
A Case Tool for Designing XML Views 
 

Ya Bing Chen, Tok Wang Ling, Mong Li Lee 
School of Computing, National University of Singapore  

(chenyabi, lingtw, leeml)@comp.nus.edu.sg 
 

Abstract  
XML views are essential for managing XML data on the Web. Like views in traditional 
databases, XML views allow users to see data from different perspectives. Moreover, 
XML views are able to offer a structured interface over semistructured data and make it 
possible to integrate heterogeneous data source. In this paper, we describe a graphical 
case tool for designing XML views with the following novel features. First, it supports 
validation of views by checking if a view conforms to the semantics in the underlying 
source schemas. The feature is critical for XML views design because it avoid producing 
meaningless views. Second, the case tool provides a scheme to store XML data into an 
object-relational database that reduces redundancies and facilitates efficient processing of 
queries over XML views. 

 
1. Introduction 
 
Although XML [XML] (eXtensible Markup Language) is originally a document mark-up 
language, it is becoming a standard for publishing and exchanging data on the Web. 
Unlike HTML, XML enforces explicit structuring and separates presentation from data 
content. If data sources contain information with more structure, it will be more 
appropriate to use XML rather than HTML to export their data to the Web and exchange 
it with other data sources. 

If an information source chooses to use XML to export their data, then it becomes 
important to manage the XML data efficiently, and provide for the systematic import 
and/or export of XML data. As in traditional databases, users often need to view data 
from different perspectives. XML views are able to offer a structured interface over 
semistructured data and make it possible to integrate heterogeneous data source [A99]. 

Several systems such as ActiveViews [AAC+99] and MIX [BGL+99] have been 
developed to support XML views. The ActiveViews system defines views using the 
object-oriented model. MIX system integrates heterogeneous data sources and offers 
views based on the underlying data sources. While both systems provide for the 
definition of XML views, they do not guarantee that the views designed are valid.  

In this paper, we offer a novel case tool for designing XML views – XML Views 
System (XVS), which has important new features. XVS offers a graphical views design 
facility besides query expression, which is more straightforward than designing views 
only using query expression. The designed views will also be validated so that no 
meaningless views will be produced. The feature is critical for designing XML views 
because it guarantees all designed views are meaningful. Unfortunately it is not supported 
by the other systems. Moreover, our system stores XML data into an object-relational 
database using a particular method by mapping XML data to an ORA-SS schema 
[LLD01], which is more efficient than storing in an object database. 

 1



The rest of the paper is organized as follows. In section 2, we will give some 
background of our system, particularly, the data model and the view definition language. 
Section 3 gives an overview of XVS. We use an example to demonstrate the workings of 
the system. Section 4 discusses some related work and we conclude in Section 5. 

 
2. Preliminaries 
 
2.1 ORA-SS Data Model 
 
The ORA-SS (Object-Relationship-Attribute model for Semistructured data) data model 
has three basic concepts: object classes, relationship types and attributes. An object class 
is similar to a set of entities in the real world, an entity type in an ER diagram, a class in 
an object-oriented diagram or an element in XML document. A relationship type 
describes a relationship among object classes. Attributes are properties, and may belong 
to an object class or a relationship type. The ORA-SS data model consists of four 
diagrams: the schema diagram, the instance diagram, the functional dependency diagram 
and the inheritance diagram. A full description of the data model can be found in 
[DWLL00]. In this paper, we will focus on the schema diagram. 

Figure 1 shows the ORA-SS schema diagram of an instance diagram depicted in 
Figure 2. An object class is represented as a labeled rectangle. A relationship type 
between two object classes in an ORA-SS schema diagram can be described by name, n, 
p, c, where name denotes the name of the relationship type, n is an integer indicating the 
degree of the relationship type (n = 2 indicates binary, n = 3 indicates ternary, etc.), p is 
the participation constraint of the parent object class in the relationship type, and c is the 
participation constraint of the child object class. The participation constraints are defined 
using the min:max notation. 

Attributes are denoted by labeled circles. Keys are filled circles. Attributes of an 
object class can be distinguished from attributes of a relationship type. The former has no 
label on its incoming edge while the latter has the name of the relationship type to which 
it belongs on its incoming edge. 

ORA-SS is a semantically rich data model. It not only reflects the nested structure of 
semistructured data, but also distinguishes between object classes, relationship types and 
attributes. Moreover, ORA-SS makes it possible to specify the participation constraints of 
object classes in relationship types and distinguish between attributes of relationship 
types and attributes of object classes. Such information is lacking in existing 
semistructured data models. However, it is essential for designing valid XML views 
because the labels on attributes and relationship types convey necessary semantics to 
distinguish between meaningful views and views that are not meaningful. Therefore, we 
adopt ORA-SS as the data model for valid XML views design. The difference between 
invalid views and valid views will be illustrated in section 3.2. 

 2



  

supplier

sno part

pno
price

project

jno

ps,2,1:n,1:n

sp,2,1:n,1:n

sp

project

jno:
j001

supplier supplier

sno:
s001

part

price:
90

part

pno:
p002

price:
120

part

sno:
s001

pno:
p003

price:
110

Figure 1: ORA-SS Schema Diagram

Figure 2: ORA-SS Instance Diagram

pno:
p001

 
2.2 View Definition Language 
 
The World Wide Web Consortium recently proposed an XML query language called 
XQuery [XQ]. XQuery provides flexible query facilities to extract data from real and 
virtual documents on the Web.  Although XQuery do not provide for the definition of 
views, we can extend it easily to include the definition. 

The basic form of a view definition clause consists of a For, Let, Where and Return 
(FLWR) expression. This is in fact the core part of XQuery. The definition of a view is as 
follows: 

“Create View As view name” followed by a FLWR expression. 
The For clause and/or Let clause serve to bind values to variables. The values to be 

bound to variables are represented by path expression. The For clause is used when 
iteration is needed, while the Let clause is used when there is no iteration. The Where 
clause is a set of predicate expressions, which are used to further filter the binding-tuples, 
generated by the For and Let clauses. The Return clause generates the structure of the 
view in XML notation. A full description of XQuery can be found in [XQ]. We will 
adopt XQuery not only as the view definition language, but also as the query language 
used to query views. 
 
3. Architecture of XVS 
 
In this section, we give an overview of our XML Views System – XVS. We will first 
introduce the high level architecture of our system, and then we will illustrate the work 
process of our system with an example. XVS offers new features that cannot be 
supported by other view systems. First, it supports graphical facility for designing views, 
which is straightforward to use. Based on graphical source schema, users can 
dynamically design views by selecting, dropping or transforming the structure. Secondly, 
XVS supports validation of views, which checks if a view conforms to semantics in 
source schemas. The feature therefore offers a guarantee that each designed view is 

 3



meaningful. XVS also supports storing XML data into an object-relational database, 
which adopts a novel mapping method [LLD01]. The method stores an XML document 
into sets of object tables and sets of relation tables, which takes advantage of ORA-SS 
and reduces redundancies. 

The architecture of the XML Views System (XVS) is depicted in Figure 3.  
 

ORDBMS

XVS

Web

Application

User Q uery
(XQuery)

Answer to Query
(XML)

Design Graphical
View Schema

XML Document

Transform/Enrich
(O RA-SS)

Q uery Rewrite
(SQ L)

Generate XML
Result

Generate  View
Definition (XVL)

Materialize View

 
Figure 3. The Architecture of XVS 

 
Each module of the system is described as follows: 
• Transform/Enrich (ORA-SS): This module takes an XML document and 

generates the corresponding ORA-SS graphical schema diagram. It also allows 
users to enrich the ORA-SS schema diagram to add necessary semantic 
information for XML views design. For example, whether an attribute belongs to 
an object or a relationship can be indicated in the diagram. After that, these XML 
documents will be stored into an object-relationship database by mapping the 
ORA-SS schema diagram into a series of objects and relationship tables [LLD01]. 

• Design graphical view schema: This allows the user to design a view graphically 
over a source schema. Objects and/or attributes can be selected or dropped, and 
the structure of the source schema can be changed. 

• Generate view definition: A view definition in FLWC expression is generated 
from the graphical view schema. 

• Query rewrite (SQL): This module rewrites a user query based on the view 
definition and generates an equivalent SQL query. The SQL query will be passed 

 4



to the underlying object-relationship database and executed. The result will be 
returned to the XVS in a table form. 

• Generate XML result: An XML document is generated from the result table and 
sent to some application in the Web. 

• Materialize view: This module generates an XQuery corresponding to the view 
definition and passes it to the underlying object-relational database to generate the 
result of the view. This allows users to materialize the defined view.   

 
3.1 Mapping the underlying XML to ORA-SS 

 
Now we will illustrate the work process of our system. First, XVS takes an XML 
document as its input. The document is transformed to a tree structure based on its 
hierarchy. Then it is mapped to an ORA-SS schema diagram. Elements in the document 
are mapped to object classes. Attributes of the elements are mapped to attributes of object 
classes. Users may input semantic information on the original XML tree to transform 
some object classes to attributes and/or add relationship types among object classes. 
Users may also indicate if an attribute belongs to an object class or a relationship type. 

 
Example 1 
Consider an XML document that describes project, supplier and part, which is depicted in 
Figure 4. The document is input into XVS and transformed into an ORA-SS schema, 
depicted in Figure 5. Then XVS will allow users to enrich the schema diagram with 
semantics. For example, relationship types among the object classes may be added in the 
diagram, such as js between project and supplier, sp between supplier and part, and spj 
among project, supplier and part. These relationship types are essential semantics for 
XML views design. Moreover, the element price in XML document is labeled as an 
attribute of the relationship type sp, as shown in figure 5. Then we have such a functional 
dependency: supplier, part → price. 

 

                                                                                   

supplier

sno part

pno
price

project

jno

js,2,1:n,1:n

sp,2,1:n,1:n
spj,3,1:n,1:n

sp

 

<db> 
  <project jno=”j001”> 
    <supplier sno=“s001”> 
        <part pno=“p001”> 
           <price> 100</price> 
        </part> 
    </supplier> 
    <supplier sno=“s002”> 
        <part pno=“p001”> 
            <price> 100</price> 
        </part> 
    </supplier> 
  </project> 
</db> 

Figure 4: An XML document “spj.xml” on                Figure 5: An ORA-SS schema diagram  
         Project-Supplier-Part                                                       on Project-Supplier-Part 

 5



 
After that, XVS will store the enriched document into an object-relational database. 

In general, each object class in the ORA-SS schema is mapped to an object table. 
Similarly, each relationship set in ORA-SS is mapped to a relationship table. 

 
Example 2 
For example, XVS stores the document in Example 1 into a schema in Figure 6. The 
three object classes in the ORA-SS schema diagram are mapped to three object relations. 
Their respective key attributes in the diagram are still keys in the relations. The three 
relationship types in the ORA-SS schema diagram are also mapped to three relationship 
relations. The key of each relationship relation is a combination of key attributes of the 
participating object classes. As an attribute of relationship type, price is also stored in the 
relation supplier_part. 

 
  
 
 
 
 

Figure 6: Storage schema of ORA-SS schema diagram in Figure 4 

Object relation: 
Project( jno ); supplier( sno ); part( pno ); 
Relationship relation: 
Project_supplier( jno,sno ); supplier_part( sno, pno, price); spj( jno, sno, pno ) 

 

 
3.2 Defining View 
XVS provides a graphical interface for users to design views. Based on the enriched 
ORA-SS schema diagram, users can operate it directly to design a graphical view 
schema. That is, users can choose to select or drop some object classes, or restructure 
some parent-child relationship sets on the graphical schema diagram. The final view 
schema will be passed to the view definition generator. The view definition generator will 
first check whether the view schema is valid or not. That is, it will determine if the view 
conflicts with any semantic information provided in ORA-SS source schema. If the view 
is invalid, XVS will ask users to redesign the view. If the view is valid, XVS will 
generate a view definition expressed in XQuery expression.  
 
Example 3 
Consider the ORA-SS schema diagram in Figure 5. Suppose we design a view that swaps 
the location of object classes supplier and part. That is, supplier will become a child of 
part, while part becomes the parent of supplier. After swapping, we may design two 
different views, as shown in Figures 7 and 8. 

 6



part

pno supplier

sno

price

project

jno
part

pno supplier

sno

ps

price

project

jno

Figure 7: invalid view which
swaps supplier and part

Figure 8: valid view which
swaps supplier and part

ps,2,1:n,1:nps,2,1:n,1:n

 
                                                                             
In Figure 7, the attribute price is placed under the object class part. It therefore 

becomes an attribute of part. In this case, the functional dependency that is hold in the 
source schema: supplier, part → price has been changed to part → price. Then it violates 
the original semantics in the source schema and is called an invalid view.  The system 
will inform users that the view is invalid and requires redesigning it. 

Figure 8 shows a valid view in which the attribute price is placed under the new child 
object class – supplier. It conforms to the functional dependency: supplier, part → price, 
and is thus a meaningful view. 

The example shows that ORA-SS enables us to avoid designing invalid XML views. 
It is because ORA-SS expresses necessary semantics for valid XML views design, as 
shown in the example above. Other models, such as OEM [AQM+97], XML DTD and 
XML Schema [XS] are not able to express those necessary semantics. Therefore, they 
cannot support valid XML views design. Existing tools, such as ActiveViews and MIX, 
which are based on an object model and XML DTD respectively, are also not able to 
support valid XML views design. 

After validating the ORA-SS view, XVS will generate a view definition for it (Figure 
9). The view definition first declares the name of the view as swap-supplier-part. Then it 
binds $j to each project object. For each project, it fetches every distinct part. For each 
part, it fetches every supplier that supplies it in the given project. Finally, it fetches the 
price of the part supplied by each supplier. This view definition can be rewritten in 
XQuery by removing the view declaration clause. By executing the XQuery, we obtain a 
materialized view document. 

The process of the mapping between the graphical representation and the output is 
divided into two steps. In the first step, an intermediary view definition will first be 
generated based on the graphical representation of the view schema. The intermediary 
view definition adopts a novel declarative query language, which is in the SELECT-
FROM-WHERE notation. Besides that, the intermediary language is specially designed 
for ORA-SS schema diagram. Therefore the case tool can easily generate a view 

 7



definition using the language according to the view schema diagram. In the second step, 
the case tool will translate the intermediary view definition into a formal view definition 
in XQuery notation. The resulting view definition will be generated step by step 
according to what operation is contained in the intermediary view definition. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.3 Rewriting Q
 
After the view 
The XQuery is
views are limite
form of express
of FLWR expr
straightforward
 
Example 4 
For example, u
This query wil
corresponding S
which will be tr
 
 
 
 
 

 

Create View As swap-supplier-part 
For $j In document("spj.xml")//project 
Return 
         <project jno={$j/@jno}> 
         {  for $pn In distinct($j//part/@pno) 
             Return 
                <part pno={$pn}> 
                {  For $s In $j/supplier[part/@pno=$pn]
                    Return 
                       <supplier sno={$s/@sno}> 
                       { For $p In $s/part[@pno=$pn] 
                          Return 
                           <price> {$p/price/text()} </price>
                       }    
                       </supplier> 
                }        
                </part> 
         } 
         </project>
Figure 9: View definition for the view in Figure 8. 
 

uery 

definition is generated, XVS allows users to issue queries over the view. 
 re-written as an SQL query over the source database. The queries over 
d within the form of FLWR expression, because XQuery may take other 
ion. A full description of XQuery can be found in [XQ]. Within the scope 
ession, XQuery over views can be mapped into SQL query blocks in a 
 way.  

sers may issue an XQuery as shown in Figure 10 on the view in Figure 8. 
l retrieve all suppliers that supply part “p001” in project “j001”. The 
QL query is shown in Figure 11. The result of the query is a flat table, 

ansformed into the XML document shown in Figure 12. 

8



 
 
 
 
 
 
 
 

For $s In  
     view(“swap-supplier-part”)//project[@jno=”j001”]/part[@pno=”p001”]/supplier
Return 
    <supplier sno={$s/@sno}> 
           {$s/price} 
    </supplier> 

Figure 10: An XQuery against the view that retrieves all suppliers that supplies 
part “p001” in project “j001” 

 
 
 
 
 
 
 

 

Select       supplier.sno supplier_part.price 
From        supplier, supplier_part , spj 
Where      spj.jno=’j001’ and spj.pno=’p001’ 
And          supplier.sno=spj.sno and supplier_part.sno=s.sno 
And          supplier_part.pno=’p001’ 

Figure 11: SQL query that retrieves supplier supplying part p001 in project j001 
 

4. 

Th
Ac
[A
sy
[A
the
aff
de
da
de

 

 
 
 
 
 
 
 
 
 
 
 

<result> 
   <supplier sno="s001">     
       <price>100</price> 
    </supplier> 
    <supplier sno="s002">     
      <price>120</price> 
    </supplier> 
    <supplier sno="s003">     
      <price>110</price> 
    </supplier> 
</result> 
 

Figure 12: Result of the XQuery in Figure 10. 
 

Related Work 
 

ere have been several prototype systems developed to design XML views. The 
tiveViews system [AAC+99] is built on top of ArdentSoftware’s XML repository 
S], which is based on the O2 system – an object-oriented database system. In the 
stem, an active view is presented as an object, which includes both data and methods 
B91, SDA94]. Since the underlying database of the system stores XML data as objects, 
 object id associated with each object increases the cost of data management and 
ects the performance of queries. Moreover, the ActiveViews system only supports the 
finition of simple views that do not require any restructuring, because the underlying 
ta model cannot express necessary semantics for those more flexible XML views 
sign. 

9



The MIX (Mediation of Information using XML) System [BGL+99] provides a 
virtual view of underlying heterogeneous sources. The system utilizes XML DTD as its 
data model. Unfortunately, the semantics allowed in DTDs are limited. It is unable to 
indicate if an attribute belongs to an object or a relationship. Again, the views supported 
in MIX only involve selecting some elements based on certain conditions. Comparing 
with our system, the main problem of these two system is that they cannot guarantee 
valid XML views design, because they do not express enough semantics explicitly in 
their data models. 

  
 ActiveViews system 

[AAC+99] MIX system [BGL+99] XVS  
(our system) 

Data model XML XML DTD ORA-SS 

Storage  O2 system N/A ORDBMS 
View 

definition 
language 

OQL-style language XMAS language XQuery language 

Query 
language Lorel language XMAS language XQuery language 

Validation of 
views No No  Yes 

Support 
projection, 

join and 
restructuring 

of views  

No No  Yes 

Support 
graphical 

views design 
No No Yes 

 
Table 1. Comparison of ActiveViews system, MIX system and XVS 

 
Table 1 lists and compares the features of ActiveViews, MIX and our system – XVS. 

The ActiveViews system and MIX system use XML and XML DTD as their data model 
respectively, while XVS adopts a semantically rich data model – ORA-SS to express 
source schema and view schema. With a semantically richer model, XVS is able to 
support more flexible views. Moreover, XVS stores XML data into an ORDBMS by 
mapping ORA-SS schema into object-relational tables, while ActiveViews system stores 
the XML data into the O2 system – an object-oriented database. The latter requires that 
each object have an object id, which are used as reference pointers. MIX then uses 
heterogeneous data sources as its storage. It does not store XML data into those different 
databases, but only retrieve XML data from them.  

The ActiveViews system uses the Object Query Language as a view definition 
language, and the Lorel language [AQM+97] as its query language over the views. This 
requires the users to be familiar with two different languages. MIX develops its own 
XMAS language as the view definition language and query language. In contrast, XVS 

 10



directly adopts the W3C standard, XQuery as the view definition language and the query 
language over the views. A view definition is differentiated from a query by its additional 
view declaration clause before FLWR expression. 

Both the ActiveViews system and MIX system do not provide for the validation of 
views. As a consequence, these two systems cannot support valid projection and join 
views, and views that involve restructuring. 
 
5. Conclusion 

  
In this paper, we have described our system for designing XML views – XVS. XVS 
adopts the core part of XQuery – FLWR expression as the view definition language and 
the query language over views, and adopts the semantically rich ORA-SS to express the 
necessary semantic information that is critical for designing valid XML views. XVS 
allows more flexible XML views design than other existing systems. The views that can 
be designed in our system may include projection, join and restructuring operations. 
Moreover, the designed views in XVS can be validated first. If they are validated 
successfully, then they can be used to generate the view definition. Otherwise, 
redesigning these views is required. Finally, XVS supports mapping and storing XML 
data in an object-relational database, which is essential to extend other functions in our 
system. Future work includes providing support to update XML views. 

 
References 
 
[A99]. S. Abiteboul. On Views and XML. In Proceedings of the Eighteenth ACM 
Symposium on Principles of Database Systems, pages 1--9. ACM Press, 1999. 
[AAC+99] S. Abiteboul, B. Amann, S. Cluet, A. Eyal, L. Mignet, and T. Milo. Active 
views for electronic commerce. In Int. Conf. on Very Large DataBases (VLDB), 
Edinburgh, Scotland, pages 138-149, September 1999. 
[AB91]. S. Abiteboul and A. Bonner. Objects and Views. In Proc. ACM SIGMOD 
Conference on Management of Data, pages 238-247, 1991. 
[AQM+97]. S. Abiteboul, D. Quass, J. McHugh, J.Widom, and J. L. Wiener. The lorel 
query language for semistructured data. International Journal of Digital Libraries, pages 
68-88, volume 1:1, 1997. 
[AS]. Ardent Software. http://www.ardentsoftware.com. 
[BGL+99]. C. Baru, A. Gupta, B. Ludaescher, R. Marciano, Y. Papakonstantinou, and P. 
Velikhov. XML-Based Information Mediation with MIX. In Demo Session, ACM-
SIGMOD'99, Philadelphia, PA, pages 597-599, 1999. 
[LLD01]. Tok Wang Ling, Mong Li Lee, Gillian Dobbie. Application of ORA-SS: An 
Object-Relationship-Attribute Model for Semi-Structured Data. In IIWAS, 2001. 
[SDA94]. C. Souza dos Santos, C. Delobel, and S. Abiteboul. Virtual Schemas and 
Bases. In Proceedings of the International Conference on Extending Database 
Technology, pages 81-94, March 1994. 
[XML]. http://www.w3.org/XML 
[XQ]. http://www.w3.org/TR/xquery 
[XS]. http://www.w3.org/XML/Schema.  

 11

http://www.ardentsoftware.com/
http://www.w3.org/XML
http://www.w3.org/TR/xquery
http://www.w3.org/XML/Schema.

