
Designing Valid XML Views

Ya Bing Chen, Tok Wang Ling, Mong Li Lee

School of Computing, National University of Singapore
(chenyabi, lingtw, leeml)@comp.nus.edu.sg

Abstract. Existing systems for XML views only support selection operation
applied in the views and cannot validate views. In this paper, we propose a sys-
tematic approach to design valid XML views. First, we transform the semistruc-
tured XML source documents into a semantically rich Object-Relationship-
Attribute model designed for SemiStructured data (ORA-SS). Second, we enrich
the ORA-SS diagram with semantics such as participation constraints of object
classes and distinguishing between attributes of object classes and relationship
types, which cannot be expressed in the XML document. Third, we use the ad-
ditional semantics to develop a set of rules to guide the design of valid XML
views. We identify four transformation operations for creating XML views,
namely, selection, projection, join and swap operation. Finally, we develop a
comprehensive algorithm that checks for the validity of XML views constructed
by applying the four operations.

1 Introduction

It is necessary to provide for XML views [1]. Several systems have been proposed to
support XML views, including Active Views [2] and MIX [5]. While both systems
provide for the definition of XML views, they do not validate the views that are cre-
ated. Therefore, there is no guarantee that the views defined are valid.

In this paper, we propose a systematic approach to ensure the validity of XML
views. First, we transform XML documents into ORA-SS schema diagram proposed
in [6], [7]. Second, we enrich ORA-SS schema diagram with semantics, such as dis-
tinguishing between attributes of object classes and relationship types. These addi-
tional semantics will allow us to validate XML views subsequently. Third, based on
the enriched ORA-SS schema diagram, we propose a set of rules to guide the design
of valid XML views. We also develop a comprehensive algorithm that checks for the
validity of XML views.

The rest of the paper is organized as follows. Section 2 introduces the background
of our work. Section 3 describes our proposed approach to validate XML views in de-
tail. Section 4 discusses related work and we conclude in section 5. Note there is an
appendix that contains XML instance documents and XQuery used in the paper.

2 Preliminaries

2.1 ORA-SS Data Model

The ORA-SS (Object-Relationship-Attribute model for SemiStructured data) data
model comprises of three basic concepts: object classes, relationship types and attrib-
utes. An object class is similar to an entity type in an ER diagram or an element in
XML documents. A relationship type describes a relationship among object classes.
Attributes are properties, and may belong to an object class or a relationship type.
ORA-SS data model has four diagrams: the schema diagram, the instance diagram,
the functional dependency diagram and the inheritance diagram. A full description of
the data model can be found in [6]. In this paper, we will focus on the schema dia-
gram because it is sufficient for our purposes.

For example, the left part of figure 1 shows an ORA-SS schema diagram, which
contains three object classes – project, supplier and part, and the right part of figure 1
then shows an ORA-SS instance diagram of the schema diagram. In the schema dia-
gram, an object class is represented as a labeled rectangle. A relationship type be-
tween two object classes in an ORA-SS schema diagram can be described by name, n,
p, c, where name denotes the name of the relationship type, n is an integer indicating
the degree of the relationship type (n = 2 indicates binary, n = 3 indicates ternary,
etc.), p is the participation constraint of the parent object class in the relationship type,
and c is the participation constraint of the child object class in the relationship type.
The participation constraints are defined using the min:max notation.

supplier

sno part

pno
price

project

jno

ps,2,1:n,1:n

sp,2,1:n,1:n

sp

project

jno:
j001

supplier supplier

sno:
s001

part

price:
90

part

pno:
p002 price:

120

part

sno:
s002

pno:
p003

price:
110

pno:
p001

Fig.1. An ORA-SS Schema Diagram (left) and Instance Diagram (right)

In the ORA-SS schema diagram, labeled circles denote attributes, and keys are

filled circles. The attributes of an object class can be distinguished from attributes of a
relationship type. The former has no label on its incoming edge while the latter has
the name of the relationship type to which it belongs on its incoming edge.

It is clear that ORA-SS is a semantically rich data model. The model not only re-
flects the nested structure of semistructured data, but it also distinguishes between ob-
ject classes, relationship types and attributes. In addition, ORA-SS provides for the
specification of the participation constraints of object classes in relationship types and
distinguishes between attributes of relationship types and attributes of object classes.
Such information is lacking in other existing semistructured data models including
OEM [3], XML DTD and XML Schema [9]. For this reason, we adopt ORA-SS as
the data model for valid XML views design, because the additional semantics is es-
sential for the verification of the validity of XML views. When an XML view does
not violate the integrity constraint and semantics of the original XML document, we
say the XML view is valid.

2.2 View Definition Language

The World Wide Web Consortium has proposed an XML query language called
XQuery [8]. XQuery provides flexible query facilities to extract data from real and
virtual documents on the Web. The basic form of an XQuery expression consists of
For, Let, Where and Return (FLWR) expressions. Although XQuery currently does
not provide for the definition of views, we can easily extend it to include the defini-
tion of views as follows:

 “Create View As view name” followed by FLWR expression.
A full description of FLWR expression in XQuery can be found in [8].

3 Valid XML Views Design

In this section, we will describe our approach to design valid XML views. There are
three main steps in our approach. The first two steps are preparatory stages for valid
XML views design. The goal of the two steps is transform XML documents into
ORA-SS schema diagram enriched with semantics, based on which, we may begin to
design XML views. Therefore, we will cover them roughly in the paper.
1. Transform an XML document into an ORA-SS schema diagram.
2. Enrich the ORA-SS schema diagram with necessary semantics.
3. Define a set of rules to guide the design of valid XML views.

We will present the rough idea of the first two steps and the detailed idea of the
third step.

3.1 Motivating Example

Invalid views may be produced in the case where important semantics are not ex-
pressed in the underlying data model. We will illustrate this point with an XML
document shown in XDoc 1 in Appendix. The XML document is conforming to the
ORA-SS schema in Figure 1. Note that there exists an implicit functional dependency
in the document: supplier, part → price.

A user may use XQuery to design a view that swaps the location of the elements
supplier and part. That is, supplier becomes a child of part and part becomes the par-
ent of supplier. As a consequence, we need to decide where to place the element
price. Since the XML document does not explicitly express the functional depend-
ency: supplier, part → price, the element price may be placed under the element part
in the designed view. This makes price an attribute of part. XDoc.2 in Appendix
shows an instance of the view obtained. A new functional dependency: part → price,
now holds in the view that violates the functional dependency supplier, part → price
in the source document. We say that such a view is invalid. In order to obtain a valid
view, the element price should be placed under the element supplier so that the origi-
nal functional dependence is preserved. XDoc.3 in Appendix describes an instance of
a valid view.

The above example shows that invalid views may be designed if the underlying
data model does not express explicitly the necessary semantics. This includes the par-
ticipation constraints of object classes in relationship types, and distinguishing be-
tween attributes of relationship types and attributes of object classes, which are avail-
able in the ORA-SS model.

3.2 Transformation of XML into ORA-SS

In this section, we will begin to introduce the two pre-processing steps for valid XML
views design. First, we give a brief outline of the transformation of an XML docu-
ment into an ORA-SS schema diagram:
• Map root element of the XML document into the root object class in the ORA-SS

schema diagram.
• Map each element that has attributes or sub-elements into an object class in the

ORA-SS schema diagram.
• Map attributes of an element into the attributes of the object class corresponding to

the element.
• Map the rest of the elements, which do not have attributes or sub-elements, into at-

tributes of their corresponding parent object classes.

3.3 Semantic Enrichment of ORA-SS

The ORA-SS diagram obtained from Section 3.2 will basically reflect the tree
structure of the XML document and distinguish between object classes and attributes.
In order to support the validation of XML views, we need to enrich it with the follow-
ing additional semantics. Users will be allowed to input this semantics in this step.
• Identify key attributes of each object class.
• Identify attributes that belong to object classes.
• Identify relationship types among object classes.
• Identify attributes of relationship types.

3.4 Validity of XML Views

After semantically enriching the ORA-SS schema diagram, we can now design XML
views and determine its validity. The XML views are designed by applying four
transformation operations, which are selection, projection, join and swap. The first
three are analogous to the selection, projection and join in relational databases. The
fourth one is unique in XML settings because it exchanges the positions of parent and
child object classes. An XML view may not be simply based on only one of the
operations. For example, a view may first apply a selection operation then a join
operation. We will now discuss how to guarantee valid XML views design when each
operation applies.

3.4.1 Selection Operation
Selection operations basically filter data by using predicates. These are similar to se-
lection operation in relational databases. The structure of source schema remains un-
changed and will not cause any changes in the semantics of the source schema. There-
fore, if an XML view only applies selection operations, it will be always valid.

Example 1
Suppose we want to design a view called expensive-part on the ORA-SS source

schema diagram defined in Figure 1. The view definition is shown in XQuery.1 in
Appendix. The view depicts projects for which there exist suppliers for which there
exist parts with a price > 80. Within those projects it only returns suppliers for which
there exist parts with a price > 80. Within those suppliers it only returns the parts
with a price > 80.

Selection operations put predicates on the source schema to filter data. They do not
restructure the source document. The resulting view schema will be the same as the
source schema. Hence, such views will not violate semantics in the source schema.
Then we do not need to set up rules to guarantee the validity of views when only se-
lection operations are applied.

3.4.2 Projection Operation
Projection operations select or drop object classes or attributes in the source schema.
They essentially extract a subset structure of the source schema. Since the structure of
the source schema is changed, the source semantics may be affected. Therefore it is
possible to design an invalid view that violates the semantics in the source schema.
This can be detected by designing a set of rules to check for the validity. We will first
illustrate how to design a view applying projection operations. Then, we will give the
rules to guarantee the validity of such views.

Example 2
Suppose we define a view called project-part based on the ORA-SS schema dia-

gram in Figure 1. This view removes the intermediate object class supplier (see Fig-
ure 2). This implies that the attribute sno has to be dropped too since attributes cannot
exist without its owner object class. Next, we need to remove the relationship types –
js and sp, both of which involves the object class supplier which has been removed.
The attributes of these relationship types can be dropped too. Alternatively, we can

map the attribute of the relationship type sp – price to an aggregate attribute called
average_price, which represents the average price of one part in a given project.

project

jno
part

pno average_price

jp,2,1:n,1:n

jp

Fig.2. ORA-SS schema of the view Project-Part

Based on the view schema, we may write a view definition in XQuery expression,

which is shown in XQuery.2 in Appendix.
This example shows that flexible views can be designed based on ORA-SS with its

additional semantics. However, we need to handle the semantics properly so that
meaningful views are guaranteed. The following rules are critical for designing valid
XML views that apply projection operations.
• Rule Proj1. If an object class has been dropped, then its attributes must be dropped

too.
• Rule Proj2. If an object class has been dropped, then all relationship types con-

taining the object class must be dropped too. The attributes of these relationship
types must be dropped, or mapped into attributes with some aggregate function,
such as avg, max/min or sum, or mapped into attributes typed in bag of values if
they cannot be aggregated.
Rule Proj1 indicates that we cannot leave an attribute in the view if its object class

has been dropped. Without its object class, the attributes will lose their meaning.
When an object class is dropped, it may be because the object class itself is dropped,
or because the key attribute of the object class is dropped.

On the other hand, rule Proj2 indicates that those relationship types containing the
dropped object class must be dropped too. Although these relationship types will not
be shown in XML document or XML schema, they need to be dropped to keep the
semantics in the ORA-SS view schema consistent. The attributes of these relationship
types can be dropped too. However, ORA-SS allow us to map the attributes of af-
fected relationship types into some aggregate function attributes, such as avg,
max/min, or sum, which make the view more expressive and more powerful. These
modified attributes should be meaningful in the view. In cases where the type of the
attributes is string that cannot be aggregated, these attributes can be changed into at-
tributes typed in bag of value.

3.4.3 Join Operation
Join operations actually join object classes and their attributes together by key – for-
eign key references. There may be one referencing object class and one referenced
object class in an ORA-SS source diagram. The former object class has an attribute
that is actually a key attribute of the later object class. Therefore, the former is able to
refer to the later by the attribute, which plays the role of a foreign key. In our notion
of join operations, we first combine the two object classes together before combining
all attributes of the two object classes so that they will become a single object class.
This is analogous to the join operations in relational databases, which joins two flat
tables by key – foreign key references.

ORA-SS makes it possible to design such XML views as applying join operations
and guarantee they are valid. This is because ORA-SS distinguishes between object
classes and attributes so that two object classes can be joined. Furthermore, ORA-SS
differentiates between attributes of object classes and attributes of relationship types
so that attributes of relationship types will not be treated as attributes of the joined ob-
ject class improperly. Next we will illustrate join operation with the following exam-
ple.

Example 3
Figure 3 shows an ORA-SS source schema diagram. The object class supplier’ un-

der project refers to another object class supplier under retailer by sno, which is the
key attribute of supplier. There is a relationship type between retailer and supplier
called rs, which has an attribute contract under supplier.

supplier'

part

pno
price

project

jno
supplier

sno sname

retailer

rno

contract

js,2,1:n,1:n

sp,2,1:n,1:n

sp

sno

rs,2,1:n,1:n

rs

Fig.3. An ORA-SS schema diagram on project, supplier, part and retailer

We design a view called join-supplier shown in figure 4. The view joins supplier
and supplier’ together. The attributes sno and sname of supplier are moved under
supplier’ in the view. However, the attribute contract cannot be moved in the same
way because it belongs to the relationship type rs. If it is moved under supplier’, then
it will become an attribute of supplier’. The operation then violates the original se-
mantics and makes the view invalid. Therefore, to keep the view valid, the attribute
contract must remain in the source schema and not be moved in the view. XQuery.3
in Appendix gives the view definition of the join-supplier.

supplier'

sno
part

pno
price

project

jno

sname

js,2,1:n,1:n

sp,2,1:n,1:n

sp

Fig.4. ORA-SS schema of the view join-supplier

Based on the example above, we give the rules for designing valid views that apply

join operations.
• Rule Join1. If a referencing object class and a referenced object class are joined

together in the view, and there exists such relationship types below the referenced
object class as contain those object classes above the referenced object class, then
attributes of such relationship types must be dropped, or mapped into attributes
with some aggregate function.

• Rule Join2. If a referencing object class and a referenced object class are joined
together in the view, and there only exists such relationship types below the refer-
enced object class as do not contain those object classes above the referenced ob-
ject class, then attributes of such relationship types can be selected or dropped ac-
cording to the view requirement.
When we design views that join one referencing object class and one referenced

object class together, we need to properly handle the relationship types and their at-
tributes below the referenced object class. These relationship types can be divided
into two types.

The first type of relationship types involves object classes above the referenced ob-
ject class. Rule Join1 states that such relationship types and their attributes must be
dropped or mapped into attributes with some aggregate function, which is the same as
Rule Proj1. It is because those object classes above the referenced object class, which
are ancestors of the referenced object class, will not exist in the view any more.
Therefore, these relationship types involving these object classes will not exist too.
Their attributes must be dropped or modified.

The second type of relationship types only involves object classes below the refer-
enced object class. Rule Join2 states that these relationship types and their attributes
can be dropped or selected according to the view requirement. It is because the object
classes below the referenced object class may still exist in the view. Then the corre-
sponding relationship types may be included in the view also.

3.4.4 Swap Operation
Swap operations restructure the source schema by exchanging the positions of a par-
ent object class and one of its child object class. We think this type of operation will
be widely applied in XML views design because of the hierarchical nature of XML

data. Therefore we include it as one of four types of operations. The following exam-
ple illustrates how to design valid XML views when swap operation is applied.

Example 4
Given the source schema in Figure 1, we design a view shown in Figure 5 called

swap-supplier-part, which swaps the object class supplier and part hierarchically.
After the object classes have been swapped, we need to ensure that their attributes

are relocated properly. The attributes pno and sno are also swapped in order to pre-
serve their parent object classes. However, the attribute price, which belongs to the
relationship sp, must stay with the new child object class supplier in order to preserve
the semantics of the source schema. If it moves with the object class part, then it will
violate the semantics in the source schema.

part

pno supplier

sno
price

project

jno

ps,2,1:n,1:n

ps

Fig.5. ORA-SS schema of the view swap-supplier-part

An XQuery expression of the swap-supplier-part view is described in XQuery.4 in

Appendix. The following rules guarantee that the design of views is valid when swap
operations are applied.
• Rule Swap1. If two object classes are swapped in the view, then the attributes of

each of the object classes must stay with the object class.
• Rule Swap2. If two object classes are swapped in the view, then the attributes of

relationship types involving the two object classes must stay below the lowest
participating object class in the relationship types.
When a swap operation is applied, the two swapped object classes may not involve

any relationship type. In this case, we simply swap them and move their attributes
with them, as stated in Rule Swap1. If there is any relationship type involving the two
object classes, then we must keep the attributes of the relationship types below the
lowest participating object class of the relationship types. If these attributes move
with one of the object class, they will not belong to the relationship types and become
attributes of the object class, which then violates the semantics in the source schema
and lead to a meaningless view.

3.4.5 Design Rules for IDentifier Dependency Relationship
The previous sections present the design rules when projection, join and swap op-

erations are applied in XML views. However, these rules are not enough when the
views contain IDD (IDentifier Dependency) relationship types. An IDD relationship
type is defined as follows:

Definition 1. An object class A is said to be ID dependent on its parent object class
B if A does not have a key attribute, and an A object can be identified by its parent’s
key value (say k1) together with some of its own attributes (say k2). That is, the key
of A is {k1, k2}. The relationship type between A and B is then called IDD relation-
ship type.

Example 5
Figure 6 shows an IDD relationship type between the object class employee and

child. The object class child does not have a key attribute, but can be identified by the
key attribute of employee – eno and its own attribute – cname. When we design a
view over the IDD relationship type, additional rules are needed to keep the view
meaningful.

Based on Figure 6, we design a view applying a swap operation, which swaps the
object class employee and child (see Figure 7). Unlike the previous view applying
swap operations, this view still duplicates the key attribute of employee – eno for the
object class child so that eno and cname can combine a key for the object class child.
It is because the object class child cannot be identifiable without eno. Note this view
need to be enforced with a constraint, which says the eno under the object class child
must be the same as the eno under the object class employee. The straight line be-
tween the incoming edges of the attributes eno and cname denotes {eno, cname} is a
composite key for the object class child.

We can also design a view applying projection operation. For example, Figure 8
depicts a view that drops the object class employee. To make the object class child
identifiable, the key attribute of employee – eno is also combined with the attribute
cname to construct a key for the object class child.

The similar situation exists if a join operation is applied in a source schema con-
taining an IDD relationship type.

employee

childeno

cname

child

eno cname employee

eno

child

eno cname

Fig.6. ORA-SS source schema
diagram of an IDD relationship

type

Fig.7. ORA-SS schema of the view
swapping employee and child

Fig.8. ORA-SS schema of the
view dropping employee

IDD,2,1:n,1:1

These examples show that when we design a view that destroys an IDD relation-
ship type, the key attribute of the parent object class of the IDD relationship type
should be added to the child object class to construct a key for the child. The follow-
ing additional rules indicate for each operation, how XML views should be designed
when IDD relationship types are involved.

Rule Proj_IDD. If an object class is a parent object class of an IDD relationship
type and is dropped in the view, then its key attribute must be added to the child ob-
ject class of the IDD relationship type to construct a key for the child.

Rule Join_IDD. If an object class is a child of an IDD relationship type and is ref-
erenced by another object class in the source schema, and a view is designed to join
the two object classes together, then the key attribute of the parent object class of the
IDD relationship type must be added to the child to construct a key for the child.

Rule Swap_IDD. If two object classes compose an IDD relationship type and are
swapped in the view, then the key attribute of the parent object class must be added to
the child object class to construct a key for the child.

In summary, a theorem may be derived based on the above sections.
Theorem 1. XML views designed based on all the above rules do not violate the

integrity constraints and semantics of the original XML documents.

3.4.6 View Validation Algorithm
In this section, we summarize all the design rules into an algorithm to validate XML
views. Our algorithm will automatically modify related part of the view schema ac-
cording to different operations so that the view is guaranteed to be valid.

Algorithm ValidateView
Input: ORA-SS schema diagram
Output: A valid ORA-SS view schema diagram

Do
 Switch (Operation) {
 Case (Drop an object class): //Projection operation
 if (the object class is a parent object class of an IDD relationship type){
 add the key attribute of the parent to the child object class of the IDD
 relationship type to construct a key for the child;
 } //Rule Proj_IDD
 drop attributes of the object class; //Rule Proj1
 drop relationship types containing the object class; //Rule Proj2
 handle the attributes of relationship types (drop or modify according to
 the view requirement); //Rule Proj2
 break;

 Case (Join two object classes): //Join operations
 if (the referenced object class is a child object class of an IDD relationship
 type){
 add the key attribute of the parent object class of the IDD relationship
 type to the child to construct a key for the child;
 } //Rule Join_IDD
 drop the relationship types that are below the referenced object class but
 contain object classes above the referenced object class; //Rule Join1

 handle the attributes of such relationship types (drop or modify according
 to the view requirement; //Rule Join1

 handle the relationship types and their attributes that are below the
 referenced object class and do not contain object classes above the
 referenced object class (drop or keep according to the view require-
 ment); //Rule Join2
 break;

 Case (Swap two object classes): //Swap operations
 If (the two object classes compose an IDD relationship type){
 add the key attribute of the parent object class to the child object class
 to construct a key for the child;
 } //Rule Swap_IDD
 move the attributes of each object class with them; //Rule Swap1
 keep attributes of relationship types containing the two object classes
 below the lowest participating object class in the relationship types;
 //Rule Swap2
 break;

 }
while (view design is not done);

The algorithm first uses a do-while clause to monitor the process of designing view

until the view is done. Then it uses a selection statement – switch clause to handle the
three operations – projection, join and swap, which may be repeated in the view. Once
an operation is applied in the view, the algorithm first checks if an IDD relationship
type is involved. If so, then it applies the corresponding additional rule for the opera-
tion. After that, the algorithm applies the normal rules for the operation. In this way,
the view will be guaranteed to be valid once it is done.

4 Related Work

Table 1. Comparison of ActiveViews system, MIX system and our approach

 Active Views
system [2]

MIX system
[5]

Our approach

Data model XML XML DTD ORA-SS
View defini-

tion language
OQL-style lan-

guage
XMAS lan-

guage
XQuery lan-

guage
Query lan-
guage

Lorel language XMAS lan-
guage

XQuery lan-
guage

Support pro-
jection, join and
swap operations

No No Yes

Support view
validation

No No Yes

Support
graphical views

design

No No Yes

Several prototype systems have been developed to support the design of XML

views. The Active Views system [2] is built on top of Ardent Software’s XML reposi-

tory [4], which is based on the object-oriented O2 system. In the Active Views sys-
tem, a view is presented as an object, which allows not only data, but also methods.
MIX (Mediation of Information using XML) [5] is another system that offers a virtual
XML view from its underlying heterogeneous sources. Table 1 compares our ap-
proach with the Active View system and MIX.

Our approach adopts the semantically rich ORA-SS data model to express both the
source and view schemas. This allows us to support a richer set of views compared to
Active Views and MIX. The Active Views system uses the Object Query Language as
a view definition language, and the Lorel language [3] as its query language over the
views. This requires the users to be familiar with two different languages. MIX devel-
ops its own XMAS language as the view definition language and query language. In
contrast, our approach directly adopts the W3C standard, XQuery as the query/view
language over the views. A view definition is differentiated from a query by its addi-
tional view declaration clause before FLWR expression. Finally, both the Active
Views system and MIX system do not provide for the validation of views. As a con-
sequence, these two systems cannot support valid XML views that apply projection,
join and swap operations.

5 Conclusions

 In this paper, we have proposed a systematic approach for valid XML views design.
The approach is composed of three steps. The first two steps are preparatory stages. In
first step, we transform an XML document into an ORA-SS schema diagram. In sec-
ond step, we enrich the ORA-SS schema diagram with necessary semantics for valid
XML views design. In third step, we develop a set of rules to guide the design of valid
XML views. We also give an algorithm to validate views. We have implemented our
approach into a CASE tool for designing XML views. In the future work, we will give
more formal grounding, such as query algebra underlying view definition. We will
also design query translation algorithm and provide support to update XML views in
the future.

References

1. S. Abiteboul. On views and XML. In Proceedings of the Eighteenth ACM Symposium on
Principles of Database Systems, ACM Press, pages 1-9, 1999.

2. S. Abiteboul, B. Amann, S. Cluet, A. Eyal, L. Mignet, and T. Milo. Active views for elec-
tronic commerce. In Int. Conf. on Very Large DataBases (VLDB), Edinburgh, Scotland,
pages 138-149,1999.

3. S. Abiteboul, D. Quass, J. McHugh, J.Widom, and J. L. Wiener. The lorel query language for
semistructured data. International Journal of Digital Libraries, Volume 1, No. 1, pages 68-
88, 1997.

4. Ardent Software. http://www.ardentsoftware.com.
5. C. Baru, A. Gupta, B. Ludaescher, R. Marciano, Y. Papakonstantinou, and P. Velikhov.

XML-Based Information Mediation with MIX. ACM-SIGMOD, Philadelphia, PA, pages
597-599, 1999.

6. Gillian Dobbie, Xiaoying Wu, Tok Wang Ling, Mong Li Lee. ORA-SS: An Object-
Relationship-Attribute Model for Semi-Structured Data. Technical Report TR21/00, School
of Computing, National University of Singapore, 2000.

7. Tok Wang Ling, Mong Li Lee, Gillian Dobbie. Application of ORA-SS: An Object-
Relationship-Attribute Model for Semi-Structured Data. In Proceedings of the Third Interna-
tional Conference on Information Integration and Web-based Applications & Services
(IIWAS), Linz, Austria, 2001.

8. http://www.w3.org/TR/xquery.
9. http://www.w3.org/XML/Schema.

Appendix: XML Document and XQuery in the paper

<db>

<project jno=”j001”>
 <part pno=“p001”>
 <price>100</price>
 <supplier sno=“S001”/>
 <supplier sno=“S002”/>
 </part>
</project>

</db>

<db>
<project jno=”j001”>
 <supplier sno=“s001”>
 <part pno=“p001”>
 <price> 100</price>
 </part>
 </supplier>
 <supplier sno=“s002”>
 <part pno=“p001”>
 <price> 100</price>
 </part>
 </supplier>
</project>

</db>

XDoc.1. An XML document conforming XDoc.2. Invalid view instance of the XML
 to the schema in Figure 1 document in XDoc.1

Create View As expensive-part
Let $p:= document(“spj.xml”)
 //part[price>80]
Return filter($p/../.. | $p/.. | $p |

$p/price)

<db>
<project jno=”j001”>
 <part pno=“p001”>
 <supplier sno=“S001”>
 <price>100</price>
 </supplier>
 <supplier sno=“S002”/>
 <price>100</price>
 </supplier>
 </part>
</project>

</db>

XDoc.3. Valid view instance of the XML XQuery.1. XQuery expression of the view
 document in XDoc.2 expensive-part

Create View As join-supplier
For $j in document(“spjr.xml”)
 //project
Return
 <project jno={$j/@jno}>
 {For $s In $j/supplier,
 $ref_s In document("spjr.xml")

//r pplier[@sno=$s/@sno]

{$ref_s/@sname}>

supplier>

</project>

etailer/su
 Return
 <supplier sno={$ref_s/@sno}
 sname=
 {$s/part}
 </
}

Create View As project-part
For $j In document("spj.xml")
 //project
Return
 <project jno={$j/@jno}>
 {For $pn In
 distinct($j//part/@pno)
 Let $p := $j//part[@pno=$pn]
 Return
 <part pno={$pn}>

 <average_price>
 {avg($p/price)}
 </average_price>
 </part>
 }

</project>

XQuery.2. XQuery expression of the view XQuery.3. XQuery expression of the view
 project-part join-supplier

Create View As swap-supplier-part
For $j In document("spj.xml")//project
Return
 <project jno={$j/@jno}>

{For $pn In distinct($j//part/@pno)
 Return
 <part pno={$pn}>
 {For $s In $j/supplier[part/@pno=$pn]
 Return
 <supplier sno={$s/@sno}>
 {$s/part[@pno=$pn]/price}
 </supplier>
 }
 </part>
 }

 </project>

XQuery.4. XQuery expression of the view swap-supplier-part

