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Abstract. Existing works on keyword search over relational databases
typically do not consider users’ search intention for a query and return
many answers which often overwhelm users. We observe that a database
is in fact a repository of real world objects that interact with each other
via relationships. In this work, we identify four types of semantic paths
between objects and design an algorithm called pathRank to compute
and rank the results of keyword queries. The answers are grouped by the
types of semantic paths which reflect different query interpretations, and
are annotated to facilitate user understanding.

1 Introduction

Keyword search over relational databases enables users to pose queries without
learning the query languages or database schemas, and has become a popular
approach to access database information [1, 5, 3, 8, 9, 2, 6, 7, 4, 11]. Existing works
use a data graph where each node denotes a tuple and each undirected edge
denotes a foreign key-key reference [6, 7, 11]. An answer to a keyword query
is a minimal connected subgraph of tuples which contains nodes that match
keywords in the query. Since the keywords in a query may match nodes which
are connected by many paths in the data graph, many answers are returned,
with possibly complex subgraphs whose meanings are not easy to understand.

One approach to address the above problem is to rank the query answers.
The methods range from simple heuristic rules such as ranking the answers based
on their sizes [5], to using the TF-IDF model [3, 8, 9], and the Random Walk
model [6, 7, 11]. Another approach is to organize query answers into clusters so
that users can explore the relevant clusters first [10]. However, none of these
approaches consider the semantics of the answers.

We observe that a relational database is, in fact, a repository of real world
objects that interact with each other via relationships. When a user searches for
some target object, s/he is interested in objects that are related in some way
to the target object. In this work, we utilize the compact Object-Relationship-
Mixed (ORM) data graph [12] to model tuples in a relational database, and
identify four types of semantic paths where a pair of nodes in the graph can
be connected. These semantic paths form different interpretations of the query
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answers. Based on these paths, we develop an algorithm to compute and rank
the answers of keyword queries. We group the query answers by the types of
semantic paths to reflect different query interpretations, and annotate each an-
swer to facilitate user understanding. Experimental results demonstrate that our
semantic path-based approach is able to rank answers that are close to users’
information needs higher compared to existing ranking methods.

2 Motivating Example

Fig. 2 shows the ER diagram of the student registration database in Fig. 1.
Based on the ER model, we see that the database comprises of Student, Course,
Lecturer and Department objects that interact with each other via the rela-
tionships Enrol, Teach, PreReq and AffiliateTo. Suppose a user issues the
query Q = {Java DB}. The keywords match two tuples in the Course relation,
i.e., <cs421, DB, l1> and <cs203, Java, l1>, corresponding to course objects
with identifier cs421 and cs203. Based on the ER diagram, these two objects are
related via the relationships PreReq, Enrol and Teach as follows:

a. Pre-requisite of a course (Pre-Req), e.g., cs203 is a pre-requisite of cs421.
b. Students who are enrolled in both courses (Enrol), e.g., student s1 ( Mary

Smith) is enrolled in both courses <cs421, DB, l1> and <cs203, Java, l1>.
c. Lecturers who teach both Java and DB (Teach), e.g., lecturer l1 ( Steven

Lee) teaches both courses <cs421, DB, l1> and <cs203, Java, l1>.

Each of these relationships suggest objects that interest the user. We can an-
notate the answers by the relationships as shown in Fig. 3. We will explain the
these annotations in the next Section.

Student 

SID Name 

s1 Mary Smith 

s2 John Depp 

Lecturer 

StaffID Name 

l1 Steven Lee 

Enrol 

TupleID SID Code Grade 

e1 s1 cs421 B 

e2 s1 cs203 A 

e3 s2 cs203 B 
Course 

Code Title StaffID 

cs421 DB l1 

cs203 Java l1 

PreReq 

TupleID Code PreqCode 

p1 cs421 cs203 

Department 

DeptID Name 

d1 CS 

d2 IS 

AffiliateTo 

TupleID StaffID DeptID 

a1 l1 d1 

a2 l1 d2 

Fig. 1. Example student registration database

3 Preliminaries

The work in [12] utilizes database schema constraints to classify relations into
object relation, relationship relation, component relation and mixed relation.
An object (relationship) relation captures single-valued attributes of an object
(relationship). Multivalued attributes of an object (relationship) are captured in
the component relations. A mixed relation contains information of both objects
and relationships, which occurs when we have a many-to-one relationship.

The Object-Relationship-Mixed (ORM) data graph [12] is an undirected graph
G(V,E). Each node v ∈ V has an id, a type ∈ {object, relationship,mixed},
and a relation name name. A node also has a set tupleIDs containing the ids of
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Fig. 2. ER diagram of Fig. 1

p1

Course

Course

PreReq

{Java}

{DB}

cs421

cs203

s1

e2

e1

Student

Course

Course

Enrol

Enrol {Java}

{DB}

cs421

cs203 l1

Lecturer

Course

Course{Java}

{DB}

cs203

cs421

(a) (b) (c)

Fig. 3. Annotated answers with node
types for Q = {Java DB}

tuples from an object (or relationship, or mixed) relation together with tuples
from its associated component relations. Fig. 4 shows the ORM data graph of
Fig. 1 comprising object nodes (rectangles), relationship nodes (diamonds) and
mixed nodes (hexagons). Each node has an id and a relation name, e.g., the
mixed node with id cs421 occurs in relation Course.
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Fig. 4. ORM data graph of the database in Fig. 1

Given a keyword query Q = {k1, k2, · · · , kn}, where ki, i ∈ [1, n] denotes a
keyword, we say k matches a node v in the ORM data graph if k occurs in some
tuple in v. We call v a matched node for k.

We now analyze the various ways a pair of object/mixed nodes can be con-
nected in the graph. Let u and v be two nodes in the ORM data graph G, and P
be the set of paths between u and v. Each path p ∈ P is a sequence of connected
nodes <u, · · · , v>. The length of a path p is given by the number of nodes in p,
denoted by |p|. We can form a new path p = <va, · · · , vb> by joining two paths
p1=<va, · · · , vc> and p2 = <vc, · · · , vb> over a common node vc; we say that
p can be decomposed into sub-paths p1 and p2. We call the paths between two
object/mixed nodes semantic paths since they capture the semantics of objects
and relationships. These paths can be classified into one of the following types:

Simple Path. A path p between u and v is a simple path if u and v are
object/mixed nodes, and all the nodes in p have distinct relation names.

sp(u, v, p) =


true if u.type = object/mixed and v.type = object/mixed

and ∀b ∈ p, b.name is distinct

false otherwise

For example, the path p=<s2, e3, cs203, l1> between the two object nodes
s2 and l1 in Fig. 4 is a simple path.
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Recursive path. A path p between u and v is a recursive path if u and v are
both object nodes or mixed nodes and have the same relation name, and all the
object/mixed nodes in the path p have the same relation name as u and v.

rp(u, v, p) =


true if (u.type = v.type = object or u.type = v.type = mixed)

and ∀b ∈ p such that b.type = object/mixed,we have

b.name = u.name = v.name

false otherwise

For example, the path p=<cs421, p1, cs203> between mixed nodes cs421 and
cs203 in Fig. 4 is a recursive path.

Palindrome path. A path p between u and v is a palindrome path if both u
and v have the same relation name, and we can find some object/mixed node
c ∈ p such that the nodes in the paths from c to u, and c to v have the same
sequence of relation names.

pp(u, v, p) =



true if u.name = v.name and ∃ object/mixed node c ∈ p

s.t. p can be decomposed into 2 sub-paths

p1 =< u, b1, · · · , bj , c >, p2 =< c, b′j , · · · , b′1, v > where

both p1, p2 are simple paths, and bi.name = b′i.name

∀bi ∈ p1, b
′
i ∈ p2, 1 ≤ i ≤ j

false otherwise

For example, the path p=<cs203, e2, s1, e1, cs421> between the mixed nodes
cs421 and cs203 in Fig. 4 is a palindrome path as it can be decomposed into two
simple sub-paths p1=<cs203, e2, s1> and p2=<s1, e1, cs421>.

Complex path. Any path that does not satisfy the conditions for the above
three semantic path types is a complex path. A complex path is essentially a
combination of simple paths and recursive paths, and has a path length |p| ≥ 3.

The path p=<s2, e3, cs203, p1, cs421, l1> in Fig. 4 is a complex path as it is
a combination of two simple paths and one recursive path.

4 Proposed Ranking Scheme

In this section, we describe our method called pathRank to compute and rank
keyword query answers. We first generate Steiner trees that contain all the query
keywords. Then we augment the relationship matched nodes in the Steiner trees
with their associated object and mixed nodes. Finally we rank the Steiner trees
based on type of semantic paths they contain. We give the highest score to simple
and palindrome paths because they are more intuitive and informative. Complex
paths have the lowest scores since they require more user effort to understand.

Let Obj(k) and Rel(k) be the sets of object and relationship nodes that
match keyword k in the ORM data graph. Note that if k matches the object
part of a mixed node u, then we add u to Obj(k). Otherwise, if k matches the
relationship part of u, we add u to Rel(k).

Given two nodes u and v that match keyword ki and kj respectively in a
Steiner tree T , we have the following cases:
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a. Both u ∈ Obj(ki) and v ∈ Obj(kj). We determine the type of the path
between u and v as described in Section 3.

b. Either u ∈ Rel(ki) or v ∈ Rel(kj). Without loss of generality, suppose u ∈
Rel(ki) and v ∈ Obj(kj). Let Su be the set of object/mixed nodes that are
directly connected to u, and p′ be the path between v and some node s ∈ Su

that has the highest score. Then the type of the semantic path between u
and v is given by the type of path p′.

c. Both u ∈ Rel(ki) and v ∈ Rel(kj). Let Su and Sv be the sets of object/mixed
nodes that are directly connected to u and v respectively. Let p′ be the path
between s ∈ Su and t ∈ Sv that has the highest score. Then the type of the
semantic path between u and v is given by the type of path p′.

Let V be the set of matched nodes in a Steiner tree T and C
|V |
2 be the number

of node pairs in V . The score of T w.r.t keyword query Q is defined as follows:

score(T,Q) =


∑

u,v∈V,u.id<v.id pathscore(u,v,p)

num(u,v,p)∗C|V |
2

|V | > 1

1 |V | = 1

where num(u, v, p) is the number of object/mixed nodes in the path p between
nodes u and v in V , and pathscore(u, v, p) is the score of the path p. Note that
our proposed ranking scheme considers the semantic paths between matched
nodes as well as the number of participating objects in the Steiner tree.

Algorithm 1 shows the details of pathRank. We first classify the matched
nodes for each keyword and generate the Steiner trees (Lines 3-5). For each tree
T , we check every matched node v for keyword k. If v ∈ Rel(k), i.e., the keyword
matches a relationship node or the relationship part of a mixed node, then we
add the object/mixed nodes that are directly connected to v in the ORM data
graph and the associated edges into T (Lines 6-11). Next, we determine the score
of the path between matched nodes u and v in T (Lines 12-31).

5 Performance Study

We implement the algorithms in Java, and carry out experiments on an Intel
Core i7 3.4 GHz with 8GB RAM. We use a subset of the real world ACM Digital
Library publication dataset from 1995 to 2006. There are 65,982 publications and
106,590 citations. Fig. 6 shows the ER diagram for this dataset.

We compare our semantic path ranking method (Path) with the following
ranking schemes used in state-of-the-art relational keyword search such as Dis-
cover [5], BANKS [6] and SPARK [9]:

a. Number of nodes in answer (Size) [5].
b. Node prestige and proximity (Prestige) [6].
c. TF-IDF similarity between query and answer (Tf-idf) [3, 9].

Fig. 7 shows the keyword queries used in our experiments. We show these queries
together with the ER diagram of the database to 10 users and obtain their possi-
ble search intentions. For each search intention, we generate the SQL statements
to retrieve the results from the database to form the ground truth.
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Algorithm 1: pathRank

Input: keyword query Q = {k1, ...kn}, maxSize, ORM data graph G
Output: answer set Answer

1 Answer ← ∅;
2 for i = 1 to n do
3 Let Obj(ki) be the set of object/mixed nodes in G that match ki;
4 Let Rel(ki) be the set of relationship/mixed nodes in G that match ki;

5 Answer = generateSteinerTree(Q, G, maxSize);
6 foreach Steiner Tree T ∈ Answer do
7 Let V be the set of matched nodes in T ;
8 foreach v ∈ V do
9 if v ∈ Rel(k) then

10 add object/mixed nodes that are directly connected to v in G into T ;
11 add the associated edges in G into T ;

12 foreach u, v ∈ V do
13 Su ← ∅; Sv ← ∅;
14 if u ∈ Obj(ki) then
15 add u into Su;
16 else if u ∈ Rel(ki) then
17 add object/mixed nodes that are directly connected to u in T into Su;
18 if v ∈ Obj(kj) then
19 add v into Sv;
20 else if v ∈ Rel(kj) then
21 add object/mixed nodes that are directly connected to v in T into Sv;
22 score = 0;
23 foreach s ∈ Su, t ∈ Sv do
24 z = pathscore(s, t, p);
25 if score < z then
26 score = z;

27 pathscore(u, v, p) = score;
28 Let num be the number of object/mixed nodes between u and v;
29 T .score += pathscore(u, v, p) ∗ num;

30 T .score = T .score/(|V | ∗ (|V | − 1)/2);

31 return Sort(Answer);
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Fig. 5 shows the average precision of four ranking methods for the queries in
Table 7 when we vary k. We observe that Path is able to achieve a higher average
precision compared to Size, Prestige and Tf-idf for most of the queries. In
fact, the superiority of Path increases significantly as k decreases. All the ranking
schemes are able to retrieve the relevant answers when k is equal to 50. However,
Size, Prestige and Tf-idf start to miss relevant answers as k decreases. Note
that for query Q9 and Q10, all the ranking schemes achieve an average precision
of 1 because their search intentions are straightforward, and the relevant answers
are ranked on the top by all the ranking schemes. Thus, we can see that Path is
more effective than the other ranking schemes when the queries are ambiguous.

Conf

Accept

Paper Write Author

conf_id

title

paper_id title author_id name

Cite

pages URL

year

affiliation

m m

m

1

m

m

Fig. 6. ER diagram of the ACM Digital Li-
brary dataset

Queries
Q1 Streaming QSplat hierarchical wavelets
Q2 Texture synthesis painting
Q3 lambda calculus resource usage
Q4 Jeffrey Naughton David DeWitt
Q5 Gray Alexander
Q6 Alla Sheffer Hugues Hoppe
Q7 Brad Calder Timothy Sherwood
Q8 Yannis Papakonstantinou
Q9 Jagadish query
Q10 Stonebraker SIGMOD

Fig. 7. Queries used

Table 1 shows two sample answers for query Q3 and their rankings by the
different schemes. The keywords in this query match two paper titles. The first
answer indicates that these two papers are related via 2 Paper-Cite relationships,
while the second answer indicates that these two papers are related via a third
paper published in the same conference and cites one of these papers. We observe
that although the second answer is complex and not easy to understand, it is
ranked higher by Size and Prestige. Tf-idf gives the similarly ranks to these
two answers without considering the type of the semantic paths. In contrast,
Path ranks the first answer much higher because it contains a recursive path
while the second answer contains a complex path. Fig. 8 shows the corresponding
annotated answers output by our approach to facilitate user understanding.

Sample query answers Size[5] Prestige[6] Tf-idf[3, 9] Path[Ours]

(a)

p1: Resource usage analysis

9 7 10 4
p2: Once upon a type

p3: A call-by-need lambda calculus

(b)

c1: POPL’04

2 5 11 21
p4: Channel dependent types for higher-order...

p1: Resource usage analysis
p5: ... evaluation for typed lambda calculus...

Table 1. Ranking of two sample answers for query Q3
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Fig. 8. Annotated answers for query Q4

6 Conclusion

In this paper, we have proposed a semantic approach to help users find infor-
mative answers in relational keyword search. This is achieved by capturing the
semantics of objects and relationships in the database with the ORM data graph.
We examined how objects are related and identified four types of semantic paths
between object/mixed nodes. Based on these semantic paths, we have developed
an algorithm to compute and rank the answers of keyword queries. We group
the answers by the types of semantic paths and annotate them to facilitate user
understanding. Experimental results on a real world dataset demonstrated the
effectiveness of our path-based approach.
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