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Abstract

We consider the problem of translating a relational database schema into that of an
object-oriented database. Qur approach is designed to extract semantics by investigating
into the structure of relations, their key constraints, and inclusion/referential constraints.
These constraints can be existing ones from the schema or they can be given by users who
know about the data characteristics in the relational database. In this way, our translator
can achieve semantic enhancement by explicitly representing implicit or missing semantics
in a relational database schema. The major features of our translator include identifying
relation clusters representing object classes, identifying ID-dependencies(complex object
classes), identifying ISA hierarchy among objects, generation of object identifiers, and
identifying inter-object relationships.

Keyword Code: H.2.5

Keyword: Heterogeneous Databases

1 Introduction

Database schema translation has been an interesting problem. Significant research has
been done to address the issue [17, 9, 7, 8, 14, 19]. Recently, with the research into hetero-
geneous database, the issue finds an important role in building mappings from component
database schemas, in local data models, into those in canonical data model [15]. Due
to its semantic richness and flexibility in modeling, object-oriented data model{OODM)
is usually chosen as the canonical data model. In this paper, we deal with the specific
problem of schema translation from relational schema into an Object Oriented Data Base
(OODB) schema.
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Semantically, relational data model(RDM) is not as expressive as any of the object-
oriented data models. This causes certain semantics of application domain to be rep-
resented implicitly or missing from the relational database schema. For example, ISA
relationship, IS-PART-OF relationship(complex object class) may be represented as plain
relationships without special meanings. Moreover, for the purpose of conforming to First
Normal Form(INF) and avoiding large amount of data redundancy, e.g. those caused
by multivalue dependency, one object class may have been represented by multiple rela-
tions. For a good OO representation of the current relational database schema to make
the later semantic based multidatabase view construction easier, the translation should
make explicit the semantics that was implicitly represented in relational schema. Also,
a translator should give DBA a chance to specify missing semantics that could not be
represented in a relational schema but is now possible to be represented by an QODB
schema. This does not mean new data, but the description of a more meaningful way of
interpreting the existing data in the relational databases.

In this paper, we present a translator that satisfies the above requirements. The trans-
lator will take a relational database schema, allow users to specify more semantics based
on the data in the databases, and produce an OODB schema. The extra semantics will
be accepted in two forms: primary/candidate key constraints and inclusion constraints.
Notice that all these constraints should be derived from the data characteristics in the
relational database. The main features of this translator consist of the followings:

1. Identify clusters of relations that represent object classes. A C+-+-like class defini-
tion will also be generated.

9. Identify identifier dependencies. Identifier dependency represents complex object
class.

3. Identify ISA relationships among object classes.
4. Generate object identifiers(oids) for all the identified object classes.

5. ldentify relationships among objects.

The translator starts from a relational schema with key constraints and a set of inclusion
constraints and produce an OODB schema. In this paper, we present the working of
our translation algorithm by giving examples to show how it achieves the five objectives
mentioned above.

2 Background

Schema translation in heterogeneous database context is an important problem to solve.
With the choice of OODM as the canonical data model, any local database schema that
is not in OODM must be translated into an OODB schema so that a multidatabase
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view can be constructed for users to access data from heterogeneous databases [15]. We
concentrate on the specific problem of translating relational database schema into an
OODB schema. The most simple approach to this problem is to translate each relation
into an object class in the target schema. The problem with this approach is that it is
semantically weak. For example, the semantics of referential constraint, which is sup-
ported by most modern relational databases such as DB2 [18], cannot be represented.
This means that the OO translation is semantically weaker than the original relational
database schema. Obviously, this will be a bad translation.

Schema translation is not a new issue. Relationship among different data models has
been investigated on a formal basis by [17] and [9]. In {17], a detailed discussion on the
various issues involved in data model mapping is given. The problem of mapping between
relational and network data models is solved to detail. The authors also comment that
very little formalism exists for general data model mapping. Most of the time, we only
see ad hoc mapping specifications between specific pairs of data models. The formal
approach of [9] is based on a denotational semantics of data model equivalence. Every
data model is mapped into a denotational representation based on which equivalence and
mapping can be generally defined and strictly specified among different data models.

Both [17] and [9] aim to solve the problem by defining a mapping based on data
model constructs. While the idea may lead to an ultimate solution to data model map-
ping problems, it is not clear how to apply this idea to construct mappings between
data models that are different in their expressive power of semantics. In the context of
relational to OODB schema translation, we realize that OODM has a stronger power in
representing real world semantics. This can be understood from two observations. First,
an OODB schema as the result of a translation from a relational schema may contain
more semantics. For example, in an Employee database, the fact that every Manager is
also an Employee might be maintained by all the application programs but can now be
represented by a subclass relationship in the OODB schema. Second, each construct in
relational data model may have several possible interpretations in QODM. To remove
this ambiguity, constraints must be taken into consideration. We believe that research
to further identify the data model mapping issues on a semantic(rather than syntactic)
level is necessary.

The work presented in this paper is not yet another general data model mapping
method, rather, it is a specific method designed for the context of translating relational
schema into OODB schema. Especially, we give rigorous rules which use key constraints
and inclusion constraints to identify semantics from the relational database. The nature
of our work is similar to that of [7] and [5]. However, the work in [7] is not detailed
enough. For example, entity fragmentation caused by multivalued dependency is not
considered, nor is ISA relationship considered. In [5], the semantics of various types
of inclusion dependency is analyzed. Compared with our approach, [5] has tendency of
generating large number of “missing” classes. Moreover, the generated object class defi-
nition is rather complicated. These may give difficulty to later query translation and data
integration, which are necessary steps in the context of heterogeneous database system
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development.

The major objective of our approach is to identify as much as possible OO semantics
from the relational database. This implies two sub-goals. First, the semantics that was
represented implicitly or ambiguously in the relational database schema should be made
explicit as long as the OODM is powerful enough to represent it. For example, the ISA
relationship in relational database. Second, specification of missing semantics should be
accepted to make the QO translation correct. We accept extra semantics in the form
of primary/candidate key constraints and inclusion/referential constraints. These con-
straints are basically known data characteristics that are not declared in the relational
schema for one reason or another. The specification of them will direct the translation to
the right track without affecting the existing data repository in the underlying database.

Generally, a relational DBMS supports the specification of primary keys but not
candidate keys. Candidate key constraints, if any, should be provided to the translator as
extra semantics. Some relational DBMSs support declarative specification of referential
constraints, e.g. in DB2 [18]. The concept of inclusion constraint, of which referential
constraint is a special case, is not generally supported. An inclusion constraint is
denoted in the following form:

R:[P}] C Ra[P.)]

where R, Ry are relations,P; and Py are (sets of) attributes in relations R; and R,
respectively. This constraint states that for r; and ry, instances of relation schemas R,
and Ry, respectively, the following always holds: r1[P;] C r2[P;]. Consider two relations
R and R'. If there exists a primary or candidate key of R, P, and a set of attributes of
R, A, s.t. R[A’] C R[P], we say R' references R. Moreover, A’ in R’ is a foreign key.

The concept of inclusion constraint has been widely investigated [4, 11, 12, 13]. How-
ever, the impact of this concept on semantic modeling for relational database is not very
clear.

The OODM we use will contain generally accepted constructs for object-oriented data
models. Currently, we employ a C++-like syntax for presenting the result of translation.

3 Object class as a cluster of relations

An object class in the result OODB schema corresponds to a named cluster of relations
from the underlying relational database. Each instance of the class has a unique iden-
tifier. In this section, we present the way in which the algorithm identifies the clusters
and their names. Generation of object identifiers will be discussed in section 6.

First, we define the concept of main class relation and its component relations. Intu-
itively, a main class relation represents the core part of an object class while a component
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relation represents other properties of an object class.

Main Class Relation

Consider a relation R. R is a main class relation if one of the following cases is true:
casel: R is not involved in any inclusion constraints.

This is the case where a relation is stand-alone. The semantics of such relation is
taken as an object class that is not involved in any relationship. In fact, such relations
may represent certain functional and/or multivalue dependencies. These semantics is
implicit and it cannot be made explicit in the target schema.

case2 : The followings hold:

1. There exists a relation R’ that references R.
2. The primary key of R does not contain more than one disjoint foreign key.

3. There exists no inclusion dependency whose right hand side is a proper subset of
the primary key of relation R.

Condition 1 says that relation R is referenced by a relation. Condition 2 says that
the primary key of R cannot be decomposed into more than one foreign keys. Condition
3 will become clear in section 4.

case3: R is identified as a main relation by ID-dependency identification rule as dis-
cussed in section 4.

Component Relation

Let R be a main class relation. Relation R; is a component relation of R if the followings
hold:

1. No relation references R;.
2. The primary key of R; does not contain more than one disjoint foreign key.

3. Let the primary key of R; be K;. Then there exist Pi1, Py C Ky or P, is a candidate
key of Ry, such that R;[P,] C R[P], where P is a primary or candidate key of relation
R.

Each main class relation and all its component relations form a relation cluster that
represents an object class. The name of the object class will be the name of the majin
class relation. This is shown by the following example.



74

Example 3.1. Consider the following relations with keys underlined:

Person(Pno,name, age)

PersonPhone(Pno, phoneNo)

DrivingLicense(Pno, licenseNo)

Parent(Pno, childPno)

The primary key of relation Person is Pno. Relation PersonPhone is all-key, meaning that
one person can have several phone numbers. The primary key of relation DrivingLicense
is Pno, meaning that one person can have only one driving license. Relation Parent is
all-key. Also assume that we have the following inclusion constraints:

PersonPhone[Pno] C Person[Pno
DrivingLicense[Pno} C Person{Pno
Parent[Pno] C Person|[Pno]
Parent{childPno] C Person|Pno)

Using our approach, Person will be identified as a main class relation. The relations
PersonPhone and DrivingLicense are not main class relations because no relation refer-
ences them but they themselves reference relation Person. By definition, they are the
component relation of the main class relation Person. Relation Parent is neither a main
class relation nor a component relation because its primary key can be decomposed into
two disjoint foreign keys, namely, Pno and childPno. As it turns out later, relation Par-
ent will be considered as a relationship object. For now we identify the following relation
cluster:

Person = {Person, PersonPhone, DrivingLicense}

This relation cluster will give rise to an object class Person with the following definition:

class Person {
string Pno;
string name;
integer age;
integer Drivinglicense_licenseNo;
setof (string) PersonPhone_phoneNo;
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A detailed description of the generation of this definition will not be given here. In-
stead, we give some intuitive observations on how the algorithm works. Notice that
sometimes, attribute name will be prefixed by the name of the relation it comes from,
e.g. the attribute DrivlingLicense licenseNo and PersonPhone_phoneNo. By doing so,
we can make sure that all attribute names are unique and hence avoid possible confusion
in attribute naming. Another important thing to notice is that set-valued attributes will
be identified. In this example, it is obvious that the attribute PersonPhone_phoneNo
should be set-valued since the relation PersonPhone is all-key. This is reflected in the
class definition generated.

A component relation can never be a main class relation. A main class relation is
either “stand alone”, not involved in any inclusion dependencies, or is referenced by some
other relations, while a component relation always references another relation but is not
referenced by any other relation. Intuitively, this reflect a criteria we employ for iden-
tifying the “cores” of objects: a relation may give rise to an object class in the result
OODB schema only if it is stand alone or referenced by others. This criteria will help
to avoid proliferation of object classes and encourage possible merging of relations. As
shown later, this will also help in avoiding unnecessary ISA links between classes. In
the above example, if we did not employ this criteria, relation Driving. license may give
rise to an independent class which is not necessary in this case. We’ll further discuss the
effect of this criteria on ISA hierarchy identification in section .

A main class R will ultimately give rise to an object class with the same name. We
refer to this object class as object R herealfter.

4 Identifier Dependency and Complex Object

Identifier dependency(ID-dependency) is a term from entity relationship approach [6].
An entity B is identifier dependent on entity A if it does not have its own key so that it
has to depend on the the identification of A in order to be identified. This is best shown
by the example of Wards in Hospital. Usually, a Ward is identified by the Hospital it
belongs to and its room number. The identification of Ward depends on that of Hospi-
tal. This dependency also implies some existence dependency i.e. a Ward cannot exist
without a Hospital.

We consider the treatment of ID-dependency because it happens quite often in re-
lational database. This is partially due to the fact that a relational database design is
usually done by using ER based technologies. Moreover, the nature of the relational
database model imposes value-based object identification. If an object does not really
have an identification of its own, it has to be identified based on ID-dependency. How-
ever, in OO terms, this is the typical case of complex object, for example, object Ward
should be a component object of the object Hospital. In OODM, this IS-PART-OF rela-
tionship can be based on oid. Hence Ward can appear as an independent object, which
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can then participate in relationships with other objects, while its existence depends on
the existence of another object, Hospital. In [3}, such dependency is indicated by a key-
word “own”. We’ll borrow this notion to emphasize our points.

In [7], similar cases are considered. {7} also identifies the weakness(or dependency)
implied by such cases but their treatment is not correct when applied to Ward-Hospital
example. The approach in [7] does not have enough justification except ad hoc examples.
It is not clear whether or not “entity discriminator” can be used as identifier attributes.
Compared with [7] approach, our approach does not make any assumptions on the “dan-
gling keys”, rather, we treat them as ordinary properties of the dependent entity.

In our approach, we identify ID-dependency and represent it as a special inter-object
relationship. The ID-dependency is identified by the rule below:

ID-Dependency Identification Rule

Let Ry be a main class relation with primary key Ko. Consider a relation R, with primary
key K, that satisfies the followings:

1. There exist K’ ¢ K, s.t. R[K'] € Ro[Kq].
2. The primary key of R does not contain more than one disjoint foreign key.

3. There exists a relation that references R.

Then R is identified as a main class relation. Moreover, object class R is ID-dependent
on object class Ro via the inclusion dependency R[K'] C Ro[Ko).

Notice that without condition 3 in the above rule, relation R will be taken as a
component relation of relation Ro. Condition 3 basically says that R qualifies to be an
independent object class.

Example 4.1. Hospital-Ward example. We continue from Example 3.1, consider the
following relations with keys underlined:

Hospital( Hname, address)

Ward( Hname, wardNo, doctor)

WardPatient( Hname, wardNo, Patient Pno)

Assume we have the following inclusion constraints:
Ward[Hname) C Hospital[Hname]
WardPatient|Hname, wardNo] € Ward[Hname, wardNol

W ard Patient[Patient Pno] C Person[Pno]
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Applying the rules given above, relation Ward and relation Hospital will be identified as
main class relations. Moreover, object class Ward is ID dependent on object class Hos-
pital via Ward{Hname} C Hospital[Hname]. The translation will produce the following
two class definitions:

class Hospital {
string Hname;
string address;
own setof(Ward) Ward;

};

class Ward {
string Hname;
string wardNo;
string doctor;

+;

Notice that the attribute Ward in class Hospital. The keyword “own” preceding the
specification indicates the existence dependency of Ward on Hospital. Also notice that
the type of this attribute is “set of objects”. A detailed procedure is implemented by
the complete algorithm to generate these definition. This will not be further discussed
in this paper.

5 ISA Hierarchy

After identifying all the main class relations and the relation clusters induced by them,
we can now identify the ISA relationship among the classes by using the following rule.

ISA Hierarchy Identification Rule

Consider two main class relations Ry and R,. If there exist Py and P, keys in relations
R; and Rg, respectively, such that R,[P;] C R,[P,], then the following is true for object
classes Ry and Rj:

Rl ISA R,g via RI[P1] g R2[P2]

Intuitively, if all the instances of class R; participate in class R;, we take it as an
ISA relationship between the two classes. We note two points in the above mentioned
rule. First, R; and R; must be both main class relations. Second, the inclusion con-
straint must be between the keys of the relations. A relation can not be a component
relation and a main class relation at the same time. This together with the fact that ISA
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link can only be identified between main class relations makes sure that no ambiguity
exist as for whether two relations are related by sub-class link or component relation link.

We illustrate the usage of the rule by the following example.

Example 5.1. Consider the following relations with keys underlined:
Person(Pno,name, age);
DrivinglLicense(Pno, license No);

PersonPhone(Pno, phoneNo);

Employee( Eng, Pno, dateO f Join);

ProjStaf f(ProjNo, Eno, position);

Salary History(Eno, date, amount);

Project(ProjNo, ProjName);

Also assume we have the following inclusion constraints:
Driving License[Pno] C Person[Pnol;
PersonPhone[Pno] C Person|Pnol;
Employee{Pno] C Person|[Pno;

ProjStaf f[Eno] C Employee[Eno;
PorjStaf f[ProjNo] C Project[ProjNoj;
SalaryHistory[Eno] C Employee[Enol;

By applying clustering rule, we can identify the following three clusters: Cluster Per-
son = {Person, DrivingLicense, PersonPhone} with relation Person as the main class
relation. Cluster Project = {Project} with relation Project as the main class relation.
Cluster Employee = {Employee, SalaryHistory} with relation Employee as the main class
relation. Relation ProjStaffl will give rise to a relationship object class as discussed in
section 7.

Apply ISA identification rule on relations Employee and Person, we identify the following
ISA relationship:

Employee ISA Person via Employee[Pno] C Person|Pno.

The following class specifications will be generated in the target schemas:
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class Person {
string Pno;
string name;
int age;
string address;
string DrivingLicense_licenseNo;
setof (string) PersonPhone_phoneNo;

};

class Employee: public Person {
string Eno;
string Pno;
DATE dateDfJoin;
setof (tuple<DATE: date, integer: amount>) SalaryHistory;

};

class Project{
string ProjNo;
string ProjName;

};

We need to set up a well-defined inheritance mechanism. In the above example, it
seems that Employee.Pno should be inherited from class Person. We still include at-
tribute Pno in class Employee for two reasons. First, since the OODB schema is the
result of translation from a relational database schema, keeping this attribute may give
more space for later optimization of queries on OODB schema. Second, Pno in Employee
is a “property” of Employee as well as a link that connects an Employee to a Person. In
this sense, it should be kept in Employee.

Apparently, there will also be the problem of attribute name conflict. In the above
example, it does not matter since the Person an Employee relates to has the same Pno
value with the Employee. In general, user interference will be needed for resolving the
conflicts. This will be not be further discussed in this paper.

Discussion. We give a brief discussion on avoiding unnecessary ISA links between
object classes. In the above example, intuitively the relation Drivinglicense may give
rise to an object class “Person with driving license” which is a subclass of Person. This
will not be the result of our translation. Notice that no other relation references the
relation DrivingLicense, i.e. the object class “Person with driving license” (if any) does
not participate in any relationship with other objects. In our approach, this type of rela-
tion will be taken as fragment of object class rather than independent object class. This
will help avoid proliferation of classes and hence unnecessary ISA links among classes.
However, it might be desirable in user’s view point that “Person with driving license” be
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an independent class. This can be handled by another layer of view mechanism by which
users can do more complicated restructuring of schema. For the above example, a user
can get a new subclass of Person, “Person with driving license” by using specialization[1]
on class Person.

6 Object Identifier Generation

In our approach, each object instance will have a unique object identifier (0oid). The
concept of oid is not inherent for RDM. In RDM, identification of objects is by keys.
The difference between the two ways of identification is that, in OODM, oid is not value-
based while in RDM, keys are basically values.

In the context of translating a relational schema to an OODB schema, objects are sort
of “imaginary” in the sense that they do not exist in a relational database physically. The
identification of these imaginary objects rely on that in the relational database which is
value-based. In our approach, we generate oid’s based on key values. This idea is similar
to the generation of oids for imaginary objects by using “core attributes”[1]. We consider
the following cases for oid generation.

Object class with no superclass

Consider an object class R with main class relation R whose primary key is K. As-
sume that object class R has no superclass. For an instance of R with key value k, its
identifier is formed by concatenating the name R with the value k. For example, for a
Person with Pno = “1234”, its oid will be "Person.1234”. Notice that given this oid, the
translator can interpret it correctly and is able to access all the relevant information of
the particular Person object identified by key value “1234”.

Object class with exactly one direct superclass.

Consider a class R with superclass S. An instance of class R is also an instance of class
S. Hence the oid for an instance of class R should be understandable to the translator
as that for an instance of class S as well as one in class R. Consider the classes Person
and Employee in Example 5.1, where class Employee is a subclass of the class Person.
Assume that there exists an Employee with Eno = “456” and Pno = “1234”. In the
current approach, the oid for this instance will be chosen as “Person.1234” rather then
“Employee.456”. Notice that Pno is always a key property of Employee. This fact en-
sures that the oid “Person.1234” can be correctly interpreted even as oid for an Employee
instance. In our implemented algorithm, this process is recursive,

In general, if an instance is contained in multiple classes due to the existence of ISA
relationship, the oid will be chosen to be most general so that it can be interpreted cor-
rectly in the context of all the classes of which it is a member. Apparently, if multiple
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direct superclass does not happen, this method is sufficient.
Object classes with more than one direct superclass.

We consider cases where there exist multiple direct superclasses. Assume we have
class C with direct superclasses C; and Cg. If C; and C; has a common superclass, C',
class ¢’ can be used as the base for oid generation for class C. If this is not the case, let
C! and Cj be the most general superclasses of classes C; and Cg, respectively, the oid
for instances of class C can be generated by concatenating the oid’s of classes C] and C,.
For example, consider an object class Student-Employee which is a subclass of classes
Employee and Student. If both Employee and Student classes are subclasses of class Per-
son, the oid of Student-Employee will be in the form of “Person.1234". If Employee and
Student exist as independent classes, i.e. they don’t have a common superclass, the oid
of Student-Employee will be in the form of “Student.0123::Employee.456”, where “0123”
is the a value for Student.Sno, key attribute of class Student. By doing so, we make sure
that a Student-Employee oid can be correctly interpreted as a Student, an Employee or

a Student-Employee.

0id for relationship object classes can be constructed by concatenating the oids of
the participating objects. This will be mentioned again in section 7. The oid in our
context is conceptual rather than physical. We support persistent identifiers for object.
However, these 0id’s will be interpreted by the translator into data vatues which is used
to access real data in the relational database. A detailed description of this issue will be -
necessary if query translation and data integration is to be discussed in length. While
we’'ll give a brief overview of the two issues in the final section, the detail is not within
the scope of this paper.

7 Inter-Object Relationships

Inter-object relationships may exist in relational database in two forms. First, as relations
whose primary key consists of disjoint foreign keys. For example, the ProjStaif relation
in Example 5.1. Second, as foreign keys in relations that is contained in a relation cluster
representing an object class. We discuss both cases in this section.

Intuitively, relations whose primary key consists of disjoint foreign keys will be treated
as a relationship object class. Notice that a rélationship object class is very similar to
the object class we described earlier except the followings:

1. The primary key is nonatomic in the sense that it contains more than one disjoint
foreign key. This reflects the fact that a relationship always involves more than one
object class.

2. There is no ID-dependency or ISA relationship among relationship object classes.
Hence the translation is easier.
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We illustrate the translation by an example:

Example 7.1. Consider the ProjStaff relation in Example 5.1.
ProjStaf f(ProjNo, Eno, position);

From the assumptions given in Example 5.1, we know that ProjNo and Eno are foreign
keys referencing object classes Project and Employee, respectively. Relation ProjStaff
represents a relationship object class as follows:

class ProjStaff {
Project ProjNo_Project;
Employee Eno_Employee;
string position;

};

In general, a relationship object class can be represented by a cluster of relations
similar to the case described in section 3. We will not give the details here. Object
identifier for a relationship object instance can be easily generated by concatenating the
oids of all the participating objects together.

The identification of foreign keys is quite simple after we have identified all the non-
relationship objects. A foreign key in a member relation of a cluster representing an
object class will give rise to an attribute whose value is a (set of) oid. This is illustrated
by the following example.

Example 7.2. Consider the following relations with keys underlined:

Student(Sng, Grade, Dno);
Department(Dno, Dname);

Assume that inclusion constraint Student[Dno] C Department[Dno] holds. The two re-
lations will be both identified as main class relations leading to classes Student and
Department. Notice that Student.Dno is a foreign key, we replace it by an oid valued
atiribute. This will give the following specification for the class Student:

class Student{
string Sno;
int Grade;
Department Dno_Department;

};

Notice that the name of an object valued attribute is suffixed with the name of its
object type. This is to indicate that the attribute takes on oid’s as values. This is another

detail of the algorithm.
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8 Conclusion and Perspectives

In this paper, we present an approach for schema translation from RDM to OODM.
The approach extracts semantics from a relationa] database schema by using the key
constraints and inclusion constraints. The major contribution of this work is to give a
systematic and rigorous way of identifying OO semantics from a relational database. To
do this, we also allow user to specify certain useful data characteristics of the relational
database in the form of key constraints and inclusion constraints. The followings can be
achieved automatically:

1. Identification of relation clusters representing object classes.
Identification of ID-dependencies between the identified object classes.
Identification of ISA hierarchy of object classes.

Generation of object identifiers.

S O

Identification of inter-object relationships.

As the result, a semantically clean OODB schema can be generated. The result
OODB schema can be used easily by a multidatabase view mechanism for generating
views based on heterogeneous databases.

A complete translation algorithm is complicated and is yet to be completely estab-
lished. The correctness of the algorithm need to be proven. A complete and formal
presentation of a translation algorithm is given in [20].

As future research, we will address the issues of query translation and data integra-
tion. Query translation is the issue of translating the OO queries against target schema
into relational queries that can be processed by the underlying relational database. The
OO query language we choose is a subset of 02 query language [2]. Currently, we are
developing a rewriting method to handle this issue. The basis of this approach is to
express each relation cluster representing an object class by a formula in some sort of
algebra, e.g. relational algebra extended with a “nest” operator to represent set-valued
attributes. This rewriting method can be integrated with an OO query processor to
transform OO query into executable relational database queries, Data integration is the
issue of reorganizing the data retrieved from the relational database into proper form to
be understood by users of the OO schema. Solution to the above issues will make our
schema translator complete.

Another interesting issue is the updatability of the target OODB schema as the result
of translation. An intuitive conjecture is that the OODB schema, generated by using our
translation algorithm is updatable. A formal investigation of this problem will be based
on an analysis of the algebraic formula mentioned in the last paragraph. If this formula
provides enough information to eliminate ambiguities(if any), the target schema will be
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updatable.
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