
ELSEVIER Data & Knowledge Engineering 19 (1996) 135-169

I DATA & KNOWLEDGE
ENGINEERING

View update in entity-relationship approach
Tok Wang Ling*, Mong Li Lee

Department of Information Systems & Computer Science, National University of Singapore,
10 Kent Ridge Crescent, Singapore 0511, Singapore

Received 20 May 1994; revised 18 August 1995; accepted 20 November 1995

Abstract

The traditional problem of updating relational databases through views is an important practical problem that has
attracted much interest. In this paper, we examine the problem of view update in Entity-Relationship based
database management systems [1] where the conceptual schema is represented by a normal form ER diagram [2]
and views may be modelled by ER diagrams. We develop a theory within the framework of the ER approach that
characterizes the conditions under which there exist mappings from view updates into updates on the conceptual
schema. Concepts such as virtual updates and three types of insertability are introduced. We also present two
algorithms, the View Updatability Algorithm and the View Update Translation Algorithm.

Keywords: Entity-Relationship based database management systems; View Updatability; View Update Translation

1. Introduction

Views are external schemas. They increase the flexibility of a database by allowing multiple
users to see the data in different ways. They offer a measure of protection by letting users
have access to only part of the data and preventing the users from accessing data outside their
view. They provide logical independence by allowing some changes to be made to the
conceptual schema without affecting the application programs. Views also simplify the user
interface by allowing the user to ignore data that are of no interest to him.

For a view to be useful, users must be able to apply retrieval and update operations to it.
These operations on the view must be translated into the corresponding operations on the
conceptual schema instances. Ling and Lee [3] describe how we can automatically generate
the external-to-conceptual mapping and the conceptual-to-internal mapping of an ER based
DBMS. Using this mapping, retrievals from a view can always be mapped into equivalent
retrievals from the conceptual schema.

A mapping is also required to translate view updates into the corresponding updates on the

* Corresponding author. E-mail: {lingtw,leeml}@iscs.nus.sg

0169-023X/96/$15.00 © 1996 Elsevier Science B.V. All rights reserved
SSDI: 0169-023X(95)00042-9

136 T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169

conceptual schema. However, such a mapping does not always exist, and even when it does
exist, it may not be unique [4]. In this paper, we examine the problem of view update in
Entity-Relationship based database management systems [1] where views may be modelled by
ER diagrams. Section 2 gives a survey of related research works. Section 3 gives the
terminologies used in this paper. Section 4 explains what is meant by view updatability in ER
approach. We present a theory within the framework of the ER approach that characterizes
the conditions under which there exist mappings from view updates into updates on the
conceptual schema in Section 5. Sections 6 and 7 describe the View Updatability Algorithm
and the View Update Translation Algorithm, respectively. The View Updatability Algorithm
determines if a view is insertable, deletable or modifiable. The View Update Translation
Algorithm translates a valid view update into the corresponding database update to be
executed. Section 8 describes view implementations in current DBMS systems.

2. A survey of related research works

The problem of updating relational databases through views in an important practical
problem that has attracted much interest [5-19]. The user specifies queries to be executed
against the database view; these queries are translated to queries against the underlying
database through query modification [20]. One of the problems in updating through views lies
in determining whether a given view modification can be correctly translated by the system.
To define an updatable view, a view designer must be aware of how an update request in the
view will be mapped into updates of the underlying relations. Moreover, because of side
effects, the view designer must also be made aware of the effects of underlying updates back
into the view. In current practice, updates must be specified against the underlying database
rather than against the view. This is because the problem of updating through views is
inherently ambiguous [14]. How this ambiguity is handled is an important characteristic that
differentiates various approaches to supporting view updates. Yet, none has been able to
handle the view update problem satisfactorily.

There are two approaches to the problem of mapping view updates. One approach is to
regard the conceptual schema and view as abstract data types [13]; the view definition not only
describes how view data are derived from the conceptual schema instances, but also how
operations on the view are mapped into (that is, implemented using) operations on the
conceptual schema [18, 19]. This approach is dependent on the database designer to design
views and their operational mappings and to verify that the design is correct. That is, that the
conceptual schema operations indeed perform the desired view operations "correctly".

The second approach is to define general translation procedures [6, 8, 11, 14, 16, 20]. These
procedures input a view definition, a view update and the current schema instances. They
produce, if possible, a translation of the view update into updates on the conceptual schema
satisfying some desired properties. [11] develops a theory within the framework of the
relational model that characterizes precisely the conditions under which there exist mappings
from view updates into updates on the conceptual schema satisfying various properties. He
formalizes the notion of update translation and derive conditions under which translation
procedures will produce correct translations of view updates. However, the problem of

T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169 137

choosing among several alternative update sequences that might be available for performing a
desired relational view update still exists. Our approach to view update in the ER approach
eliminates this problem.

Langerak [16] gives algorithms for the translation of a single view tuple insertion, deletion
or modification. The single view tuple update is translated into a resulting series of database
updates. However, Langerak's approach allows extra tuples entering the view as the result of
translating a view tuple insertion or modification. [11] classifies these extra unwanted tuples as
anomalies caused by permitting a certain class of view updates. Our approach eliminates these
anomalies by characterizing the conditions under which such anomalies will occur. The view
updates that will cause these anomalies will not be allowed.

Legg and McDonell [17] present a method for performing arbitrary updates on relational
views whose definitions form acyclic hierarchies. The desired state of the view after the update
is used to determine the appropriate states for the base relations after the update. The actual
base relation updates are derived from these final states. Update translation graphs, which
show the dependencies between the views and the base relations, are constructed for this
purpose. During translation, ambiguities in the update operations are retained, in the hope
that identification of interactions in the complete update translation graphs will allow maximal
ambiguity resolution. The generated base relation updates will be applied only if certain
correctness criteria are satisfied. The extractness criterion requires that the generated updates
do not cause changes in the updated view other than those requested by the user. The
uniqueness criterion requires that there be only one generated set of updates that could
produce the desired change in the updated view. The shortcoming of this method is that an
update translation graph needs to be constructed dynamically for every update, and the cost is
likely to be quite high.

Chan [8] describes a method in which translation templates for each view type (relational
algebra operator) have been defined [9]. For a particular view update, these templates may be
combined to produce a translation tree. Ambiguity is expressed by OR nodes in the tree that
represent alternative translations of the update operation, and some ambiguity resolution is
achieved by evaluating integrity assertions on the arcs connecting the nodes in an attempt to
prune the tree and remove all OR nodes.

Keller [14] analyses the possible translations of particular classes of update operations for
relational views. The considered updates are insertions, deletions and replacements. Keller
gives five criteria that all candidate update translations must satisfy, which include no database
side effects, only one step changes, no unnecessary changes, replacements cannot be simplified
and no delete-insert pairs. The satisfaction of these criteria implies restrictions on the view
definition function and on the form of view-update expressions. Keller's method [15] resolve
semantic ambiguity as it arises. This is achieved by declaring for each view at view definition
time, the additional semantics for translating any updates against the view into prescribed
unambiguous updates on the operands of the view. These declarations define an update policy
for each view; this is more precise technique for defining ambiguity resolution policies than
Chan's. The choice of a translator is obtained semi-automatically by a program which conducts
a structured dialog with the database administrator. Using the specified translator, user-
specified view updates can be translated into database updates without the need for any
disambiguiting dialog. However, Keller allows the update policy of translating a deletion or

138 T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169

insertion against a selection view into a modification of the operand view or base relation. For
example, consider the relation EMP which contains each employee's number, name, location,
and whether the employee is a member of the company baseball team. Given the following
view definition,

Select*
From EMP

Where Baseball = 'Yes'

Keller [15] propose that the request to delete an employee from the view should be translated
into a modification of the Baseball attribute value to 'No'. However, complication arises when
the domain of the selection attribute has more than two values or the selection condition is a
conjunction of terms.

On the other hand, there is very little research on the problem of view update in the ER
approach despite its popularity as a conceptual database model and graphical query language.
An attempt to investigate view definition and view updates for an extended ER model is done
by Czejdo et al. [10]. Czejdo et al. give an informal discussion of the view update problem in
the context of graphical query languages for extended ER models. Views are defined by
invoking diagram-manipulation operators to transform an original schema into a view schema.
The diagram-manipulation operators have an object-traceability property so that the identity
of any entity object in any view can be traced to a unique entity object in the underlying
database, and the identity of any relationship object in any view can be traced either to a
unique relationship object or to a unique set of component relationship objects in the
underlying database. Although Czejdo et al. and we, both recognize the fundamental
importance of establishing a one-to-one correspondence between view objects and underlying
objects, we differ, however, in the way in which we define views and the way in which we
recognize this one-to-one correspondence. Moreover, while Czejdo et al. give examples of
how various view updates can be translated into updates on the conceptual schema, we give a
more formal treatment of the view update problem in the ER approach.

3. Terminologies

Chen [21] proposes the ER approach for database schema design. It uses the concepts of
entity type and relationship set and incorporates some of the important semantic information
about the real world. An entity type or relationship set has attributes which represents its
structural properties. An attribute can be single-valued, multivalued or composite. A minimal
set of attributes K of an entity type E which defines a one-to-one mapping from E into the
Cartesian product of the associated value sets of K is called a key of E. An entity type may
have more than one key and we designate one of them as the primary key or the identifier of
the entity type. Let K be a set of identifiers of some entity types participating in a relationship
set R. K is called a key of the relationship set R if there is a one-to-one mapping from R into
the Cartesian product of the associated value sets of K and no proper subset of K has such
property. One of the keys of a relationship set is designated as the primary key or identifier of

T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169 139

the relationship set. If the existence of an entity in one entity type depends upon the existence
of a specific entity in another entity type, then such a relationship set and entity type are called
existence dependent relationship set and weak entity type. A special case of existence
dependent relationship occurs if the entities in an entity type cannot be identified by the values
of their own attributes, but has to be identified by their relationship with other entities. Such a
relationship set is called identifier dependent relationship set. A relationship set which involves
weak entity type(s) is called a weak relationship set. Weak entity types can sometimes be
represented as composite, multivalued attributes. One criterion we use is to choose the weak
entity type representation if the weak entity type has many attributes or participates
independent ly in other relationship sets. An entity type which is not a weak entity type is
called a regular entity type. In the ER approach, recursive relationship sets and special
relationship sets such as ISA, UNION, INTERSECT, etc. are allowed. A relationship set
which is not weak or special is called a regular relationship set (for more details, see [2]).

A schema is usually shared by many applications. A user may be interested in only a subset
of the objects, that is, a view of the schema or the external schema. Using the E R approach in
a systematic way, we can construct ER based external views. An entity type in an E R external
view is called an external or view entity type. A view entity type is a projection of some entity
type, called the base entity type, in the conceptual schema. Basically, there is one-to-one
correspondence between the entities of a view entity type and the entities of its base entity
type. Note that a view entity type may have more than one base entity types. Such a situation
arises when these base entity types are connected by one-to-one relationship sets. A
relationship set in an E R external view is called an external or view relationship set. Unlike the
view entity type, the relationships of a view relationship set may not have a one-to-one
correspondence with the relationships of any relationship set in its corresponding conceptual
schema. A view relationship set can be derived by applying some join, project and /o r
selection operations on one or more relationship sets and special relationships such as ISA,
UNION, INTERSECT, etc. We define a derivation as a list of conceptual schema relationship
sets which are involved in joins to obtain a view relationship set. We observe that if a view
relationship set R is functionally equivalent to some conceptual schema relationship set R i
w.r.t , a derivation (R 1 , R z , . . . , R n) where i E { 1 , 2 , . . . , n } , then we have a one-to-one
correspondence between the relationships of R and the relationships of R~. Otherwise, we do
not have a one-to-one correspondence between R and R,. Note that to construct a view
relationship set from a recursive relationship set, the rolenames of the participating entity type
of the recursive relationship set must be used [1].

An attribute in a view is called an external or view attribute. A view entity type may include
some or all the attributes of its base entity type. A view entity type may also include attributes
from an entity type which is connected to its base entity type by one or more relationship sets
in the conceptual schema. We use the concept of derivation to specify the list of conceptual
schema relationship sets which are involved in joins to obtain a view attribute. If a view
attribute A has a derivation (R1, R 2 , . . . , Rn) , where R~ is a regular or special relationship
set in the conceptual schema, 1 < = i < = n, then we call A a derived attribute. It can be easily
shown that derived attributes cannot participate in the keys of view entity types. The base
attribute of A can be in R n or in some participating entity type of R n. We can obtain a derived
relationship set by joining all the relationship sets in the attribute derivation. If we have

140 T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169

special relationship sets such as ISA in the derivation, then the join is over the identifiers of
the superclass and subclass entity type of the ISA relationship set.

A special case of derived attributes occurs if the derivation of a view attribute A contains
only special relationship sets. For example, let E be the base entity type of an external entity
type E'. Suppose E is connected to another entity type F by one or more special relationship
sets such that E ISA F, or F = UNION (. . . , E), or E = INTERSECT (. . . , F, . . .) , or
F = D E C O M P O S E (. . . , E, . . .) . E' may contain attributes of F and we call such attributes
inherited attributes. Multilevel attribute inheritance is allowed. If a view attribute A has
associated with it some functions or arithmetic expressions, then we call A a computed
attribute. A view attribute can also be obtained from a combination of computat ion and
derivation, or computat ion and inheritance. We consider such an attribute as computed (for
more details, see [22]).

Lee [22] proposes an ER schema and view data definition language. Fig. 2 shows an ER
external view which is based on the example medical database in Fig. 1. We illustrate the view
definition language obtained during the construction of this external view in an E R based
DBMS Workbench [23]. This is a user-friendly graphical tool which allows the design of
database conceptual schema, definition of user views based on a schema, and formulat ion of
queries and updates against a view.

By default, a base entity type (or attribute) has the same name as its view entity type (or
attribute). Otherwise, we need to specify the base object in the view definition. In cases of
ambiguity, the system will internally ensure uniqueness of attribute name by attaching the
name of the owner to the attribute. The system also assigns unique identifiers to special
relationship sets if there exists any ambiguity. The view definition for Fig. 2 is as follows. The
keywords are in italics.

!

1 M

M

Fig. 1. An example ER medical database.

T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169 14l

DOCTOR

Fig. 2. An example ER external view of conceptual schema in Fig. 1.

VIEW DOCTPAT OF MEDICALDB
VIEW ENTITY TYPE EMPLOYEE /*By default, base and view entity types have same name*/

(ATTRIBUTES (EMPNO, /*Base attribute of EMPNO is in base entity type of EMPLOYEE*/

HNAME DERIVED ((EMPLOYS)) OWNER (HOSPITAL))

IDENTIFIER (EMPNO))

VIEW ENTITY TYPE DOCTOR
(ATTRIBUTES (EMPNO, QUAL,

NAME INHERITED ((UNION)) OWNER (EMPLOYEE),

AGE INHERITED ((UNION)) OWNER (EMPLOYEE),

DNAME DERIVED ((ATrACHTO)) OWNER (DEPARTMENT))

IDENTIFIER (EMPNO))

VIEW ENTITY TYPE PATIENT
(ATTRIBUTES (REGNO, PNAME, AGE, SEX,

BEDNO DERIVED ((OCCUPY)) OWNER (OCCUPY))

IDENTIFIER (REGNO))

VIEW ENTITY TYPE NURSE
(ATTRIBUTES (EMPNO, RANK)

IDENTIFIER (EMPNO))

VIEW RELATIONSHIP SET ATTD-DOCTOR
(PART-VIEW-ENTITlES (DOCTOR, PATIENT)

/*PART-VIEW-ENTITIES denote participating view entity types*/

IDENTIFIER (DOCTOR, PATIENT)

DERIVATION ((WORKSWITH)))

VIEW RELA TIONSHIP SET ATTD-NURSE
(PART-VIEW-ENTITIES (NURSE, PATIENT)

IDENTIFIER (NURSE, PATIENT)

DERIVATION ((INCHARGE, OCCUPY)))

142 T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169

ISA (PART-VIEW-ENTITIES (DOCTOR, EMPLOYEE)
DER1VA TION (~ UNION)))

ISA (PART-VIEW-ENTITIES (NURSE, EMPLOYEE)

DERIVATION ((UNION }))

Note that there are two possible derivations for the view relationship set ATTD-NURSE, that
is, (WORKWlTH) and (INCHARGE, OCCUPY}. These derivations are automatically
generated by the system and presented to the user for selection in the DBMS Workbench. For
this example, the user selects the derivation (INCHARGE, OCCUPY}.

4. View Updatability in ER approach

An ER user view can be represented in Prolog by using a predicate symbol for each entity
type and relationship set [24]. Using Fig. 2 as an example, we have

EMPLOYEE (EMPNO, HNAME).

DOCTOR (EMPNO, NAME, AGE, QUAL, DNAME).

NURSE (EMPNO, RANK).

PATIENT (REGNO, PNAME, AGE, SEX, BEDNO).

ATTD-DOCTOR (DOCTOR, PATIENT).

ATTD-NURSE (NURSE, PATIENT).

Note that the entity types in a relationship set predicate are complex objects. For example,
DOCTOR and PATIENT are complex objects in ATTD-DOCTOR. QUAL is a multivalued
attribute and is thus a list in DOCTOR predicate. Any composite attribute is a complex object
in its owner (entity type or relationship set) predicate. Any weak entity type is a list of
complex objects in the parent entity type predicate.

Thus, views in ER approach are not necessarily flat relations. As a result, view update in
the ER approach is different from that in relational model. It has the following important
unique features.

(1) Enti ty types. Identifiers of entity types are not modifiable. This is because they are used
as object identifiers in the relationship sets in which the entity types participate in.
Modification of entity type identifiers will cause undesirable updating anomalies. The
insertion of an entity requires the identifier value to be defined.

(2) Relationship sets. Identifiers of relationship sets can be modified without causing any
side effects or updating anomalies. This is because a relationship specifies the way
participating entities are related. The attributes of a relationship set and the identifiers
of the participating entity types can be modified. Take for example in Fig. 2, we may
have a user request to change the attending doctor of the patient Mr Ng (Regno 05211),
from Dr Lee (Empno 114211) to Dr Chew (Empno 114220) as follows.

?-modify (attd-doctor (doctor (114211), patient (05211)) ,

attd-doctor (doctor (114220), patient (05211))).

T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169 143

Note that internally for relationship sets, we only store the attributes of a relationship
set and the identifiers of its participating entity types. Hence, to specify any update of a
relationship set, the user needs to supply only the values of the attributes of the
relationship set and the values of the identifiers of its participating entity types. No
update is allowed on the non-identifier attributes of the participating entity types. Thus,
in the above modification request, anonymous variables are used for the attributes of
the participating entity types. Note that when we refer to the attributes of a relationship
set, it does not include the attributes of the participating entity types of the relationship
set. The insertion of a relationship requires the identifier values of all the participating
entity types to be defined. This is because a relationship set is an association among the
participating entity types. It violates the meaning of a relationship set in an ER
database if we allow insertion to occur when only a partial (including some but not all
participating entity type identifiers) identifier is given.

(3) Multivalued attributes and weak entity types. Weak entity types are set-valued attributes
in the parent entity type predicate. Multivalued attributes are also lists in the owner
predicate. We use set operations such as REMOVE and APPEND to update such
attributes. For example, to reflect the fact that Dr Chew, employee number 114211, has
just received his MFRC degree and will be transferred to the pediatrics department, we
can have the following Prolog goal to update the view entity type DOCTOR in Fig. 2.

?-retrieve (doctor (114220, Name, Age, Qual, Dname)) ,

append (Qual, ['MFRC'], NewQual) ,

modify (doctor (114220, Name, Age, Qual, Dname) ,

doctor (114220, Name, Age, NewQual, pediatrics)).

(4) Special relationship sets. Special relationship sets such as ISA, UNION, INTERSECT,
etc. are actually constraints and
attributes can be modified using the
special relationship sets.

We have the following principles that
principles are generally well-accepted and

(1) There must be a clear one-to-one

hence cannot be updated. However, inherited
identifiers of the participating entity types in these

guide us in updating ER views. The first two
most works [10, 11] have been based on them.
correspondence between the objects (attributes,

(2)

entity types and/or relationship sets) in the view and the underlying database schema so
that we can uniquely translate the view updates into the corresponding updates on the
conceptual schema. That is, there is no ambiguity of origin in the view objects.
Otherwise, certain anomalies may occur when translating the view updates. There may
be spurious tuples appearing or disappearing from the view after a view insertion or
deletion.
The result of a view update must not violate the definition of the view. This is because a
user will not be able to retrieve the new updated data through the view since they do
not meet the conditions specified by the view. For example, we may define a view which
selects all the parts that are red or blue from a supplier-part database. Then, we will not
allow an update which changes the part's color to, say, yellow. We can enforce such an
update rule by including the selection criteria of views in the mapping rules.

144 T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169

(3) Side effects that are results of the system's actions to ensure that changes requested in a
view are consistent with the rest of the database are permitted. The following definition
introduces the concept of virtual update to refer to such side effects.

Definition 1. Let A be a subset of the attributes of an entity type or a relationship set in a
view. Let B be an attribute in the entity type or relationship set such that B,~ A. If the value
of the base attribute of B is a function of the values of the base attributes of A, then the
modification of any of the attributes in A will cause the system to retrieve or re-compute the
corresponding value of B whenever the value of B is required. We call such an action virtual
update.

Note that virtual updates are automatically carried out by the system and not the user to
maintain database consistency after a view update. Virtual updates are important in the
following cases.

(1) Computed attributes in a view are not directly modifiable by the user but their values
can be implicitly updated by the system. For example, suppose we can modify attributes
A and B of a view entity type E but not the computed attribute C = (A + B)/2. But, the
modification of A and/or B will cause the system to re-compute the value of C
whenever the value of C is required.

(2) Let a view entity type E' have a base entity type E. Suppose E' contains attributes
A ~ , A 2 , . . . , A k whose base attributes are not in E but in another entity type F
connected to E by relationship sets R~, R e , R, . If the base attribute of A 1 is the
identifier of the entity type F, and A~ has been determined to be modified in the view
entity type E', then the modification of A1 will automatically cause the system to
retrieve the corresponding values of the attributes A 2, . . . , A k whenever these values
are required. For example, suppose the view entity type DOCTOR in Fig. 2 also
contains the attribute HEAD from the entity type DEPARTMENT. Then, the
modification of DNAME in DOCTOR will cause the system to retrieve the corre-
sponding value for HEAD when required. Note that H E A D is not modifiable by the
user.

(3) Let a view relationship set R' have a derivation {R~, R 2 R .) . Suppose R' contains
attributes A 1 , A 2 , . . . , A k whose base attributes are in an entity type E. E is a
participating entity type in some relationship set in the derivation, say R i, for some i
where 1 ~<i~ < n. If the base attribute of A 1 is the identifier of E, and A~ has been
determined to be modifiable in the view relationship set R', then the modification of A l
will cause the system to retrieve the values of the attributes A 2 , A k whenever these
values are required.

5. A theory for ER View Update

Next, we give a theory within the framework of the ER approach that characterizes the
conditions under which there exist mappings from view updates into updates on the
conceptual schema. Note that an entity type or relationship set is updatable if and only if the

T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169 145

entity type or relationship set is deletable, modifiable or insertable. We first examine the
conditions under which a view entity type or relationship set is deletable or modifiable. A view
entity type or relationship set is deletable (or modifiable) if we are able to delete (or modify)
some corresponding entities or relationships in the database without violating any of the three
view update principles stated in Section 4.

Definition 2. A key-preserving projection is a projection of an entity type or relationship set
which includes a key of the entity type or relationship set.

Theorem 1. Any view entity type is deletable. Let E be the base entity type of a view entity type
E'. Any view attribute of E' whose base attribute is in E and is not part of the identifier o f E is
modifiable.

Proof. We observe that a view entity type is always a key-preserving projection of its base
entity type. Thus, we can always use the given key value of E' to retrieve the corresponding
entity in E to delete or modify. Recall that the identifier value of any entity type cannot be
modified.

Note that there are two ways to enforce the referential constraints when an entity is deleted.
The first approach is to cascade the entity deletion into deletion of any relationships the entity
is involved in. The second approach is that the user must explicitly issue a request to delete
the relationships the entity is involved in before he issues a request to delete the entity.

Two sets of attributes X and Y in the relational model are said to be functionally equivalent
if and only if X-->Y and Y--> X. We can determine the functional equivalence of these two sets
of attributes using Armstrong's axioms [25].

Definition 3. Two sets of entity types $1 and S 2 are functionally equivalent, denoted S~ ~ S 2,
w.r.t, a derivation (R~, R 2 , . . . , R n) , if and only if

(1) S~ participates in R 1 while S 2 participates in R. and
(2) we can establish that the set of identifiers of the entity types in S~ is functionally

equivalent to the set of identifiers of the entity types in S 2 from the functional
dependencies in the relationship sets RI, R 2 R, .

Definition 4. Given relationship sets R~, R 2 , . . . , R°, let R be the join of R l , R 2 , . . . , R n and
S be the set of participating entity types of R whose identifiers form a key of R. Let S~ be the
set of participating entity types of the relationship s e t R i whose identifiers form a key of Ri,
for some i E {1, 2 , n}. We say that R and R i are functionally equivalent, denoted R <---> R~,
w.r.t, derivation (R1, R 2 , . . . , R n) , if and only if S and S~ are functionally equivalent w.r.t.
(R I , R 2 , . . . , g n) .

Fig. 3a shows an ER diagram in which {A} is functionally equivalent to {B} w.r.t. (R 1), but
{A}---~{B}, {B} -/---~ {A} w.r.t. (R2). Since {B}~--~{C} in R 3, we can conclude that
{A}---~ {C} from the functional dependencies in (RI , R3) (or we can say that {A}~-~ {C}
w.r.t. (R1, R 3)) by transitivity. On the other hand, Fig. 3b shows an ER diagram in which the

146 T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169

(a) (b)

Fig. 3(a). Entity types A, B and C are all functionally equivalent; (b) Relationship set R, obtained by joining RI
and R3 in (a), is functionally equivalent to both R1 and R3.

relationship set R is obtained by joining relationship sets R~ and R 3 over the common entity
type B. We have R ~ R1 and R ~ R 3 w.r.t. (R~, R 3) since the identifiers of these relationship
sets are functionally equivalent to w.r.t. (R~, R3).

Theorem 2. Le t R be a v iew relationship set with the relationship derivation (R 1 , R2, . . . , R n).
R has the f o l l ow ing updatabil i ty i f and only i f R is func t ional ly equivalent to s o m e relat ionship
set R i w.r . t . (R 1 , R 2 , . . . ,R , ,) where i E { 1 , 2 , . . . , n } :

(1) R is deletable and
(2) R is modifiable for those attributes which are also attributes of R~.

Proof. If the view relationship set R is functionally equivalent to some conceptual schema
relationship set R~ w.r.t. (R 1, R 2 , . . . , R n) , where i E {1, 2 , n}, then we have a one-to-
one correspondence between the relationships of R and the relationships of Ri. Thus, when
we delete a relationship of R, we delete the corresponding relationship of R~ which is
retrieved using the key value of R. Moreover, when we modify the values of the attributes of a
relationship of R, the corresponding attributes' values of the corresponding relationship in R i

retrieved using the key value of R are modified. Otherwise, if R is not functionally equivalent
to any of the relationship set R~ w.r.t. (R 1, R2, . . . , Rn), where i E {1, 2 , . . . , n}, then there
will not be a one-to-one correspondence between the relationships of R and the relationships
of R~. R~ is not the base relationship set of R and the system will not be able to determine
uniquely the relationship to be deleted or modified.

Corollary 1. A view relationship set obtained f r o m a key-preserving project ion o f a base
relat ionship set is modi f iable and deletable.

Definition 5. A derived relationship set of a view attribute of a view entity type is obtained by
joining all the relationship sets in the attribute derivation and projecting out all the
participating entity types of the relationship sets in the attribute derivation except the base
entity type of the view entity type and the owner entity type of the view attribute. We can also
find a key of the derived relationship set from the set of functional dependencies in the
attribute derivation.

Theorem 1 restricts the modifiable attributes of a view entity type to those view attributes
whose base attributes are in the base entity type of the view entity type. However, we can

T.W. Ling, M,L. Lee / Data & Knowledge Engineering 19 (1996) 135-169 147

apply the argument used in proving Theorem 2 to extend the modifiable attributes of a view
entity type to include certain derived attributes. We generalize this concept of modifying the
derived attributes of a view entity type when certain conditions are satisfied in the following
theorem.

Theorem 3. Let E be the base entity type of a view entity type E'. Let A be a single-valued
attribute of E' with the attribute derivation (R~, R 2 , . . . , Rn) . I f the base attribute o f A is the
identifier of the entity type F, a participating entity type in R n , then A is modifiable if and only if
the derived relationship set o f A is functionally equivalent to R,, w.r.t. (R~, R 2 , . . . , R,,).

Proof. The derived binary relationship set R of the view attribute A is constructed by joining
all the relationship sets in the attribute derivation of A and projecting out all the participating
entity types of R~, R 2 R . except E and F. Note that the construction of the derived
relationship set is similar to the construction of view relationship sets. There is a one-to-one
correspondence between the relationships of R and the relationships of R° if and only if R is
functionally equivalent to R. w.r.t. (RI , R 2 , . . . , Rn). If the base attribute of A is an
identifier of F, then it is part of the relationship set R. . Since A is a single-valued attribute in
E', therefore there is a one-to-one correspondence between the entities in E' and the
relationships in R. Hence A is modifiable if and only if R is functionally equivalent to R n

w.r.t. (R l, R 2 , . . . , Rn) .

Example 1. The single-valued derived attribute DNAME in the view entity type D O C T O R in
Fig. 2 is modifiable according to Theorem 3. The derived relationship set of D N A M E is
functionally equivalent to ATTACHTO. Since the base attribute of D N A M E is the identifier
of the entity type DEPARTMENT, it is part of the relationship set ATTACHTO. Moreover,
since D N A M E is a single-valued attribute in the view entity type DOCTOR, there is a
one-to-one correspondence between the view entities in DOCTOR and the relationships in
ATTACHTO. Hence, when we modify the value of DNAME of a view entity in DOCTOR,
the value of the base attribute of DNAME in the corresponding relationship in ATTACHTO
retrieved using the key value of DOCTOR is modified.

Note that we do not allow the modification of any multivalued derived view attribute A as it
will be ambiguous. Each value of A, which is a set, will correspond to a set of relationships in
the conceptual schema and there is no unique translation of the modification request. On the
other hand, each value of a single-valued derived view attribute will correspond to a unique
relationship in the conceptual schema.

Corollary 2. Let E be the base entity type of a view entity type E'. I f E' contains a single-valued
attribute A whose base attribute is not in E, but is the identifier of another entity type F which is
connected to E by some regular binary relationship set R, then A is modifiable.

Corollary 3. Let E be the base entity type of a view entity type E'. Let A be a single-valued
attribute of E' with the attribute derivation (Rj , R2,. . . , R,,). I f the base attribute of A is the

148 T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169

identifier of an entity type F, a participating entity type in R,,, then A is modifiable if and only if
the derived relationship set o f A is functionally equivalent to R,, w.r.t. (R~, R 2 , R,,).

We next consider insertion in the ER approach. A view entity type or view relationship set
is insertable if we are able to insert some corresponding entities or relationships into the
database without violating any of our three view update principles stated in Section 4.
Moreover, the entities or relationships inserted into the ER database are subjected to meet
the domain constraints, the key constraints, as well as the referential constraints in the case of
a relationship insertion. We now examine the conditions under which a view entity type or
view relationship set is insertable.

Theorem 4. A view entity type is insertable if and only i f the identifier o f its base entity type is
included in the view.

Proof. A request to insert a new entity in a view entity type will be translated into a request to
insert a corresponding entity in its base entity type. Now to insert an entity into the database,
we require its identifier value to be given. Thus, we can only insert a new entity into a view
entity type if and only if the identifier of its base entity type is included in the view.

Example 2. To insert a new patient into the view entity type PATIENT in Fig. 2, we create a
new patient entity in its base entity type. The values of the identifier and the attributes which
also appear in the view are assigned as given by the user. Null values are assigned to the
attributes of the base entity type which do not appear in the view. Hence, we obtain a new
well-defined patient entity to be inserted into the database. Note that this new entity is still
subjected to domain constraints and key constraint checks. We will discuss the insertion of
derived view attributes such as BED NO in the view entity type PATIENT later in this section.

Corollary 4. A view entity type obtained f rom the selection of a base entity type is always
updatable.

Proof. From Theorems 1 and 4.

Theorem 5. Let R be a view relationship set with relationship derivation (R~, R 2 , . . . , Rn). R
is insertable and new values can be given for those attributes of R whose base attributes are in
some relationship set R i where i E { 1 , 2 , . . . , n} if R is functionally equivalent to R i w.r.t.
(R1, R2, . . . , R,,) and all the participating entity types of R i are also the base entity types of the
participating view entity types o f R. We say that R i & a Type I base relationship set o f R.

Proof. If R is functionally equivalent to some relationship set R i w.r.t. (R I, R 2 , . . . , Rn) ,
then we have a one-to-one correspondence between the relationships of R and the relation-
ships of R~. R i is a base relationship set of R. Thus, the insertion of a new relationship into R
will be translated into an insertion of a corresponding relationship into R i. Now, to insert a
relationship into the database, we require the identifier values of its participating entities to be
given. Note that the ER database will enforce the referential constraints for the new

T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169 149

Fig. 4. A view relationship set Rv obtained from a join of the conceptual schema relationship sets R1 and R2.

re la t ionship, that is, ensure that the participating entities in the new relat ionship exist in the
database . Thus , we can insert a new relat ionship into R with new values given to those
at t r ibutes of R whose base at tr ibutes are in R~ if all the part icipating enti ty types of R i are also
the base enti ty types of the participating view entity types of the view relat ionship set.

Corol lary 5. A view relationship set obtained f rom the selection o f a conceptual schema
relationship set is always updatable.

Proof. F r o m T h e o r e m s 2 and 5.

Example 3. Fig. 4 shows a view relat ionship set R~ obta ined f rom a join of two conceptual
schema relat ionship sets R~ and R 2. A', B' and C' are the view part icipating enti ty types of R v
whose base enti ty types are A, B and C, respectively. Both R I and R 2 are Type 1 base
re la t ionship sets of R~ according to T h e o r e m 5. To insert a relat ionship (a, b, c) into R~, we
insert the relat ionships (a, b) and (b, c) into RI and R 2, respectively, if they do not a l ready
exist in database. Otherwise , if both the relat ionships exist in the database , we reject the
insert ion.

Example 4. Fig. 5 shows a view relat ionship set R w obta ined f rom a join of the two conceptual
schema relat ionship sets R~ and R 2 in Fig. 4. Here , the c o m m o n enti ty type B has been
p ro jec ted out f rom the view. Al though R w is not insertablc according to T h e o r e m 5, it is
possible to insert a relat ionship (a, c) into R w without violating any of our view upda te
principles. We first check if a is par t ic ipated in some relat ionship in R~, that is, if there exists
an enti ty b of B such that the relat ionship (a, b) is in R 1 . If the relat ionship (a, b) exists in R~
and the relat ionship (b, c) does not exist in R 2, then we can insert (b, c) into R 2. Otherwise ,
we reject the insert ion.

Fig. 5. A view relationship set Rw obtained from a join of the conceptual schema relationship sets R1 and R2 with
the common entity type B projected out.

150 T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169

We have a few observat ions f rom Example 4.
(1) Two possible situations can occur when we insert a relat ionship (a, c) into Rw. We try to

retr ieve the identifier value of B f rom R L using the key value of A'.
Case 1. The relat ionship (a, b) does not exist in R~.
That is, a has not par t ic ipated in any of the relat ionships in R~. For this case, there is no
way we can insert the relat ionship (a, c) into Rw. Hence , we reject the insert ion.
Case 2. The relat ionship (a, b) exists in R~.
Using the re t r ieved identifier value of B, we can insert a relat ionship (b, c) into R 2 and
still satisfy our three view update principles. Hence , the insert ion of (a, c) into R w is
t ranslated into the insert ion of (b, c) into R 2.

(2) A l though R w is not insertable according to T h e o r e m 5, we have seen that it may still be
possible to insert a relat ionship into R w. We observe that a l though the part icipat ing
enti ty type B of R 2 does not appear as a base entity type o f some part icipat ing enti ty
type of Rw, the base entity type A of A' is functionally equivalent to B w.r. t . R~.
Hence , there is a one- to-one cor respondence be tween the relat ionships in R w and the
relat ionships in R 2. R 2 is a base relat ionship set of R,~.

(3) In the E R approach, the existence of an entity in a relat ionship could be def ined as
ei ther mandatory or optional 1. If we know that the existence of the enti ty type A in the
relat ionship set R~ is manda tory , then we can always retrieve the identifier value of B in
R~ given a key value of A. Thus, we can always find the mapping to t ranslate any
insert ion requests on R w.

Definition 6. Suppose an entity type E 0 is involved in a relat ionship set R 0 with ano ther enti ty
type E~, and E 1 is involved in a relat ionship set R~ with an entity type E 2, and so on, and
eventual ly we have an enti ty type Ej_ 1 involved in a relat ionship set Rj_I with an enti ty type
Ej. If the existence of E k is manda to ry in R k (which may be n-ary) for 0 <~ k < j, then we say
that the existence of E o is transitively manda to ry in the relat ionship set R which is ob ta ined
f rom a natural join of all the relat ionship sets R k.

Based on the above discussion, we have the following theorem.

Theorem 6. Let R be a view relationship set with the relationship derivation (R~, R 2 , . . . , R n).
R is insertable and new values can be given to those attributes whose base attributes are in some
relationship set R i where i G { 1 , 2 , . . . , n) , i f R is functionally equivalent to R i w.r.t.
(R 1 , R 2 R~) , and for each participating entity type E o f Rj either (1) E is a base entity
type o f some participating view entity types o f R, or (2) E is functionally equivalent to some
entity type F w.r.t, a derivation T such that F is a base entity type o f some participating view
entity type o f R and T is (Rj , R j + I , . . . , R k) , l<~j<~k<~n.

We say that Rj is a Type 3 base relationship set of R. Moreover , if the existence of the enti ty

Optional existence, denoted by a 'o' on the connectivity line between an entity type and a relationship set, defines
a minimum cardinality of zero; mandatory existence defines a minimum cardinality of one.

T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169 151

type F is transitively mandatory in the relationship set which is obtained from a join of all the
relationship sets in the derivation T, then we say that R i is a Type 2 base relationship set of R.

Proof. If R is functionally equivalent to some relationship set R i w . r . t . (R l , R 2 , Ro),
then we have a one-to-one correspondence between the relationships of R and the relation-
ships of R i. R i is a base relationship set of R. Thus, the insertion of a new relationship into R
will be translated into an insertion of a corresponding relationship into R~. Now, to insert a
relationship into the database, we require the identifier values of its participating entities to be
given. Thus, for each participating entity type E of R i , if E is a base entity type of some
participating view entity type of R, then the value of the identifier of E will be given. On the
other hand, if E satisfies condition 2 in the Theorem, then we can at tempt to retrieve the
identifier value of E through the derivation T from the given identifier value of F. Therefore,
R is insertable.

Example 5. Fig. 6 shows an insertable view relationship set R x obtained from a join of three
conceptual schema relationship sets, R1, R: and R 3. A ' , B' and D' are the view participating
entity types of Rx whose base entity types are A, B and D, respectively. Clearly, R 1, R e and
R 3 are all functionally equivalent to Rx w.r.t, to (R1 ,Re , R3). R~ is a Type 1 base
relationship set of R x according to Theorem 5. Although R 2 is functionally equivalent to R x
w.r.t . (R~, R 2, R3/ and B is the base entity type of B', C is not functionally equivalent to any
entity type F w.r.t, a derivation such that F is a base entity type of some participating entity
type of R x. Therefore, according to Theorem 5, R 2 is not a Type 1 base relationship set of Rx.
According to Theorem 6, R 2 is also neither a Type 2 nor Type 3 base relationship set of R~.
On the other hand, we see that C is functionally equivalent to B w.r.t. (R2). Hence, R 3 is a
Type 2 base relationship set of R x if B is mandatory in R 2 according to Theorem 6. Otherwise,
R 3 is a Type 3 base relationship set of R x.

The above example also illustrates that an insertable view relationship set can have more
than one type of base relationship sets.

Definition 7. A view relationship set is Type 1 insertable if it has some Type 1 base
relationship sets but has neither Type 2 nor Type 3 base relationships sets. A view relationship
set is Type 2 insertable if it has some Type 2 base relationship sets but has no Type 3 base

Fig. 6. A view relationship set Rx obtained from a join of the conceptual schema relationship sets R1, R2 and R3.

152 T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169

relationship sets. A view relationship set is Type 3 insertable if it has Type 3 base relationship
sets.

We conclude in the following theorem that if a view relationship set is neither Type 1 nor
Type 2 nor Type 3 insertable, then it is not insertable at all.

Theorem 7. I f a view relationship set b neither Type 1 nor Type 2 nor Type 3 insertable, then it
is not insertable.

Proof. Let R be a view relationship set with the relationship derivation (R~, R 2 , . . . , R ,) .
Since R is neither Type 1 nor Type 2 nor Type 3 insertable, therefore for all the relationship
sets R j, 1 ~< i <~ n, R i is neither a Type 1 nor a Type 2 nor a Type 3 base relationship set of R.

By Theorems 5 and 6, for all the relationship sets R i, 1 ~<i~ < n, either case (1) R is not
functionally equivalent to R~ w.r.t. (R 1 , R 2 , . . . , R n) , or case (2) there exists some
participating entity E of R~ such that E is not the base entity type of any participating view
entry type of R, and E is not functionally equivalent to any entity type F w.r.t, a derivation T
such that F is the base entity type of some participating view entity type of R and T is
(Rj , R j + I , . . . , Rk) , 1 <~ j ~< k <~ n. Let us look at these two cases in detail.

Case (1). Now if R is not functionally equivalent to Ri w.r.t. (R 1, R 2 , . . . , R ,) , then we
do not have a one-to-one correspondence between the relationships of R and the relationships
of R~. The insertion of any new relationship into R cannot be translated into an insertion of
some relationship into Rj. Therefore, R~ is not a base relationship set of R for insertion.

Case (2). If there exists some participating entity type E of R~ such that E is not the base
entity type of any participating view entity types of R, and E is not functionally equivalent to
any entity type F w.r.t, a derivation T such that F is the base entity type of some participating
view entity type of R and T is (Rj , R j + 1 , . . . , Rk), 1 ~<j ~ n , then during an insertion of R,
there is no way we can obtain the (unique) identifier value of E such that there will not be any
spurious tuples appearing in R after the view insertion. Therefore, R i is not a base
relationship set of R for insertion.

From the above discussion, Ri is not a base relationship set of R for insertion for all
i = 1, 2 , . . . , n. Hence R has no base relationship sets for insertion, that is, R is not insertable.

Theorem 4 restricts the attributes of a view entity type which can be given values in an
insertion of a view entity to those view attributes whose base attributes are in the base entity
type of the view entity type. However, in certain cases, we can allow values to be given to
derived attributes of a view entity type in an insertion of a new entity without violating any of
our view update principles.

Example 6. We may want to insert a new doctor into the view entity type D O C T O R in Fig. 2,
and at the same time give the name of the depar tment the doctor is attached to. This insertion
request can be translated into an insertion of a corresponding entity into the base entity type
of D O C T O R and an insertion of a relationship into the conceptual schema relationship set
A T T A C H T O . The new relationship which is inserted into A T T A C H T O is created using the

T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169 153

identifier values of its two participating entity types, DOCTOR and DEPARTMENT, that is,
the user-given values for the attributes EMPNO and D N A M E which are both in the view
entity type DOCTOR. There is a one-to-one correspondence between the relationships in
ATTACHTO and the entities in the view entity type DOCTOR. Hence, when we give a value
to the derived attribute DNAME in an insertion of a new view entity into the view entity type
DOCTOR, a new relationship is inserted into the relationship set ATTACHTO in the
database in addition to the insertion of a corresponding entity into the base entity type of
DOCTOR.

We say that a view attribute of a view entity type or view relationship set is insertable if
values can be given to it in an insertion of a new view entity or view relationship into the view
entity type or view relationship set respectively. For example, the view attributes of a view
entity type whose base attributes are in the base entity type of the view entity type are
insertable. We generalize the concept of insertable derived attributes in the following theorem.

Theorem 8. Let E be the base entity type of a view entity type E' and let A be a derived
attribute of E ' with the attribute derivation (R 1 , R 2 , . . . , Rn) such that R, is a binary
relationship set. Suppose E , is a common entity type of R n _ 1 and R, , and F is the other
participating entity type of R n such that the base attribute of A is the identifier of F. A is
insertable if:

(1) derived relationship set R of A is functionally equivalent to R. w.r.t.
(R1, R 2 , . . . , Rn) , and

(2) E is functionally equivalent to E , w.r.t. (R~, R 2, . . . , Rn_ ~), and
(3) E is transitively mandatory in the relationship set which is obtained from a join of the

relationship sets R l, R 2 , . . . , R n _ l .

Proof. Recall that the derived relationship set R is obtained by joining all the relationship sets
in the attribute derivation of A and projecting out all the participating entity types of
R t , R 2 , . . . , R n except E and F. There is a one-to-one correspondence between the
relationships of R and the relationships of R . if and only if R is functionally equivalent to R n
w.r.t. (R1, R 2 , . . . , R n) . If E is functionally equivalent to E n w.r.t. (R 1, R 2, . . . , Rn_t) , and
E is transitively mandatory in the relationship set obtained from a join of the relationship sets
R~, R 2 , . . . , Rn_~, then R is Type 2 insertable with R n as its base relationship set. If the base
attribute of A is the identifier of F, then it is part of the relationship set R,,. Therefore, if A is
single-valued attribute in E', then when A is given a value during an insertion of a view entity
into E', we can insert a new relationship into the binary relationship set R n using the retrieved
identifier value of E~ and the given value of A. If A is a multivalued attribute in E', then a set
of values S will be given to A during an insertion of a view entity into E'. In this case, we will
insert]SI new relationships into R. . Each of these new relationships is created using the
retrieved identifier value of E n and a value in S. These insertions will not cause any violation
of our view update principles. Hence, A is insertable.

Corollary 6. Let E be the base entity type of a view entity type E'. I f E ' contains an attribute A

154 T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169

whose base attribute is not in E, but is the identifier of another entity type F which is connected
to E by some regular binary relationship set R, then A is insertable.

For example, suppose we have a view entity type DEPT (base entity type is DEPT in Fig.
1) with a derived multivalued attribute EMPNO whose base attribute is the identifier of the
entity type DOCTOR which is connected to DEPT by the relationship set ATTACHTO (see
Fig. 1), EMPNO is insertable according to Corollary 6. If we are given a set S of doctors to be
inserted into a particular department in the view entity type DEPT, then we will need to insert
IS I relationships into ATTACHTO. Each of these relationships is created using the depart-
ment name and the employee number of a doctor in S.

Corollary 7. An inherited attribute is insertable.

6. The View Updatability Algorithm

Based on the theory developed in the previous section, we present a View Updatability
algorithm to systematically determine the updatability of view entity types and relationship
sets in a view. In addition, this algorithm also determines the different types of insertability for
view relationship sets. We will first give a structure chart of the calling sequence of the
modules in the algorithm before going into the details of the algorithm. Note that there are no
separate modules to determine if a view entity type or a view relationship set is deletable as
these are quite trivial (see Fig. 7).

Algorithm 1 (Evaluation of View Updatability)
I n p u t - A conceptual schema definition and a view definition.
Step 1: For each view entity type, evaluate its updatability using Algorithm 1.l.
Step 2: For each view relationship set, evaluate its updatability using Algorithm 1.2.

Algorithm 1.1 (Updatability of View Entity type)

1.1 Updatability of
View Entity Type

J
I. View Updatability Algorithm

J
1.2 Updatability of View
Relationship Sets

I. I. I Modifiable Attributes
~ of View Entity Type

~ 1.1.2 Insertable Attributes

of View Entity Type

1.2.1 Insertability of
View Relationship Sets

~ 1 . 2 . 2 Modifiable Attributes
of View Relationship Sets

Fig. 7.

T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169 155

Let E be the base entity type of the view entity type E' in the view definition.
Step 1: E' is deletable. /*E and E' are always functionally equivalent*/
Step 2: If E' includes the identifier of E Then

E' is insertable
Else E' is not insertable.

Step 3: Group the same type of attributes (such as derived, computed, etc.) of E' together.
Further partition derived and inherited attributes such that attributes with the same
owner and derivation are grouped together.

Step 4: For each group of attributes Ag do
Call Algorithm 1.1.1 to determine the modifiable attributes in Ag.
Call Algorithm 1.1.2 to determine the insertable attributes in Ag.

Step 5: Any weak entity type of E' is modifiable and insertable.
/*Weak entity types are considered as set-valued attributes*/

Algorithm 1.1.1 (Determine modifiable attributes of a View Entity type)
Let E be the base entity type of the view entity type E'.
Let Ag be a group of attributes obtained from Step 3 of Algorithm 1.1.
Case 1: Base attributes of Ag belong to the base entity type E of E'.

For each attribute A in Ag do
If base attribute of A is part of the identifier of E Then

A is not modifiable
Else A is modifiable.

Case 2: Ag is a set of computed attributes.
Each attribute in Ag is not modifiable, but is virtually updatable.

Case 3: Ag is a set of inherited attributes.
Each attribute in Ag is modifiable.

Case 4: Ag is a set of multivalued derived attributes.
Each attribute in Ag is not modifiable.

Case 5: Ag is a set of single-valued derived attributes (with same owner and derivation).
/*Based on Theorem 3*/
Let (R1, R 2 , . . . , Rn) be the attributes' derivation.
Obtain the derived relationship set R of the attributes in Ag.
If R and R n are functionally equivalent w.r.t. (R1, R 2, . . . , Rn) Then
5.1: Owner of the attributes in Ag is R n.

Each attribute in Ag is modifiable.
5.2: Owner of attributes in Ag is F, a participating entity type of R,.

For each attribute A in Ag do
If base attribute of A is the identifier of F Then

A is modifiable.
Else A is not modifiable, but is virtually updatable

Else Each attribute in Ag is not modifiable.

Algorithm 1.1.2 (Determine insertable attributes of a View Entity type)
Let E be the base entity type of the view entity type E' in the view definition.

156 T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169

Let Ag
Case 1:

Case 2:

Case 3:

Case 4:

be a group of attributes obtained from Step 3 of Algorithm 1.1.
Base attributes of Ag belong to the base entity type E of E'.
Each attribute in Ag is insertable.
Ag is a set of computed attributes.
Each attribute in Ag is not insertable.
Ag is a set of inherited attributes.
Each attribute in Ag is insertable.
Ag is a set of derived (both single-valued and multivalued) attributes (with same
owner and derivation).
/*Based on Theorem 8*/
Let (R1, R 2 , . . . , Rn) be the attributes' derivation.
If the owner of the attributes in Ag is R n Then

Each attribute in Ag is not insertable
Else Let the owner of the attributes in Ag be F, a participating entity type of R n.

If Rn is binary Then
Obtain the derived relationship set R of the attributes in Ag.
If R and R n a r e functionally equivalent w.r.t. (RI , R 2, . . . , Ro) Then

Set F lag=True . /*to cater for the case n = 1"/
If n > 1 Then

Let C be the common entity type of R, and R._ I.
If E and C are functionally equivalent w.r.t. (R1, R2, . . . , R._ t) and E is
transitively mandatory in (R~, R 2 , . . . , R ._I) Then

Set Flag = True
Else Set Flag = False.

If Flag = True Then
For each attribute A in Ag do

If base attribute of A is identifier of F Then
A is insertable

Else A is not insertable
Else Each attribute in Ag is not insertable.

Else /*R and R. not functionally equivalent*/
Each attribute in Ag is not insertable.

Else /*R, is not binary* /
Each attribute in Ag is not insertable.

Example 7. The entity type DOCTOR in the view in Fig. 2 has an identifier EMPNO which is
equal to the identifier of its base entity type. Hence, it is insertable and deletable according to
Steps 1 and 2 of Algorithm 1.1. The same type of attributes of D O C T O R are grouped
together. EMPNO and QUAL form the first group whose base attributes are in the base entity
type of DOCTOR. DNAME, with attribute derivation (A T T A C H T O) , forms the second
group. The inherited attributes, NAME and AGE, with attribute derivation (U N I O N) , form
the third group. According to Algorithm 1.1.1, all the attributes of D O C T O R except EMPNO
are modifiable. According to Algorithm 1.1.2, all the attributes of D O C T O R are insertable.
For instance, the derived relationship set of DNAME (obtained from the attribute derivation

T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169 157

(A T T A C H T O)) is functionally equivalent to AT-I'ACHTO in Case 5 of Algorithm 1.1.1.
And since the base attribute of DNAME is the identifier of entity type DEPARTMENT in the
conceptual schema, we determine that DNAME is modifiable. Similarly, in Case 4 of
Algorithm 1.1.2, determine that DNAME is insertable.

Algorithm 1.2. (Updatability of View Relationship set)
Let R be the view relationship set with the relationship derivation (R1, R 2 , . . . , Rn).
Step 1: Determine the set S_C {R~, R 2 , . . . , R n) where each relationship set in S is func-

tionally equivalent to
R w.r.t. (R1, R2,. . . , R ,) .
If S is non-empty Then

R is deletable.
Call Algorithm 1.2.1 to determine the type of insertability of R and insertable
attributes of R.
All the identifiers of the participating entity types of R are modifiable.
Other attributes of the participating entity types of R are not modifiable, but
virtually updatable.
Else R is not deletable and not insertable.
All the identifiers and the attributes of the participating entity types of R, and all
the attributes of R are not modifiable.
Return.

Step 2: Group the same type of attributes (such as derived, computed, etc.) of R together.
Further partition the derived and inherited attributes such that attributes with the
same owner and derivation are grouped together.
Further partition the derived and inherited attributes such that attributes with the
same owner and derivation are grouped together.

Step 3: For each group of attributes Ag do
Call Algorithm 1.2.2 to determine the modifiable attributes in Ag.

Algorithm 1.2.1 (Determine insertability of View Relationship set)
Let S be the set of relationship sets obtained in Step 1 of Algorithm 1.2 where each
relationship set in S is functionally equivalent to the view relationship set R w.r.t, the
relationship derivation (R1, R2, • • •, Rn)"
/*Determine the Type 1 base relationship sets of R.*/
Determine the set U C_ S such that for each relationship set R' in U, all the participating entity
types of R' are also the base entity types of the participating view entity types of R.
Let T = S - U.
If T is non-empty Then /*Determine the Type 2 & 3 base relationship sets of R.*/

Set V = O. /*V is a set of Type 2 base relationship sets of R*/
Set W = 0 . /*W is a set of Type 3 base relationship sets of R*/
For each relationship R' in T do

Set Type2 = True. /*to indicate if R' is a Type 2 base relationship set of R*/
Set Type3 = True. /*to indicate if R' is a Type 3 base relationship set of R*/
For each of the participating entity types E of R' and while Type3 = True do

158 T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169

/*Test conditions for Theorem 6*/
If E is not a base entity type of some participating view entity types of R Then

If E is not functionally equivalent to some entity type F w.r.t, a derivation T such
that F is the base entity type of some participating view entity type of R and T is
(Rj, Rj+ l , Rk) ,
l ~ j ~ k > = n T h e n

Set Type3 = False
Set Type2 = False

Else /*E is functionally equivalent to some entity type F w.r.t, a derivation T such
that F is the base entity type of some participating view entity type of R and T is
(R j , R j + 1 , . . . , R k) , l~<j~<k~<n*/

If F is not transitively mandatory in the relationship set obtained from a join of all
the relationship sets in T Then

Set Type2 = False.
If Type2 = True Then V = V to {R'}
Else If Type3 = True Then W = W tO {R'}.

If W is non-empty Then R is Type 3 insertable
Else If V is non-empty Then R is Type 2 insertable

Else, if U is non-empty Then R is Type 1 insertable
Else R is not insertable.

Return.
/*R is insertable* /
Let X = U tO V tO W. /*X contain all the base relationship sets of R*/
The attributes of R whose base attributes are the attributes of the relationship sets in X are
insertable.
Other attributes of R are not insertable.

Case 2:

Case 3:

Algorithm 1.2.2. (Determine modifiable attributes of a View Relationship set)
Let R be the view relationship set with the relationship derivation (R1, R 2 , . . . , Rn).
Let Ag be a group of attributes obtained from Step 3 of Algorithm 1.2.
Case 1: Ag is a set of computed attributes.

Each attribute in Ag is not modifiable, but is virtually updatable.
Ag is a set of inherited attributes.
Each attribute in Ag is modifiable.
Ag is a set of derived attributes (with the same owner and derivation).
Let (Rdl , Rd2 , Rdk) be the attributes' derivation.
If R and Rdj are functionally equivalent w.r.t. (R d ~ , R d 2 , . . . , R a k) for some j E

{ 1 , 2 , . . . ,k} Then
Case 3.1: Owner of the attributes in Ag is Rdj.

Each of the attributes in Ag is modifiable
Case 3.2: Owner of the attributes in Ag is F, a participating entity type of Rdj.

For each attribute A in Ag do
If A is the identifier of F Then

A is modifiable

T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169 159

Else A is not modifiable but is virtually updatable
Else Each of the attributes in Ag is not modifiable.

Example 8. Both the view relationship sets ATTD-DOCTOR and ATTD-Nurse in Fig. 2 are
not updatable as they are not functionally equivalent to any of the relationship sets in their
relation derivations. The view relationship set R v in Fig. 4 is deletable according to Step 1 of
Algorithm 1.2. It is Type 1 insertable according to Algorithm 1.2.1. The view relationship set
R w in Fig. 5 can be Type 2 or Type 3 insertable depending on whether the entity type A is
mandatory in R 1. The determination of modifiable attributes of view relationship sets is
similar to the determination of modifiable attributes of view entity types.

7. The View Update Translation Algorithm

Next, we present a View Update Translation Algorithm to translate a view update request
into the corresponding database update based on the results obtained from the View
Updatability Algorithm. Information regarding the updatability of a view generated from the
View Updatability Algorithm is stored in the data dictionary. The View Update Translation
Algorithm will use this information during any view update request translation. The main idea
of the View Update Translation Algorithm is to obtain the base entity type or base
relationship set. For instance, to update a view entity type, the algorithm will find the base
entity type. To update inherited or derived attributes, the algorithm will find the owner entity
type or relationship set in the conceptual schema. We will first give a structure chart of the
calling sequence of the modules in the algorithm before going into the details of the algorithm
(see Fig. 8). Note again that there are no separate modules to translate the deletion of a view
entity type or relationship set as these are quite trivial.

Algorithm 2 (Translation of View Updates)
Case 1: Update a view entity type.

Translate the update using Algorithm 2.1.

2.1 Translation of Update
on View Entity Type

J
2. View Update
Translation Algorithm

2.2 Translation of Update
on View Relationship Set

2.1.1TrnaslateView
Entity Type Insertion

2.1.2 Translate View
Entity Type Modification

2.2.1.1 Insert Type 1
J Base Relationship Set

2.2.1 Translate View _ _ 2.2.1.2 Insert Type 2
Relationship Set Insertion Base Relationship Set

~ 2 . 2 . 1 . 3 Insert Type 3
~ 2.2.2 Translate View Base Relationship Set

Relationship Set Modification

Fig. 8.

160 T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169

Case 2: Update a view relationship set.
Translate the update using Algorithm 2.2.

Algorithm 2.1 (Translation of Update on View Entity type)
Given a view containing an updatable view entity type E' of a base entity type E and a view
update against this entity type, we translate the view update as follows:
Case 1: Delete an entity in E'.

Delete the corresponding entity in E using the key value of E'.
Case 2: Insert an entity in E'.

Call Algorithm 2.1.1 to translate the insertion request.
Case 3: Modify an entity in E'.

Call Algorithm 2.1.2 to translate the modification request.

Algorithm 2.1.1 (Translate a View Entity type insertion)
Let E ' be the view entity type of a base entity type E in the view definition.
If E' is insertable Then

For each group of attributes Ag obtained in Step 3 of Algorithm 1.1 (where the attributes in
Ag have the same owner and derivation) do

Partition Ag into insertable and not insertable attributes.
Case 1: Insertable attributes.

Let A i be the group of insertable attributes.
Case 1.1: Base attributes of A~ belong to E.

Create a new entity in E as follows:
Assign the new identifier value to new entity in E.
For attributes of E also found in E', values are assigned as in E'.
For attributes of E not found in E', null values are assigned.

Insert the new entity into E.
Case 1.2: A~ is a set of inherited attributes.

Let (R 1, R2, . . . , R,1) be the attributes' derivation.
/*Note that all the relationship sets in the derivation are special
relationship sets such as ISA, UNION, etc*/
Let C be the superclass entity type of the special relationship set R ,
obtained from the conceptual schema.
If the identifier value of the new entity in E' does not match the
identifier value of any entity in C Then

Create a new entity in C as follows:
Assign the new identifier value to the new entity.
For attributes of C also found in E', values are assigned as in E'.
For attributes of C not found in E', null values are assigned.

Insert the new entity into C.
Case 1.3: A~ is a set of derived attributes.

Let (R 1, R z, . . . , R ,) be the attributes' derivation.
Let E~ be the common entity type of R~ and Ri+ 1 , for 1 ~ i < n, and let
E,1 be the owner entity type of the base attribute of the attribute in A i.

T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169 161

/*Note that A i will only contain one insertable attribute which is the
attribute whose base attribute is the identifier of E . .* /
Let E = E 0.
For l ~ i < n d o

Use the identifier value of E~_ 1 to retrieve the identifier value of E~
from R~.
/*Recall that E and En_ 1 are functionally equivalent w.r.t.
(R 1 , R 2 , . . . , Rn_l). Hence we can uniquely determine the iden-
tifier value of E i from E i_1.* /
Create a new relationship in R n using the identifier values of En_~
and E n.
/*Note that Rn is binary and E n is the value of the attribute in Ai*/
Insert the new relationship into R n.

Case 2: Not insertable attributes.
If values are given to such attributes Then

Inform user of error.
Else

Reject the insertion request.

We observe that it is trivial to delete an entity from a deletable view entity type. However, to
insert a new entity into an insertable entity type, we need to take into consideration the
presence of inherited and/or derived attributes. If we have derived attributes in the view
entity type, then in addition to the insertion of a corresponding entity into the base entity type
of the view entity type, we will need to insert corresponding relationships into some
relationship sets.

Example 9. To insert a new doctor into the view in Fig. 2, we have the Prolog goal

?-insert (doctor (116790, 'H. Goh', 35, ['MBBS', 'MMed'], surgery)).

Algorithm 2.1.1 will translate this view insertion request into the following three facts to be
inserted into the database.

doctor (116790, ['MBBS', 'MMed']).

employee (116790, 'H. Gob', 35).

/*Case 1.1-The base attributes of EMPNO and

QUAL are in the base entity type */

/*Case1.2- NAME and AGE are inherited

attributes with derivation (UNION)* /

/*Case 1.3-DNAME is a derived attribute with
)*/

attachto (116790, surgery).

derivation (ATTACHTO

Algorithm 2.1.2 (Translate a View Entity type modification)
Let E' be the view entity type of a base type E.
For each group of attributes Ag obtained in Step 3 of Algorithm 1.1 (where the attributes in Ag
have the same owner and derivation) do

Partition Ag into modifiable and not modifiable attributes.

162 T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169

Case 1: Modifiable attributes.
Let A m be the group of modifiable attributes.
Case 1.1: Base attributes of A m belong to E.

Modify the values of the base attributes of A m in the corresponding
entity in E obtained using the key value of E'.

Case 1.2: A m is a set of inherited attributes.
Modify the values of the base attributes of A m in the corresponding
owner entity obtained using the key value of E'.

Case 1.3: A m is a set of single-valued derived attributes.
Let (R~, R 2 , . . . , R n) be the attributes' derivation.
Modify the values of the base attributes of A m in the corresponding
relationship in R. obtained using the key value of E'.

Case 2: Not modifiable attributes.
If new values are given to such attributes. Then

Inform user of error.

Example 10. To modify a particular doctor in the view entity type DOCTOR in Fig. 2, we use
the given key value of the doctor to retrieve and modify the corresponding doctor entity in the
database if the attribute QUAL is given a new value. If either one or both the attributes
N A M E and AGE are given new values, we modify the corresponding employee entity in Case
1.2 of Algorithm 2.1.2. If the attribute DNAME is given a new value, we modify the
corresponding attachto relationship in Case 1.3.

Similar forms of translations can be carried out for view update requests on relationship sets
using the following algorithm.

Algorithm 2.2 (Translation of Update on View Relationship set)
Given a view with an updatable view relationship set R with the relationship derivation
(R 1 , R 2 , . . . , R o) and a view update against this relationship set, we translate the view
update as follows:
Case 1: Delete a relationship in R.

If R is deletable Then
Let S be the set of relationship sets obtained in Step 1 of Algorithm 1.2 where each
relationship set in S is functionally equivalent to R w.r.t. (R l, R 2 , . . . , Rn)-
For each relationship set R' in S do

Delete the corresponding relationship in R' using the identifier value of R
Else Reject the deletion request.

Case 2: Insert a relationship in R.
Call Algorithm 2.2.1 to translate the insertion request.

Case 3: Modify a relationship in R.
Call Algorithm 2.2.2 to translate the modification request.

Algorithm 2.2.1 (Translate a View Relationship set insertion)
Let R be the view relationship set with the relationship derivation (R 1, R 2 , . . . , Rn).

T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169 163

If R is insertable Then
Verify that only the insertable attributes of R are given values, otherwise inform the user of
error.
Case 1: R is

Call
Case 2: R is

Call
Call Algorithm 2.2.1.2

Case 3: R is Type 3 insertable.
Call Algorithm 2.2.1.1
Call Algorithm 2.2.1.2
Call Algorithm 2.2.1.3

Else /*R is not insertable.*/
Reject the insertion request.

Type 1 insertable.
Algorithm 2.2.1.1 to insert corresponding Type 1 base relationships of R.
Type 2 insertable but not Type 3 insertable.
Algorithm 2.2.1.1 to insert corresponding Type 1 base relationships of R.

to insert corresponding Type 2 base relationships of R.

to insert corresponding Type 1 base relationships of R.
to insert corresponding Type 2 base relationships of R.
to insert corresponding Type 3 base relationships of R.

Algorithm 2.2.1.1 (Insert Type 1 base relationships)
Let R be the insertable view relationship set with derivation (R 1, R2, . . . , Rn).
Let U be the set of Type 1 base relationship sets obtained in Algorithm 1.2.1 where each
relationship set R' in U is functionally equivalent to R w.r.t. (R1, R2,-. . , Rn) and all the
participating entity types of R' are the base entity types of the participating view entity types
of R.
For each of the relationship sets R' in U do

Create a new relationship in R' as follows:
For the identifiers of the participating entity types of R', values are assigned as in R.
For attributes of R' also found in R, values are assigned as in R.
For attributes of R' not found in R, null values are assigned.

Insert the new relationship into R'.

Algorithm 2.2.1.2 (Insert Type 2 base relationships)
Let R be the insertable view relationship set with derivation (R 1, R 2 R ,) .
Let V be the set of relationship sets obtained in Algorithm 1,2.1 where each relationship set
R' in V is functionally equivalent to R w.r.t. (R1, R 2, . . . , R ,) and each of the participating
entity types E of R' either

(1) E is the base entity type of some participating view entity types of R
or (2) E is functionally equivalent to some entity type F w.r.t, a derivation T such that F is
the base entity type of some participating view entity type of R and T is (Rj, R j + ~ , . . . , Rk),
1 ~ j ~ k ~< n. Moreover, F is transitively mandatory in the relationship set obtained from a
join of all the relationship sets in T.
For each of the relationship set R' in V do

Create a relationship set in R' as follows:
For attributes of R' also found in R, values are assigned as in R;
For attributes of R' not found in R, null values are assigned.
For each of the participating view entity type E of R' do

If E satisfies Condition 1 above Then

164 T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169

The identifier value of E is assigned as given in R
Else /*E satisfies condition 2 above*/

Retrieve the identifier value of E using the identifier value of F from the relationship
sets in T in the database.

Insert the above new relationship created into R'.

Algorithm 2.2.1.3 (Insert Type 3 base relationships)
Let R be the insertable view relationship set with derivation (R t , R e , . . . , R ,) .
Let W be the set of relationship sets obtained in Algorithm 1.2.1 where each relationship set
R' in W is functionally equivalent to R w.r.t. (R 1 , R 2 , . . . , R ,) and each of the participating
entity types E of R' either

(1) E is the base entity type of some participating view entity types of R
or

(2) E is functionally equivalent to some entity type F w.r.t, a derivation T such that F is the
base entity type of some participating view entity type of R and T is (R i, R j + ~ , . . . , Rk) ,
l ~ j ~ < k ~ < n .
For each of the relationship set R' in the set W do

Create a relationship set in R' as follows.
For attributes of R' also found in R, values are assigned as in R;
For attributes of R' not found in R, null values are assigned.
Set Flag = True. /*indicate if we can retrieve the identifier values of participating entity
types of R'* /
For each of the participating view entity type E of R' and while Flag = True do

If E satisfies Condition 1 above Then
Identifier value of E is assigned as given in R

Else /*E satisfies condition 2 above*/
Retrieve the identifier value of E using the identifier value of F from the relationship
sets in T in the database.
If we cannot retrieve the identifier value of E Then

Set Flag = False.
If Flag is True Then

Insert the above new relationship created into R'.
Else Reject the insertion request.

Example 11. To translate an insertion of a new relationship (a, b, c) into the view relationship
set R v which is Type 1 insertable in Fig. 4, we create the corresponding new relationships
(a, b) and (b, c) in R 1 and R e, respectively, according to Case 1 of Algori thm 2.2.1. To
translate an insertion of a new relationship (a, c) into the view relationship set R w in Fig. 5, we
first retrieve the identifier value of the entity type B from the R~ using the given value a. If R w
is Type 2 insertable, that is, A is mandatory in R 1, then we can always find the B-value b from
R 1 given the A-value a and create the corresponding new relationship (b, c) in R 2. Otherwise,
if R w is Type 3 insertable, that is, A is optional in R~, then whether we can retrieve the
B-value from R 1 given the A-value depends on the contents of the database.

T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169 165

Algorithm 2.2.2 (Translate a View Relationship set of modification)
Let R be the view relationship set with the relationship derivation (R 1, R 2 , . . . , Rn).
Let S be the set of relationship sets obtained in Step 1 of Algorithm 1.2 where each
relationship set in S is functionally equivalent to R w.r.t. (R 1, R 2, . . . , R n).
Retrieve the corresponding relationships in S using the key value of R.
Modify the values of the identifiers of the participating entity types of these retrieved
relationships.
/*Other attributes of the participating entity types are not modifiable*/
For each group of attributes A g obtained in Step 2 of Algorithm 1.2 (where the attributes in A~
have the same owner and derivation) do

Partition A g into modifiable attributes and not modifiable attributes.
Case 1: Modifiable attributes.

Let A m be the group of attributes to be modified.
Case 1.1: A m is a set of inherited attributes.

Modify the values of the base attributes of A m in the corresponding
owner entity using the key value of R.

Case 1.2: A m is a set of derived attributes with d e r i v a t i o n (R d l , Rd2 , . . . , Rdk).
/*Base attributes of A m are the attributes of a relationship set Roj in the
derivation of A m , or the identifiers of some participating entity types of
Rdj*/
Modify the values of the base attributes of A m in the corresponding
relationship of R~j using the key value of R.

Case 2: Not modifiable attributes.
If values are given to these attributes. Then

Inform user of error.

8. View implementations in current DBMS systems

The ability to update views is a well-known requirement, and many systems do already
support it in some shape or form. However, that support is usually both severely limited and
extremely ad hoc in most, if not all, DBMS systems currently available. Typically, selection
and projection views are handled by the base DBMS itself, and join views are h a n d l e d - i f
they are handled at a l l - t h rough some kind of frontend system, such as an application
generator. In other words, current systems have a built-in understanding of what it means to
update a selection or a projection, but must be told explicitly what it means to update a join.
They must be told explicitly what it means to update each specific join; it is not possible to tell
them once and for all what 'updating a join' means in general terms.

Pre-relational DBMS products were quite weak in their support of views. The CODASYL-
proposed DBTG standard of the 1970s support nothing more than those views that just one of
the relational operators project can generate. IDMS (Integrated Database Management
System) is a product of Cullinet Software Inc., and probably the best known example of a
network-structured database or DBTG system. The subschema DDL is a language for defining

166 T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169

an external view of the DBTG database. However, the view defined by a subschema is not
actually all that different from the underlying schema. The only really significant difference is
that certain sets or records or fields can be excluded from the subschema. That is, a subschema
is a simple subset of the schema.

IBMs IMS (Information Management System) and SYSTEM 2000 DBMS are database
systems based on the hierarchical database model. Views in the hierarchical model are
equivalent to the declaration of PCB (Program Control Block). A PCB is a subhierarchy of
the underlying DBD hierarchy, derived from that underlying hierarchy in accordance with the
following three rules:

(1) Any field type can be omitted.
(2) Any segment type can be omitted.
(3) If a given segment type is omitted, then all its children must be omitted too.

Again, we see that an external view in the hierarchical database is a simple subset of the
underlying database. IMS also introduced the concepts of physical/logical parent pointer,
physical/logical pairs, and secondary indexing which can be used to define significantly
different views from the underlying physical structure. The IMS rules for updates in these
complex cases are complicated and ad-hoc. For details, the reader is referred to the IMS
manuals [26].

The relational model, on the other hand, supports the full power of first-order predicate
logic in defining views. The relational DBMS products available today do not yet possess the
strength of the relational model in regard to defining views, not to mention updating views.
The concept of an external level is available to relational DBMS users through the provision
of derived relations. [27] defines a key-preserving-subset view as a view which is derived from a
single base table by simply eliminating certain rows and certain columns of that table while
preserving that table's primary key. Note that although key-preserving-subset views are always
theoretically updatable, not all the theoretically updatable views are key-preserving-subset
views. INGRES [27], unfortunately has no knowledge or understanding of primary keys.
There is thus no chance of INGRESs view-updating mechanism operating in terms of
key-preserving-subset views. Instead, it operates in terms of row-and-column-subset views. A
row-and-column-subset view is a view that is derived from a single base table by simply
eliminating certain rows and certain columns of that table. A row-and-column-subset view
may or may not be a key-preserving-subset view. More precisely, all key-preserving-subset
views are row-and-column-subset views but the converse is not true. In INGRES, only
row-and-column-subset views can be updated. INGRES is not alone in this regard. Very few
products currently support update operations on views that are not row-and-column subsets,
and no product currently supports update operations on all views that are theoretically
updatable. DB-2 is another example [28].

R E Q U I E M [29] is a relational database system implemented on the Unix operation system
and currently runs on the Sun workstations. It allows the definition of two types of views,
those which are updatable, and those which are not. In REQUIEM, a view V is updatable,
that is, one can perform insertions, deletions or modifications in its context, if and only if all
the following conditions apply to the view context.

(1) V is made up from only one base relation, R.
(2) There exists a one-to-one correspondence between the tuples of V and those of R, such

that any modification on V results into an equivalent operation on R.

T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169 167

VAX Rdb /VMS [30] is yet another relational database system implemented by Digital
Equipment Corporat ion on the VAX/VMS systems. The user needs to take note of the
following when using INSERT, DELETE, or U P D A T E statements that refer to views in VAX
Rdb /VMS.

(1) Do not refer to read-only views in INSERT, DELETE, or U P D A T E statements. SQL
considers as read-only views those with select expressions that:
* Use the DISTINCT argument to eliminate duplicate rows from the result table.
* Name more than one table or view in the F R O M clause.
* Specify a subquery in the predicate of the W H E R E clause.
* Include a function in the select list.
* Contain a G R O U P BY, HAVING or O R D E R BY clause.

(2) In the INSERT and U P D A T E statements, the user cannot refer to columns in views
that are the result of an arithmetic expression or a function.

(3) The user needs to use the WITH CHECK OPTION clause to make sure that rows
inserted or updated in a view conform to its definition. Omitting the WITH CHECK
OPTION clause allows the user to insert or update rows through a view that do not
conform to the view's definition. Once stored, however, the user cannot retrieve these
rows through the view, because they do not meet the conditions specified by the view
definition.

The above conditions do not support updates on views involving joins. Fur thermore , to
allow updates which violates the view's definition, and later disallow the user to retrieve the
new updated data through the view because they do not meet the conditions specified by the
view definition is not being consistent.

9. Conclusions

We can see that the implementations of view updates in current database management
systems are severely limited and ad-hoc in complex cases. All of them do not support views
involving joins nor do they have the concept of identifiers or primary keys. Note that the one
essential information for determining the updatability of relations is functional dependencies.
However , none of the relational DBMS can handle functional dependencies in their DDL. On
the other hand, we have presented a systematic approach to solve the problem of view update
in E R based DBMS where views are modelled by ER diagrams. We have seen that views on
E R approach are not necessary flat relations, but can be nested. The entity types in a
relationship set predicate are complex objects. Any multivalued and weak entity types are sets
in the owner predicate. As a result, view update in the ER approach is different from that in
the relational model. However, the results of evaluating view updatability in the ER approach
can be applied to the relational model as the latter is a special case of the ER approach.

We have developed a theory within the framework of the ER approach that characterizes
the conditions under which there exist mappings from view updates for view entity types and
view relationship sets into updates on the conceptual schema. We allowed the concept of
virtual updates which are carried out by the system to ensure that changes in a view requested
are consistent with the rest of the database. This is important in cases where the value of a
view attribute cannot be changed by the user but whose value is a function of the values of

168 T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169

other modifiable view attributes. With the concept of derivations, we are able to handle view
updates involving derived attributes, relationship set joins and multilevel inheri tances through
the special relationship sets ISA, U N I O N , etc. We have also defined three types of
insertability for view relationship sets. We can always find the mapping to translate any
insertion requests on Type 1 insertable view relationship sets. If a view relationship set is Type
2 insertable, then any view relationship insertion request is subjected to domain and key
constraint checks. On the other hand, if a view relationship set is Type 3 insertable, then any
view relationship insertion request is not only subjected to domain and key constraint checks,
but is also dependent on the contents of the database. We have also seen that if a view
relationship set is Type 1 insertable, then it is also Type 2 insertable. If a view relationship set
is Type 2 insertable, then it is also Type 3 insertable. Moreover , we proved that if a view
relationship set is not Type 3 insertable, then it is not insertable.

Based on the theory, we have developed the View Updatabil i ty Algor i thm and the View
Upda te Translation Algori thm. These algorithms also take into considerat ion the three types
of insertability for view relationship sets. Ling [2] has an algorithm which gives a unique
translation of a normal form E R diagram to a set of relations. Hence , any update in the E R
approach can be translated uniquely to an equivalent update in the relational database. Note
that our approach to view update is in tended to fit into the f ramework of a general and
systematic approach to the whole question of view updating.

References

[1] T.W. Ling, A three level schema architecture ER based database management systems, in: S.T. March, ed.,
Entity-Relationship Approach (North Holland, Amsterdam, 1987) 205-220.

[2] T.W. Ling, A normal form for Entity-Relationship diagrams, Proc. 4th Int. Conf. on Entity-Relationship
Approach (1985).

[3] T.W. Ling and M.L. Lee, A prolog implementation of an ER based DBMS, Proc. lOth Int. Conf. on ER
Approach (1991) 587-605.

[4] E.F. Codd, Recent Investigations in a Relational Database System, Information Processing 74 (North-Holland,
Amsterdam, 1974) 1017-1021.

[5] F. Bancilhon and N. Spyratos, Update semantics and relational views, ACM Trans. Database Systems 6(4)
(1981).

[6[T. Barsalou et al., Updating relational databases through object-based views, Proc. 1991 ACM S1GMOD Int.
Conf. on Management of Data (May 1991).

[7] C.R. Carlson and A.K. Arora, The updatability of relational views based on functional dependencies, 3rd Int.
Computer Software and Applications Conf., IEEE Computer Society (1979).

[8] M.C. Chan, Translation templates for updates issued on relation views, Tech. Report 35, Dept. of Comp.
Science, Monash University, Melbourne, Australia, April 1983.

[9] M.C. Chan and K.J. McDonell, An update schema for relational views, Proc. lOth Aust. Computer Conf.
(September 1983) 150-163.

[10] B. Czejdo, D.W. Embley and M. Rusinkiewicz, View updates for an extended Entity-Relationship Model, J.
Information Sciences 62 (1992) 41-62.

Ill] U. Dayal and P.A, Bernstein, On the correct translation of update operations on relational views, ACM
Trans. Database Systems 7(3) (1982).

[12] A.L. Furtado, C.K. Sevcik and C.S. Santos, Permitting updates through views of databases, Information
Systems 4(4) (Pergamon Press, UK, 1979),

T.W. Ling, M.L. Lee / Data & Knowledge Engineering 19 (1996) 135-169 169

[13] J. Guttag, Abstract data types and the development of data structures, Commun. ACM 20(6) (1977) 396-404.
[14] A.M. Keller, Algorithms for translating view updates to database updates for views involving selections,

projections and joins, 4th PODS, ACM (March 1985).
[15] A.M. Keller, Choosing a view update translator by Dialog at view definition time, Proc. 12th Int. Conf. on

Very Large Databases (1986).
[16] R. Langerak, View updates in relational databases with an independent scheme, ACM Trans. Database

Systems /5(1) (March 1990) 40-66.
[17] S.B. Legg and K.J. McDonell, Translating update requests on user views, Technical Report 77, Department

of Computer Science, Monash University, Melbourne, Australia, Nov. 1986.
[18] L. Rowe and K.A. Schoens, Data abstractions, views and updates in RIGEL, in: Proc. ACM-SIGMOD Int.

Conf. on Management of Data (1979) 71-81.
[19] K.C. Sevcik and A.L. Furtado, Complete and compatible sets of update operations, in: Int. Conf. on

Management of Data, ICMOD (1978).
[20] M. Stonebraker, Implementation of integrity constraints and views by query modification, Proc. ACM-

SIGMOD Int. Conf. on Management of Data, San Jose (1975) 65-78.
[21] P.P. Chen, The Entity-Relationship model: Toward a unified view of data, ACM Trans. Database Systems

i (1) (1976) 166-192.
[22] M.L. Lee, An Entity-Relationship based database management system, a thesis submitted for the degree of

Master of Science, National University of Singapore, 1992.
[23] T.W. Ling and M.L. Lee, A graphical Entity-Relationship based database management system workbench,

Proc. 4th Int. Workshop on Computer-Aided Software Engineering (1990) 480-495.
[24] J. Grant and T.W. Ling, Database representation and manipulation using Entity-Relationship database logic,

Proc. of Methodologies for Intelligent Systems IV (Elsevier Science Pub. Co, 1989) 102-109.
[25] D. Maier, Theory of Relational Databases (Computer Science Press, Rockville, MD, 1983).
[26] D. Kapp and J.F. Leben, IMS Programming Techniques: A Guide to Using DL/ I (Van Nostrand Reinhold,

New York, 1978).
[27] C.J. Date, A Guide to INGRES (Addison-Wesley, 1987).
[28] C.J. Date, An Introduction to Database Systems, 4th edition (Addison-Wesley, 1986).
[29] M. Papazoglou and W. Valder, Relational Database Management: A Systems Programming Approach

(Prentice-Hall, 1989).
[30] Digital Equipment Corporation, VAX Rdb/VMS Reference Manual, 1989.

Tok Wang Ling is an Associate
Professor of the Department of In-
formation Systems and Computer
Science at the National University of
Singapore. He received his Ph.D.
and M.Math., both in Computer
Science, from Waterloo University
(Canada) and B.Sc. in Mathematics
from Nanyang University (Singa-
pore).
His research interests include Data
Modeling, Entity-Relationship Ap-
proach, Object-Oriented Data

Model, Normalization Theory, Logic and Database, Integrity
Constraint Checking.
He is a member of ACM, IEEE, and Singapore Computer
Society.

Mong Li Lee received her B.Sc.
(Hons 1) and M.Sc. degrees in Com-
puter Science from the National Uni-
versity of Singapore in 1989 and
1992. respectively. She is a Senior
Tutor in the Department of Infor-
mation Systems and Computer Sci-
ence, National University of Singa-
pore. She is also currently pursuing
her doctorate degree from the same

....... department.
Her research interests include Entity-
Relationship Approach, Logic and

Databases, View Updates, Graphical User Interface, Data-
base Schema Translation and Integration, and Heterogenous
Databases.
She is a member of ACM.

