
An ontology based approach to the

integration of entity-relationship schemas

Qi He ∗ Tok Wang Ling

Dept. of Computer Science, School of Computing, National University of
Singapore, 3 Science Drive 2, Singapore 117543

Abstract

In schema integration, schematic discrepancies occur when data in one database cor-
respond to metadata in another. We explicitly declare the context that is the meta
information relating to the source, classification, property etc of entities, relation-
ships or attribute values in entity-relationship (ER) schemas. We present algorithms
to resolve schematic discrepancies by transforming metadata into the attribute val-
ues of entity types, keeping the information and constraints of original schemas.
Although focusing on the resolution of schematic discrepancies, our technique works
seamlessly with the existing techniques resolving other semantic heterogeneities in
schema integration.

Key words: schematic discrepancy, schema integration, entity-relationship
approach, ontology

1 Introduction

Schema integration involves merging several schemas into an integrated schema.
More precisely, [4] defines schema integration as “the activity of integrating
the schemas of existing or proposed databases into a global, unified schema”.
It is regarded as an important work to build a heterogeneous database sys-
tem [5] [21] (also called multidatabase system or federated database system), to
integrate data in a data warehouse, or to integrate user views in database de-
sign. In schema integration, people have identified different kinds of semantic
heterogeneities among component schemas: naming conflict (homonyms and

∗ Corresponding author.
Email addresses: heqi@comp.nus.edu.sg (Qi He), lingtw@comp.nus.edu.sg

(Tok Wang Ling).

Preprint submitted to Elsevier Science 14 April 2005

synonyms), key conflict, structural conflict [3] [15], and constraint conflict [14]
[19].

A less touched problem is schematic discrepancy, i.e., the same information
is modelled as data in one database, but metadata in another. The follow-
ing example illustrates schematic discrepancy in ER schemas. To focus our
contribution and simplify the presentation, in the example below, schematic
discrepancy is the only kind of conflicts among schemas.

Example 1 Suppose we want to integrate the supply information of prod-
ucts from three databases DB1, DB2 and DB3 (Figure 1). These databases
record similar information, i.e., product numbers, product names, suppliers
and the supplying prices in each month. In DB1, the supply relationships
are modelled as a ternary relationship type SUP. In DB2, the entity type
JAN PROD models the products supplied in the month of January, and the
attributes S1 PRICE, . . . , Sn PRICE means the prices of the products by the
suppliers S1, . . . , Sn. For example, the attribute S1 PRICE of the entity type
JAN PROD means the prices of the products supplied in January by the sup-
plier S1. In DB3, the relationship type JAN SUP models the supply relation-
ships between products and suppliers in January. Note that JAN SUP is a
selection of the ternary relationship type SUP of DB1 (when the value of M#
is ‘JAN’).

In relational databases, these ER schemas correspond to the following rela-
tional schemas (i.e., each entity type having more than one attribute and each
relationship type would be transformed into a relation):

DB1: PROD(P#, PNAME), SUP(P#, S#, M#, PRICE)

DB2: JAN PROD(P#, PNAME, S1 PRICE, . . . , Sn PRICE),
...

DEC PROD(P#, PNAME, S1 PRICE, . . . , Sn PRICE)

DB3: PROD(P#, PNAME),
JAN SUP(P#, S#, PRICE),

...
DEC SUP(P#, S#, PRICE)

The schemas of Figure 1 are schematically discrepant from each other. For
example, the values of the attribute M# in DB1 correspond to the metadata of
the relationship types (i.e., the names of the relationship types) in DB3. The
values of the attribute M# in DB1 correspond to the metadata of the entity
types in DB2, and the values of the attribute S# in DB1 correspond to the
metadata of the attributes S1 PRICE, . . . , Sn PRICE in DB2.

2

PROD

P#

MONTH

M#

SUP
m m

PRICE

SUPPLIERS#

m

DB1:

JAN_PROD

P#
S1_PRICE

DB2:

Sn_PRICE

PROD

P#

PRICE

SUPPLIER

S#
JAN_SUP

DEC_SUP

PRICE

m

mm

m

DB3:

PNAME

PNAME

PNAME

JAN_PROD =pm[m#='JAN']
 {P# =p#, PNAME =pname,
 S1_PRICE =price[s#='S1', inheritall],
 ... ,

Sn_PRICE =price[s#='Sn', inheritall]}

DEC_PROD

P# S1_PRICE

Sn_PRICE

PNAME

PROD =product
 {P# =p#, PNAME =pname}
MONTH =month

{M# = m#}
SUPPLIER =supplier

{S# =s#}
SUP =supply

{PRICE =price}

...
...

...

DEC_PROD =pm[m#='DEC']
 {P# =p#, PNAME =pname,
 S1_PRICE =price[s#='S1', inheritall],
 ... ,

Sn_PRICE =price[s#='Sn', inheritall]}

...
JAN_SUP =supply[m#='JAN']
 {PRICE =price[inherit all]}

DEC_SUP =supply[m#='DEC']
 {PRICE =price[inherit all]}

...

...

Fig. 1. Schematic discrepancies: months and suppliers modelled differently as the
attribute values or meta information in DB1, DB2 and DB3

In Section 4, we will resolve schematic discrepancies by transforming metadata
into attribute values, e.g., transforming DB2 and DB3 into a form of DB1,
and then merge the transformed schemas. The statements on the right side of
Figure 1 specify the meta information of the schemas using a shared ontology,
which will be explained in Section 3. �

Schematic discrepancy arises frequently since the names of schema constructs
often capture some intuitive semantic information. Real examples of such dis-
parity abound [11] [12] [18]. Originally raised as a conflict to be resolved
in schema integration, schematically discrepant structures have been used to
solve some interesting problems:

3

• In [18], Miller identified three scenarios in which schematic discrepancies
may occur, i.e., database integration, data publication on the web and phys-
ical data independence.

• In e-commerce, Agrawal et al [2] argued that the new generation of e-
commerce applications require the data schemas that are constantly evolv-
ing and sparsely populated. They believed that a vertical representation of
objects (in which attribute names are modelled as data values) is much bet-
ter on storage and querying performance than the conventional horizontal
row representation. On the other hand, to facilitate writing queries, they
need to create the horizontal views of vertical tables.

• In data warehousing, users usually require generating two-dimensional re-
port tables which are schematically discrepant from fact data.

We adopt a semantic approach to resolve schematic discrepancies in the in-
tegration of ER schemas. One of the outstanding features of our proposal is
that we preserve cardinality constraints in the transformation/integration of
ER schemas. Cardinality constraints, in particular, functional dependencies
(FDs) and multivalued dependencies (MVDs), are useful in verifying lossless
schema transformation [8], schema normalization and semantic query opti-
mization [9] [19] in multidatabase systems.

The rest of the paper is organized as follows. Section 2 comprises an introduc-
tion to the ER approach and an ontology-based approach to the integration
of ER schemas. Section 3 to 5 are the main contributions of this paper. In
Section 3, we first introduce the concepts of ontology and context which are
used to specify the meta information of ER schemas. In Section 4, we present
algorithms to resolve different kinds of schematic discrepancies in schema in-
tegration. In Section 5, we show that our resolution algorithms preserve infor-
mation and cardinality constraints in schema transformation. In Section 6, we
compare our work with related work. Section 7 concludes the whole paper.

2 Preliminaries

2.1 ER Approach

In the ER model, an entity is an object in the real world and can be distinctly
identified. An entity type is a collection of the similar entities that have the
same set of predefined common attributes. Attributes can be single-valued, i.e.,
1:1 (one-to-one) or m:1 (many-to-one), or multivalued, i.e., 1:m (one-to-many)
or m:m (many-to-many). A minimal set of attributes of an entity type E which
uniquely identifies E is called a key of E. An entity type may have more than
one key and we designate one of them as the identifier of the entity type.

4

A relationship is an association among two or more entities. A relationship
type is a collection of the similar relationships that satisfy a set of predefined
common attributes. A minimal set of attributes (including the identifiers of
participating entity types) in a relationship type R that uniquely identifies R
is called a key of R. A relationship set may have more than one key and we
designate one of them as the identifier of the relationship type.

The cardinality constraints of ER schemas incorporate FDs and MVDs. For
example, in the ER schema of Figure 2, let K1, K2 and K3 be the identifiers
of the entity types E1, E2 and E3, we have:

K1 → A1 and A1 → K1, as A1 is a one-to-one attribute of E1;
K2 → A2, as A2 is a many-to-one attribute of E2;
K3 ։ A3, as A3 is a many-to-many attribute of E3;
K1, K2 → K3, as {K1, K2} is the identifier of the relationship type R, and
the cardinality of E3 is 1 in R;
K1, K2 → B, as B is a many-to-one attribute of R.

E1

K1

E2

K2

E3

R

A3

m m

1

A1 B A2

K3

Fig. 2. Dependencies in ER schema

2.2 Ontology-based Schema Integration

An ontology is a description of the concepts in the universe of discourse for
the purpose of enabling knowledge sharing and reuse. It provides a common
type system for information exchange between disparate systems. Various ap-
proaches have been introduced to build the ontology for a federation of infor-
mation sources. In this paper, we’ll use domain-specific ontologies to represent
the meta information of ER schemas.

In [16], Ling et al proposed an ER-based federated database system where local
schemas modelled in the relational, object-relational, network or hierarchical
models are first translated into corresponding ER export schemas before they
are integrated. Database reverse engineering which constructs ER conceptual
schemas from existing relational, object-relational, etc databases facilitate the
integration of these databases. Our approach is an extension to theirs by using
an ontology to provide the semantics necessary for schema integration. In our
proposal, source data could be in different data models, e.g., relational model,

5

object relational model, etc. We first translate them to ER schemas the meta
information of which are specified using a shared ontology. The cardinality
constraints of the ER schemas are specified from the integrity constraints
of source databases. Then we integrate the ER schemas, in which semantic
heterogeneities among the schemas are resolved. The integrity constraints on
the integrated schema are derived from the constraints on the component
schemas at the same time.

In such a framework, the transformations from source schemas to ER schemas
can be done semi-automatically (we have developed a semi-automatic tool to
help users transform schemas). Then the detection and reconciliation of se-
mantic heterogeneities are done automatically by systems (in this paper, we
will study some key techniques to resolve schematic discrepancies in such inte-
gration systems). Such an ontology-based framework scale-up efficiently given
the complexity involved in integrating a large number of schemas, compared
with the assertion-based approach in which integration assertions are used to
relate equivalent constructs in schemas [15] [22].

3 Ontology and Context

We treat an ontology as the specification of the representational vocabulary
for a shared domain of discourse which includes the definitions of entity types,
relationship types, attributes of entity types and attributes of relationship
types. We present ontologies at a conceptual level, which could be implemented
by ontology languages.

For example, suppose an ontology SupOnto describes the concepts in the
universe of product supply. It includes entity types product, month, supplier, a
ternary relationship type supply among product, month and supplier, a binary
relationship type pm that is a projection of the relationship type supply onto
the entity types product and month, attributes p#, pname, s#, m# (the
values of m# are ‘JAN’, ‘FEB’, . . . , ‘DEC’) and price that is an attribute
of supply. Note we use lower case italic words to represent the types of an
ontology, in contrast to capitals for the schema constructs of an ER schema.

Conceptual modelling is always done within a particular context. In particu-
lar, the context of an entity type, relationship type or attribute is the meta-
information relating to its source, classification, property etc.

For example, in DB2 of Figure 1, the entity type JAN PROD has a context
of the month January (i.e., ‘JAN’) to indicate the product entities in the type
are supplied in January.

6

In an ER schema, contexts are usually at four levels: database, entity type,
relationship type and attribute. In general, we have the following hierarchy of
inheritance relations between contexts at different levels:

Database Entity type

Relationship type

Attribute of entity type

Attribute of relationship type

That is, an entity type may “inherit” a context from a database (i.e., the
context of a database applies to the entities), a relationship type may “inherit”
a context from its involving entity types and so on.

For example, in DB2 of Figure 1, the attribute S1 PRICE of the entity type
JAN PROD inherits the context of the month January from its owner entity
type. In other words, the prices of products supplied by the supplier S1 are
dependent on months.

The inheritance hierarchy actually reflects the order in which an ER schema
is built up. Given an application to be modelled, we first identify entity types,
then the attributes of the entity types and the relationship types among the
entity types, and finally the attributes of the relationship types. Correspond-
ingly, we first decide the context of a database in which an ER schema is
modelled, then the contexts of entity types which may inherit a context from
the database, and so on.

We will give a formal representation of context below. Note as the context of
a database would be handled in the entity types which inherit it, we ignore it
in the following definition.

Definition 1 Given an ontology, we represent an entity type (a relationship
type, or an attribute) E of an ER schema as:

E = T [C1 = c1, . . . , Cm = cm, inherit Cm+1, . . . , Cn]

where T is a type of the ontology (T is an entity type or relationship type if
E is an entity type, is a relationship type if E is a relationship type, or is
an attribute if E is an attribute), C1, . . . , Cn are attributes of the ontology,
and each ci is a value of Ci for each i = 1, . . . ,m. Cm+1, . . . , Cn respectively
have a value of cm+1, . . . , cn which are stated in a higher level context (i.e. the
context of a database if E is an entity type, the contexts of entity types if E

is a relationship type, or the context of an entity type/relationship type if E is
an attribute).

This representation means that each instance of E is an instance of T , and
satisfies the conditions Ci = ci for each i = 1, . . . , n. C1, . . . , Cn with the

7

values constitute the context within which E is defined; we call them meta-

attributes, and their values metadata of E. We say E inherits the context
{Cm+1 = cm+1, . . . , Cn = cn}. If E inherits all the meta-attributes with the
values of a higher level context, we simply represent it as:

E = T [C1 = c1, . . . , Cm = cm, inherit all]

For easy reference, we call the set {C1 = c1, . . . , Cm = cm} the self context,
and {Cm+1 = cm+1, . . . , Cn = cn} the inherited context of E. �

Either self or inherited contexts could be empty. In the example below, we
represent the entity types, relationship types and attributes in Figure 1 using
the ontology SupOnto.

Example 2 In Figure 1, the entity type JAN PROD of DB2 is represented
as:

JAN PROD = pm[m# = ‘JAN’].

The context of JAN PROD is m# =‘JAN’. This means that JAN PROD cor-
responds to a relationship type pm when the month is January, i.e., the prod-
ucts supplied in January.

Also in DB2, the attribute S1 PRICE of the entity type JAN PROD is repre-
sented as:

S1 PRICE = price[s# = ‘S1’, inherit all].

The self context of S1 PRICE is s#=‘S1’, and the inherited context (from
the entity type JAN PROD) is m#=‘JAN’. This means that each value of
S1 PRICE of the entity type JAN PROD is a price of a product supplied by
supplier S1 in January.

In DB3, the relationship type JAN SUP is represented as:

JAN SUP = supply[m# = ‘JAN’].

This means that each relationship of JAN SUP corresponds to a relationship
of supply when the month is January.

Also in DB3, the attribute PRICE of the relationship type JAN SUP is repre-
sented as:

PRICE = price[inherit all].

PRICE inherits the context m#=‘JAN’ from its relationship type JAN SUP.
This means that each value of PRICE is a supplying price in January. �

8

In schema integration, contexts should be declared by the owners of source
schemas. Once declared, our integration system can detect the schema match-
ing information from the contexts automatically. For example, two entity
types, two relationship types or two attributes are equivalent if they corre-
spond to the same ontology type and have the same context (possibly empty
context). We can also detect schematic discrepancy that is defined below.

Definition 2 Two schemas are schematically discrepant from each other
iff metadata in one schema correspond to attribute values in the other schema.
We call the meta-attributes whose values correspond to attribute values in other
schemas discrepant meta-attributes. �

In Figure 1, DB1 and DB3 are schematically discrepant from each other,
as the metadata ‘JAN’, . . . , ‘DEC’ of the relationship types JAN SUP, . . . ,
DEC SUP in DB3 are modelled as the values of the attribute M# in DB1. In
this case, m# is a discrepant meta-attribute of the relationship types in DB3.
Similarly, DB1 and DB2 are schematically discrepant from each other, and
m# and s# are discrepant meta-attributes in DB2 whose values correspond
to attribute values in DB1.

4 Resolution of Schematic Discrepancies

In this section, we resolve schematic discrepancies in the integration of ER
schemas. In particular, we present four algorithms to resolve schematic dis-
crepancies for entity types, relationship types, attributes of entity types and
attributes of relationship types respectively. This is done by transforming dis-
crepant meta-attributes into attributes of entity types. The transformation
keeps the cardinalities of attributes and entity types, and therefore preserves
FDs and MVDs (Section 5). Note in the presence of context, the values of an
attribute depend on not only the key values of the entity type/relationship
type, but also the metadata of the attribute.

We present 4 algorithms ResolveEnt, ResolveRel, ResolveEntAttr and Resolve-
RelAttr, the resolutions of schematic discrepancies for entity types, relation-
ship types, attributes of entity types and attributes of relationship types one
by one. Examples are provided to understand each algorithm. Finally, we in-
troduce the general process of integrating ER schemas with different kinds of
semantic heterogeneities.

To simplify the presentation, we assume schema constructs only have dis-
crepant meta-attributes, leaving out other meta-attributes that will not cause
schematic discrepancies. Actually, non-discrepant meta-attributes will not be
changed in schema transformation.

9

4.1 Resolving Schematic Discrepancies for Entity Types

Given an ER schema, we resolve the schematic discrepancies of the entity types
of the schema in 2 steps. In Step 1, we resolve the schematic discrepancies of
each entity type, and in Step 2, we merge the equivalent schema constructs in
the transformed schema. Step 1 is further divided into 3 sub-steps. Given an
entity type E, in Step 1.1, we transform the discrepant meta-attributes of E

into the attributes of entity types, and relate the entity types in a relationship
type. Then in Step 1.2, we handle the attributes of E according to the ways
the attributes inherit the context of E. Finally in Step 1.3, we handle the
relationship types involving E according to the ways the relationship types
inherit the context of E.

In what follows, we first show two examples of the resolution of schematic
discrepancies of entity types, which focus on handling attributes and handling
relationship types respectively, and then give the general algorithm.

Example 3 In DB2 of Figure 1, the entity types JAN PROD, . . . , DEC PROD
have the same discrepant meta-attribute m#. In Figure 3, we resolve the
schematic discrepancies of these entity types in two steps.

In Step 1, for each entity type of DB2, say JAN PROD = pm[m#=‘JAN’],
we represent the discrepant meta-attribute m# as an attribute M# (with the
only value ‘JAN’) of a new created entity type MONTH = month. As in the
ontology, pm is a binary relationship type between the entity types product and
month, after removing the context, we change the entity type JAN PROD into
an entity type PROD = product (with all the entities of JAN PROD), and
construct a relationship type PM = pm to associate the entity types PROD
and MONTH.

Then we handle the attributes of JAN PROD. As PNAME has nothing to do
with the context of the entity type, it becomes an attribute of PROD. However,
S1 PRICE, . . . , Sn PRICE inherit the context m#=‘JAN’, i.e., their values
depend on not only the product numbers, but also the month January. So
they become the attributes of the relationship type PM. Note as the context
of JAN PROD that is the inherited context of the attributes S1 PRICE, . . . ,
Sn PRICE is removed, these attributes only have the self context s#=‘Si’ left
for i=1, . . . , n (the discrepant meta-attribute s# will be resolved in Algorithm
ResolveRelAttr later).

Similarly, we can resolve the schematic discrepancies of the other entity types
FEB PROD, . . . , DEC PROD.

Then in Step 2, the equivalent entity types, relationship types and attributes
are merged respectively. Their domains are united. �

10

JAN_PROD

P#
S1_PRICE

DB2:

Sn_PRICE

PNAME

DEC_PROD

P#
S1_PRICE

Sn_PRICE

PNAME

PROD
PMm m

Sn_PRICE

MONTH

S1_PRICE

dom(M#) = {JAN}

P# PNAME M#

PROD

PMm m

Sn_PRICE

MONTH

S1_PRICE

dom(M#) = {DEC}

P# PNAME M#

PROD

PMm m

Sn_PRICE

MONTH

S1_PRICE

dom(M#) =
{JAN, ..., DEC}

P# PNAME M#

. . .

. . .

. . .

Step 1

Step 2DEC_PROD =pm[m#='DEC']
 {S1_PRICE =price[s#='S1', inheritall]

...}

PM =pm
 {S1_PRICE =price[s# ='S1']

... }

...

...

...
...

JAN_PROD =pm[m#='JAN']
 {S1_PRICE =price[s#='S1', inherit all]

...}

Fig. 3. Resolve schematic discrepancies for entity types: handle attributes

Then we show the other example in which we need to deal with relationship
types in the resolution of schematic discrepancies of entity types.

Example 4 In Figure 4, we give another ER schema DB4 modelling the simi-
lar information as those in Figure 1. In DB4, each entity type of JAN PROD,
. . . , DEC PROD models the products supplied in one month, and each rela-
tionship type SUPi, i=1, . . . , 12, models the supply relationships in the i-th
month. Note in DB4, we have a constraint that is none in the schemas of Fig-
ure 1: “in each month, a product is uniquely supplied by one supplier.” This
constraint (i.e., a FD P# → S#) is represented as a cardinality constraint on
each relationship type SUPi.

In Figure 4, we resolve the schematic discrepancies of the entity types JAN PROD,
. . . , DEC PROD in 3 steps. In Step 1, for each of these entity type, say
JAN PROD = pm[m#=‘JAN’], we transform the discrepant meta-attribute
m# to an attribute M# of a new created entity type MONTH = month, and
connect the entity types PROD and MONTH with a relationship type PM =
pm.

Then we handle the relationship type SUP1 that involves the entity type JAN PROD.

11

JAN_PROD SUP1

m
1P#

DEC_PROD
m

1

SUPPLIER

P#

S#

Step 2

JAN_PROD =pm[m#='JAN']

DEC_PROD =pm[m#='DEC']
SUP1=supply[inherit all]
 {PRICE =price[inherit all]}

SUP12=supply[inherit all]
 {PRICE =price[inherit all]}

PM=pm
SUP=supply
 {PRICE =price}

...

...

PROD SUP

m

1

SUPPLIER

P#
S#

m

PROD

SUP

m

1
SUPPLIER

P# S#

MONTH

m

M#

Step 1

SUP1 2

PRICE

PRICE

...

MONTH M# dom(M#)
= {JAN}

PRICE

MONTH

SUP
m

1

M#

m

PRODP#

dom(M#)
= {DEC}

PRICE

...
PRICE

DB4:

PM

PM

m

m

m

m

PM

m

m
PROD

SUP

m

1
SUPPLIER

P#

S#

MONTH
m

M#

PRICE

dom(M#) =
{JAN, ..., DEC}

Step 3

Fig. 4. Resolve schematic discrepancies for entity types: handle relationship types

As SUP1=supply[inherit all], i.e., it inherits the context m#=‘JAN’ from
JAN PROD, and we have removed the context of JAN PROD, SUP1 becomes
a ternary relationship type SUP=supply connecting the entity types PROD,
MONTH and SUPPLIER.

Similarly, we can transform the entity types FEB PROD, . . . , DEC PROD
and the relationship types SUP2, . . . , SUP12.

Then in Step 2, the equivalent entity types, relationship types and attributes
are merged respectively. Their domains are united.

Finally in Step 3, as in the ontology, the relationship type pm is a projection
of the relationship type supply, the relationship type PM of the transformed
ER schema is redundant and therefore removed. Note that this step is not
included in Algorithm ResolveEnt. Instead, it will be performed later in a main
integration algorithm calling the resolution algorithms (Section 4.5).

12

Note that the cardinality constraints on the relationship types SUPi’s of DB4
are represented as an equivalent cardinality constraint (i.e., a FD {P#, M#}
→ S#) on the relationship type SUP of the transformed schema. This issue
will be studied in detail in Section 5. �

The general algorithm is given below.

Algorithm ResolveEnt

Given an ER schema DB, the algorithm produces a schema DB′ transformed
from DB such that all the discrepant meta-attributes of the entity types are
transformed into the attributes of entity types.

Step 1 Resolve the discrepant meta-attributes of an entity type.
Let E = T [C1 = c1, . . . , Cl = cl, inherit Cl+1, . . . , Cm] be an entity type of
DB, where T is a relationship type among m+1 entity types T1, . . . , Tm, Tm+1

in the ontology, and C1, . . . , Cm are m discrepant meta-attributes that are
identifiers of T1, . . . , Tm. Each Ci, i = 1, . . . ,m, has a value of ci. Let Cm+1

be the identifier of Tm+1, such that the identifier of E, K = Cm+1.
Step 1.1 Transform C1, . . . , Cm into the attributes of entity types.

Construct m+1 entity types E1 = T1, . . . , Em = Tm, Em+1 = Tm+1 with
the identifiers K1 = C1, . . . , Km = Cm, K = Cm+1 (note that the identifier
of Em+1 is the same as the identifier of E) if they do not exist.
Each Ei (i=1, . . . , m) contains one entity with the identifier Ci = ci.
Em+1 contains all the entities of E.
Construct a relationship type R = T connecting E1, . . . , Em+1, such that
(c1, . . . , cm, k) ∈ R[K1, . . . , Km, K] iff k ∈ E[K].

Step 1.2 Handle the attributes of E.
Let A be an attribute (not part of the identifier) of E. A corresponds to
a type Aont in the ontology, and has a self context (i.e., a set of meta-
attributes with values) selfCnt.
If A is a many-to-one or many-to-many attribute, then

Case 1 A does not inherit any context of E.
Then A becomes an attribute of Em+1, such that
(k, a) ∈ Em+1[K,A] iff (k, a) ∈ E[K,A].

Case 2 A = Aont[selfCnt, inherit all], i.e., A inherits all the context
{C1 = c1, . . . , Cm = cm} from E.
Then construct an attribute A′ = Aont[selfCnt] of R, such that
(c1, . . . , cm, k, a) ∈ R[K1, . . . , Km, K,A′] iff (k, a) ∈ E[K,A].
A′ has the same cardinality as A.

Case 3 A inherits some context from E. Without losing generality, let
A = Aont[selfCnt, inherit C1, . . . , Cj] for 1 ≤ j < m.
Then construct a relationship type R′ connecting Em+1 and E1, . . . , Ej.
Construct an attribute A′ = Aont[selfCnt] of R′, such that
(c1, . . . , cj, k, a) ∈ R′[K1, . . . , Kj, K,A′] iff (k, a) ∈ E[K,A].
A′ has the same cardinality as A.

13

else /* A is a one-to-one or one-to-many attribute, i.e., A deter-
mines the identifier of E in the context. We keep the inherited context
of A, and delay the resolution of it in Algorithm ResolveEntAttr, the
resolution for attributes of entity types, in which A will be transformed
to the identifier of an entity type to preserve the cardinality constraint.
*/
Construct an attribute A′ = Aont[Cnt] of Em+1, where Cnt is the self
context of A′ that is the union of the self and inherited contexts of A,
such that
(k, a) ∈ Em+1[K,A′] iff (k, a) ∈ E[K,A].

Step 1.3 Handle the relationship types involving the entity type E in DB.
Let R1 be a relationship type involving E in DB, and S be a sequence
of the identifiers of all the entity types involved in R1. We transform R1
into a relationship type R1′ as below.
If R1 has no attributes, or only has many-to-one and many-to-many

attributes, then

Case 1 R1 does not inherit any context of E.
Then replace E with Em+1 in R1, and change R1 to R1′, such that
s ∈ R1′[S] iff s ∈ R1[S]. /*Note that the identifier of E is the

same as the identifier of Em+1.*/
Represent each FD on R1 (that is represented as a cardinality con-
straint of the participating entity types in R1) in R1′.

Case 2 R1 inherits all the context {C1 = c1, . . . , Cm = cm} from E.
Then construct R1′ involving E1, . . . , Em, Em+1 and all the entity
types in R1 except E, such that
(s, c1, . . . , cm) ∈ R1′[S,K1, . . . , Km] iff s ∈ R1[S].
Let A → B be a FD on R1, where A and B are two sets of the
identifiers of some participating entity types in R1.
If K, the identifier of E, is in A ∪ B, then

Represent a FD A, K1, . . . , Km → B in R1′.
Else Represent the same FD A → B in R1′.

Case 3 R1 inherits some context, say {C1 = c1, . . . , Cj = cj} (1 ≤ j <

m) from E.
Then construct R1′ involving E1, . . . , Ej, Em+1 and all the entity
types in R1 except E, such that
(s, c1, . . . , cj) ∈ R1′[S,K1, . . . , Kj] iff s ∈ R1[S].
Let A → B be a FD on R1, where A and B are two sets of the
identifiers of some participating entity types in R1.
If K ∈ A ∪ B, then

Represent a FD A, K1, . . . , Kj → B in R1′.
Else Represent the same FD A → B in R1′.

In each of the 3 cases, R1′ and R1 have the same attributes, correspond
to the same relationship type of the ontology, and have the same self
context. R1′ has no inherited context.

Else /*R1 has some one-to-one or one-to-many attributes. In order to

14

preserve the cardinality constraints of the attributes of R1, we keep
the inherited context of R1 in R1′. This context would be removed in
Algorithm ResolveRel and ResolveRelAttr later.*/
Replace E with Em+1 in R1, and change R1 to R1′, such that
s ∈ R1′[S] iff s ∈ R1[S].
The context of R1′ is the union of the self and inherited contexts of R1.

Step 2 Merge equivalent entity types and equivalent relationship types.
For each set of equivalent entity types E, do

Let E be the merged entity type.
The attribute set of E is the union of the attribute sets of all the entity
types of E.
For each set of equivalent attributes of some entity types of E, do

Resolve the constraint conflicts in the attributes.
/*Algorithms to resolve constraint conflicts are given in [14].*/
Unite the domains of these equivalent attributes.

For each set of equivalent relationship types R, do

Let R be the merged relationship type.
The attribute set of R is the union of the attribute sets of all the
relationship types of R.
Resolve the constraint conflicts in the relationship types.
/*Algorithms to resolve constraint conflicts are given in [14].*/
For each set of equivalent attributes of some relationship types of R, do

Resolve the constraint conflicts in the attributes.
Unite the domains of these equivalent attributes. �

4.2 Resolving Schematic Discrepancies for Relationship Types

In the resolution of schematic discrepancies for relationship types, we should
deal with a set of entity types (participating in a relationship type) instead of
individual ones. The resolution can also be performed in 2 steps: first trans-
form the discrepant meta-attributes of relationship types into the attributes
of entity types (unlike Algorithm ResolveEnt, we don’t need Step 1.3 in Al-
gorithm ResolveRel), and then merge the equivalent schema constructs in the
transformed schema. We first present an example below.

Example 5 In DB3 of Figure 1, the relationship types JAN SUP, . . . , DEC SUP
have the same discrepant meta-attribute m#. In Figure 5, we resolve the
schematic discrepancies of these relationship types in two steps.

In Step 1, for each relationship type of DB3, say JAN SUP = supply[m#=‘JAN’],
we represent the meta-attribute m# as an attribute M# of a new created en-
tity type MONTH. After removing the context, we change JAN SUP into a
ternary relationship type SUP = supply, to connect the entity types PROD,

15

PROD

P#

PRICE

SUPPLIER

S#JAN_SUP

DEC_SUP

PRICE

m

mm

m

DB3:

PNAME

PROD

P#

SUPPLIER

PNAME S#

MONTH M#

dom(M#) = {JAN}

MONTH M#

dom(M#) = {DEC}

SUP

SUP

PRICE

PRICE

m

m

m

m

m

m

Step 1

JAN_SUP =supply[m#='JAN']
 {PRICE =price[inherit all]}

SUP =supply
{PRICE =price}

Step 2

PROD

P#

MONTH

M#

SUP
m m

PRICE

SUPPLIER
S#

m

PNAME

dom(M#)=
{JAN, ...,DEC}

...

...

DEC_SUP =supply[m#='DEC']
 {PRICE =price[inherit all]}

Fig. 5. Resolve schematic discrepancies for relationship types

MONTH and SUPPLIER.

Then we handle the attribute PRICE of the relationship type JAN SUP. As
PRICE = price[inherit all], i.e., its values depend on not only product numbers
and supplier numbers, but also months, PRICE = price becomes an attribute
of SUP in the transformed schema.

Similarly, we can transform the other relationship types FEB SUP, . . . , DEC SUP.

Then in Step 2, the equivalent entity types, relationship types and attributes
are merged. Their domains are united. �

The general algorithm ResolveRel is presented in Appendix A.1. Note as the
resolution of the schematic discrepancies for relationship types always follows
the resolution for entity types, the relationship types input to Algorithm Re-
solveRel have no inherited context (see Step 1.3 of Algorithm ResolveEnt for
the transformation of relationship types in the resolution of the schematic
discrepancies of entity types).

4.3 Resolving Schematic Discrepancies for Attributes of Entity Types

Given an ER schema, we resolve the schematic discrepancies of the attributes
of entity types in two steps. In Step 1, given an attribute A of an entity type,
we transform the discrepant meta-attributes of A into the attributes of entity
types, and transform A to an attribute of a relationship type or the identifier
of an entity type. Then in Step 2, we merge equivalent schema constructs

16

of the transformed schema. We first explain the resolution algorithm by an
example below.

Example 6 In Figure 6, we give another ER schema DB5 modelling the si-
milar information as those in Figure 1. In DB5, each of the 12× n attributes
S1 JAN PRICE, . . . , Sn DEC PRICE models the prices of the products sup-
plied by one supplier in one month.

PROD

P#
S1_JAN_PRICE

Sn_DEC_PRICE

PNAME

PROD

P# SUPPLIER
PNAME S#

MONTH M#dom(M#)={JAN}

MONTH M#

dom(M#)={DEC}

SUP

SUP

SUPPLIER S#

dom(S#)={S1}

dom(S#)={Sn}PRICE

PRICE

m

m

m

m

m

m
Step 1

DB5:

S1_JAN_PRICE =price[s#='S1', m#='JAN']
 ...
Sn_DEC_PRICE =price[s#='Sn', m#='DEC']

SUP=supply
 {PRICE =price}

PROD

P#

MONTH

M#

SUP
m m

PRICE

SUPPLIER
S#

m

PNAME Step 2

dom(M#) =
{JAN, ..., DEC}

dom(S#) =
{S1, ..., Sn}

...

...

Fig. 6. Resolve schematic discrepancies for attributes of entity types

In Figure 6, we resolve the schematic discrepancies of the attributes S1 JAN PRICE,
. . . , Sn DEC PRICE in two steps. In Step 1, for each of the attributes, say
S1 JAN PRICE = price[s#=S1, m#=JAN], we represent the discrepant meta-
attributes s# and m# as the attributes of new created entity types SUPPLIER
= supplier and MONTH = month. In the ontology, price is an attribute of the
ternary relationship type supply. Then in the ER schema, we construct the
relationship type SUP = supply to contain the attribute PRICE = price.

Similarly, we can transform the other attributes S1 FEB PRICE, . . . , Sn DEC PRICE.

Then in Step 2, we merge all the equivalent entity types, relationship types and
attributes. Their domains are united. �

The general algorithm ResolveEntAttr is presented in Appendix A.2. Note
as the resolution of the schematic discrepancies for the attributes of entity
types always follows the resolution for entity types, the attributes input to
Algorithm ResolveEntAttr have no inherited context (see Step 1.2 of Algo-
rithm ResolveEnt for the transformation of attributes in the resolution of the
schematic discrepancies of entity types).

17

4.4 Resolving Schematic Discrepancies for Attributes of Relationship Types

Given an ER schema, we resolve the schematic discrepancies of the attributes
of relationship types in two steps, i.e., Step 1 of transforming the discrepant
meta-attributes into the attributes of entity types and Step 2 of merging. Note
unlike Algorithm ResolveEntAttr, in Algorithm ResolveRelAttr, we need to
deal with a set of entity types involved in a relationship type instead of indi-
vidual entity types. We first explain the resolution algorithm by an example
below.

Example 7 In the transformed schema of Figure 3, the attributes S1 PRICE,
. . . , Sn PRICE of the relationship type PM represent the prices of the products
supplied by the suppliers S1, . . . , Sn in some months. These attributes have
the same discrepant meta-attribute s#.

In Figure 7, we resolve the schematic discrepancies of the attributes S1 PRICE,
. . . , Sn PRICE in three steps.

PROD

PMm m

Sn_PRICE

MONTH

S1_PRICE

P# PNAME M#. . .

Step 1
PROD

P#

MONTH

PNAME M#

PM

SUP
PRICE

SUPPLIER

S#

dom(S#)={S1}

SUPPLIER

S#

dom(S#)={Sn}

SUP

PRICE
. . .S1_PRICE =price[s#='S1']

...
Sn_PRICE =price[s#='Sn']

SUP =supply
 {PRICE =price}

mm

m m

mm

mm

PROD

P#

MONTH

PNAME M#

PM

SUPPRICE

SUPPLIERS#

dom(S#) = {S1, ..., Sn}

Step 2

m

m

mm

m

Step 3

PROD

P#

MONTH

M#

SUP
m m

PRICE

SUPPLIERS#

m

PNAME

Fig. 7. Resolve schematic discrepancies for attributes of relationship types

In Step 1, for each attribute, say S1 PRICE = price[s#=‘S1’], we represent
the discrepant meta-attribute s# as an attribute S# of a new entity type
SUPPLIER = supplier. In the ontology, price is an attribute of the ternary
relationship type supply. Then in the ER schema, we construct the relationship
type SUP = supply to contain the attribute PRICE = price.

Similarly, we transform the other attributes S2 PRICE, . . . , Sn PRICE.

Then in Step 2, equivalent entity types, relationship types and attributes are

18

merged respectively. Their domains are united.

Finally in Step 3, as in the ontology, the binary relationship type pm is a
projection of the terary relationship type supply, in the ER schema, the rela-
tionship type PM is redundant and therefore removed. Note that this step is
not included in Algorithm ResolveRelAttr. Instead, it will be performed later in
a main integration algorithm calling the resolution algorithms (Section 4.5).
�

The general algorithm ResolveRelAttr is presented in Appendix A.3. Note as
the resolution of the schematic discrepancies for the attributes of relationship
types always follows the resolution for relationship types, the attributes in-
put to Algorithm ResolveRelAttr have no inherited context (see Step 1.2 of
Algorithm ResolveRel for the transformation of attributes in the resolution of
schematic discrepancies of relationship types).

4.5 Integration of ER Schemas

In schema integration, the 4 kinds of schematic discrepancies should be re-
solved in the order of context inheritance presented in Section 3, i.e., first
for entity types, then relationship types, finally attributes of entity types and
attributes of relationship types. The resolutions of the other semantic hetero-
geneities follow the resolution of schematic discrepancies. In general, given a
set of ER schemas, we can integrate them in 4 steps:

(1) Call the algorithms ResolveEnt, ResolveRel, ResolveEntAttr and Resolve-
RelAttr in order to resolve the schematic discrepancies of entity types,
relationship types, attributes of entity types and attributes of relationship
types.

(2) Resolve the other semantic heterogeneities of naming conflicts, key con-
flicts, structural conflicts, etc, using existing methods, e.g., [15].

(3) Merge the transformed schemas. Equivalent entity types, relationship
types and attributes are superimposed. Some constraint conflicts may
need to be resolved during the merging [14].

(4) Remove the redundant relationship types which can be derived from the
others. Create special relationship types ISA, UNION, INTERSECT or
DECOMPOSE among entity types of the integrated schema.

19

5 Semantics Preserving Transformation

In this section, we will show that Algorithm ResolveEnt (Section 4.1), the
resolution of the schematic discrepancies of entity types, preserves informa-
tion and cardinality constraints. The same property holds for the other three
algorithms, which is omitted as the proofs are similar to that of Algorithm
ResolveEnt.

5.1 Semantics Preservation of Algorithm ResolveEnt

As to the information preservation, we have the following result, the proof of
which is omitted.

Theorem 1 The transformation of Step 1 of Algorithm ResolveEnt is a one
to one mapping from the instance set of the original schema onto the instance
set of the transformed schema. �

This can be concluded from the necessary and sufficient conditions of the data
transformation statements in the algorithm (i.e., the “iff” statements in Step
1 of Algorithm ResolveEnt).

Note in the algorithm, Step 2 of merging (implemented using union or outer-
join operations in data integration) is a many to one mapping, which makes
the recovery impossible. It seems acceptable, as in an information integration
system, sources are usually transparent to users. That is, users usually do not
care about the sources from which an object come.

The same result of Theorem 1 holds for the other three algorithms in Ap-
pendix, i.e., Algorithm ResolveRel, the resolution of the schematic discrep-
ancies of relationship types, Algorithm ResolveEntAttr, the resolution of the
schematic discrepancies of the attributes of entity types, and Algorithm Resolve-
RelAttr, the resolution of the schematic discrepancies of the attributes of re-
lationship types.

In what follows, we study the preservation of FDs and MVDs in the schema
transformation of Algorithm ResolveEnt.

Theorem 2 The schema transformation of Algorithm ResolveEnt preserves
the constraints of FDs and MVDs. �

We prove this theorem through 5 lemmas in the rest of this section. In ER
schemas, cardinality constraints (in particular, the cardinalities of the at-
tributes of entity types, the cardinalities of the entity types in a relationship

20

type, or the cardinalities of the attributes of relationship types) may represent
FDs/MVDs, as mentioned in Section 2.1. Lemma 1 is on the preservation of
the FDs and MVDs represented as the cardinality constraints of the attributes
of entity types. Lemma 2 and 3 are on the preservation of the FDs represented
as the cardinality constraints of the entity types in a relationship type. Lemma
4 and 5 are on the preservation of the FDs and MVDs represented as the car-
dinality constraints of the attributes of a relationship type.

We first show an example of the preservation of the FDs that are the cardi-
nality constraints of the attributes of entity types below.

Example 8 In Figure 3, in each of the entity types JAN PROD, . . . , DEC PROD

of DB2, the attributes S1 PRICE, . . . , Sn PRICE inherit all the context
of the entity type. After Algorithm ResolveEnt, the discrepant meta-attribute
m# becomes the attribute M# of the entity type MONTH in the transformed
schema, and S1 PRICE, . . . , Sn PRICE become the attributes of the rela-
tionship type PM . We have the following result:

A FD P# → {S1 PRICE, . . . , Sn PRICE} holds in each entity type of DB2
iff a FD {P#,M#} → {S1 PRICE, . . . , Sn PRICE} holds in the relation-
ship type PM of the transformed schema.

On the other hand, in each entity type of DB2, the attribute PNAME has
nothing to do with the context of the entity type, i.e., a product name is only
dependent on the product number, independent of the months in which the
product is supplied. We have the following result:

A FD P# → PNAME holds in each entity type of DB2 iff the same FD
P# → PNAME holds in the entity type PROD of the transformed schema.
�

In general, we have the following result:

Lemma 1 Algorithm ResolveEnt preserves the FDs and MVDs represented
as the cardinality constraints of the attributes of entity types.

Proof: Recall Step 1.2 of Algorithm ResolveEnt in which we transform the
attributes of entity types in the resolution of schematic discrepancies of entity
types. In what follows, we first claim that for each case of Step 1.2, the cardi-
nality constraints of attributes can be preserved in the transformed schema,
then prove a typical case. In Algorithm ResolveEnt, equivalent schema con-
structs will be merged in Step 2. Without losing generality, we consider a set of
entity types (instead of individual ones) that correspond to the same ontology
type, and have the same set of meta-attributes but different metadata, such
as the entity types JAN PROD, . . . , DEC PROD of DB2 in the above ex-
ample. Such entity types will be transformed to equivalent relationship types

21

and merged in the algorithm.

In general, in an ER schema DB, let E be a set of entity types with the same
identifier K, the same attribute A and the same meta-attributes, i.e.,

E = {E|E = T [C1 = c1, . . . , Cl = cl, inherit Cl+1, . . . , Cm],
c1 ∈ dom(C1), . . . , cl ∈ dom(Cl)}.

Let A correspond to an attribute Aont in the ontology, and have a self context
selfCnt, i.e., a set of meta-attributes with values.

Let DB′ be the schema transformed from DB by Algorithm ResolveEnt, in
which C1, . . . , Cm become the identifiers K1, . . . , Km of entity types E1, . . . , Em,
and an entity type Em+1 with the identifier K is created to contain all the
entities of the entity types of E. We claim that:

Case 1 A is a many-to-one or many-to-many attribute in each entity type of
E.
Case 1.1 A = Aont[selfCnt] does not inherit any context from the entity

types.
Then A becomes a non-identifier attribute of the entity type Em+1 in the
transformed schema DB′.
If A is a many-to-one attribute, then

A FD K → A holds in each entity type of E iff a FD K → A holds in
Em+1.

Else /*A is a many-to-many attribute.*/
A MVD K ։ A holds in each entity type of E iff a MVD K ։ A holds
in Em+1.

Case 1.2 A = Aont[selfCnt, inherit all] inherits all the context of the en-
tity types.
Then A′ = Aont[selfCnt] becomes an attribute of a new-created relation-
ship type R among m+1 entity types E1, . . . , Em+1 in DB′.
If A is a many-to-one attribute, then

A FD K → A holds in each entity type of E iff a FD K1, . . . , Km, K →
A′ holds in R.

Else /*A is a many-to-many attribute.*/
A MVD K ։ A holds in each entity type of E iff a MVD K1, . . . , Km, K ։

A′ holds in R.
Case 1.3 A = Aont[selfCnt, inherit C1, . . . , Cj] (1 ≤ j < m) inherits some

context of the entity types.
Then A′ = Aont[selfCnt] becomes an attribute of a new-created relation-
ship type R′ among j+1 entity types E1, . . . , Ej and Em+1 in DB′.
If A is a many-to-one attribute, then

A FD K → A holds in each entity type of E iff a FD K1, . . . , Kj, K →
A′ holds in R′.

22

Else /*A is a many-to-many attribute.*/
A MVD K ։ A holds in each entity type of E iff a MVD K1, . . . , Kj, K ։

A′ holds in R′.
Case 2 A is a one-to-one or one-to-many attribute.

Then A′ = Aont[Cnt] becomes an attribute of Em+1 in DB′, where Cnt is
the self context of A′ that is the union of the self context (i.e., selfCnt)
and inherited context (say inhrtCnt) of A.
A FD A → K holds in each entity type of E which has the context inhrtCnt

iff A′ → K holds in Em+1.
If A is a one-to-one attribute, then

A FD K → A holds in each entity type of E which has the context
inhrtCnt iff a FD K → A′ holds in Em+1.

Else A MVD K ։ A holds in each entity type of E which has the context
inhrtCnt iff a MVD K ։ A′ holds in Em+1.

Then we prove the case when A is a many-to-one attribute that inherits all
the context of the entity types, i.e, a sub-case of Case 1.2. The other cases can
be proven in a similar way.

(=>) If a FD K → A holds in each entity type of E, then a FD K1, . . . , Km, K →
A′ holds in R.
Suppose we are given two tuples (c1, . . . , cm, k, a), (c1, . . . , cm, k, a′) ∈ R[K1,

. . . , Km, K,A′]. As the two tuples have the same values on K1, . . . , Km (i.e.,
C1, . . . , Cm), they must come from the same entity type of E. As a FD K → A

holds in each entity type of E, we have a = a′. Consequently, K1, . . . , Km, K →
A′ holds in R.

(<=) If a FD K1, . . . , Km, K → A′ holds in R, then a FD K → A holds in
each entity type of E.
For each entity type E = T [C1 = c1, . . . , Cl = cl, inherit Cl+1, . . . , Cm]
in E, given two tuples (k, a), (k, a′) ∈ E[K,A], by Algorithm ResolveEnt,
we can transform them to two tuples (c1, . . . , cm, k, a), (c1, . . . , cm, k, a′) ∈
R[K1, . . . , Km, K,A′]. As a FD K1, . . . , Km, K → A′ holds in R, we have
a = a′. Consequently, K → A holds in E. �

In the ER approach, FDs/MVDs can be represented by not only the cardinal-
ities of the attributes of entity types, but also the cardinalities of the entity
types and the cardinalities of the attributes in a relationship type. In what
follows, we first show an example of FDs represented as the cardinality con-
straints in relationship types, then present 4 lemmas to generalize the results.

Example 9 In the schema DB4 of Figure 4, a relationship type SUP1 (the
other relationship types are similar) inherits the context m#=‘JAN’ from its
participating entity type JAN PROD. After Algorithm ResolveEnt, the dis-
crepant meta-attribute m# becomes an attribute M# of the entity type MONTH

23

in the transformed schema, and the relationship types SUPi’s are transformed
and merged into a ternary relationship type SUP among the entity types
PROD, MONTH and SUPPLIER. We have the following result:

A FD P# → S# holds in each relationship type of DB4 iff a FD {P#,M#} →
S# holds in the relationship type SUP of the transformed schema.

In the schema of DB4, the relationship type SUP1 (the other relationship types
are similar) has an attribute PRICE with the inherited context m# = ‘JAN ′.
After Algorithm ResolveEnt, PRICE becomes an attribute of the relationship
type SUP in the transformed schema. We have the following result:

A FD P# → PRICE holds in each relationship type of DB4 iff a FD
{P#,M#} → PRICE holds in the relationship type SUP of the transformed
schema. �

Recall Step 1.3 of Algorithm ResolveEnt in which we transform relationship
types in the resolution of schematic discrepancies for entity types. According
to whether a relationship type has any one-to-one or one-to-many attributes,
the transformation methods would be different. Correspondingly, when pre-
senting the issue of FD preservation, we also divide the two cases. In par-
ticular, Lemma 2 and Lemma 4 are, respectively, on the preservation of the
cardinalities of entity types and the cardinalities of attributes when relation-
ship types only have many-to-one and many-to-many attributes. On the other
hand, Lemma 3 and Lemma 5 are, respectively, on the preservation of the car-
dinalities of entity types and the cardinalities of attributes when relationship
types have some one-to-one or one-to-many attributes.

Lemma 2 When relationship types only have many-to-one and many-to-many
attributes, Algorithm ResolveEnt preserves the FDs represented as the cardi-
nality constraints of the entity types in the relationship types.

Proof: In what follows, we first claim that for any of the three cases of Step 1.3
in Algorithm ResolveEnt, the cardinality constraints of the entity types in a
relationship type can be preserved in the transformed schema. Note a relation-
ship type may involve several entity types with discrepant meta-attributes all
of which need to be resolved. For ease of presentation, we will not distinguish
the three cases as in Step 1.3 of the algorithm, but rather generalize the cases.
In particular, we give the general form of a FD on a relationship type of a trans-
formed schema and the corresponding FDs in the original schema, and show
that the FD of the transformed schema and the FDs of the original schema
are equivalent to each other. In Step 2 of Algorithm ResolveEnt, equivalent
schema constructs will be merged. Without losing generality, we consider a set
of relationship types that correspond to the same ontology type, and have the
same self context but not necessary the same inherited context. Such relation-
ship types will be transformed to equivalent relationship types and merged in

24

Algorithm ResolveEnt.

In general, in an ER schema DB, let R = {R1, . . . , Rn} be a set of relationship
types corresponding to the same ontology type within the same self context,
such that each relationship type has no attributes, or only has many-to-one
and many-to-many attributes.
Let DB′ be the schema transformed from DB by Algorithm ResolveEnt, in
which all the relationship types of R are transformed and merged into a rela-
tionship type R′. We claim that:

A FD K1, . . . , Km → Km+1 holds in R′ for K1, . . . , Km+1 the identifiers of the
m + 1 entity types involved in R′, iff in each relationship type Ri ∈ R, a FD
Ki

1, . . . , K
i
l

→ Ki
l+1 holds for Ki

1, . . . , K
i
l+1 the identifiers of the entity types Ei

1, . . . , E
i
l+1

involved in Ri, such that:

(1) Km+1 is equivalent to Ki
l+1;

(2) for each j = 1, . . . ,m, Kj ∈ {Ki
1, . . . , K

i
l}, i.e., Kj is equivalent to some el-

ement of {Ki
1, . . . , K

i
l}, or Kj corresponds to a discrepant meta-attribute

of an entity type of Ei
1, . . . , E

i
l+1;

(3) for each j = 1, . . . , l + 1, Ki
j ∈ {K1, . . . , Km+1}, and all the discrepant

meta-attributes of Ei
j are represented as the identifiers in {K1, . . . , Km}.

Then we prove the above claim:
(=>) If a FD K1, . . . , Km → Km+1 holds in R′, then a FD Ki

1, . . . , K
i
l → Ki

l+1

holds in each relationship type Ri ∈ R.
Suppose we are given two tuples (ki

1, . . . , k
i
l , k

i
l+1), (k

i
1, . . . , k

i
l , k

i
l+1

′) ∈ Ri[K
i
1,

. . . , Ki
l , K

i
l+1]. These two tuples correspond to (k1, . . . , km, km+1), (k1, . . . , km,

k′

m+1) ∈ R′[K1, . . . , Km, Km+1], which satisfy the three conditions of the above
claim. As the FD K1, . . . , Km → Km+1 holds in R′, km+1 = k′

m+1. As km+1

is equivalent to ki
l+1 and k′

m+1 is equivalent to ki
l+1

′, ki
l+1 = ki

l+1
′. So a FD

Ki
1, . . . , K

i
l → Ki

l+1 holds in each relationship type Ri.

(<=) If a FD Ki
1, . . . , K

i
l → Ki

l+1 holds in each relationship type Ri ∈ R, then
a FD K1, . . . , Km → Km+1 holds in R′.
Suppose we are given two tuples (k1, . . . , km, km+1), (k1, . . . , km, k′

m+1) ∈ R′[K1,

. . . , Km, Km+1]. These two tuples correspond to (ki
1, . . . , k

i
l , k

i
l+1), (k

i
1, . . . , k

i
l , k

i
l+1

′)
∈ Ri[K

i
1, . . . , K

i
l , K

i
l+1] for some relationship type Ri ∈ R, which satisfy the

three conditions of the above claim. As the FD Ki
1, . . . , K

i
l → Ki

l+1 holds in
the relationship type Ri, ki

l+1 = ki
l+1

′. As km+1 is equivalent to ki
l+1 and k′

m+1

is equivalent to ki
l+1

′, km+1 = k′

m+1. So the FD K1, . . . , Km → Km+1 holds in
R′. �

Note in the proof of Lemma 2, two relationship types of R may involve dif-
ferent sets of entity types because of the interplay of data and metadata (but
after Algorithm ResolveEnt, these relationship types will be transformed to

25

equivalent ones). Consequently, a FD on R′ may correspond to different FDs
on the relationship types of R.

Lemma 3 When relationship types have some one-to-one or one-to-many at-
tributes, Algorithm ResolveEnt preserves the FDs represented as the cardinality
constraints of the entity types in the relationship types.

Proof: When a relationship type has some one-to-one or one-to-many at-
tributes, the inherited context of the relationship type would be kept in the
transformed relationship type (see Step 1.3 of Algorithm ResolveEnt). In this
case, a set of relationship types corresponding to the same ontology type within
the same self context would not be necessarily transformed into equivalent re-
lationship types. Further, they should also have the same inherited context to
be merged.

In general, in an ER schema DB, let R = {R1, . . . , Rn} be a set of relationship
types corresponding to the same ontology type within the same context, such
that each relationship type has some one-to-one or one-to-many attributes.
Let DB′ be the schema transformed from DB by Algorithm ResolveEnt, in
which all the relationship types of R are transformed and merged into a rela-
tionship type R′. We claim that:

A FD A → B holds in each relationship type of R for A and B two distinct
sets of the identifiers of some entity types involved in each relationship type
of R iff the same FD A → B holds in R′.

The proof of the claim is omitted. �

Lemma 4 When relationship types only have many-to-one and many-to-many
attributes, Algorithm ResolveEnt preserves the FDs and MVDs represented as
the cardinality constraints of the attributes of the relationship types.

Proof: If a relationship type only has many-to-one and many-to-many at-
tributes, given an attribute of the relationship type, Algorithm ResolveEnt
will remove some of its context inherited from the entity types involved in the
relationship type, and move the attribute to a new relationship type (see Step
1.3 of Algorithm ResolveEnt). As long as we keep the cardinality of the at-
tribute, the FD/MVD are also preserved, but may be represented in different
forms. Note in a relationship type, although the cardinalities of entity types
can only represent FDs, the cardinalities of attributes can represent FDs (if
they are many-to-one attributes) and MVDs (if they are many-to-many at-
tributes).

In general, in an ER schema DB, let R = {R1, . . . , Rn} be a set of relationship
types that correspond to the same ontology type, have the same self context
and the same attribute A, such that each relationship type only has many-to-

26

one and many-to-many attributes.
Let DB′ be the schema transformed from DB by Algorithm ResolveEnt, in
which all the relationship types of R are transformed and merged into a rela-
tionship type R′ with the attribute A. We claim:

A FD K1, . . . , Km → A (or a MVD K1, . . . , Km ։ A) holds in R′ for K1, . . . , Km

the identifiers of the m entity types involved in R′, iff in each relationship
type Ri ∈ R, a FD Ki

1, . . . , K
i
l → A (or a MVD Ki

1, . . . , K
i
l ։ A) holds for

Ki
1, . . . , K

i
l the identifiers of the entity types Ei

1, . . . , E
i
l involved in Ri, such

that:

(1) for each j = 1, . . . ,m, Kj ∈ {Ki
1, . . . , K

i
l}, or Kj corresponds to a dis-

crepant meta-attribute of an entity type of Ei
1, . . . , E

i
l ;

(2) for each j = 1, . . . , l, Ki
j ∈ {K1, . . . , Km}, and all the discrepant meta-

attributes of Ei
j are represented as the identifiers in {K1, . . . , Km}.

The proof of the claim is omitted. �

Lemma 5 When relationship types have some one-to-one or one-to-many at-
tributes, Algorithm ResolveEnt preserves the FDs and MVDs represented as
the cardinality constraints of the attributes of the relationship types.

Proof: If a relationship type R has some one-to-one or one-to-many attributes,
we should consider two kinds of dependencies: the identifier of R determines an
attribute of R (i.e., a FD or MVD), and the attribute determines the identifier
of R (i.e., a FD).

In general, in an ER schema DB, let R = {R1, . . . , Rn} be a set of relationship
types that correspond to the same ontology type, have the same context and
the same attribute A, such that each relationship type has some one-to-one
or one-to-many attributes.
Let DB′ be the schema transformed from DB by Algorithm ResolveEnt, in
which all the relationship types of R are transformed and merged into a rela-
tionship type R′ with the attribute A. We claim:

A FD K → A (or a MVD K ։ A) for K the identifier of each relationship
type of R holds in each relationship type of R iff the same FD K → A (or the
same MVD K ։ A) holds in R′.

Furthermore, If A is a one-to-one or one-to-many attribute, we also have a
result below:

A FD A → K for K the identifier of each relationship type of R holds in each
relationship type of R iff the same FD A → K holds in R′.

The proof of the claim is omitted. �

27

This completes the proof of Theorem 2. In a similar way, we can prove that any
of the other three algorithms in Appendix, i.e., ResolveRel, ResolveEntAttr
and ResolveRelAttr, preserves FDs and MVDs.

6 Related Work

Context is the key component in capturing the semantics related to the def-
inition of an entity type, a relationship type or an attribute. The definition
of context as a set of meta-attributes with values is originally adopted in [6]
[20], but is used to solve different kinds of semantic heterogeneities. Our work
complements rather than competes with theirs. Further, their work is based
on the context at the attribute level only. We consider the contexts at different
levels, and the inheritance of contexts.

A special kind of schematic discrepancy has been studied in multidatabase
interoperability, e.g. [10] [11] [13]. They dealt with the discrepancy when
schema labels (e.g., relation names or attribute names) in one database cor-
respond to attribute values in another. However, we use context to capture
meta-information, and solve a more general problem in the sense that schema
constructs could have multiple (instead of single) discrepant meta-attributes.
Furthermore, their work is at the “structure level”, i.e., they did not consider
the constraint issue in the resolution of schematic discrepancies. However,
the importance of constraints can never be overestimated in both individual
and multidatabase systems. In particular, we preserve FDs and MVDs dur-
ing schema transformation, which are expressed as cardinality constraints in
ER schemas. The purposes are also different. Previous work focused on the
development of multidatabase languages by which users can query over rela-
tion names, attribute names and values in relational databases. However, we
try to develop an integration system which can detect and resolve schematic
discrepancies automatically given the meta-information on source schemas.

The issue of inferring view dependencies (FDs, MVDs, etc) was introduced
in [1] [7]. However, their work is based on the views defined using the rela-
tional algebra. In other words, they did not solve the inference problem for
schematically discrepant views. In [14] [19] [23], people have begun to focus on
the derivation of the constraints for integrated schemas from the constraints
of component schemas in schema integration. However, their work did not
consider schematic discrepancy in schema integration. Our work complements
theirs.

28

7 Conclusion and Future Work

Information integration provides a competitive advantage to businesses, and
becomes a major area of investment by software companies today [17]. In this
paper, we resolve a common problem in schema integration, schematic dis-
crepancy in general, using the paradigm of context. We define context as a set
of meta-attributes with values, which could be at the levels of databases, en-
tity types, relationship types, and attributes. We design algorithms to resolve
schematic discrepancies by transforming discrepant meta-attributes into at-
tributes of entity types. The transformation preserves information and FDs/MVDs
which are useful in verifying lossless schema transformation, schema normal-
ization and query optimization in multidatabase systems.

We have implemented a schema integration tool to semi-automatically inte-
grate the discrepant schemas of relational databases. Next, we’ll try to extend
our system to integrate the databases in different models and semi-structured
data.

A Resolution Algorithms of Schematic Discrepancies

A.1 Resolving Schematic Discrepancies for Relationship Types

Algorithm ResolveRel

Given an ER schema DB, the algorithm produces a schema DB′ transformed
from DB such that all the discrepant meta-attributes of relationship types are
transformed into the attributes of entity types.

Step 1 Resolve the discrepant meta-attributes of a relationship type.
Let R = T [C1 = c1, . . . , Cm = cm] be a relationship type among entity
types Em+1, Em+2, . . . , En in DB, where T is a relationship type among n

entity types T1, . . . , Tn in the ontology, C1, . . . , Cm are m discrepant meta-
attributes that are identifiers of T1, . . . , Tm, and each Ei = Ti for i =
m + 1, . . . , n has an identifier Ki = Ci. Let T ′ (a projection of T) be a rela-
tionship type among the entity types Tm+1, . . . , Tn in the ontology. /*
Note that the inherited context of R has been removed in Algorithm Re-
solveEnt if any.*/
Step 1.1 Transform C1, . . . , Cm into attributes of entity types.

Construct m entity types E1 = T1, . . . , Em = Tm with the identifiers
K1 = C1, . . . , Km = Cm if they do not exist.
Each Ei (i = 1, . . . ,m) contains one entity with the identifier Ci = ci.
Construct a relationship type R′ = T connecting E1, . . . , En, such that

29

(c1, . . . , cm, cm+1, . . . , cn) ∈ R′[K1, . . . , Km, Km+1, . . . , Kn] iff
(cm+1, . . . , cn) ∈ R[Km+1, . . . , Kn].
Let A → B be a FD on R, where A and B are two sets of the identifiers of
some participating entity types in R. Represent a FD A, K1, . . . , Km → B

in R′.
Step 1.2 Handle the attributes of R.

Let A be an attribute of R. A corresponds to Aont in the ontology, and
has a self context selfCnt.
If A is a many-to-one or many-to-many attribute, then

Case 1 attribute A does not inherit any context of R.
Then A becomes an attribute of a new relationship type R′′ = T ′

among Em+1, . . . , En, such that
(cm+1, . . . , cn, a) ∈ R′′[Km+1, . . . , Kn, A] iff
(cm+1, . . . , cn, a) ∈ R[Km+1, . . . , Kn, A].

Case 2 attribute A = Aont[selfCnt, inherit all] inherits all the con-
text {C1 = c1, . . . , Cm = cm} from R.
Then construct an attribute A′ = Aont[selfCnt] of R′, such that
(c1, . . . , cm, cm+1, . . . , cn, a) ∈ R′[K1, . . . , Km, Km+1, . . . , Kn, A′] iff
(cm+1, . . . , cn, a) ∈ R[Km+1, . . . , Kn, A].
A′ has the same cardinality as A.

Case 3 A inherits some context, say {C1 = c1, . . . , Cj = cj} (1 ≤ j <

m) from R.
Then construct a relationship type R′′ connecting the entity types
E1, . . . , Ej, Em+1, . . . , En.
Construct an attribute A′ = Aont[selfCnt] of R′′, such that
(c1, . . . , cj, cm+1, . . . , cn, a) ∈ R′′[K1, . . . , Kj, Km+1, . . . , Kn, A

′] iff
(cm+1, . . . , cn, a) ∈ R[Km+1, . . . , Kn, A].
A′ has the same cardinality as A.

else /* A is a one-to-one or one-to-many attribute, i.e., A deter-
mines the identifier of R in the context. We keep the inherited context
of A, and delay the resolution of it in Algorithm ResolveRelAttr, in
which A will be transformed to the identifier of an entity type to pre-
serve the cardinality constraint. */
Construct an attribute A′ = Aont[Cnt] of the relationship type R′′ = T ′,
where Cnt is the self context of A′ that is the union of the self and in-
herited contexts of A, such that
(cm+1, . . . , cn, a) ∈ R′′[Km+1, . . . , Kn, A

′] iff
(cm+1, . . . , cn, a) ∈ R[Km+1, . . . , Kn, A].

Step 2 Merge equivalent entity types, relationship types and attributes re-
spectively. Their domains are united. �

30

A.2 Resolving Schematic Discrepancies for Attributes of Entity Types

Algorithm ResolveEntAttr

Given an ER schema DB, the algorithm produces a schema DB′ transformed
from DB such that all the discrepant meta-attributes of the attributes of the
entity types in DB are transformed into the attributes of entity types.

Step 1 Resolve the discrepant meta-attributes of an attribute of an entity
type.
Given an entity type E = T (with the identifier K) of DB, let A =
Aont[C1 = c1, . . . , Cm = cm] be an attribute of E, for Aont an attribute
of a relationship type TR, and C1, . . . , Cm the discrepant meta-attributes
that are identifers of entity types T1, . . . , Tm in the ontology. TR is a rela-
tionship type among T1, . . . , Tm and T in the ontology. /* Note that the
inherited context of A has been removed in Algorithm ResolveEnt if any.*/
Construct an entity type Ei = Ti with the identifier Ki = Ci for each
i = 1, . . . ,m if they do not exist. Each Ei contains one entity with the
identifier Ci = ci.
If A is a many-to-one or many-to-many attribute, then

Construct a relationship type R = TR connecting the entity types E1, . . . , Em

and E.
Attribute A′ = Aont becomes an attribute of R, such that
(c1, . . . , cm, k, a) ∈ R[K1, . . . , Km, K,A′] iff (k, a) ∈ E[K,A].

else /*A is a one-to-one or one-to-many attribute, i.e., A and the
meta-attributes C1, . . . , Cm together determine the identifier K of E. A

should be modelled as the identifier of an entity type to preserve the car-
dinality constraint.*/
Construct EA′ with the identifier A′ = Aont.
Construct a relationship type R′ connecting the entity types E1, . . . , Em,
E and EA′ , such that
(c1, . . . , cm, k, a) ∈ R[K1, . . . , Km, K,A′] iff (k, a) ∈ E[K,A].
Represent a FD K1, . . . , Km, A′ → K as the cardinality constraint on R.
If A is a one-to-one attribute, also represent a FD K1, . . . , Km, K → A′

on R.
Step 2 Merge equivalent entity types, relationship types and attributes re-

spectively, and unite their domains. �

A.3 Resolving Schematic Discrepancies for Attributes of Relationship Types

Algorithm ResolveRelAttr

Given an ER schema DB, the algorithm produces a schema DB′ transformed
from DB such that all the discrepant meta-attributes of the attributes of the

31

relationship types in DB are transformed into the attributes of entity types.

Step 1 Resolve the discrepant meta-attributes of an attribute of a relationship
type.
In DB, let R (with the identifier KR) be a relationship type among m entity
types E1 = T1, . . . , Em = Tm with the identifiers K1 = C1, . . . , Km = Cm,
and let A = Aont[Cm+1 = cm+1, . . . , Cn = cn] be an attribute of R, where
Cm+1, . . . , Cn are discrepant meta-attributes that are identifers of entity
types Tm+1, . . . , Tn, and Aont is an attribute of a relationship type T among
n entity types T1, . . . , Tn in the ontology. /* Note that the inherited
context of A has been removed in Algorithm ResolveRel if any.*/
Construct an entity types Ei = Ti with an identifier Ki = Ci for each
i = m + 1, . . . , n if it does not exist. Each Ei contains one entity with the
identifier ci.
If A is a many-to-one or many-to-many attribute, then

Construct a relationship type R′ = T connecting the entity types E1, . . . , En.
Attribute A′ = Aont becomes an attribute of R′, such that
(c1, . . . , cm, cm+1, . . . , cn, a) ∈ R′[K1, . . . , Km, Km+1, . . . , Kn, A

′] iff
(c1, . . . , cm, a) ∈ R[K1, . . . , Km, A].

else /*A is a one-to-one or one-to-many attribute, i.e., A and the
meta-attributes Cm+1, . . . , Cn together determine the identifier of R. A
should be modelled as the identifier of an entity type to preserve the car-
dinality constraint.*/
Construct EA′ with the identifier A′ = Aont.
Construct a relationship type R′ connecting the entity types E1, . . . , En

and EA′ , such that
(c1, . . . , cm, cm+1, . . . , cn, a) ∈ R′[K1, . . . , Km, Km+1, . . . , Kn, A

′] iff
(c1, . . . , cm, a) ∈ R[K1, . . . , Km, A].
Represent a FD Km+1, . . . , Kn, A′ → KR as the cardinality constraint on
R′.
If A is a one-to-one attribute, also represent a FD Km+1, . . . , Kn, KR → A′

on R′.
Step 2 Merge equivalent entity types, relationship types and attributes re-

spectively, and unite their domains. �

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases, chapter 8, 10,
pages 173–187, 216–235. Addison-Wesley, 1995.

[2] R. Agrawal, A. Somani, and Y. R. Xu. Storing and querying of e-commerce
data. In VLDB, pages 149–158, 2001.

[3] C. Batini and M. Lenzerini. A methodology for data schema integration in the

32

entity-relationship model. IEEE Trans. on Software Engineering, 10(6), 1984.

[4] C. Batini, M. Lenzerini, and S. B. Navathe. A comparative analysis of
methodologies for schema integration. CN computing surveys, 18(4):323–364,
1986.

[5] A. Elmagarmid, M. Rusinkiewicz, and A. Sheth. Management of heterogeneous
and autonomous database systems. Morgan Kaufmann, 1999.

[6] C. H. Goh, S. Bressan, S. Madnick, and M. Siegel. Context interchange: new
features and formalisms for the intelligent integration of information. ACM
Transactions on Information Systems, 17(3), 1999.

[7] G. Gottlob. Computing covers for embedded functional dependencies. In
SIGMOD, 1987.

[8] Qi He and Tok Wang Ling. Extending and inferring functional dependencies in
schema transformation. In CIKM, 2004.

[9] C. N. Hsu and C. A. Knoblock. Semantic query optimization for query plans
of heterogeneous multidatabase systems. TKDE, 12(6):959–978, 2000.

[10] V. Kashyap and A. Sheth. Semantic and schematic similarity between database
objects: a context-based approach. The VLDB Journal, 5, 1996.

[11] R. Krishnamurthy, W Litwen, and W. Kent. Language features for
interoperability of databases with schematic discrepancies. In SIGMOD, pages
40–49, 1991.

[12] L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian. On efficiently
implementing SchemaSQL on a SQL database system. In VLDB, pages 471–
482, 1999.

[13] L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian. SchemaSQL-an
extension to SQL for multidatabase interoperability. TODS, 2001.

[14] Mong Li Lee and Tok Wang Ling. Resolving constraint conflicts in the
integration of ER schemas. In International Conference on Conceptual Modeling
(ER), pages 394–407, 1997.

[15] Mong Li Lee and Tok Wang Ling. A methodology for structural conflicts
resolution in the integration of entity-relationship schemas. Knowledge and
Information Sys., 5:225–247, 2003.

[16] Tok Wang Ling and Mong Li Lee. Issues in an entity-relationship based
federated database system. In CODAS, pages 60–69, 1996.

[17] Nelson Mendonça Mattos. Integrating information for on demand computing.
In VLDB, 2003.

[18] R. J. Miller. Using schematically heterogeneous structures. In SIGMOD, pages
189–200, 1998.

33

[19] M. P. Reddy, B. E. Prasad, and A. Gupta. Formulating global integrity
constraints during derivation of global schema. Data & Knowledge Engineering,
pages 241–268, 1995.

[20] E. Sciore, M. Siegel, and A. Rosenthal. Using semantic values to facilitate
interoperability among heterogeneous information systems. TODS, 19(2), 1994.

[21] A. P. Sheth and S. K. Gala. Federated database systems for managing
distributed, heterogenous, and autonomous databases. ACM Computing
Surveys, 1990.

[22] S. Spaccapietra, C. Parent, and Y. Dupont. Model independent assertions for
integration of heterogeneous schemas. VLDB, 1992.

[23] M. W. W. Vermeer and P. M. G. Apers. The role of integrity constraints in
database interoperation. In VLDB, 1996.

34

