
1

Automatic Generation of XQuery View Definitions
from ORA-SS Views

Ya Bing Chen Tok Wang Ling Mong Li Lee

School of Computing
National University of Singapore

{chenyabi, lingtw, leeml}@comp.nus.edu.sg

Abstract. Many Internet-based applications have adopted XML as the standard
data exchange format. These XML data are typically stored in its native form,
thus creating the need to present XML views over the underlying data files, and
to allow users to query these views. Using a conceptual model for the design
and querying of XML views provides a fast and user-friendly approach to re-
trieve XML data. The Object-Relationship-Attribute model for SemiStructured
data (ORA-SS) is a semantically rich model that facilitates the design of valid
XML views. It preserves semantic information in the source data. In this paper,
we develop a method that automatically generates view definitions in XQuery
from views that have been designed using the ORA-SS model. This technique
can be used to materialize the views and map queries issued on XML views into
the equivalent queries in XQuery syntax on the source XML data. This removes
the need for users to manually write XQuery expressions. An analysis of the
correctness of the proposed algorithm is also given.

1 Introduction

XML is rapidly emerging as the standard for publishing and exchanging data for
Internet-based business applications. The ability to create views over XML source
data, not only secures the source data, but also provides an application-specific view
of the source data [1]. Major commercial database systems provide the ability to ex-
port relational data to materialized XML views [18] [19] [20]. Among them, Micro-
soft’s SQL server is the only one that supports querying XML views by using XPath.
SilkRoute [13] [14] adopts two declarative language RXL and XML-QL to define and
query views over relational data respectively. XPERANTO [5] [6] [12] uses a canoni-
cal mapping to create a default XML view from relational data, and other views can
be defined on top of the default view. In addition, XQuery [17] is adopted to issue
query on views of relational data in [15]. Xyleme [10] defines an XML view by con-
necting one abstract DTD to a large collection of concrete DTDs with an extension of
OQL as the query language. ActiveView [2] [3] defines views with active features,
such as method calls and triggers, on ArdentSoftware’s XML repository using a view
specification language. In addition, XML views are also supported as a middleware in
integration systems, such as MIX [4], YAT [9] and Agora [21].

2

All these systems exploit the potential of XML by exporting their data into XML
views. However, they have the following drawbacks. First, semantic information is ig-
nored when presenting XML views in these systems. It is useful to preserve semantic
information since it provides for checking of the validity of views [8] and query opti-
mization. Second, users have to write complex queries to define XML views by using
their own language in these systems. Although XPERANTO adopts XQuery [17],
which is a standard query language for XML, it is not a user-friendly language as the
XQuery expression can be long and complex.

In contrast, we propose a novel approach to design and query XML views based on
a conceptual model. We adopt the Object-Relationship-Attribute model for SemiS-
tructured data (ORA-SS) [11] as our data model because it can express more seman-
tics compared to the DTD, XML schema or OEM. In our approach, XML files are
first transformed into the ORA-SS source schema with enriched semantics. Valid
ORA-SS views can be defined over the ORA-SS source schema via a set of operators
such as select, drop, join and swap operators [8]. A graphical tool that allows users to
design XML views graphically using these query operators has been developed in [7].
The validity of these views can be checked based on the semantics in the underlying
source data.

In this paper, we examine how view definitions in XQuery can be generated auto-
matically from the valid views that have been defined using the operators above based
on the ORA-SS model. Thus, users do not have to manually write XQuery expression
for views, which can be complex compared to simply manipulating a set of query
operators. The generated view definitions can be directly executed against the source
XML files to materialize the XML views. Further, users can use the same set of query
operators to issue queries on ORA-SS views, which are subsequently mapped into
equivalent XQuery queries on XML source data. Here, we develop a method to auto-
matically generate view definitions in XQuery. This method can be used to materialize
XML view documents, and map queries issued on ORA-SS views into equivalent que-
ries in XQuery on the source XML data. The correctness of the proposed method is
also provided.

The rest of the paper is organized as follows. Section 2 briefly reviews the ORA-SS
data model and the importance of its expressiveness. Section 3 introduces a motivat-
ing example to illustrate why the automatic generation of XQuery view definitions is
desirable. Section 4 presents the details of the algorithm to generate correct view
definitions in XQuery from valid ORA-SS views. Section 5 describes how XML
views can be queried using our approach, and we conclude in Section 6.

2 ORA-SS Data Model

The Object-Relationship-Attribute model for Semi-Structured data (ORA-SS) [12]
comprises of three basic concepts: object classes, relationship types and attributes. An
object class is similar to an entity type in an Entity-Relationship diagram or an ele-
ment in XML documents. A relationship type describes a relationship among object
classes. Attributes are properties that belong to an object class or a relationship type.

3

Fig. 1 depicts two ORA-SS schema diagrams s1 and s2 that have been transformed
from two XML files. Each schema diagram contains several object classes, denoted by
a labeled rectangle in the ORA-SS schema. Attributes of an object class are shown as
circles in the schema. The key attribute of an object class is denoted by a filled circle.
We observe that the value of the attribute price is determined by both supplier and
part. It is an attribute of relationship type (sp, 2, 1:n, 1:n), where sp denotes the name
of the relationship type, 2 indicates the degree of the relationship type, the first (1:n) is
the participation constraint of the parent object class (supplier in this case), and the
second (1:n) is the participation constraint of the child object class (part in this case)
in the relationship type. Fig. 1 also shows a key-foreign key reference from project to
project’, implying that each key value of project must appear as a key value of pro-
ject’. In general, we assume that key-foreign key references do not exist within one
ORA-SS schema. This assumption is reasonable because in most cases an object class
usually refers to another object class in another schema.

We observe that ORA-SS not only reflects the nested structure of semistructured
data, but it also distinguishes between object classes, relationship types and attributes.
Such semantics are lacking in existing semistructured data models including OEM,
XML DTD and XML Schema [16]. In designing XML views, these semantics are
critical in ensuring that the designed views are valid [8], that is, the views are consis-
tent with the source schema in terms of semantics. Note we use four operators to de-
sign valid XML views: the select operator imposes some where conditions on attrib-
utes; the drop operator removes object classes or attributes; the join operator combines
two object classes together; and the swap operator interchanges two object classes in a
path. The following example illustrates how we use these operators to design valid
views.

Example. Fig. 2 shows an ORA-SS view obtained by applying several query opera-
tors to the schemas in Fig. 1. First, we apply a join operator on project and project’:
joins1//project→s2//project’, where s1 and s2 are the two source schemas. The attributes of
project’, such as jno and jname can be grafted below project as its attributes. In addi-
tion, we can also graft the object class employee below project and maintain the rela-

part

project

qty

supplier

jno

spj,3,1:n,1:n

pno

sno

price

spj

jname

sp

employee

eno ename progress

je, 2, 1:1, 1:n

je

project'

sp, 2, 1:n, 1:n

pname

sname

factory

fno fname

pf,2,1:n,1:n

jno

s1 (file 1) s2 (file 2)

part

supplier

sname

project

spj,3,1:n,1:n

sp, 2, 1:n, 1:n
pno

jno

spj

pname

jname

factory

fno fname

pf,2,1:n,1:n

sno qty price

sp

Fig. 1. An ORA-SS source schema
transformed from XML files.

Fig. 2. An ORA-SS view of Fig. 1.

4

tionship type je and its attribute, since we do not violate any semantics in the source
schema. Following the join operator, we apply a swap operator to swap supplier and
project and drop employee: swaps/supplier↔s/supplier/part/project drops//employee, where s indi-
cates the current view schema. Since price is an attribute of the relationship type sp,
price cannot be placed below the object class part after the swap operator is applied.
Instead, it will be placed automatically below supplier in our system as shown in the
new view schema. Without the semantics captured in the ORA-SS schema diagram,
we may design an invalid view in which the attribute price still remains with the object
class part, thus resulting in inconsistency with the semantics in the original schema.

3 Motivating Example

After designing the views using the four operators, the next step is to generate view
definitions in XQuery that can be executed to materialize these views. A naive solu-
tion is to write the view definitions manually according to the ORA-SS views. How-
ever, view definitions in XQuery can be very complex, as we will illustrate.

Consider the ORA-SS source schema in Fig. 3. Fig. 4 shows a view that has been
designed using a swap operator on the object classes supplier and part, that is,
swaps/supplier �����������	��
	��

 Note that the attribute price does not move up with part, because
it is an attribute of the relationship type sp. The swap operator is able to handle this

part

supplier

sp, 2, 1:n, 1:n
pno

sno price

sp

supplier

part

sp, 2, 1:n, 1:n

sno

pno price

sp

1. let $pno_set := distinct-values
 ($in//part/@pno)
2. let $sno_set := distinct-values
 ($in//supplier/@sno)
3. return <db>
4. for $p_no in $pno_set
5. let $p := $in//part[@pno=$p_no]
6. return <part pno=”{$p_no}”>
7. {for $s_no in $sno_set
8. where some $p1 in $in//part

9. satisfies (exists($p1[@pno=$p_no])
 and (exists($p1
 [ancestor::supplier/@sno=$s_no]))
10. let $s :=$in//supplier[@sno=$s_no]
11. return <supplier sno=”{$s_no}”>
12. {$s/part[@pno=$p_no]/price}
13. </supplier>
14. }
15. </part>
16. </db>

Fig. 5. View definition in XQuery expression

Fig. 3. An ORA-SS source schema Fig. 4. An ORA-SS view schema

5

automatically. Fig. 5 shows the XQuery expression for the view in Fig. 4. The variable
$in represents the XML file corresponding to the source schema in Fig. 3.

It is clear that the XQuery expression is much more complex than the swap query
operator that generates the view. In general, the complexity and length of XQuery
view definitions increases dramatically as the number of object classes increases. The
likelihood of introducing errors in the view definitions also increases if users are to
manually define such views in XQuery. This problem can be addressed using our ap-
proach which provides a set of query operators for users to define views from which
XQuery expressions can be automatically generated.

4 Generation of XQuery View Definitions

The main idea in the proposed algorithm is to generate the definition of each object
class individually and then combine all the definitions together according to the tree
structure of the view. The definition of an object class comprises of a FLWR expres-
sion in XQuery. The FLWR expression consists of for, let, where and return clauses.
Basically, the algorithm first generates a where clause to restrict the data instances
represented by the object class (say o). Then it generates a for clause to bind a vari-
able to iterate over each distinct key value of o that are qualified by the where clause.
Finally, it generates a return clause to construct the instances of o.

While it is relatively straightforward to generate the for and return clauses for each
object class in a view, it is not a trivial task to generate the condition expressions in
the where clause, which restrict the instances of the object class in the view. This is
because there may exist relationship sets among the object classes. Thus, many differ-
ent object classes may exert influences on a given object class in the view. In order to
generate the correct condition expressions for an object class in a view, we use the fol-
lowing intuition, that is, the data instances for an object class in a view are determined
by all the object classes in the path from the root to the object class.

Definition. Given an object class o in an ORA-SS view, the path from the root of the
view to o is called the vpath of o. Object classes that occur in vpath of o, except for
the root and o itself, determine all condition expressions for object class o in the view.

By analyzing the object classes in the vpath of an object class o, we can capture all
their influences on o in a series of where conditions. In the next subsection, we first
determine the possible types of object class that can appear in a vpath. Then we pro-
vide a set of generic rules to guide the generation of where conditions for each type of
object class.

4.1 Analyzing Vpath

There are three types of object classes in the vpath of an object class o in any views
designed by the 4 operators mentioned before. The object classes in a vpath are classi-
fied based on their origin in the source schema.

6

Type I: For any object class o in a view schema, a Type I object class in its vpath
originates from some o’s ancestor or descendant in the source schema.

Type II: For any object class o in a view schema, a Type II object class in its vpath
originates from some descendant of some o’s ancestor in the source
schema. In other words, Type II object classes in o’s vpath are o’s sib-
lings, descendants of o’s siblings, o’s ancestors’ siblings, or descendants
of o’s ancestors’ siblings in the source schema.

Type III: For any object class o in a view schema, a Type III object class in its
vpath originates from the object classes in another source schema, whose
ancestor or descendant has a key-foreign key reference with o’s ancestor
or descendant in o’s source schema. They are generated in the vpath by a
single join operator only, or a single join operator and a series of swap
operators together.

The three object types introduced above include all the object classes in the vpath of a
given object class.

Example. Fig. 6 illustrates the three different object types. We design a valid view in
Fig. 6(b) based on the source schema in Fig. 6(a) using our operators [8]. Consider the
vpath of object class O in the view. The object classes B and P are the ancestor and
descendant of O respectively in the source schema (see Fig. 6(a)). Therefore, B and P
are Type I object classes in the vpath of O. On the other hand, the object class J is O’s
ancestor B’s descendant in the source schema. Therefore, J is a Type II object class in
the vpath of O. Finally, the object class K is from the source schema 1 in Fig. 6(a),
whose parent F has a key-foreign key reference with D, which is the parent of O.
Therefore, K is a Type III object class in O’s vpath that is obtained by first applying a
join operator to D and F so that K can be grafted below D as its child, and then apply-
ing swap operators so that K can become a parent of O.

AF

B C

D

O

E

H J

K L

M N
G

P

Type I

Type I

Type III

Type II

O

B

P

J

K

...

...

...

Vpath of O

Source schema 1 Source schema 2

 Fig. 6 (a). Two simplified ORA-SS source schema Fig. 6 (b). A simplified ORA-SS

view schema

7

4.2 Generating Where Conditions

Next, we present a set of rules to guide the generation of where conditions for each
type of object class. The generated where conditions, in bold, reflect the influence the
object classes exerts on o. We will use the notation vo to an arbitrary object class in
o’s vpath in the view. Note that vo is not the root of the views in the following figures.
To simplify discussion, we just present a path of the views that contains vo and o. The
key attributes of the two object classes will be referred to as o_no and vo_no respec-
tively in the following rules. Since vo is an ancestor of o in the view, and a depth first
search is employed to generate the query expression for each object class in the view,
the query expression for vo is generated before o. The variable $vo_no denotes the
current qualified key value of vo, and $in represents the XML source file.

Rule Type I_A. If vo is an ancestor of o in the source schema (see Fig. 7(a)), then Fig.
7(b) defines the where condition (in bold) to generate.

To understand the context for the where condition, we have also shown the let and

for clauses. Note that the let and for clauses are generated for the object class o only
once. The entire where conditions for the object classes in the vpath of o are linked to-
gether using “and” in a single where clause. The where condition generated by Rule
Type I_A indicates if an instance of o with key value $o_no is selected as a child of an
instance of vo with the current qualified key value $vo_no in the view, then there must
exist an instance of vo in the source that has a key value $vo_no and has a descendant
instance of o with key value $o_no.
Rule Type I_B. If vo is a descendant of o in the source schema (see Fig. 8(a)), then
Fig. 8(b) defines the where condition to generate.

Rule Type I_B is similar to Rule Type I_A except that the axis before o is an ances-

tor, instead of a descendant in the generated where condition.

let $o_no_set := distinct-values($in//o/@o_no)
for $o_no in $o_no_set
where some $vo1 in $in//vo satisfies (

 exists($vo1[@vo_no=$vo_no]) and
 exists($vo1[descendant::o/@o_no=$o_no]))

vo

o

vo

o

$in

view
schema

source
schema

vo_no

o_no

vo_no

o_no

Fig. 7(b). Condition generated by Rule Type I_A

let $o_no_set := distinct-values($in//o/@o_no)
for $o_no in $o_no_set
where some $vo1 in $in//vo satisfies (

 exists($vo1[@vo_no=$vo_no]) and
 exists($vo1[ancestor::o/@o_no=$o_no]))

Fig. 8(b). Condition generated in Rule Type I_B

o

vo

vo

o

$in

view
schema

source
schema

o_no

vo_no

vo_no

o_no

Fig. 7(a). Case for Rule Type I_A

Fig. 8(a). Case for Rule Type I_B

8

In the case where vo is a Type II object class in o’s vpath, vo has no ancestor-
descendant relationship with o. However, it still has influence on o through an inter-
mediate object class – the Lowest Common Ancestor of vo and o. Consider Figure 9.
If an instance of vo, say vo1, appears in the vpath of o in the view document, then vo1
must be under an instance of the Lowest Common Ancestor of vo and o, say lca1, in
the source document, which actually determines a set of instances of o, say (o1, o2,
…on), under lca1 in the source document. Therefore, vo1 determines (o1, o2, …on)
through lca1. The reason why we use the lowest common ancestor of the two object
classes as the intermediate object class is that it correctly reflects the restriction of vo
on o. Otherwise, we may introduce a wider range of instances of o, some of which are
not determined by vo. We have the following two rules for Type II object classes.
Rule Type II_ A. If vo is a Type II object class in o’s vpath and the Lowest Common
Ancestor of vo and o, say LCA, is also in the vpath of o in the view schema (see Fig.
9), then there is no need to generate a where condition for the restriction of vo on o.

Rule Type II_A states that we do not need to consider the influence of vo on o

when the Lowest Common Ancestor of vo and o is also in the vpath of o. This is be-
cause this influence will be considered when the algorithm processes the Lowest
Common Ancestor (LCA) as another object class in the vpath of o.
Rule Type II_B. If vo is a Type II object class in o’s vpath and the Lowest Common
Ancestor of vo and o, say LCA, is not in the vpath of o in the view schema (see Fig.
10 (a)), then Fig. 10 (b) defines the where condition generated.

Rule Type II_B presents the where condition in the case where the LCA does not

occur in the vpath of o. The condition states that if an instance of o with key value
$o_no is selected in the view under the instance of vo with the current qualified key
value $vo_no, then there must exist an instance of LCA in the source that has both a
descendant instance of o with key value $o_no and a descendant instance of vo with

LCA

o

vo

o

$in

view schemasource schema

vo

LCA

LCA

o

vo

o

$in

view schemasource schema

vo

vo_no o_no

vo_no

o_no

let $o_no_set := distinct-values($in//o/@o_no)
for $o_no in $o_no_set
where some $LCA in $in//LCA satisfies (

 exists($LCA//o[@o_no=$o_no]) and
 exists($LCA//vo[@vo_no=$vo_no]))

Fig. 10(b). Condition generated in Rule Type II_B

Fig. 9. Case for Rule Type II_A

Fig. 10(a). Case for Type II_B

9

key value $vo_no. In other words, the instances of vo and o must have a common an-
cestor instance of LCA.

Next, we process the case where vo is a Type III object class in the vpath of o. We
have vo and o that are linked together by the referencing and referenced object classes
of a join operator. Consider Figure 11 (a). We assume that vo and o originates from
two different schemas ($in1 and $in2). The influence of vo on o is as follows: an in-
stance of vo, say vo1, has an ancestor instance of the referenced object class, say ref-
erenced1, which in turn determines an instance of the referencing object class, say ref-
erencing1, which refers to the referenced1 by key-foreign key reference. As a
descendant of o, the instance of the referencing object class must determine an in-
stance of o, say o1. In this way, an instance of vo (vo1) determines an instances of o
(o1) through the referencing and referenced object classes together.

Rule Type III_A. If vo is a descendant of the referenced object class and o is an an-
cestor or descendant of the referencing object class in the source schema, and the ref-
erencing object class is in o’s vpath in the view schema (see Fig. 11), then there is no
need to generate a where condition.

Since the influence of vo on o will be considered when processing the referencing
object class, we do not need to generate a where condition for the restriction of vo on
o. In this case, o can be an ancestor or descendant of the referencing object class.

Rule Type III_B. If vo is a descendant of the referenced object class and o is an an-
cestor of the referencing object class in the source schema, and the referencing object
class is not in o’s vpath in the view schema (see Fig. 12(a)), then Fig. 12(b) defines the
where condition generated.

referenced o

referencing

vo

o

$in1 $in2

view schemasource schema

r_no o_no

r_no

vo_no

o_no

vo

vo_no

referencing

referenced referencing

o

vo

o

$in2

view schemasource schema

r_no

o_no

vo_no

o_no

vo

vo_no

referencing

let $o_no_set := distinct-values($in//o/@o_no)
for $o_no in $o_no_set
where some $referenced in $in1//referenced satisfies
(exists
 ($referenced[descendant::vo/@vo_no=$vo_no]))
and
 some $referencing in $in2//referencing satisfies (
 exists($referencing[@r_no=$referenced/@r_no])
and

exists($referencing[ancestor::o/@o_no=$o_no]))

referenced o

referencing

vo

o

$in1 $in2

view schemasource schema

r_no r_no

r_no

vo_no

o_no

vo

vo_no

Fig. 11(a). O as an ancestor of the
referencing in Rule Type III_A

Fig. 12(a). Case for Rule Type III_B Fig. 12(b). Condition generated in Rule Type III_B

Fig. 11(b). O as a descendant of the
referencing in Rule Type III_A

10

Rule III_B states that if an instance of o with key value $o_no is selected under the
instance of vo with the current qualified key value $vo_no, then there must exist an in-
stance of the referenced object class in source 1 ($in1) that has a descendant vo with
key value $vo_no. Moreover, there must exist an instance of referencing object class
in source 2 ($in2) that has a key value equal to the instance of the referenced object
class’s key value and has an ancestor instance of o with key value equal to $o_no.

Rule Type III_C. If vo is a descendant of the referenced object class and o is the ref-
erencing object class itself in the source schema(see Fig. 13 (a)), then Fig. 13 (b) de-
fines the where condition generated.

Rule Type III_C states that if an instance of o with key value $o_no is selected un-
der the instance of vo with the current qualified key value $vo_no, then there must ex-
ist an instance of the referenced object class, which has a key value equal to $o_no
and a descendant instance of vo with key value $vo_no.
Rule Type III_D. If vo is a descendant of the referenced object class and o is a de-
scendant of the referencing object class in the source schema, and the referencing ob-
ject class is not in o’s vpath in the view schema (see Fig. 14 (a)), then Fig. 14 (b) de-
fines the where condition generated.

Rule Type III_D is similar rule as Rule Type III_B except that o is now not an an-

cestor, but a descendant of the referencing object class.
Note the above set of rules for Type III object class handles the cases where vo is

always a descendant of the referenced object class in the source schema. A similar set
of rules can be derived for the cases where vo is an ancestor of the referenced object

let $o_no_set := distinct-values($in//o/@o_no)
for $o_no in $o_no_set
where some $referenced in $in1//referenced satisfies
 (exists($referenced[@r_no=$o_no]) and
 exists($referenced[ancestor::vo/@vo_no=$vo_no]))

referenced o(referencing) vo

$in1 $in2

view schemasource schema

r_no o_no vo_no

o_no

vo

vo_no

o(referencing)

Fig. 13(b). Condition generated in Rule Type III_C

vo

referencing

o o

$in1 $in2

view schemasource schema

referenced
vo

r_no

vo_no

r_no

o_no

vo_no

o_no

let $o_no_set := distinct-values($in2//o/@o_no)
for $o_no in $o_no_set
where some $referenced in $in1//referenced satisfies
(exist
($referenced[descendant::vo/@vo_no=$vo_no]))
and
some $referencing in $in2//referencing satisfies (
 exists($referencing[@r_no=$referenced/@r_no])
and exist
($referencing[descendant::o/@o_no=$o_no]))

Fig. 14(b). Condition generated in Rule Type III_D

Fig. 13(a) Case for Rule Type III_C

Fig. 14(a). Case for Rule Type III_D

11

class in the source schema. However, these sets of rules are not enough for all cases
where vo is a Type III object class in the vpath of o in the view. Note these rules con-
sider the case where vo is from the schema of the referenced object class and o is from
the schema of the referencing object class. We observe that vo can also originate from
the schema of the referencing object class and o from the schema of the referenced ob-
ject class according to the definition of Type III in Section 4.1. In this case, similar set
of rules can still be derived to generate the where condition of vo on o.

4.3 Algorithms

Fig. 15 presents the details of the algorithm Generate_View_Definition to generate
view definitions in XQuery. The inputs are valid ORA-SS views. The algorithm first
generates a set of let clauses for all object classes in the view using a depth first search
method. Each of these clauses binds a global variable to all possible distinct key val-
ues of a different object class. Next, it generates a root element for the view because
each XML document must have a root element. The root is above the first object class
in the ORA-SS views. By default, this root element is not shown as an object class in
the ORA-SS views. Finally, for each child object class of the root, say o, it calls the
algorithm Generate_ObjectClass_Definition to generate a definition for o and all its
descendants. Each of the definition is contained in a pair of curly brackets, indicating
that they are sub-elements of the root element.

Generate_ObjectClass_Definition (Fig. 16) returns the view definition of o and all
its descendants in v. The functions ProcessTypeI, ProcessTypeII and ProcessTypeIII
take vo and o as inputs and generate where conditions that reflect the restriction of vo
on o based on the rules described in the previous section. Note attributes that are be-
low o and shown as sub elements of o in the source file are generated as sub-elements
of o (line 16-18). For each child of o, the same algorithm is invoked recursively until
all the descendants of o have been processed (line 24-28).

Algorithm
 Generate_View_Definiton
Input: view schema v;
 source schema s
Output: view definition of v
1. for each object class o in the view
2. generate a let clause:

 “let $ono_set := distinct-
 values($in//o/@o_no)”

3. generate the start tag for root of the
view:

 “return <root>”
4. for each child o of the root of v {
5. generate a start bracket: “{”
6. Generate_Objectclass_Definition(o)
7. generate a end bracket: “}”
8. }
9. generate the end tag for root of the

view:
 “</root>”

Fig. 15. Algorithm to generate view definition

12

4.4 Correctness of Algorithm

The intuition behind Generate_ObjectClass_Definition is that the data instances repre-
sented by an object class in an ORA-SS view are determined by all the object classes
in its vpath. A pre-condition for the algorithm is: o is an object class of an ORA-SS
view and the number of the descendants of o in the view is n (n ≥ 0). After executing
the algorithm with o as input, we have result = Generate_Objectclass_Definition(o).
Then a postcondition states what is to be true about the generated result which is given
by result = XQuery expression of a sub tree rooted at o. The proof of correctness takes
us from the precondition to the postcondition.

(a) n = 0. This is the base case where o has no children. For each object class in the
vpath of o, we generate the where condition according the rules that correspond
to the object type. A return clause is generated to construct the result of o. Thus,
the algorithm generates and returns the correct XQuery expression for o itself.

(b) n > 0. In this inductive step, o will have children. We have an inductive hypothe-
sis that assumes Generate_Objectclass_Definition(o,v) returns the correct XQuery
expression of a sub tree rooted at o for all the object class o ������������	�j�	�
-1
where j is the number of descendants of o. From the base case, the algorithm first

Algorithm
 Generate_ObjectClass_Definition
Input: object class o
Output: view definition of o and its
 descendants
1. generate a for clause

“for $o_no in $o_no_set”
2. generate an empty where clause
 for o;
3. for each object class vo in the
 vpath of o{
4. if vo belongs to type I
5. ProcessTypeI(vo, o)
6. if vo belongs to type II
7. ProcessTypeII(vo, o)
8. if vo belongs to type III
9. ProcessTypeIII(vo, o)
10. append the generated condition

 in the where clause;
11.}
12. if there is any selection operator
 applied to o
13. generate a where condition
 for all the operators in the
 where clauses

14. generate a let clause:
 “let $o := $in//o[@o_no = $o_no]”

15. generate a return clause:
 “return <o o_no=”{$o_no}”
 distinct($o/@attributes)>”

16. for each attribute of o shown as a
 sub element of o in the source file {

17. generate it as a sub element of o:
 “{distinct($o/@attribute)}”
18. }
19. if o has no child {
20. generate an end tag for o: “</o>”
21. return the generated definition;
22. }
23. else {
24. for each child object class co of o{
25. generate a start bracket: “{“
26. Generate_View_Definition(co)
27. generate an end bracket: “}“
28. }
29. generate an end tag for o: “</o>”
30. return the generated definition;
31. }

Fig. 16. Algorithm to generate object class definition

13

generates the correct XQuery expression for o itself. Then it processes each child
of o, say c. By the inductive hypothesis, GenerateViewDefinition(c) will return
the correct XQuery expression of a sub tree rooted at c ��
�����	�j�	�
-1 where j is
the number of descendants of c. By combining the query expressions of o and its
children, the algorithm returns the correct XQuery expression of a subtree rooted
at o.

5 Querying ORA-SS Views

Having automatically generated the view definition in XQuery, we can now execute it
against XML files using existing XQuery engines. This allows users to browse the ma-
terialized view documents. In this section, we demonstrate how this approach can be
used to support queries on the ORA-SS views.

In general, users may only be interested in a particular item of the view with some
selection conditions. That is, the queries on views consist of only selection operations.
We can compose these queries with the generated XQuery view definition to rewrite
the query on the view. Specifically, we insert the conditions into the corresponding
where clauses in the view definition. Then we execute the rewritten query against
source XML files to generate the query result.

In situations where users issue more complex queries involving swap or join opera-
tors, we will directly apply the query to the view and generate the ORA-SS result tree
of the query, which is treated as an ORA-SS view in our system. We can then use the
same proposed algorithm to generate its view definition in XQuery, which is in fact
the rewritten query on source XML files. Thus, we map any query on ORA-SS views
into an equivalent XQuery on source XML files.

A query that is composed of several operators typically requires a rather complex
XQuery expression. Compared to approaches that directly employ XQuery or other
query languages to issue queries on views, we offer a much simpler solution with our
approach that exploits a conceptual model and a set of query operators.

6 Conclusion

In this paper, we have described a method to automatically generate XQuery view
definitions from views that are defined using the ORA-SS conceptual model. The pro-
posed technique can be used to materialize the views and map queries issued on XML
views into the equivalent queries in XQuery syntax on the source XML data. This re-
moves the need for users to manually write XQuery expressions. Although visual
query languages proposed for XQuery language such as XML-GL [22] also aim to
solve the problem, these visual query languages do not have a mechanism that guaran-
tees that the constructed views are valid. In contrast, our approach provides such a fa-
cility based on ORA-SS data model. To the best of our knowledge, this is the first
work to employ a semantic data model for the design and query of XML views. Using

14

a conceptual model for the design and querying of XML views provides a fast and
user-friendly approach to retrieve XML data. Ongoing work aims to generate query
definitions for ORA-SS views in the case where XML source data are stored into an
object-relational database by employing the semantics in the source data.

References

1. S. Abiteboul. On views and XML. 18th ACM Symposium on Principles of Database Sys-
tems, pp. 1-9, 1999.

2. S. Abiteboul, S. Cluet, L. Mignet, et. al., “Active views for electronic commerce”, VLDB,
pp.138-149, 1999.

3. S. Abiteboul, V, Aguilear, S, Ailleret, et. al., “XML repository and Active Views Demon-
stration”, VLDB Demo, pp.742-745, 1999.

4. C. Baru, A. Gupta, B. Ludaescher, et. al., “XML-Based Information Mediation with MIX”,
ACM SIGMOD Demo, 1999.

5. M. Carey, J. Kiernan, J. hanmugasundaram, et. al., “XPERANTO: A Middleware for Pub-
lishing Object-Relational Data as XML Documents”, VLDB, pp. 646-648, 2000.

6. M. Carey, D. Florescu, Z. Ives, et. al., “XPERANTO: Publishing Object-Relational Data
as XML”, WebDB Workshop, 2000.

7. Y.B. Chen, T.W. Ling, M.L. Lee, “A Case Tool for Designing XML Views”, DIWeb
Workshop, 2002.

8. Y.B. Chen, T.W. Ling, M.L. Lee, “Designing Valid XML Views”, ER Conference, 2002
9. V. Christophides, S. Cluet, J. Simeon,“On Wrapping Query Languages and Efficient XML

Integration”, SIGMOD, pp. 141-152, 2000.
10. S. Cluet, P. Veltri, D. Vodislav, “Views in a large scale xml repository”, VLDB, pp. 271-

280, 2001.
11. G. Dobbie, X.Y Wu, T.W Ling, M.L Lee, “ORA-SS: An Object-Relationship-Attribute

Model for SemiStructured Data”, Technical Report TR21/00, School of Computing, Na-
tional University of Singapore, 2000.

12. C. Fan, J. Funderburk, H. Lam, Et. al., “XTABLES: Bridging Relational Technology and
XML”, IBM Research Report, 2002.

13. M. Fernandez, W. Tan, D. Suciu, “Efficient Evaluation of XML Middleware Queries”,
ACM SIGMOD, pp. 103-114, 2001.

14. M. Fernandez, W. Tan, D. Suciu, “SilkRoute: Trading Between Relations and XML”,
World Wide Web Conference, 1999.

15. J. Shanmugasundaram, J. Kiernan, E. Shekita, et. al., “Querying XML Views of Relational
Data”, VLDB, pp. 261-270, 2001.

16. “XML Schema”, W3C Recommendation, 2001.
17. “XQuery: A Query Language for XML”, W3C Working Draft, 2002.
18. Microsoft Corp. http://www.microsoft.com/XML.
19. Oracle Corp. http://www.oracle.com/XML.
20. IBM Corp. http://www.ibm.com/XML.
21. I. Manolescu, D. Florescu, D. Kossmann, “Answering XML Queries over Heterogeneous

Data Sources”, VLDB Conf, 2001, pp.241-25
22. S. Ceri, S. Comai, E. Damiani, et. al., “XML-GL: a graphical language of querying and re-

structuring XML documents”, WWW Conf, pp. 151-165, 1999

