in Center Des(c). We have the following property.

Property 3 Given a keyword query Q = {k1, . . ., kn} and c ∈ Anc(Q), if Des(c, k)−
Content Des(c, k) 6= ∅ ∀i = 1..n, then c is a real center node.

We use bottom up for checking common ancestors. For a common ancestor c, after
removing matching nodes of descendant answers out of Des(c, k)’s, if c still has its
own matching nodes, then it is a real center node. This is similar for checking whether
a common descendant is a center node. However, the process is top down.
Tracking back matching nodes and looking up connecting nodes. To return a full
answer 〈c,K, I〉 to users, after having a center node c, we need to get the corresponding
set K of matching nodes and set I of connecting nodes such that they satisfy Property
P3 of Definition 2. We follow the below property.

Property 4 Given an answer 〈c,K, I〉, if I is the set of nodes on the paths from the
center node c to matching nodes in K, then that answer is minimal.

3.2 Labling and indexing

A. Labeling. Different from conventional labeling schemes, where each node has a
distinct label, we only label object nodes. All non-object nodes are assigned the same
label with their corresponding object nodes. This is the feature of object-orientation of
our approach. By this labeling scheme, a keyword matching a non-object node is con-
sidered as matching the corresponding object node and the number of labels is largely
reduced. This brings huge benefits for the efficiency because the search space is re-
duced. We use number instead of Dewey for labeling because in XML IDREF graph,
a node can have multiple parents. The other reason is that computation on number is
faster than on Dewey since as each component of the Dewey label needs to be accessed
and computed. Labels are compatible with the document order of the XML document.
Besides labeling real nodes in XML document, we also label virtual nodes. Each vir-
tual node is also assigned a label which succeeds labels of real nodes. For example, in
Figure 2, real object nodes are labeled from 1 to 7, and the virtual node is labeled 8.

Table 1: The ancestor lists for keywords Cloud and XML

Matching node and its ancestors u 1 2 3 u 1 2 3 5 7
Parent of u Par(u) 0 1 2 Par(u) 0 1 2 1 5
Descendants of u directly containing k Des(u,k) 2,3 2,3 3 Des(u,k) 3,5,7 3 3 3,7 7
Referer of u containing k if u is IDREF node IDREF(u,k) ∅ ∅ ∅ IDREF(u,k) ∅ ∅ ∅ ∅ ∅

La
XML (k = XML)La

Cloud (k = Cloud)

B. Indexing. Apart from traditional inverted list where each keyword corresponds to a
set of matching nodes, to capture both ancestor-descendant relationships and ID/IDREFs
in XML IDREF graph, and to facilitate the search, it is necessary to have complex tech-
niques on indexing. A keyword k corresponds to an ancestor list La

k and a descendant
list Ld

k to facilitate the computation of finding common ancestors and finding common
descendants respectively.
Ancestor list. Each entry in an ancestor list La

k is a quadruple which includes:
– u: an object node that matches k or its ancestors. This will be used in finding com-

mon ancestors.
– Par(u): the parent of object node u. If u is the root, then Par(u) = −1. If the

parent of u is the root, then Par(u) = 0.
– Des(u, k): the set of descendant object nodes (and itself) of u, which directly con-

tains k. This is used for Property P2.
– IDREF (u, k): the referrer of u w.r.t. k if u is an referred object node. Otherwise,
IDREF (u, k) = ∅. For example, in Figure 2, IDREF (node 8, Cloud) is node 4.
This is used in presenting output when the common ancestor is a referred object
node.
For example, Table 1 shows the ancestor lists for keywords Cloud and XML in the

XML IDREF graph in Figure 2, where each entry corresponds to a column in the tables.
For instance, the first entry of La

Cloud
corresponds to node 1; the parent of node 1 is node

0 (the root); node 2, 3 are descendants of node 1 containing Cloud; and node 1 is not
an referred object node.
Descendant referred object node list. Similar to an ancestor list, each entry in a de-
scendant referred object node list Ld

k is a quadruple which includes:
– u: an referred object node which is a descendant of an matching object node. This

will be used in finding common descendants. Note that a common descendant can
only be an referred object node.

– Child(u): set of referred object nodes which are children of u.
– Match(u, k): the set of ancestor object nodes of u, which directly contains k. This

is used for Property P2.
– Path(u, k): paths from each node in Match(u, k) to u. This will be used in pre-

senting output.
For example, Table 2 shows the descendant referred object node lists for keywords

Cloud and XML in the XML IDREF graph in Figure 2, where each entry corresponds
to a column in the tables. Among object nodes (nodes 1,2,3) matching keyword Cloud,
only node 2 has referred object node 8 as descendant. Nodes on the path from node 2
to node 8 are 2-4-8.

Table 2: The descendant referred object node lists for keywords Cloud and XML

IDREF node u 8 u 8
Children of u Child(u) ∅ Child(u) ∅

Matching node Match(u,k) 2 Match(u,k) 5
Path from Match(u,k) to u Path(u,k) 2,4,8 Path(u,k) 5,6,8

Ld
XML (k = XML)Ld

Cloud (k = Cloud)

3.3 Runtime processing

Given a keyword query Q = {k1, . . . , kn} to an XML IDREF graph, there are three
steps for finding answers to Q, which are (1) finding potential center nodes (common
ancestors and common descendant referred object nodes), (2) finding center nodes and
(3) generating full answers. This section presents detailed techniques on these steps.

Algorithm 1: Finding potential center
nodes

Input: Ancestor lists La
i of keyword ki, ∀i = 1..n

Output: La
c

: list of common ancestors
1 La

c
←∅

2 //SetIntersection(L1, . . . , Ln)
3 for each cursor Ci do
4 Ci← 1

5 index← 1
6 for each element e in L1 do
7 cur← L1[e]
8 next← L1[e + 1]
9 //Search e in the other lists

10 for each inverted list Li from L2 to Ln do
11 while Li[Ci] < next do
12 if cur = Li[Ci] then
13 break;

14 Ci++;

15 break;

16 //update if e is a common one
17 if Li[Ci] < next then
18 La

c
[index].u← e

19 La
c
[index].Par(u)← Par(e)

20 for each keyword k do
21 Add(Des(u, k)) to

La
c
[index].Des(u,Q)

22 Add(IDREF (u, k)) to
La

c
[index].IDREF (u,Q)

Step 1: finding potential center nodes.
Based on Property 1 and Property 2,
Anc(Q) and Ref(Q) are potential center
nodes, where Anc(Q) and Ref(Q) are
the set of common ancestors and the set
of common descendant referred object
nodes respectively. For each keyword k,
we retrieve Anc(k) and Ref(k) from the
first field, i.e., the field containing u of
the ancestor list La

k and the descendant
referred object list Ld

k respectively. Let
Anc(Q) and Ref(Q) be the set inter-
section of Anc(k)’s and Ref(k)’s for all
keywords k respectively. The computa-
tion of set intersection can leverage any
efficient existing algorithms for set inter-
section. In this work, we use a simple yet
efficient set intersection for m ordered
sets L1, . . ., Lm by scanning both lists
in parallel, which requires

∑
i(|Li|) op-

erations in worst case.
Algorithm 1 is to find common an-

cestors. For each common ancestor, we
get the corresponding information (line
17-22). The result is illustrated in Table 3, where Des(u,Q) and IDREF (u,Q) con-
tains n components of Des(u, k) and IDREF (u, k) respectively for all keywords k.
This figure shows the common ancestor list for query Q = {Cloud, XML}. From
La

Cloud
and La

XML
, we get Anc(Cloud) = {1, 2, 3} and Anc(XML) = {1, 2, 3, 5, 7}.

So, Anc(Q) = {1, 2, 3}. For common ancestor 1, Des(1, Q) = {2}, {5} means
Des(1, Cloud) = {2} and Des(1, XML) = {5}.

Finding common descendant is similar. However, the differences are the information
we get for each potential center node. Particularly, from line 17 to line 22, for each

Table 3: Common ancestors of query {Cloud, XML}
La

c
Common ancestor u 1 2 3
Parent of u Par(u) 0 1 2
Descendants of u directly containing query keywords Des(u,Q) {2}, {5} {2}, ∅ {3}, {3}
Referer of u if u is IDREF node IDREF(u,Q) ∅ ∅ ∅

common descendant referred object node u, we will update u,Child(u), Match(u, k)
and Path(u, k).
Step 2: finding real center nodes. Among potential center nodes, we need to find
real center nodes by checking whether they have their own matching nodes. Based on
Property 3, Des(c, ki)−Content Des(c, k), ∀i = 1..n is checked bottom up. Initially,
each common ancestor c, we can get n sets Des(c, ki), i = 1..n from the ancestor
lists. Among common ancestors Anc(Q), we start from those having no descendant
in Anc(Q) (bottom up). They are center nodes. For the parent c′ of each new center
node c, we update Des(c′, ki), ∀i = 1..n by removing Des(c, ki) out of Des(c′, ki),
∀i = 1..n. Finally, if Des(c′, ki) 6= ∅, i = 1..n, then c′ is center node. This is similar
for finding common descendant refered object nodes. The list of common ancestors
is sorted so that an ancestor occurs before its children. Therefore, to find center nodes
from the list of common ancestors, we start from the end of the list of common ancestors
because the descendant is then considered first. A considered common ancestor will be
filtered out of the list if it is not an center node.
The progress is given in Algorithm 2. If
Des(c, ki) − Content Des(c, k) 6= ∅,
∀i = 1..n, then it is a center node. Oth-
erwise, it is filtered out (line 2, 3). For a
returned center nodes u, we update the set
of exclusive matching descendants of all
common ancestors which are ancestors of u
(line 5, 6, 7), for each of which, if the set
exclusive matching descendants w.r.t. any
keyword is empty, we remove it from the set
of common ancestors (line 8, 9). Thereby,
after finding a center nodes, we proactively
filter out a lot of its ancestors if they are not
center nodes.

Algorithm 2: Finding real center
nodes

Input: La
c

: the list of common ancestors
1 for each element e from the end of La

c
do

2 for each keyword k do
3 if Des(u, k) is ∅ then
4 La

c
.Remove(e)

5 //Update the sets of exclusive
matching descendants of COAs

6 for each parent node e′.u of e.u in La
c

do
7 v← e′.u for each keyword k do
8 Des(v, k).Remove(Des(u, k))
9 if Des(v, k) is ∅ then

10 La
c

.Remove(v)

The way to get the list of common descendants is similar to that of common an-
cestors but we start from the beginning of the list of descendant referred object nodes
because an descendant occurs before its parents.

For example, Figure 5 illustrates the way our approach checks whether a potential
center node is a real center node or not. First of all, our approach checks nodes 3,
4 and 5 in the most left figure because they have no descendant. After this checking
step, descendants containing keywords of node 2 and node 1 is updated. Specifically,
we remove n1 and n2 for node 2 because they are contained in node 3 and node 4

1
{n1,n2,n3,n4}

2

3 4

5
{n1,n2,n3} {n4}

{n2}{n1}

2

3 4

5
{n1,n2,n3} {n4}

{n2}{n1}

1
{n3}

2

3 4

5
{n3} {n4}

{n2}{n1}

1
{}

2

3 4

5
{n3} {n4}

{n2}{n1}

check 3,4,5
check 2

Figure 5: Illustration of checking center nodes

(descendants of node 1), and similarly remove n1, n2, and n4 for node 1. We continue
checking until the root is reached.
Step 3: tracking back matching nodes and looking up connecting nodes. Once we
have found a center node c, we generate the answer 〈c,K, I〉 accordingly by identify-
ing K and I. The Des(u,Q) and Match(u,Q) fields allow us to produce the matching
nodes K for answers with simple extension and without affecting space and time com-
plexity. If c is a common descendant, I can be retrieved by the field Path(u, k). If c
is a common ancestor, to find the path from c to a matching node u, we need to find
backward from u to c by using Par field in the ancestor lists. Finally, to return the full
answers, we need another index from a label to the content of whole matching node.

4 Experiment

This section studies how the features of our approach, including hierarchy-aware, dupli-
cation-aware and object-orientation, impact on the performance. We will show the im-
pacts of each feature as well as the impacts of all features on the effectiveness and
efficiency. We implemented a system prototype called XBroad for evaluation. The ex-
periments were performed on an Intel(R) Core(TM)i7 CPU 3.4GHz with 8GB of RAM.

4.1 Experimental Settings

Datasets. We used three real datasets including NBA4, IMDb5, and Basketball6. In
IMDb, an actor or actress can play in many movies, and a company can produce several
movies. In NBA and Basketball, a player can play for several teams in different years.
We pre-processed them and used the subsets with the sizes 2.4MB, 90MB and 56MB
for NBA, IMDb and Basketball respectively.
Discovering object classes and OIDs of datasets. We first apply [12] to automatically
discover object classes and OIDs of datasets. We then manually adjust the results to get
100% of accuracy for the results of discovery. This is to make sure that the discovery
step does not affect our results.
Modeling datasets. Each dataset corresponds to four models:

– An X-tree: an XML tree with object duplication and without ID/IDREF.
– An X-graph: an XML IDREF graph obtained from an X-tree.

4 http://www.nba.com
5 http://www.imdb.com/interfaces
6 http://www.databasebasketball.com/stats download.htm

Table 4: Size and node of X-tree, X-graph, O-tree, O-graph

X-tree X-graph O-tree O-graph Virtual nodes
NBA 2.4 180 215 50 85 35
IMDb 90 48267 49835 18254 19822 1568
Basketball 56 30482 31285 5042 5845 803

Number of nodes (thousand)Dataset Size (MB)

– An O-tree (XML object tree): obtained from an X-tree by labelling only object
nodes and assigning all non-object nodes the same label with the corresponding
object nodes.

– An O-graph (XML object graph): obtained from an X-graph in the same manner
with obtaining an O-tree from an X-tree.

Size and node of datasets. The size the three datasets and the number of nodes of their
X-tree, X-graph, O-tree and O-graph are given in Table 4. The numbers of nodes of an
X-graph, O-graph is the sum of those of the corresponding X-tree, O-tree respectively
and the number of virtual nodes.
Queries. We randomly generated 183 queries from value keywords of the three real
datasets. To avoid meaningless queries, we retained 110 queries and filtered out 73
generated queries which are not meaningful at all (e.g., queries only containing articles
and preposition). The remaining queries include 15, 57 and 38 queries for NBA, IMDb
and Basketball datasets, respectively.
Compared approaches. Since XBroad can supports both XML documents with and
without IDREFs, we compare the performance of XBroad with both a tree-based ap-
proach (Set-intersection [18]), and XRich [8] and a graph-based approach (BLINKS [5]).
Running compared approaches. Since Set-intersection and XRich work on XML tree,
we can run them with X-tree and O-tree. Since BLINK works with XML graph, we ran
it on X-graph and O-graph. XBroad is also a graph-based approach, thus we can run
it on X-graph and O-graph. Since X-tree, X-graph, O-tree and O-graph can be derived
from one another with a necessary minor cost and they represent the same information,
it is fair to use them together for comparison.
Methodology

Hierarchy-aware, duplication-aware and object orientation are three features which
impact the effectiveness and the efficiency of XBroad. Among compared approaches,
BLINKS does not have concepts of object and hierarchy, Set-intersection does not have
the concept of object and duplication, and XRich has all the three similar features, but
works on XML tree only. Thus, we have the following methodology to show the impact
of each feature and of all features.
Impact of hierarchy-aware. To show the impact of hierarchical structure on graph
search, we compared XBroad with BLINKS, a non-hierarchy graph-based approach.
To separate with the impact of object orientation, we also operated BLINKS at object
level, i.e., ran BLINKS on O-graph.
Impact of duplication-aware. For duplication-aware, we compared XBroadwith Set-
intersection, an unaware duplication approach. To separate with the impact of object
orientation, we also operated BLINKS at object level, i.e., ran BLINKS on O-tree.

 0

 20

 40

 60

 80

 100

Precision Recall

Pe
rc

en
ta

ge
 (

%
)

(a) Hierarchy-aware

 0

 20

 40

 60

 80

 100

Precision Recall

P
er

ce
nt

ag
e

(%
)

(b) Duplication-aware

 0

 20

 40

 60

 80

 100

Precision Recall

P
er

ce
nt

ag
e

(%
)

(c) Object orientation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

Precision Recall

P
er

ce
nt

ag
e

(%
)

XBroad (on O-graph)
XBroad (on X-graph)

BLINKS
Set-intersection

(d) Annotation

Figure 6: Impact of each feature on the effectiveness [Basketball dataset]

Impact of object orientation. To show the impact of object orientation, we ran XBroad
at object level (i.e., O-graph) as well as at node level (i.e., on X-graph).
Impact of all three features. To show the impact of all features, we ran compared
algorithms on the data they initially designed for. Particularly, we ran BLINKS on X-
graph, Set-intersection on X-tree, and XBroad on O-graph. Besides, we also compare
with XRich because XRich has three similar features.

4.2 Effectiveness Evaluation

Metrics. To evaluate the effectiveness, we used standard Precision (P) and Recall (R)
metrics. We randomly selected a subset (20 queries) of 110 generated queries for ef-
fectiveness evaluation. To compute precision and recall, we conducted surveys on the
above 20 queries and the test datasets. We asked 25 researchers of our database labs
to interpret 20 queries. Interpretations from at least 18 out of 25 researchers are manu-
ally reformulated into schema-aware XQuery queries and the results of these XQuery
queries are used as the ground truth.
Impact of each feature. Figure 6 shows the impacts of each feature on the effective-
ness. As can be seen, each feature can help to improve effectiveness. Follows are the
reasons of improvement w.r.t. each feature. The hierarchical structure enables us to
avoid meaningless answers caused by unrelated matching nodes. BLINKS uses the dis-
tinct root semantics which is similar to the LCA semantics, thus its recall is affected
by the problems of not returning common descendants. Duplication-aware help return

0

20

40

60

80

100

IMDb NBA Basketball
0

20

40

60

80

100

IMDb NBA Basketball

(a) Precision

0

20

40

60

80

100

IMDb NBA Basketball
0

20

40

60

80

100

IMDb NBA Basketball

(b) Recall
0

20

40

60

80

100

IMDb NBA Basketball

Set intersection

BLINK

XRich

Our approach

Figure 7: Impact of all features on the effectiveness

 0

 4

 8

 12

 16

1 2 3 4 5

R
es

po
ns

e
tim

e
(s

ec
)

XBroad
BLINK

(a) Hierarchy-aware

 0

 4

 8

 12

 16

1 2 3 4 5

R
es

po
ns

e
tim

e
(s

ec
)

XBroad
Set intersection

(b) Duplication-aware

 0

 4

 8

 12

1 2 3 4 5

R
es

po
ns

e
tim

e
(s

ec
)

XBroad (O-graph)
XBroad (X-graph)

(c) Object-orientation

Figure 8: Impact of each feature on the efficiency [Basketball dataset]

missed answers. Object orientation improves precision because it enables us to avoid
meaningless answer caused by returning only non-object nodes.
Impact of all features. Figure 7 shows the impacts of all features on the effective-
ness. As discussed above, all these features have impacts on the effectiveness. Among
them, duplication-aware has the highest impact. Thus, the more features an approach
possesses, the higher precision and recall are. Particularly, XBroad has highest pre-
cision and recall because XBroad has all three features. BLINKS has higher perfor-
mance than Set-intersection because BLINKS works with graph, a duplication-aware
data. Compare to XRich, our approach has higher recall while the precision is similar.

4.3 Efficiency Evaluation

Metrics. To measure the efficiency, we compared the running time of finding returned
nodes. For each kind of queries, e.g., 2-keyword query, we selected five queries among
110 retained queries sharing the same properties. For each query, we ran ten times to get
the average response time. We finally reported the average response time of five queries
for each kind of query.
Impact of each feature Figure 8 shows the impact of each features on the efficiency.
As can be seen, all features improve efficiency, among which, hierarchy has the most
impact. The reasons for the improvement are follows. Hierarchy enables us to avoid
NP-Hard problem of the general graph search and it just extends visited nodes to two
directions: ancestor and descendant rather than to all directions. Duplication-aware and
object orientation both help reduce the search space.
Impact of all features The response time of algorithms is shown in Figure 9, in which
we varied the number of query keywords. As discussed above, all features impact the ef-

 0
 10
 20
 30
 40
 50
 60

1 2 3 4 5

R
es

po
ns

e
tim

e
(s

ec
)

(a) IMDb

 0
 50

 100
 150
 200
 250
 300

1 2 3 4 5

R
es

po
ns

e
tim

e
(m

s)

(b) NBA

 0
 5

 10
 15
 20
 25
 30

1 2 3 4 5

R
es

po
ns

e
tim

e
(m

s)

(c) Basketball

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5

R
es

po
ns

e
tim

e
(m

s)

Set intersection
BLINK
XRich

Our approach

Figure 9: Impact of all features on the efficiency (varying number of query keywords)

ficiency. Thus, the more features an algorithm has, the more efficient it is. XBroad ob-
tains the highest efficiency because it has all three features. Among the others, BLINKS
is the least efficient because it is affected by structure which does not have hierarchy.
Compared to XRich which based on tree-structure, our approach can get almost the
similar response time, even better when the number of keywords is increased.

5 Related work

LCA-based XML keyword search. XRANK [4] proposes a stack based algorithm
to efficiently compute LCAs. XKSearch [17] defines Smallest LCAs (SLCAs) to be
the LCAs that do not contain other LCAs. Meaningful LCA (MLCA) [13] incorpo-
rates SLCA into XQuery. VLCA [10] and ELCA [19] introduces the concept of valu-
able/exclusive LCA to improve the effectiveness of SLCA. MaxMatch [14] investigates
an axiomatic framework that includes the properties of monotonicity and consistency.
Although extensive works have been done on improving the effectiveness of LCA-based
approaches, these works commonly still suffers from the problem of missing answers
because of undetected object duplication in XML document. Moreover, these works
only can work with XML documents with no IDREF. Recently, XRich [8] takes com-
mon descendants into account of answers. However, its input XML document must not
contain IDREF or n-ary relationships (n ≥ 3).

We generalize the technique of set intersection [18] in processing queries. However,
there are several differences. First, that work considers XML tree where a node has only
one parent whereas ours can deal with the case where a node has multiple parents by
employing more complex indexes and searching techniques for XML IDREF graph.
Secondly, that work operates at node level whereas we operate at object level, which
enables us to improve both efficiency (by reducing search space) and effectiveness (by
avoiding meaningless answers) of the search. Most importantly, that work only search
up to find common ancestors but miss common descendants because it cannot detect
object duplication. In contrast, we have techniques to find missing answers.
Graph-based XML keyword search. BANKS [1] uses backward search to find Steiner
tree in labeled, directed graph. Later, Bidirectional [6] improves BANKS by using bidi-
rectional (backward and forward) search. EASE [11] introduces a unified graph index
to handle keyword search on heterogeneous data. Without the exploiting hierarchical
structure of XML graph, the graph search in general suffers from NP-Hard Problem.
Moreover, since XML graph (with IDREF) can contain object duplication, but these
works cannot detect object duplication. Thus they may also miss answers. To the best of
our knowledge, only [9] can provide the such missing answers. Nevertheless, this work
transfers XML to a graph which is similar to relational database and follows Steiner tree
semantics. Thus, it suffers from the inefficiency and may return meaningless answers
because matching nodes may not be (or weakly) related.

6 Conclusion

We introduced an approach to handle the problem of missing answers due to object
duplication for keyword search in a data-centric XML document. We model the in-

put XML document as an XML IDREF graph where all instances of the same object
are connected via a virtual object node (duplication-aware). We only work with ob-
ject nodes and associate non-object nodes to the corresponding object nodes (object-
orientation). More importantly, we discover the hierarchical structure of XML IDREF
graph to inherit LCA-based techniques for an efficient search (hierarchy-aware). The
experiments showed the impact of each and all feature(s) (duplication-aware, hierarchy-
aware, object-orientation) to the efficiency and effectiveness, which made our approach
outperforms the compared approaches in term of both efficiency and effectiveness.

References

1. G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword searching
and browsing in databases using BANKS. In ICDE, 2002.

2. S. E. Dreyfus and R. A. Wagner. The steiner problem in graphs. Networks, 1971.
3. J. Fong, H. K. Wong, and Z. Cheng. Converting relational database into XML documents

with DOM. Information & Software Technology, 2003.
4. L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: Ranked keyword search

over XML documents. In SIGMOD, 2003.
5. H. He, H. Wang, J. Yang, and P. S. Yu. BLINKS: ranked keyword searches on graphs. In

SIGMOD, 2007.
6. V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, and R. D. Hrishikesh Karambelkar.

Bidirectional expansion for keyword search on graph databases. In VLDB, 2005.
7. M. Kargar and A. An. Keyword search in graphs: finding r-cliques. PVLDB, 2011.
8. T. N. Le, T. W. Ling, H. V. Jagadish, and J. Lu. Object semantics for XML keyword search.

In DASFAA, 2014.
9. T. N. Le, H. Wu, T. W. Ling, L. Li, and J. Lu. From structure-based to semantics-based:

Effective XML keyword search. In ER, 2013.
10. G. Li, J. Feng, J. Wang, and L. Zhou. Effective keyword search for valuable LCAs over

XML documents. In CIKM, 2007.
11. G. Li, B. C. Ooi, J. Feng, J. Wang, and L. Zhou. EASE: Efficient and adaptive keyword

search on unstructured, semi-structured and structured data. In SIGMOD, 2008.
12. L. Li, T. N. Le, H. Wu, T. W. Ling, and S. Bressan. Discovering semantics from data-centric

XML. In DEXA, 2013.
13. Y. Li, C. Yu, and H. V. Jagadish. Schema-free XQuery. In VLDB, 2004.
14. Z. Liu and Y. Chen. Reasoning and identifying relevant matches for XML keyword search.

In PVLDB, 2008.
15. Y. Tao, S. Papadopoulos, C. Sheng, and K. Stefanidis. Nearest keyword search in XML

documents. In SIGMOD, 2011.
16. A. Termehchy and M. Winslett. EXTRUCT: using deep structural information in XML

keyword search. PVLDB, 2010.
17. Y. Xu and Y. Papakonstantinou. Efficient keyword search for smallest LCAs in XML

databases. In SIGMOD, 2005.
18. J. Zhou, Z. Bao, W. Wang, T. W. Ling, Z. Chen, X. Lin, and J. Guo. Fast SLCA and ELCA

computation for XML keyword queries based on set intersection. In ICDE, 2012.
19. R. Zhou, C. Liu, and J. Li. Fast ELCA computation for keyword queries on XML data. In

EDBT, 2010.

