
Practical Approach to Selecting Data Warehouse
Views Using Data Dependencies

Gillian Dobbie and Tok Wang Ling

Department of Computer Science, National University of Singapore, Singapore
{dobbie,lingtw}@comp.nus.edu.sg

Abstract. Materialized views in data warehouses are typically compli-
cated, making the maintenance of such views difficult. However, they are
also very important for improving the speed of access to the information
in the data warehouse. So, the selection of materialized views is crucial
to the operation of the data warehouse both with respect to maintenance
and speed of access. Most research to date has treated the selection of
materialized views as an optimization problem with respect to the cost
of view maintenance and/or with respect to the cost of queries. In this
paper, we consider practical aspects of data warehousing. We identify
problems with the star and snowflake schema and suggest solutions. We
also identify practical problems that may arise during view selection and
suggest heuristics based on data dependencies and access patterns that
can be used to measure if one set of views is better than another set of
views, or used to improve a set of views.

1 Introduction

A data warehouse stores huge volumes of data that has been gathered from one
or more sources for the purpose of efficiently processing decision support or on-
line analytic processing (OLAP) queries. Like in traditional database systems,
frequently asked queries or subparts of frequently asked queries may be precom-
puted and stored as materialized views, providing faster access. Obviously there
are many possible views that could be materialized, and the selection of which
views to materialize is a trade-off between the cost of the view maintenance and
the speed of access. Views in data warehouses are usually more complicated than
in traditional database systems, typically based on many tables and including
aggregation or summarization of the underlying data in the data warehouse.

Most research to date has treated the selection of materialized views as an
optimization problem with respect to the cost of view maintenance and/or with
respect to the cost of queries [1,4,8,9,10,11]. Each paper proposes an algorithm
designed within the framework of general query and maintenance cost models
without considering the physical properties of the actual data. In this paper,
we identify practical problems that may arise during view selection and suggest
heuristics based on data dependencies and access patterns that can be used to
measure if one view is better than another or used to improve a set of views.
Our work is related to physical database design and materialized view design in
the relational databases.

A.H.F. Laender, S.W. Liddle, V.C. Storey (Eds.): ER2000 Conference, LNCS 1920, pp. 168–182, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Practical Approach to Selecting Data Warehouse Views 169

The paper is organized as follows. Section 2 provides background information
relevant to the rest of the paper, highlights problems with the widely accep-
ted star and snowflake schema, and presents the enhanced star and snowflake
schema. There is a sample data warehouse in Section 3 that is used in the fol-
lowing sections. Section 4 compares different views suggesting why one is better
than another. Heuristics for good design are outlined in Section 5, and demon-
strated in Section 6. We conclude in Section 7.

2 Background

In this section, we introduce the star and snowflake schema, describe inadequa-
cies of the star and snowflake schema, present the enhanced star and snowflake
schema, and introduce strong and weak functional dependencies.

The schema of a data warehouse that is built on top of a relational database
is typically organized as a star or snowflake schema [6]. A star schema consists of
a fact table, and a table for each dimension in the fact table. A star schema can
be represented using an entity relationship diagram as shown in Figure 1. The
fact table represents a relationship set between two or more dimension entities
and has some measurement attributes (salesQty in Figure 1). Each dimension
table represents an entity with an identifier and other single valued attributes.
A snowflake schema is like a star schema except it represents the dimensional
hierarchies directly, normalizing the dimension tables.

Example 1. Consider a data warehouse that stores information about employees,
products and the quantity of each product sold by each employee. There would
be a dimension table for employee and another for product storing the employee
and product details respectively. The fact table would contain the identifier of
employee, the identifier of product and the quantity of a product sold by an
employee. A dimension table can contain a dimension hierarchy, e.g. if each
product belongs to a category and each category has many products, then we
say there is a product dimension hierarchy. 2

fact
n n

employee product

prod#

pname

category pricecar

emp#

qualification
phone

salesQtypreviousEmp

categoryDesc

Fig. 1. ER diagram of typical star schema

While the star and snowflake schemas described above are convenient, they
are overly simplistic. In practice, not all attributes in a dimension table are single

170 G. Dobbie and T.W. Ling

valued, not all keys in dimension tables consist of just one attribute, and the
relationships between the levels in a dimension hierarchy may be m-to-n (rather
than 1-to-n). Consider the schema in Figure 2. Each employee may have more
than one qualification, more than one previous employer, more than one phone
and more than one car. That is the attributes in the employee dimension table
are more likely to be multi-valued attributes and then the key is a composite
key. Although we don’t represent it in Figure 2, a product could also belong to
more than one category. For example, a health food drink may belong to category
health food and category beverage. The following functional dependencies hold
on the schema in Figure 2:

{emp#, prod#} → salesQty emp# →→ car
emp# →→ qualification prod# → {pname, category, price}
emp# →→ previousEmp category → categoryDesc.
emp# →→ phone

Fact Table Employee Dimension Table Product Dimension Table

previousEmp

emp#

prod#

salesQty

emp#

qualification

phone

car

prod#

pname
category
categoryDesc
price

Fig. 2. Sample enhanced star schema

While the snowflake schema eliminates the redundancy in the dimension
hierarchy, the problems we have described are not alleviated. An alternative
organization would be to store the composite key of the employee dimension table
in the fact table: Fact Table(emp#, qualification, previousEmp, phone, car,
prod#, salesQty). This organization is worse than the schema in Figure 2. Not
only are we duplicating all the employee information, we are also confusing the
relationship between emp#, prod#, and salesQty.

In summary, the star and snowflake schemas that are proposed in many pa-
pers and books are overly simplistic and not practical for real world applications.
Similarly, any view design heuristics that are based on the same assumptions will
be overly simplistic.

Strong and weak functional dependencies [7] extend classical functional de-
pendencies and when used in relational database design can provide better sche-
mas than those produced using classical functional dependencies.
Strong functional dependency: Let X → Y be a functional dependency such
that for each z ∈ Y , X → z is a full functional dependency. Then X → Y is
a strong functional dependency if the values of all the attributes in Y will not
be updated, or if the update need not be performed at real-time or on-line and
such updates seldom occur.

Practical Approach to Selecting Data Warehouse Views 171

Example 2. A person’s name seldom changes, so we can say there is a strong fun-
ctional dependency between employee number and employee name. We write
this as employee number

S→ employee name. 2

Weak functional dependency: Let X and Y be subsets of a table R, such
that there is a non-trivial multi-valued dependency X→→Y in R. If most of the
X values are associated with a unique Y -value in R, except for the occasional
X-value that may be associated with more than one Y -value, we say Y is weakly
functionally dependent on X, and write X

W→ Y .

Example 3. Assume that typically an employee lists only one phone number,
and very occasionally an employee lists more than one phone number, then we
can say that employee number

W→ employee phone. 2

3 Motivating Example

In this section we introduce a populated sample data warehouse that we use
in later sections of this paper. While the volume of data in this sample data
warehouse (see Figure 3) is unrealistic, the relationships between the fields are
realistic and are used to motivate our work. The Fact table stores the quan-
tity of each product sold by each employee. The Employee table contains, for
each employee, their employee number, qualifications, previous employers, phone
numbers and car registration. It is uncommon for an employee to have more than
one telephone number or more than one car, but quite common for an employee
to have more than one qualification and previous employer. The Product table
contains the product number, name, the category the product belongs to, a text
description of the category, and the price of the product. Each product belongs
to one category. We expect the fact table to be modified often, the price to be
modified sometimes and other attributes to change less frequently. The following
dependencies hold on the data:

emp# W→ phone emp# →→ qualification prod# → price

emp# W→ car {emp#, prod#} → salesQty prod# S→ pname

emp# →→ previousEmp category
S→ categoryDesc prod# S→ category.

The key of the Fact table is {emp#, prod#}. The key of the Employee table is
{emp#, qualification, previousEmp, phone, car}. The key of the Product table is
{prod#}. Access patterns are derived from typical queries. The monthly reports
include:

Q1. total quantity of items sold by each employee,
Q2. total quantity of items sold by product, listing both product number and

product name,
Q3. total quantity of items sold by category, listing both category and category

description,

172 G. Dobbie and T.W. Ling

Fact table

emp# prod# salesQty

1 10 10

2 10 15

3 10 35

1 20 8

2 20 14

3 30

1 30 6

2 30 10

3 30 25

Employee

emp# qualification previousEmp

1

1

1

2

2

2

2

3

3

BSc

MSc

HSC

HSC

BSc

HSC

BSc

HSC

HSC

Bob’s fruit shop

Bob’s fruit shop

Bob’s fruit shop

Quality Groceries

Quality Groceries

Shop and Save

Shop and Save

Shop and Save

Shop and Save

8725911

8725911

8725911

phone

8741834

8741834

8741834

8741834

7794580

6741856

car

DX6195

DX6195

DX6195

LX5255

LX5255

LX5255

LX5255

MM5735

MM5735

20

Product

prod# pname categoryDesc

10

20

30

weetbix

vegemite

apple

category

cereal

spread

fruit

price

2

Fruit (excluding bananas) must be stored in a partially

4

1

40 orange fruit 2Fruit (excluding bananas) must be stored in a partially

A cereal is typically eaten for breakfast. Cereals can be

A spread is eaten with bread. Speads can be stored on

stored on shelves and have a shelf life of 3 months. ...

shelves and have a shelf life of 6 months. ...

refrigerated part of the shop. Fruit has a shelf life of 1
week to 1 month. ...

refrigerated part of the shop. Fruit has a shelf life of 1
week to 1 month. ...

Fig. 3. Example data warehouse

Q4. total sales of items sold by employee,
Q5. total sales of items sold by product, listing both product number and pro-

duct name,
Q6. total sales of items sold by category, listing both category and category

description,
Q7. average number of items for all products sold by each employee,
Q8. average number of items for all employees by each product, and
Q9. details of each product, and employee number and phone number of the top

performing employee for each product.

Less frequently the following information is required:

Q10. A manager is interested in the correlation between the average number of
products sold by employees and the average number of qualifications of
the employees.

Q11. To get a feel for what to look for when hiring people, a manager may want
to know who the previous employers are of his three top sales staff.

Practical Approach to Selecting Data Warehouse Views 173

4 Problems

In this section, we discuss possible problems in view selection, briefly compare
different views and give reasons why one set of views is better than another. A
fuller comparison can be found in [2].

If there is an attribute that changes frequently, how should the
materialized views be selected? In traditional databases, if there is a relation
R(A, B, C) where A → B and B → C then it is suggested that the relation
is decomposed into R1(A, B) and R2(B, C). The reason being that when C
is updated, it will need to be updated in many places if the schema with R is
used, but only once if the schema with R1 and R2 is used. Consider the scenario
where the values of C are very unlikely to change, (i.e. B

S→ C) then there is no
need to decompose R. The same reasoning can be followed when selecting data
warehouse views.

If a multi-valued attribute is usually single-valued, how should the
views be selected? In traditional databases, if there is a relation R(A, B, C)
and A →→B, then it is suggested that the relation be decomposed into R1(A, B)
and R2(A, C). However, if the multi-valued attribute usually has only one value,
like an employee usually having only one phone number, then this information
can be stored as though it is single valued with an extra (overflow) table for
the occasional extra phone number. The same reasoning can be followed when
selecting data warehouse views. Methods for maintaining the overflow tables are
described in [7].

If a multi-valued attribute is usually multi-valued, how should the
views be selected? When designing traditional database systems, one of the
overriding aims is to reduce the number of joins when answering queries, however
there are occasions when selecting views for data warehouses where this is not
the best approach. A view should be decomposed into two views if two attributes
in the view are independent and frequently have multiple values.

Example 4. Consider view V (emp#, previousEmp, prod#, pname, salesQty)
where an employee has on average 10 previous employers and sells 100 products.
To find the previous employer of an employee, it is necessary to access 1000 tuples
on average. If instead, the view is decomposed into V1(emp#, previousEmp)
and V2(emp#, prod#, pname, sales), it’d be necessary to access only 10 tuples
on average to find the previous employers of an employee. On the other hand,
view V would be preferable to views V1 and V2 if very few employees have more
than one previous employer, or previousEmp and pname are frequently accessed
together. 2

Is there a possibility of anomalous data being introduced when
views are selected? If there is an attribute in a table that you will aggre-
gate on, then this table can only be joined with other tables with the same key,
otherwise anomalous data will be introduced and the following aggregation will
be incorrect. This usually arises when you are joining a fact table (or a sum-
marization of a fact table) and a dimension table, and the fact table contains a
measurement attribute that is likely to be aggregated in the future.

174 G. Dobbie and T.W. Ling

Example 5. Consider creating a view V (emp#, prod#, qualification,
salesQty) with employee number 1, and product number 10. Using the sample
data warehouse in Section 3, the view would contain the following information:

emp# prod#

1 10 HSC 10

qualification salesQty

1
1

10
10

BSc
MSc 10

10

The total sales calculated from view V is 30 whereas the total sales for
emp# 1, prod# 10 calculated from the Fact table is 10. The problem is that
the salesQty has been replicated for each qualification of the employee. 2

If the size of attributes varies greatly or views are large, how should
the views be selected? There are two situations in which vertical partitioning
is advantageous. If there are some attributes that are small and some that are
very large, then when the smaller attributes are accessed, the whole tuple in-
cluding the very large attributes must be read into temporary storage. A better
design is to vertically partition the large attributes from the other attributes.
Another related situation is where a view has many attributes and those attri-
butes are never accessed together. The access speed is negatively affected by the
extra attributes in the view.

If a view is very large and queries are often based on particular values for an
attribute, the table can be horizontally partitioned on that attribute to improve
performance. For example, consider a large view with an attribute city#, where
access frequently involves individual cities, then performance will be improved
if the view is horizontally partitioned based on the city#.

If a key attribute is large, how should the views be selected? If there
is a set of views where one table has a large key and that key is used as a foreign
key in another view then a surrogate key can be introduced and the surrogate
key can replace the foreign key e.g. where the attribute categoryDesc is a key
in one view and a foreign key in another view.

When should two views be joined? Consider joining (a subset of the
attributes of) a fact table and (a subset of the attributes of) a dimension table
to form a view. If on average the key of the dimension table occurs infrequently
in the fact table, then (the subset of the attributes of) the dimension table can
be joined to (the subset of the attributes of) the fact table to form a view,
otherwise it isn’t worthwhile forming a view.

Example 6. Consider the view V (emp#, prod#, pname, category, price) for-
med by joining a subset of the attributes of the fact table with a subset of the
attributes of the product table. View V can be formed if on average each prod#
value occurs infrequently in the fact table. If on the other hand, each prod#
value occurs frequently on average then forming view V wastes a lot of space
and the product information is harder to maintain, so no such view should be
formed.

How should views with aggregates be selected? The way aggregates
are stored for a dimension hierarchy is dependent on the frequency of updates,

Practical Approach to Selecting Data Warehouse Views 175

and the access pattern as demonstrated in Example 7. Recall that when you are
decomposing a table while normalizing a traditional database, it is important
that no information is lost. When you are selecting views for data warehouses,
this constraint no longer applies because the underlying tables remain.

Example 7. Assume we require both the sum of salesQty grouped by prod#,
ΣsalesQtyprod#, and the sum of salesQty by category, ΣsalesQtycategory.1 The
following are possible sets of views:

– V (prod#, pname, category, ΣsalesQtyprod#),
– V1(prod#, pname, ΣsalesQtyprod#), V2(category, ΣsalesQtycategory),
– V3(prod#, pname, category, ΣsalesQtyprod#),

V4(category, ΣsalesQtycategory).

The view V is preferable over the other sets of views under the following condi-
tions:

– View V is preferable if the number of sales is updated often. If either of the
alternative sets of views are used, when the sales quantity is updated, both
aggregations of the sales quantity must also be recalculated.

– View V is preferable if there are very few queries asking for sales by category,
because only then is it worthwhile computing the aggregation at the time of
the query.

– Otherwise, one of the other sets of views is preferable.

The set of views with V1 and V2 is preferable if there are few queries involving
the relationship between pname and category otherwise the set of views with V3
and V4 is preferable. 2

5 Design Heuristics

The following heuristics take into account the problems described in Section 4.
The heuristics can be used for two related but different purposes, to judge if
one set of views is better than another, and to improve a set of views. The
aims are to make maintenance easier, and to reduce the access cost, without
introducing anomalous data. The process of selecting materialized views involves
the following three steps:

S1. Create a temporary view for each query by selecting the attributes that are
required to answer the query.

S2. Join temporary views from Step S1 grouping attributes that belong to the
same entities together. This minimizes the space that will be needed to store
the materialized views and makes updating the views less error prone.

S3. Finally select the best set of views by decomposing the temporary views
found in Step S2, using the following heuristics.

1 ΣsalesQtycategory can also be calculated by grouping ΣsalesQtyprod# by category.

176 G. Dobbie and T.W. Ling

5.1 Reduce Access Cost Using Data Dependencies
The heuristics in this section are based on the weak and strong functional de-
pendencies that were introduced in Section 2.

OK Rule

a1. The view V (A, B, C, D) is OK if
– A → {B, C, D}, or
– A → {B, D} and B

S→ C. 2

a2. The view V (A, B, C) is OK, if there is a non-trivial multi-valued depen-
dency A→→B, on average there are not many values for B and C, and the
attributes B and C are frequently accessed together.

Not OK Rule

b1. If A → {B, D} and B → C but B
S

6→ C,3 then the view V (A, B, C, D)
should be decomposed into V1(A, B, D) and V2(B, C).

b2. If there is a non-trivial multi-valued dependency A→→B and A
W→ B and

A
W→ C, the view V (A, B, C) is replaced by V1(A, B, C), VbOverflow(A, B)

and VcOverflow(A, C).

b3. Let there be a fact table, R(A,E,F) where {A, E} → F , and {A, E}
S

6→
F . Let B be the aggregation of F grouped on A (i.e. ΣFA) and C be an
aggregate that is computed using B (e.g. sum of B, average of B), then
view V (A, B, C) should be replaced by V1(A, B, D), where D is another
attribute can be used to compute C from B. 4

b4. If there is a non trivial multi-valued dependency A→→B and A
W

6→ B, on
average there are many values for B and C, and the attributes B and C are
not frequently accessed together the view V (A, B, C) should be decomposed
into V1(A, B) and V2(A, C).

5.2 Reduce Access Cost Using Physical Database Principles
Traditionally in database systems the query cost is reduced by choices made
during physical database design. The heuristics in this section are based on
physical database design principles, like those in [3], and adapted for views in
data warehouses.

OK Rule

c1. A view V (A, B, C) is OK if A → {B, C} and each of the attributes is a
“reasonable” size. It is up to the designer to judge what a reasonable size is.

c2. A view is OK, if it has a large key but the key is not used as a foreign key
in another view.

2 The values of the attributes in C are not updated frequently.
3 The values of the attributes in C are updated frequently.
4 If B is ΣFA, and C is av FA, then D may be count FA.

Practical Approach to Selecting Data Warehouse Views 177

c3. A view that is created by joining (a subset of the attributes of) a fact table
with (a subset of the attributes of) a dimension table is OK if
– the key of the dimension table is a subset of the key of the fact table,

and
– each value of the key of the dimension table occurs infrequently, on

average, in the fact table.
c4. Consider a view V (A, B, C) (with key A) where A and B are two levels in

a dimension hierarchy and C is a measurement for A. For example, A could
be a product number, B a category and C the quantity of the product sold.
The view V is OK if
– the attribute C is updated often, or
– there are few queries that aggregate C grouping by B.

Not OK Rule

d1. If there is a view V (A, B, C) where A → {B, C} and attribute C is very
large then decompose the view into V1(A, B) and V2(A, C).

d2. If there is a view V (A, B, C) where A → {B, C} and queries are frequently
asked for particular values of attribute B then V can be horizontally parti-
tioned on B.

d3. If the key in a view V1 is large and the key is being used as a foreign key
in another view V2 then introduce a surrogate key into V1 and replace the
foreign key in V2 by the surrogate key.

d4. A view V (A, B, C, E, F, G) that is created by joining (a subset of the
attributes of) a fact table R(A, B, C) (with key {A, B}) with (a subset of
the attributes of) a dimension table R1(B, E, F, G) (with key B) should not
be formed if each value of the key of the dimension table occurs frequently,
on average, in the fact table.

d5. Consider a view V (A, B, C) (with key A) where A and B are two levels in
a dimension hierarchy and C is a measurement of A. The view V should be
decomposed into V1(A, C) and V2(B, ΣCB) if
– the attribute C is not updated often,
– there are few queries that include the relationship between A and B,
– there are frequent queries that aggregate C grouping by B.

If the above properties hold but there are frequent queries that include
the relationship between A and B then replace V with V3(A, B, C) and
V4(B, ΣCB).

d6. If there is a view V (A, B, C, D, E, F) with key A and there are frequent
queries that access A, B, C and frequent queries that access D, E, F then
vertically partition V into V1(A, B, C) and V2(A, D, E, F).

5.3 Do Not Introduce Anomalous Data
The heuristics in this section guard against anomalous data being introduced
when views are selected. The anomalous data problem arises where there is
aggregation or summarization of the underlying data. Views are built from un-
derlying tables using select, project, join, and aggregation operations. As we

178 G. Dobbie and T.W. Ling

demonstrated in Example 5 anomalous data may be introduced if there is a
measurement that is likely to be aggregated or a measurement that is aggrega-
ted, and the keys of the underlying tables are not the same.

Let there be a table R1(A, B, C) and another table R2(A, D, E). We write
FCA to denote that function F is likely to be or has been applied to attribute
C after grouping on A.

OK Rule

e1. It is OK to create a view as the result of joining a temporary table RT (A,F
CA) to any table that has key A.

Not OK Rule

f1. If there is a table (or temporary table) RT (A,FCA) and a table R2(A, D, E)
with a composite key e.g. {A, D} then the tables should not be joined.

Example 8. Consider a fact table F (A, B, C) with key {A, B} and a dimension
table D(A, E, F) with key {A, E}. Anomalous data will be introduced if the
view V (A, E, ΣCA) is created. The view must be replaced by V1(A, E) and
V2(A, ΣCA). 2

6 Demonstrating the Heuristics

In this section we demonstrate how views are selected for the example data
warehouse in Section 3 based on the procedure outlined in Section 5.

Step S1, we create a view for each of the queries presented in Section 3.5

Both Q9 and Q11 involve selecting top performing employees.6

Q1(emp#, ΣsalesQtyemp#)
Q2(prod#, pname, ΣsalesQtyprod#)
Q3(category, categoryDesc, ΣsalesQtycategory)
Q4(emp#, Σ(price × salesQty)emp#)
Q5(prod#, pname, Σ(price × salesQty)prod#)
Q6(category, categoryDesc, Σ(price × salesQty)category)
Q7(emp#, avsalesQtyemp#)
Q8(prod#, pname, avsalesQtyprod#)
Q9(prod#, emp#, phone, pname, category, categoryDesc, price)
Q10(emp#, ΣsalesQtyemp#, count qualificationemp#)
Q11(emp#, previousEmp)
5 For simplicity we use the query number (from Section 3) as the name of the matching

view.
6 Horizontal partitioning could be appropriate but because the tuples in the partition

change often, we do not perform the partitioning.

Practical Approach to Selecting Data Warehouse Views 179

Step S2, new temporary views are formed by grouping all attributes that
belong to an entity together. For example, we group all attributes that belong
to the employee entity in one view.7 The resulting views are:

– V Temp#(emp#, previousEmp, phone, ΣsalesQtyemp#,avsalesQtyemp#,

Σ(price × salesQty)emp#, count qualificationemp#),8

– V Tprod#(prod#, pname, category, ΣsalesQtyprod#,avsalesQtyprod#,

Σ(price × salesQty)prod#, price), 9

– V Tcategory(category, ΣsalesQtycategory, Σ(price × salesQty)category,

categoryDesc).10

Step S3, we use the heuristics together with the dependencies described
in Section 3 to improve the views produced in the previous step as illustra-
ted in Figures 4 and 5. We consider V Temp#, V Tprod# and V Tcategory, and
then the resulting views together. Based on the heuristics, the set of views,
Voverflow, V3, V4, V7 and V9, are the best for this schema, with the given access
pattern.

7 Conclusions

The selection of materialized views is crucial to data warehouse performance.
To date, most of the research in the area uses general cost models to find the
optimal or near optimal set of views, without considering the physical properties
of the data.11 In this paper, we have shown that the widely recognized star
and snowflake schema are based on overly simplistic assumptions, so any view
design heuristics based on these schema are also overly simplistic. We discussed
problems that may arise when selecting which views to materialize for a data
warehouse. Our main contributions are the enhanced star and snowflake schema
and the set of heuristics that can be used to improve a set of materialized views,
or judge if one set of views is better than another set of views. The heuristics
are based on physical properties of the data such as how likely it is that the
value of an attribute will change, how often a multi-valued attribute will have
more than one value, access patterns, and size of attributes. We have provided a
preliminary investigation on which further practical work, involving the selection
of materialized views in data warehouses, can be based.

This is preliminary work and there are many directions we could take from
here. One direction is to perform experiments to verify our claims of improved
performance and another is to formalize the heuristics presented and further
7 The attributes in Q9 are split between the three entity views.
8 Formed by joining the attributes from Q1, Q4, Q7, Q10, Q11 and the attributes

emp# and phone from Q9.
9 Formed by joining the attributes from Q2, Q5, Q8, and the attributes

prod#, pname, category and price from Q9.
10 Formed by joining the attributes from Q3, Q6, and the attributes category and

categoryDesc from Q9.
11 See [2] for a more thorough discussion of the related work.

180 G. Dobbie and T.W. Ling

V Temp#(emp#, phone, previousEmp,ΣsalesQtyemp#, Σ(price × salesQty)emp#,

avsalesQtyemp#, countqualificationemp#)

⇓ b↼emp# W→ phone↽

V Temp#isreplacedbyVoverflowandV Temp#

Voverflow(emp#, phone)
V Temp#(emp#, previousEmp, phone, ΣsalesQtyemp#, Σ(price × salesQty)emp#,

avsalesQtyemp#, countqualificationemp#)

⇓ b↼aggregatesbasedonΣsalesQtyemp#↽

V Temp#isreplacedbyV T2

Voverflow(emp#, phone)
V T2(emp#, previousEmp, phone, ΣsalesQtyemp#, countqualificationemp#)

⇓ b↼emp#→→previousEmp↽

V T2isreplacedbyV3andV4

Voverflow(emp#, phone)
V3(emp#, previousEmp)
V4(emp#, phone, ΣsalesQtyemp#, countqualificationemp#)

V Tprod#(prod#, pname, category,ΣsalesQtyprod#, Σ(price × salesQty)prod#,

avsalesQtyprod#, price)

⇓ b↼aggregatesbasedonΣsalesQtyprod#↽

V Tprod#isreplacedbyV T5

V T5(prod#, pname, category, ΣsalesQtyprod#, price)

V Tcategory(category, ΣsalesQtycategory, Σ(price × salesQty)category,

categoryDesc)

⇓ b↼aggregatesbasedonΣsalesQtycategory↽

V TcategoryisreplacedbyV T6

V T6(category, categoryDesc, ΣsalesQtycategory)

⇓ d↼categoryDescislargefield↽

V T6isreplacedbyV7andV T8

V7(category, categoryDesc)
V T8(category, ΣsalesQtycategory).

Fig. 4. Views after heuristics applied in Step S3 to 3 entity views from Step S2

Practical Approach to Selecting Data Warehouse Views 181

V T5(prod#, pname, category, ΣsalesQtyprod#, price)
V T8(category, ΣsalesQtycategory)

⇓ c4 (salesQty updated often)
V T5 and V T8 are replaced by V9

V9(prod#, category, pname, ΣsalesQtyprod#, price).

Fig. 5. Resulting views in Step S3 from V T5 and V T8

investigate the heuristics. We need to find answers to the following questions:
Does one heuristic make something that was OK, not OK or vice versa? Do any
of the rules conflict? Is the result different if the rules are applied in a different
order? Could some of the heuristics be replaced by first ensuring that the views
are in relax-replicated 3NF (see [7])? Following this line of investigation would
clarify the distinction between traditional database design and data warehouse
view design and could lead into investigating the kinds of indexes that are best,
from a practical perspective, for materialized views in data warehouses.

References

1. Elena Baralis, Stefano Paraboschi and Ernest Teniente. Materialized Views Selec-
tion in a Multidimensional Database. In Proceedings of 23rd International Confe-
rence on Very Large Data Bases (VLDB’97), 1997.

2. Gillian Dobbie and Tok Wang Ling. Practical Approach to Selecting Data Wa-
rehouse Views Using Data Dependencies. Technical Report from School of Com-
puting, National University of Singapore, No. TRA7/00.

3. Rob Gillette, Dean Muench and Jean Tabaka. Physical Database Design for SY-
BASE SQL Server. Prentice Hall PTR, 1995.

4. Himanshu Gupta and Inderpal Singh Mumick. Selection of Views to Materialize
Under a Maintenance Cost Constraint. In Database Theory - ICDT ’99, 7th Inter-
national Conference on Database Theory (ICDT), 1999, pages 453–470, Springer-
Verlag LNCS 1540.

5. Ashish Gupta and Inderpal Singh Mumick. Maintenance of Materialized Views:
Problems, Techniques, and Applications. In Data Engineering Bulletin, 18(2),
pages 3–18, 1995.

6. R. Kimball. The data warehouse toolkit. John Wiley and Sons, 1996.
7. Tok Wang Ling, Cheng Hian Goh and Mong Li Lee. Extending Classical Func-

tional Dependencies for Physical Database Design. In Information and Software
Technology, pages 601-608, vol 38 (1996), Elsevier Science.

8. Kenneth A. Ross, Divesh Srivastava and S. Sudarshan. Materialized View Mainte-
nance and Integrity Constraint Checking: Trading Space for Time. In Proceedings
of the 1996 ACM SIGMOD International Conference on Management of Data,
pages 447-458.

9. Amit Shukla, Prasad Deshpande and Jeffrey F. Naughton. Materialized View Sel-
ection for Multidimensional Datasets. In Proceedings of 24th International Confe-
rence on Very Large Data Bases, (VLDB’98), 1998, pages 488-499.

182 G. Dobbie and T.W. Ling

10. Dimitri Theodoratos, Spyros Ligoudistianos, and Timos Sellis. Designing the Glo-
bal Data Warehouse with SPJ Views. In Proceedings of 11th International Confe-
rence on Advanced Information Systems Engineering, (CAiSE’99), 1999, Springer-
Verlag LNCS 1626.

11. Jian Yang, Kamalakar Karlapalem and Qing Li. Algorithms for Materialized View
Design in Data Warehousing Environment. In Proceedings of 23rd International
Conference on Very Large Data Bases, (VLDB’97), 1997, pages 136-145.

	Introduction
	Background
	Motivating Example
	Problems
	Design Heuristics
	Reduce Access Cost Using Data Dependencies
	Reduce Access Cost Using Physical Database Principles
	Do Not Introduce Anomalous Data

	Demonstrating the Heuristics
	Conclusions

