
Resolving Structural Conflicts in the Integration of
XML Schemas: A Semantic Approach

Xia Yang Mong Li Lee Tok Wang Ling

School of Computing, National University of Singapore
3 Science Drive 2, Singapore 117543

{yangxia, leeml, lingtw}@comp.nus.edu.sg

Abstract. While the Internet has facilitated access to information sources, the
task of scalable integration of these heterogeneous data sources remains a
challenge. The adoption of the eXtensible Markup Language (XML) as the
standard for data representation and exchange has led to an increasing number
of XML data sources, both native and non-native. Recent integration work has
mainly focused on developing matching techniques to find equivalent elements
and attributes among the different XML sources. In this paper, we introduce a
semantic approach to resolve structural conflicts in the integration of XML
schemas. We employ a data model called the ORA-SS (Object-Relationship-
Attribute Model for Semi-Structured Data) to capture the implicit semantics in
an XML schema. We present a comprehensive algorithm to integrate XML
schemas. Compared to existing methods, our algorithm adopts an n-nary
integration strategy that takes into account the data semantics, importance of a
source, and how the majority of the sources model their data when resolving
structural conflicts such as attribute/object class conflict and ancestor-
descendant conflict. Further, redundant object classes and transitive relationship
sets are removed to obtain a more concise integrated schema.

1 Introduction

Advances in the Internet infrastructure have facilitated access to large amounts of
information sources. Many of these sources are heterogeneous, and an integrated
access to these sources remains the focus of ongoing research. Much work has been
done on the integration of relational databases, ranging from semantic enrichment
using a semantic data model such as the Entity-Relationship model or the object-
oriented data model, translation algorithms, and conflict resolution [8][9][10][22].
Integration systems such as [4][7][15][16][18][21] have also been developed.

The adoption of the eXtensible Markup Language (XML) as the standard for data
representation and exchange has led to an increasing number of XML data sources,
both native and non-native. Native XML data sources are essentially XML files with
an associated XML schema, while non-native XML sources such as the relational
database publish their data in XML format together with the XML schema. Given the
semistructured nature of XML data that can be modeled as a tree or a graph, recent
research in integrating XML data sources has mainly concentrated on schema
matching [4][12][21].

The task of integrating XML data sources is non-trivial for the following reasons:
1. The XML Schema or DTD is lacking in semantics. While this has prompted

proposals to augment the schema with information such as keys [3], and functional
dependencies [11], it remains unclear whether the relationship between the
element objects is binary or n-nary, and whether an attribute belongs to an element
object class (e.g. title of an element book) or to the relationship set between
elements (e.g. quantity of books supplied by a supplier to a bookshop).

2. The source schemas are heterogeneous, containing various conflicts involving
naming conflict, cardinality conflict, and structural conflict such as attribute/object
class conflict and ancestor-descendant conflict. There is no unique global schema,
but it is subject to the needs of applications and the perspective of the users.
To address these issues, we develop a semantic approach to the integration of XML

schemas. We employ the semantically rich model ORA-SS [5] for semistructured data
to capture the semantics of the underlying XML data. An n-nary integration strategy
that provides a global view of the source schemas is adopted. The integrated schema
obtained takes into consideration underlying data semantics such as different
relationship sets among equivalent object classes, the importance of the source
schemas, and how the majority of the sources schemas modeled their data. Structural
conflicts such as attribute-object class conflict and ancestor-descendant conflict are
resolved in the process. Finally, redundant object classes and transitive relationship
sets are identified and removed to obtain a more concise integrated schema.

The rest of the paper is organized as follows. Section 2 presents some background
material including a brief description of the ORA-SS model. Section 3 gives a
motivating example and highlights the various features that we consider in our
integration strategy. Section 4 describes the details of the algorithm to integrate XML
schemas. Section 5 discusses related work, and we conclude in Section 6.

2 Preliminaries

In this section, we first describe the ORA-SS model that we utilize in our integration
strategy. This is followed by the assumptions we make in our integration approach.

2.1 ORA-SS Model

The ORA-SS model (Object-Relationship-Attribute model for Semi-Structured data)
is a semantically rich data model that has been designed for semi-structured data [5].
The rich semantics of ORA-SS allows us to capture more of the real world semantics,
and use them for integration. The ORA-SS model distinguishes between objects,
relationships and attributes. The relationships between objects are expressed
explicitly. An object class in the ORA-SS model is similar to the concept of entity
type in an ER model and classes in the object-oriented model. They coincide with the
concept of elements in XML. An object class may be related to another object class
through a relationship set. Attributes are properties, and may belong to an object class
or a relationship set.

Here, we use the ORA-SS Schema Diagram as the conceptual model for XML
data. The object classes such as “project” and “part” in Fig 1(d) are represented by
labeled rectangle. The relationship set between the object classes are denoted by
name, n, p, c, where name denotes the name of the relationship, n is the degree of the
relationship, p is the participation constraint of the parent object class in the
relationship, and c is participation constraint of the child object. The participation
constraints are defined using the min:max notation. The labeled circles denote
attributes, and the filled circles denote keys. Attributes are properties of object class
or the relationship set. For example, in Fig 1(d), “jno” is the attribute of object class
“project”, while “quantity” is the attribute of relationship set “jps”. The degree of
relationship set “jps” is 3, which is a ternary relationship set involving object classes
“project”, “part” and “supplier”. For details on ORA-SS, please refer to [5].

(a) Schema S1, sw1=1 (b) Schema S2, sw2=1

 (c) Schema S3, sw3=7 (d) Schema S4, sw4=1

Fig. 1. ORA-SS Schema Diagrams for four XML sources.

2.2 Assumptions

The input to the proposed integration algorithm is a set of ORA-SS schemas, which
has been generated from XML schemas. Details of the transformation of XML
schema to the ORA-SS model are given in [2]. Inputs from the users may be solicited
to enrich the ORA-SS schema with the necessary semantics.

project

partjno

pno

local funds

lno

foreign funds

fno

project
manager

project manager

mno name email

organization

org name

abbreviation full name

project

supplierjno

sno
name project manager

mno

staff

ordinary staff

eno

part

pno

js,2,1:n,1:n

jsp,3,1:n,1:n

name

org name

abbreviation full name

address

part

supplier
sno

pno quantity

jps,3,1:n,1:n

jps

project

jno

jp,2,1:n,1:n

funds

uno

project manager

namemno

The output of the algorithm is an integrated schema, also modeled in ORA-SS.
Since queries on the integrated schema will be subsequently mapped to equivalent
queries on the data sources, the integrated schema should contain all the information
modeled in the original schemas. Further, the integrated schema should be as simple
and concise as possible to facilitate users’ understanding.

For meaningful integration to occur, we assume that the various sources model
similar domains. Object classes with the same label are considered to be semantically
equivalent, that is, they refer to the same object class in the real world. Similarly,
attributes of the same object class (or relationship set) with the same label are also
semantically equivalent, that is, they refer to the same property of an object class (or
relationship sets) in the real world. The object classes (or relationship sets) in the
different original schemas that refer to the same real world object (or relationship)
may have different names. We assume that the renaming step have been done before
the integration process. Note that there may also exist different relationship sets
between the same object classes. In such cases, we assume they will be assigned
different labels.

3 Motivating Example

In this section, we illustrate some of the unique features of the integration strategy we
offer. Consider the ORA-SS schema diagrams for four XML sources in Fig 1. The
swi under each schema indicates the source weight, i.e., the importance of a source.
This is determined by users or computed based on some statistic information.

A. Resolve attribute-object class conflict.
This occurs when a concept has been modeled as an attribute in one schema, and as an
object class in another schema. For example, the attribute “project manager” in
schema S1 is semantically equivalent to the object class “project manager” in schema
S2 of Fig 1. This conflict can be easily resolved by mapping the attribute to an object
class (see Fig 2).

Fig. 2. Schema S1’: Attribute “project manager” in schema S1 of Fig 1 has been
transformed into an object class “project manager” in S1’.

B. Resolve generalizations and specializations.
A generalization exists when an object class in one schema is the union of several
object classes in another schema. Consider again Fig 1. The object class “funds” in
schema S4 is a generalization of the object classes “local funds” and “foreign funds”
in schema S1. The integrated schema will include the generalization hierarchy as
shown in Fig 3.

project

partjno

pno

local funds

lno

foreign funds

fno

project manager

mno

Fig.3. Build a generalization hierarchy from S1 of Fig 1.

 C. Merge the schemas to obtain an integrated graph.
Fig 4 shows the graph obtained from merging the schemas S1’, S2, S3 and S4. Each
node in the graph denotes an object class, and edges represent the relationship sets
between the object classes. To facilitate processing, attributes are first omitted from
the integrated graph. The attributes will be incorporated into the final integrated
schema. Note that only the equivalent relationship sets will merged together.
Semantically different relationship sets between the equivalent object classes will be
treated as different relationship sets, as indicated by the different edges.

The edges in the integrated graph are weighted as follows. Since we have “project”
as the parent of “part” in schemas S1 and S4, the weight of the edge from “project” to
“part” is given by the sum of the weights of these schemas, that is, 1+1=2. In the same
way, since “project” is the parent of “staff” in schema S3 only, the weight of this edge
is 7. Since the edge from “supplier” to “part” in S3 is actually involved in two
relationship sets jsp and sp, its edge weight would be given by 7*2=14.

Fig. 4. Integrated graph obtained from the schemas in Fig 1.

D. Transform integrated graph to resolve structural conflicts and remove
redundancy.
We proceed to transform the graph to differentiate the semantically different
relationships between equivalent object classes, identify cycles to resolve ancestor-
descendant conflicts, remove redundant object classes and redundant relationship sets.
Redundant relationship sets include relationship sets that are derived from projecting
higher-degree relationships in the schema and transitive relationship sets.

D-1. Differentiate semantically different relationship sets between equivalent
object classes.
Consider the schemas S5 and S6 in Fig 5 that are structurally the same, except for the
additional object class “contract” in S6. The relationship sets between the same object

local funds

lno fno

funds

foreign funds

project

supplier

name project manager

staff

ordinary staffpart

js,2,1:n,1:n

jsp,3,1:n,1:n

organization

org name

funds

foreign fundslocal funds

2
7

142

7 2

7

2

7

1

1

7

1 1

classes are semantically different. The relationship set in schema S5 indicates that the
person owns the house, while that in schema S6 indicates that the person rents the
house. We first merge the two schemas to obtain the integrated graph G56 before
transforming it to G56’ (see Fig.5). The edges from object classes “house1” and
“house2” to the object class “house” in G56’ indicate foreign key-key references.
Note that the relationship phc between the “person”, “house” and “contract” is
represented explicitly in the transformed graph.

Schema S5 Schema S6

Integrated graph G56 Transformed graph G56’

Fig. 5. Different relationship sets among equivalent object classes.

D-2. Remove relationship sets that are projections of higher degree relationship
sets.
A schema may model a relationship set that is a projection of another relationship set
in another schema. For instance, if we integrate the schemas S1 and S3, the integrated
graph will contain the binary relationship set between “project” and “part” from
schema S1, and the ternary relationship set between “project”, “supplier” and “part”
from schema S3. Since the former is a projection of latter relationship set, we remove
the binary relationship set and keep the ternary relationship set in the integrated
graph. Subsequently, we can issue a query “/project//part” on the integrated schema to
retrieve all the “part” information.

D-3. Resolve ancestor-descendant conflicts.
An ancestor-descendant conflict arises when a schema models an object class A as an
ancestor of another object class B, and the other schema models B as the ancestor of
A. The simplest form of this conflict is the parent-child conflict in schemas S3 and

person

house
name

address

ph1,2,1:n,1:n

type

person

house
name

address

ph2,2,1:n,1:n

type
contract

cid time

phc,3,1:1,1:n

person

house1

address

ph1,2,1:n,1:n

house2

address

ph2,2,1:n,1:n

house

address

contract

phc,3,1:1,1:n

person

house

ph2,2,1:n,1:n

contract

ph1,2,1:n,1:n

phc,3,1:1,1:n

S4. We have “supplier” as the parent of “part” in S3, while “part” is the parent of
“supplier” in S4. This conflict creates a cycle “supplier” → “part” → “supplier” in the
integrated graph of Fig 4. One of the edges which represent the inverse relationship
sets can be removed to break the cycle. We propose to remove the edge with the
lowest edge weight, that is, the edge from the less important schema. In this case, the
edge from “part” to “supplier” with an edge weight of 2 will be removed.

Fig 6 shows another example of an ancestor-descendant conflict. The object class
“module” is the ancestor of “tutor” in schema S7, while “tutor” is the ancestor of
“module” in S8. This conflict will create a cycle in the integrated graph G78. The
conflict can be resolved by removing one of the edges that has the least weight.
Further, the edge removed should represent a relationship set that can be derived by a
series of joins and projections of the other relationship sets involved in the cycle.

If the source weights are sw7=2, sw8=1, then the weight of the edge from “tutor”
to “module” is 1. Since this edge has the lowest edge weight, we will remove it from
G78. The transformed graph obtained at this point will be G78’.

On the other hand, if the source weights are sw7=1, sw8=2, then the weight of the
edge from “tutor” to “module” is 2, and will not be removed. The weights of the
edges from “module” to “lecturer”, and from “lecturer” to “tutor” are both 1. Since
both of these edges have the lowest edge weight, we can remove either one of them,
which will result in the transformed graph G78(a) or G78(b).

 Schema S7 Schema S8 Integrated graph G78

 Transformed graph G78’ Transformed graph S78(a) Transformed graph S78(b)

Fig. 6. Example of an ancestor-descendant conflict.

D-4. Remove transitive relationship sets.
Transitive relationships sets are also redundant, and can be removed so that the
resulting integrated graph will be concise. For example, the relationship set between
“project” and “project manager” in Fig 4 is a transitive relationship set that can be
obtained from the relationship sets between “project” and “staff”, and between “staff”

tutor

moduletno

module

module

lecturermno

lno tutor

tno

module

lecturer

tutor

tutor

module

lecturer

module

lecturer

tutor

lecturer

tutor

module

and “project manager”. Thus, we can remove the transitive relationship set from the
integrated graph.

Fig. 4 also contains another transitive relationship set between “project manager”
and “org name”. We observe that the object class “organization” does not have any
attribute, and has only one child object class “org name”. This object class from
schema S2 cannot contain any instances in the corresponding XML data files. Since
“organization” is a redundant object class, we propose to remove it and its associated
relationship sets from the integrated graph in Fig 4. As a result, the relationship set
between “project manager” and “org name” is no longer a transitive relationship set.

D-5. Remove multiple parent nodes.
If a node has more than one incoming edges in an integrated graph, then it is called a
multiple parent node. Consider the integrated graph G9-10 in Fig 7. The two
incoming edges to “student” indicate two different relationship sets. The attribute
“mark” can only belong to one of them, namely, the relationship set “jd”. In the
transformed graph G9-10’, we will split the multiple parent node and represent these
two relationship sets separately.

 Schema S9 Schema S10 Integrated graph G9-10

Transformed Graph G9-10’

Fig. 7. Example of a multiple parent node.

Fig 8 shows the transformed graph obtained for the source schemas in Fig 1 after
addressing the above concerns. For instance, when solving ancestor-descendant
conflict, the cycle “supplier”����������	��
���� �� �������� ��� ��� ����
“part”���	��
���� �� ��
����� ��� �edundant object class “organization” and its
associated edges are deleted. Transitive edges as “project”��project manager” and
“project”������� are also removed. The transformed graph is augmented with
attributes such as “quantity” for the ternary relationship set “jsp”. The final integrated
schema is shown in Fig 9. Note that the attribute “quantity” belongs to the
relationship set “jps” in schema S4 (see Fig. 1), which is a ternary relationship set
associating object classes “project”, “ supplier” and “part”. Since the node “part” is at

school

studentscname

snu email

project

stduentjno

snu address

jd

jd

mark

school

student1

snu

student2

snu

student

snu

project

mark

jd

jd

school

stduent

project

the lowest level compared to “supplier” and “project”, the attribute “quantity”
becomes an attribute under “part”.

Fig. 8. Transformed graph obtained from Fig 4.

Fig. 9. Final integrated schema.

4. Integration Algorithm

In this section, we first discuss some of the terms used before giving the details of the
integration algorithm.

If a node i has more than one incoming edges in an integrated graph, then we
called it a multiple parent node. If a directed edge sequence <ei0,i1, ei1,i2, …… eim,i(m+1),
ei(m+1),i0> occurs in an integrated graph, then a cycle exists. We observe that an
ancestor-descendant conflict occurs if and only if there is a cycle in the integrated
graph.

There are essentially four main steps in our integration algorithm:
1. Preprocessing.
2. Construct integrated graph.
3. Transform graph.
4. Augment graph with attributes.

The input is a set of schemas modeled using the ORA-SS model. The output is an
integrated ORA-SS schema. The third step Transform Graph aims to identify
semantically different relationships among equivalent object classes, resolve ancestor-
descendant conflicts, and remove redundant object classes and redundant relationship

project

supplier

name project manager

staff

ordinary staffpart

js,2,1:n,1:n

jsp,3,1:n,1:n

org name

funds

foreign fundslocal funds

project

supplierjno

sno
name project manager

mno

staff

ordinary staff

eno

part

pno

js,2,1:n,1:n

jsp,3,1:n,1:n

name

org name

abbreviation full name

local funds

funds

foreign funds

lno fnoemailquantity address

jsp

sets such as transitive relationship sets. The resulting integrated schema preserves
data semantics in the sources, considers how the majority of the sources model the
data, and is concise.

Step 1 Preprocessing.

1.1 Resolve attribute-object class conflict.
If the same concept is expressed as an object class in one schema, and as an
attribute in another schema, then convert the attribute to an equivalent object
class. The attribute becomes the key of this new object class.

1.2 Resolve generalizations and specializations.
When one object class is the generalization object class of some object
classes of other schemas, it becomes the parent node of these object classes.

Step 2 Construct Integrated Graph

2.1 Merge the equivalent object classes and relationship sets from original
schemas to obtain an integrated graph G such that each node is an object
class, and edges denote relationship sets between the object classes. Note
that attributes are not included in G.

2.2 Compute the weights of the edges.
 For each edge e in G do

 Let e1, e2,… ek be the equivalent edges in the original schemas s1, s2, …sk.
 Let sw1, sw2, … swk be the source weights of the schemas s1, s2, …sk

respectively.
 Let n1, n2, … nk be the number of relationship sets the edge is involved in

the schemas s1, s2, …sk
 Set the weight of the edge ew = sw1*n1+sw2*n2+ … swk*nk.

Step 3 Transform Graph

3.1 Differentiate semantically different relationship sets between equivalent
object classes.

 For each node ns in G do
If ns has k outgoing edges {es1, es2, …, esk} to the same node nt Then
 Create k duplicate nodes {nt1, …, ntk} of nt;

Each edge esi (from ns to nt), 1 ≤ i ≤ k, becomes an edge from ns to nti;
 For each nti, 1 ≤ i ≤ k, do

Create a foreign key-key reference from the key of nti to that of nt.
 For each child node c of node nt do
 If c is involved in an n-nary relationship set that includes esi
 Then Move c and its descendent nodes from nt to nti .

3.2 Remove relationship sets that are projections of higher degree relationship

sets.
For each n-nary relationship set R in G do
Let N = {n1, …, nk} be the set of nodes involved in relationship R.
For each relationship set R’ that involves a subset of nodes in N do

If R’ is a projection of R

Then Remove R’ from the integrated graph.
3.3 Resolve any ancestor-descendant conflicts which create cycles in G.

For each cycle in G do
Let eij be the edge with the smallest edge weight in the cycle.
If eij can be derived from other relationship sets in the cycle.
Then Remove eij from G.

3.4 Remove redundant relationship sets and redundant object classes.
For each multiple parent node n in G do

Let P be the set of parent nodes of n.
While |P| > 1 do

Let pmax ∈ P
Let <n0 , n1, …, nk> be the path from pmax to n, where n0 = pmax, nk = n,
and k > 1.
/* remove redundant object classes with no attribute and only one
child object class. */
For each node ni in the path, 0 < i < k, do

If ni has no attributes and no sub-object classes besides ni+1
Then Remove ni and its associated edges from G;

Create an edge between ni-1 and ni+1;
P = P – {pmax};
If the edge from pmax to n can be derived from <n0 , n1, …, nk>
Then Remove the transitive edge from pmax to n in G.

3.5 Remove multiple parent nodes.
For each multiple parent node nm in G do

Let nm have k incoming edges e1, e2, …, ek from nodes n1, n2, …, nk

respectively.
 Create k duplicate nodes {nm1, …, nmk} of nm;
 Each edge ei (from ni to nm), 1 ≤ i ≤ k, becomes an edge from ni to nmi;

 For each node nmi, 1 ≤ i ≤ k, do
 Create a foreign key-key reference from the key of nmi to that of nm.

For each child node c of node nm do
 If c is involved in an n-nary relationship set that includes ei
 Then Move c and its descendent nodes from nm to ni .

Step 4 Augment Graph with Attributes

4.1 Map the transformed graph G to an equivalent ORA-SS schema S.

4.2 Augment the schema with the attributes of object classes.

4.3 Augment the schema with attributes of relationship sets.

5. Related Work

Research in data integration has focused on various aspects to integrate information
from multiple sources. Most of the work has focused on the matching problem to find

equivalent elements among the different sources. These work include XClust [12],
CUPID [14], SKAT [16][17], and Xyleme [19]. A taxonomy and a survey of
matching approaches are given in [6].

Having obtained a set of equivalent elements, the next step is to obtain an
integrated schema. [7] use schema learning to generate a set of tree grammar rules
from the DTDs in a class and optimizes the rules to transforms them into an integrated
view. Fig 10 shows the integrated schema that [7] will obtain. Since the method does
not take into account the underlying semantics of the data, the attribute “quantity” is
considered to belong to “supplier”. Further, the relationship set between “project” to
“project manager” is transitive relationship set, which is redundant. The relationship
set from “part” to “supplier” and “project” to “part” is redundant. In contrast, the
integrated schema obtained by our approach preserves the underlying data semantics
and is concise (see Fig 9).

LSD [4] employs instance information and machine learning techniques in their
integration work. This is because instances contain more information than the
schemas. For example, if the phone number of a given element have significant
commonalities, the phone numbers are more likely to be the office phones of
employees, rather than home phones. However, the number of instances is very much
larger than that of the schemas, hence this method is very costly.

All these work do not take into consideration the importance of the individual data
sources, and how the majority of the local schemas model their data. In contrast, our
proposed method employs the ORA-SS conceptual model which is able to capture the
semantics necessary for the resolution of structural conflict during integration. The n-
nary strategy that we adopted provides a global view of the local sources, and is faster
compared to the binary strategy, whose intermediate schemas will grow with the
number of sources. The binary strategy will not be able to utilize the source
importance and how the majority of the sources model the data.

Fig. 10. Integrated schema obtained by [7].

project

supplierjno

sno

name project manager

mno

staff

ordinary staff

eno

part

pno

js,2,1:n,1:n

jsp,3,1:n,1:n

name

quantity

local funds

lno

foreign funds

fno

funds

uno

email address

org name

abbreviation full name

6. Conclusion

In this paper, we have introduced a semantic approach to resolve structural conflicts
in the integration of XML schemas. We employed the ORA-SS semantic data model
to capture the implicit semantics in an XML schema. We presented a comprehensive
n-nary algorithm to integrate XML schemas. Compared to existing methods, our
algorithm takes into account the data semantics, the importance of a source, and how
the majority of the sources model their data. Structural conflicts such as
attribute/object class conflict, ancestor-descendant conflict are resolved in our
approach. We also remove redundant object classes and relationship sets such as
transitive relationship sets, and relationship sets, which are projections of higher
degree relationship sets in order to obtain a concise integrated schema.

References

1. S.Castano, V. Antonellis, S. C. Vimercati, M. Melchiori. An XML-Based Framework for
Information Integration over the Web. IIWAS, 2000.

2. Y.B. Chen, T.W. Ling, M.L. Lee. Designing Valid XML Views. ER, 2002.
3. P. Buneman, S. Davidson, W. Fan, C. Hara, W.C. Tan. Keys for XML. WWW, 2001.
4. A. Doan, P. Domingos, A. Levy. Learning Source Descriptions for Data Integration.

WebDB, 2000.
5. G. Dobbie, X. Wu, T.W. Ling, M.L. Lee. ORA-SS: An Object-Relationship-Attribute

Model for Semi-structured Data. Technical Report TR21/00, National University of
Singapore, 2000.

6. E. Rahm, P. Bernstein. On Matching Schemas Automatically. MSR Tech. Report MSR-TR-
2001-17, 2001.

7. E. Jeong, C.-N. Hsu. Induction of Integrated View for XML Data with Heterogeneous
DTDs. ACM CIKM, 2001.

8. T.W. Ling, M.L. Lee. Relational to Entity-Relationship Schema Translation Using Semantic
and Inclusion Dependencies, in Journal of Integrated Computer-Aided Engineering, John-
Wiley Publishers, Vol 2, No 2, pages 125-145, 1995.

9. M.L. Lee, T.W. Ling. Resolving Structural Conflicts in the Integration of Entity-
Relationship Schemas. OOER, 1995.

10. M.L. Lee, T.W. Ling. Resolving Constraint Conflicts in the Integration of Entity-
Relationship Schemas. ER, 1997.

11. M.L. Lee, T.W. Ling, W.L. Low. Designing Functional Dependencies for XML, EDBT,
2002.

12. M.L. Lee, L.H. Yang, W. Hsu, X. Yang. XClust: Clustering XML Schemas for Effective
Integration, ACM CIKM, 2002.

13. D. Maier. Theory of Relational Databases. Computer Science Press, 1983.
14. J. Madhavan, P.A. Bernstein, E. Rahm. Generic Schema Matching with Cupid. VLDB,

2001.
15. R. Mello, S. Castano, C.A. Heuser. A Method for the Unification of XML. Information

and Software Technology Journal, 2002.
16. P. Mitra, G. Wiederhold and J. Jannink. Semi-automatic Integration of Knowledge

Sources. Fusion, 1999.
17. P. Mitra, G. Wiederhold, M. Kersten. A Graph-Oriented Model for Articulation of

Ontology Interdependencies. EDBT 2000.

18. F. Naumann, U. Leser, J.C. Freytag. Quality-driven Integration of Heterogeneous
Information Systems. VLDB, 1999.

19. C. Reynaud, J.-P. Sirot, D. Vodislav. Semantic Integration of XML Heterogeneous Data
Sources. IDEAS, 2001.

20. http://www.cogsci.princeton.edu/~wn
21. Xyleme. A dynamic warehouse for XML Data of the Web. IEEE Data Engineering

Bulletin 24(2):40-47, 2001.
22. L.L. Yan, T.W. Ling. Translating Relational Schema with Constraints into OODB

Schema. IFIP DS-5 Semantics of Interoperable Database Systems. 1992.

