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Abstract. Query rewriting is a fundamental task in query optimization and data 
integration. With the advent of the web, there has been renewed interest in data 
integration, where data is dispersed among many sources and an integrated 
view over these sources is provided. Queries on the integrated view are rewrit-
ten to query the underlying source repositories. In this paper, we develop a 
novel algorithm for rewriting queries that considers the XML hierarchy struc-
ture and the semantic relationship between the source schemas and the inte-
grated schema. Our approach is based on the semantically rich Object-
Relationship-Attribute model for SemiStructured data (ORA-SS), and guaran-
tees that the rewritten queries give the expected results, even where the inte-
grated view is complex. 

1   Introduction 

Many query rewriting algorithms have been developed for answering queries using 
views in relational databases and in mediators. When answering queries using views, 
the objective is to find efficient methods to answer a query using a set of materialized 
views over the database, instead of accessing the database itself [5, 14, 16, 17].  

In data integration, many systems construct a global or mediated schema from nu-
merous heterogeneous data sources [6, 13, 18]. Users issue queries on the global 
schema, and the system will rewrite the query to the local sources. Each local source 
may not necessarily contain all the information needed to answer the query. Partial 
results from various local sources are combined to produce the result for the query.  

When integration is carried out over XML repositories, query rewriting algorithms 
need to take into consideration the hierarchical structure of XML schemas. This gives 
rise to structural conflicts which need to be resolved during the rewriting process [22]. 
XML schemas such as DTD and XML Schema lack the semantic information neces-
sary for schema integration and query rewriting. Although proposals have been put 
forth to augment DTD and XML Schema with information such as keys [2], and 
functional dependencies [10], their semantics remain limited.  

In this paper, we describe a rewriting algorithm for integrated views over XML re-
positories. The proposed algorithm utilizes the ORA-SS model [11] which provides 
the necessary semantic information to produce expected answers even when the inte-
grated view is complex. In contrast to the work in [12] which describes how rela-



tional databases can be integrated into an XML global schema, we assume that the 
local sources are XML repositories. XML schemas are first transformed to ORA-SS 
schemas with enriched semantics [3]. An ORA-SS integrated schema can be obtained 
using the algorithm in [21]. Compared to existing global-as-view approaches which 
incorporate the integrated view definition in the unfolding process, our approach uses 
a mapping table that is created during the integration process to rewrite queries. We 
also use a query allocation table to find groups of local schemas that together can 
answer a user query. When a query is decomposed to subqueries on the local schemas, 
the subqueries for each group of local schemas are composed, and answers from the 
composed queries are combined to give the expected results. 

The rest of the paper is organized as follows. Section 2 reviews the ORA-SS 
model. Section 3 describes the mapping table and the query allocation table. Section 4 
gives the details of the proposed query rewriting algorithm. Section 5 compares our 
approach with related work and we conclude in Section 6. 

2   ORA-SS Model 

Our rewriting algorithm employs the ORA-SS model which is a semantically rich 
data model designed for semistructured data [11]. This model distinguishes between 
objects, relationships and attributes. An object class in the ORA-SS model is similar 
to the concept of an entity type in an ER model. An object class may be related to 
other object classes through a relationship type. Attributes are properties, and may 
belong to an object class or a relationship type. An attribute of an object class or 
relationship type in an ORA-SS schema may be represented as an attribute or sub-
element in XML document. The main difference between the ORA-SS model and the 
ER model is that the ORA-SS model has a tree-like structure, which is more suitable 
for XML data. The nesting of the objects is reflected directly in the ORA-SS model. 
Other concepts that can be modeled in ORA-SS diagrams and not in ER diagrams 
include the ordering of elements and attributes, and fixed and default attribute values. 
An algorithm to translate XML schemas to the ORA-SS Schema Diagram is given in 
[3]. Note that user input may be needed to identify some semantics such as attributes 
of relationship types.  
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<project jno=”j01”> 
    <part pno=”p01”>  
        <supplier sno=”s01”>  
            <quantity>500</quantity> 
        </supplier> 
    </part> 
</project> 

 
Fig. 1(a). An XML document     Fig. 1(b) ORA-SS schema of document in Fig. 1(a) 

Fig. 1 shows an XML document and the corresponding ORA-SS schema diagram. 
Object classes “project” and “part” are denoted by labeled rectangles. The label 
“jps,3,1:n, 1:n” denotes a ternary relationship type “jps” involving object classes 
“project”, “part” and “supplier”, with parent cardinality 1:n and child cardinality 1:n. 



That is, parts in a project may have one or more suppliers and a supplier can supply 
one or more parts to one or more project. Labeled circles denote attributes, and filled 
circles indicate identifiers. Attributes with labeled edges are relationship type attrib-
utes. For example, “jno” is an attribute of object class “project”, while “quantity” is 
an attribute of relationship type “jps”. Details on ORA-SS can be found in [11]. 

3   Mapping Table and Query Allocation Table 

The proposed query rewriting algorithm utilizes two constructs: a mapping table and 
a query allocation table. A mapping table is created when an integrated schema is 
derived from the local schemas. This table contains the mappings from the integrated 
schema to the local schemas. We use the path-to-path mapping defined in [4]. The 
path from the root to the object class or attribute is captured in the mapping, so that 
one can tell the context of the object class or attribute. This will differentiate object 
classes and attributes with the same labels but different paths.  
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Fig. 2. S12345 is the integrated schema of local schemas S1, S2, S3, S4 and S5 
 

Table 1. Mapping table for integrated schema S12345 in Fig. 2 
 
Integrated schema Local schema 

S12345/museum S1/museum, S3/museum, S5/museum 
S12345/museum/mname S1/museum/mname, S3/museum/mname,  

S5/museum/mname 
S12345/museum/painting S1/museum/painting, S2/painting, S4/artist/painting 
S12345/museum/painting/pname S1/museum/painting/pname, S2/painting/pname,  

S4/artist/painting/pname 
S12345/museum/painting/artist S2/painting/artist, S4/artist
S12345/museum/painting/artist/aname S2/painting/artist, S4/artist/aname
S12345/museum/sponsor/funds S3/museum/funds, S5/museum/sponsor/funds 
… … 
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Consider Fig. 2 where schema S12345 is an integration of the local schemas S1, S2, 
S3, S4, and S5. Table 1 shows a subset of the mapping table generated during the 
integration process. The first column of the mapping table gives the path from the 
root to each object class or attribute in the integrated schema; the second column 
shows the local schema id and the path to the equivalent object classes or attributes in 
the local schemas. When the mapping is not one-to-one, XQuery functions or user-
defined functions are given in the second column 

A query in XQuery format has two main parts: the first part contains the selection 
conditions, and the second part describes how the result is restructured. A query allo-
cation table stores the selection condition paths and the return result paths of a query, 
as well as the local schemas where the data for these paths can be found. Details on 
the construction of the query allocation table are given in Section 4.1. 

4   Query Rewriting 

In this section, we will present our approach to rewrite a query on the integrated 
schema to query the local data sources. Partial information from various local data 
sources may need to be combined to produce the results of the user query. There are 
four steps in the proposed algorithm: 

Step 1. Build the query allocation table. 
Step 2. Group local schemas to form join groups that answer the user’s query.  
Step 3. Decompose user query to subqueries on the local sources. 
Step 4. Compose subqueries for local schemas in a join group. 

4.1   Build Query Allocation Table 

A query allocation table (QAT) consists of a selection condition table and a return 
result table. The path of each selection condition and the return result is inserted into 
the selection condition table and the return result table respectively. The associated 
schemas identified from the mapping table are inserted into the corresponding rows. 
Two special cases need to be considered which can be treated as two rules.  

Case 1: If a path corresponds to a branch in an ORA-SS schema with n (n>1) rela-
tionship types, it must be split into n subrows, one for each relationship type. 
Any attributes of an object class or a relationship type will appear in the row with 
their object class or relationship type.  

Case 2: If a path contains "//" or "/*/" and does not contain any recursive relationship 
type, then the row that stores the original is retained and rows are created to store 
the expansion of each path. An expanded path that contains more than one rela-
tionship type is handled using Case 1. If "//" or "/*/" involves some recursive re-
lationship type, then “//” or “/*/” will not need to be expanded. 

Note that recursive relationship types are represented in the ORA-SS schema dia-
gram by using reference arrow to point to some ancestor in the same path. These 



cases identify the relationship types involved in the query so that they can be handled 
properly and the results returned are expected and correct. This also highlights the 
advantage of using ORA-SS schema diagrams to distinguish between binary and n-
ary relationship types and treat them properly in the algorithm. For example, n-ary 
relationship types should not be split into n-1 binary relationship types in the query 
allocation table. 
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Example 1: Consider the schemas in Fig 3, where schema S1234 is an integrated 
sc

ject 
jno} 

pno} 
 return {$s}} </part>} 

</projec

Table 2. Query Allocation Table for Query Q1 
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Fig. 3. S123  integrated schema of S1, S2, S3 and S4 

hema of schemas S1, S2, S3, and S4. We issue query Q1 on the integrated schema 
to retrieve information about projects and their parts, and which supplier supplies the 
part to the project. Table 2 shows the query allocation table for query Q1. We note 
that the relationship type among project, part and supplier is a ternary relationship 
type. Hence, in the return result table, the path “/project/part/supplier” is not split into 
two paths. Since the local schema S4 does not model this ternary relationship type, it 
is not associated with this path. This prevents the retrieval of wrong results by joining 
the sources in S3 and S4. 

Query Q1: for $j in /pro
   return <project> {$j/
 {for $p in $j/part 
 return <part>{$p/

{for $s in $p/supplier    
t> 

 

Selection Condition Table: Empty 
Return Result Table: 

/project/jno 
/project/part/pno S1, S2, S3 
/project/part/supplier S1, S2,  

hema S12345, which retrieves the names of artists that have works in a museum with 
name “field”. The query allocation table is shown in Table. 3. The aim of QAT is to 
find the join groups. Since the rewritten queries will need to refer to the user query on 
the integrated schema, the QAT does not need to contain the details of selection con-
ditions such as “field” in Q2. Note /museum//aname is expanded into two XPath 



expressions /museum/painting/artist/aname and  /museum/sculpture/artist/aname each 
of which are further split into two paths because of the binary relationship types. The 
path “/museum//aname” is retained and rows for each expansion of this path are in-
serted in the QAT. 

Query Q2: for $m in /museum[mname=”field”],$a in distinct-values($m//aname) 

 
able 3. Query Allocation Table for Query Q2 

 
S1, S3, S5 

   return <artist> {$a} </artist> 

T

Selection Condition Table :  
/museum/mname 

Ret e: 

4.2   Identify Local Sources to Answer User Query 

Next, we need to determine which local schemas must be combined to get the ex-

ery allocation table (QAT) to find the 
joi

3: Consider the schemas in Fig. 4. The attribute “location” in S12345 is a 
co

“/book/author” in the 
Sel

S3 

urn Result Tabl
/museum//aname 
/museum/painting S1 
painting/artist/aname S2, S4 
/museum/sculpture S5 
sculpture/artist/aname S5 

pected results. These groups of local schemas are called join groups. The local sche-
mas in each join group must contain all the paths required for the selection condition 
and must have at least one path for the result.  

Algorithm GenerateJoinGroups scans the qu
n groups. Lines 1-5 create an ordering on the local schemas based on the rows in 

which they first occur in the QAT and store the ordered list in lt. A local schema is 
low in the ordering if it first occurs in the top row and high in the ordering if it first 
occurs in the bottom row of the QAT. Lines 6-31 use a stack to find the join groups. 
The local schemas are considered based on the ordering in the list lt from lowest to 
highest. Initially the lowest local schema is pushed onto the stack, and the next 
schema to be pushed onto the stack is the next lowest that occurs in a different row. 
When the schemas on the stack cover all the selection condition paths in the QAT, we 
output them as a join group. The top schema is popped off the stack, and the algo-
rithm goes on to find the next schema which could contribute to the user query. The 
algorithm scans the schemas in the order of lt, so there is no duplication or missing 
join groups. 

Example 
mbination of the attributes “address” and “postal code” in S5. The query Q3 re-

trieves the year and title of the books that were written by “Tom” in the year “2000”. 
The corresponding query allocation table is shown in Table 4.  

Algorithm GenerateJoinGroups first looks at the first row 
ection Condition Table, and adds S1, S2, S3 in the list lt. Then it checks the sec-

ond row “/book/year”, and adds S4 in the list lt. Thus, the lt has local schema order as 
S1, S2, S3, and S4. After the order is computed, S1 is first pushed on the stack, and 
S2 is then considered. Since it does not add any extra paths, it is not pushed on the 



stack. S3 is considered and because it does cover extra paths, it is pushed on the stack. 
Together S1 and S3 cover all the path information in the QAT, so {S1, S3} is output 
as a join group. S3 is then popped off the stack, S4 is considered. Together S1 and S4 
cover all the path information, and {S1, S4} is output as a join group. {S2, S4} and 
{S3} are output after that. 

Note that {S2, S3} is not a join group, because although they cover all the path in-
fo

al result is found by taking the union of all the answers from the different 
joi

 
_________________________________________________________ 

e qat;  

 lt;  
t 

d of row i 
 and not 

   add schemaij to list lt; 

schemai is not in the top row in qat 

the stack st; 
ws of qat 

Output {schemai}; 

j=i+1 to n if schemaj occurs in the rows, 

push schemaj on the stack st; 
 included all 

rmation in the selection condition table of the QAT, S2 does not cover any more 
path information that S3 does not cover and consequently would not add new answers 
to the result of the query. Note that {S3} is a join group, even though {S1, S3} is also 
a join group. The result from the rewritten query in {S1, S3} can return the result as 
Q2, while {S3} can return the partial result which has missing information of the title 
of book.  

The fin
n groups. Given that the relationship type information is captured in the ORA-SS 

model, the union can be based on the relationship type information. For each relation-
ship type, we take the deep union [23], that is, we take the union of the objects if and 
only if all of their ancestors are the same. 
 

Algorithm GenerateJoinGroups 
  Input: Query allocation tabl
  Output: join groups 
1. create an empty list
2. for i=1 to num_of_row of qa
3.     for j=1 to num_of_schema_i
4.         if schemaij is present in the rowi
in list lt 
5.          
6. n=the number of local sources in qat; 
7. create an empty stack st; 
8. for i=1 to n from lt 
9. {     
10.    if 
11. break; 
12.    push schemai on 
13.    if schemai is present in all ro
14.    { 
15. 
16. st=null; 
17. continue; 
18.    } 
19.   for 
which the other schemas in st do not occur in, and 
schemaj does not occur in all the rows that the top 
element of st occurs in 
20.    { 
21. 
22. if (the local schemas in st has
the path information in qat) 



23. { 
24.         outp
split by”,” in a “{}”; 
25.     pop the to
26. } 
27.    } 
28.    if 
formation of the selection condition table and at leas
one result in return result table) 
29. output all the schemas in 
by”,” in a “{}”; 
30.    st=null; 
31.} 
______

ut all the schemas in the stack st 

p schema off the stack st;  

(j= =n and st has included all the path in-
t 

the stack st split 

___________________________________________ 
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Query Q3: for $b in /book  where $b/author=”Tom” and $b/year=”2000” 

 

 Query Allocation Table for Query Q3 

 

Return Result Table:       
 

4.3   Decompose User Query to Subqueries on Local Sources 

This step decomposes the user query into queries on the local schema based on the 

when joining the subqueries. 

S1, S2, S3

book
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Fig. 4. S  is the integrated schema of local schemas S1, S2, S3, S4, S5 

             return <result> {$b/year/text()} {$b/title/text()} </result> 

Table 4.

Selection Condition Table:   

 

join groups. Subqueries are composed to compute the answers in the same join group 
in Step 4. Hence, in addition to retrieving the data required by the user query, we also 
need the data necessary to join the parts of the answers from different local schemas 
together. We call the classes that are necessary for joining the parts of answers as join 
object classes. The key of the join object class is used for testing the equivalence 
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A join object class depends on the semantics of the schema. We have 3 cases: 
Case 1: For a join group, if there are n paths in the QAT from different local schemas 
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with a common ancestor in the user query, then the least common ancestor in
user query is a join object class. An object class O is the least common ancestor 
of paths P1 and P2, if O is an object class that occurs in both P1 and P2, and O 
does not have any descendant object class that also occurs in P1 and P2.  

e 2: For a join group, if the paths in the QAT are from different local schemas, 
and there is an object class that is the end of one path and the start of th
path, then this intermediate object class is a join object class. 

e 3: For a join group, if two attributes of the same relationship type in a user 
query are from different local schemas, then all the object clas
relationship type are join object classes. 
xample 4: Recall Example 3 and the join group {S1, S3}. S1 provides 
ok/title”, “/book/author” and S3 provide

er the query Q3, the subqueries from S1 and S3 need to be composed using the key 
of their least common ancestor i.e. the key “isbn” of the join object class “book”.  
We first consider the case where the local schemas are projections of the integrated 
schema. The rewritten query for a local schema will effectively be a projection of 
user query with the join object class identifier included in the return part of the re-
written query. The rewritten query can be derived as follows: 

1.  For every path in the let part, for part, where part and  return part of the user 
query, retain the path if it exists in the local schema.  

2.  Add the path to any join object class identifiers that are relevant to this local 
schema in the join group being considered. 

When the local schemas are not projections of the integrated schema, the query 
eed to be rewritten based on the local schem

w to rewrite a user query for a local schema where the subquery on the local 
schema returns only one object class or attribute. Then we discuss how to rewrite a 
user query for a local schema where the subquery on the local schema returns many 
object classes or attributes. 

4.3.1   Subquery returns o

case is for queries involving more than one object class. 

Case A1. Queries involve one object class or attribute 
An object class in an integrated schema can originate 

an attribute in a local schema, or it can be derived from o
one local schema.  

Case A1-i.  Integrated object class originates from a source object class. 
When an integrated object class is mapped to an equivalent object class 

cal schema, but the path from the root to the equivalent object class is different
e bindings in the for clause or let clause are changed according to the mapping 

table that specifies the path of the equivalent source object class. 



Example 5: Consider the schemas in Fig. 2. Query Q4 on the integrated schema 
S12345 retrieves all the information on the object class “funds”, which is in path 
“/museum/sponsor/funds”: 

Query Q4: for $f  in /museum/sponsor/funds   
        return  <result> {$f} </result> 

Based on the mapping table, we have S12345/museum/sponsor/funds: 
S3/museum/funds, S5/museum/sponsor/funds. This indicates that the query can be 
rewritten to query local sources S3 and S5. The rewritten query on source S5 will be 
the same as Q4, while the query on S3 will be as follows: 

Query Q4_S3: for $f in /museum/funds    
                   return  <result> {$f} </result> 

Case A1-ii. Integrated object class originates from an attribute. 
An object class can also originate from an attribute, because a concept can be ex-

pressed as an attribute in one schema, and as an object class in another schema. When 
rewriting such queries, variable bindings in the for clause or let clause are changed 
according to the mapping table that specifies the path of the equivalent attribute; the 
equivalent object class is created in the return clause with the attribute as an attribute 
of this object class.   

Example 6: The following query is on the integrated schema S12345 of Fig. 2. 
Query Q 5 retrieves the information of artists of the painting with pname “hero”. 

Query Q5:  for $p in /museum/painting 
          where $p/pname=”hero”    

                  return  <result> {$p/artist} </result> 
Query Q5 will be rewritten for S2 and S4. Since schema S2 (see Fig. 2) models 

“artist” as an attribute of the object class “painting”, Query Q5_S2 will compute the 
information for artist on local schema S2: 

Query Q5_S2:  for $p in /painting 
             where $p/pname=”hero”    

return <result> <artist> <aname> {$p/artist/text()} </aname> 
</artist>  </result> 

Case A1-iii. Integrated object class or attribute originates from a set of object classes 
(attributes) or vice versa. 

When one object class (attribute) in the integrated schema is the combination of 
many object classes (attributes) of another local schema or vice versa, XQuery or 
user-defined functions can be used to substitute the path in the user query.  

Example 7: Consider the schemas in Fig. 4. Query Q6 retrieves the publisher loca-
tion of the book with isbn “7-5053-4849-3/TP.2370” on the integrated schema S12345: 

Query Q6: for $b in /book 
                  where  $b/isbn=”7-5053-4849-3/TP.2370” 
         return <result>{$b/publisher/location}</result> 

Q6 will be rewritten on S5. The mapping in the mapping table shows that 
S12345/book/publisher/location:string-join((S5/book/publisher/address/text(), 
S5/book/publisher/postalcode/text()),“ ”). We assume that the attribute “location” is 



expressed by the address followed by a space and the postal code. The query on S5 is 
shown in Query Q6_S5. It combines the address and postal code by the XQuery func-
tions from the mapping table. The rewritten query on S5 will be: 

Query Q6_S5: for $b in /book 
                    where  $b/isbn=”7-5053-4849-3/TP.2370” 
                       return <result> <location> {string-join(($b/publiser/address/text(), 
                                 $b/publisher/postalcode/text()),” ”)}</location> </result> 

Case A2. Query involves more than one object classes.  
When the number of object classes in the query path is more than one, we need to 

consider the structural relationship type between the object classes. There are two 
cases: (1) object classes are swapped in the integrated schema, and (2) siblings in a 
local schema are mapped to ancestor and descendent in the integrated schema. 
Case A2-i.When object classes in the integrated schema are swapped in the hierarchy 
compared to the local schema, the path in the subquery needs to be rewritten based on 
the path of the local schemas. 

Example 8: The following query on the integrated schema S12345 in Fig. 2 retrieves 
all the “museum” which have the paintings by artist “David”. 

Query Q7: for $m in /museum where $m/painting/artist/aname=”David” 
                  return<museum>{$m/mname/text()}</museum> 
The join groups are {S1, S2} and {S1, S4}. In join group {S1, S4}, the join object 

class is painting for S4. The projection subquery on S4 is: 
Query Q7_S4’: for $p in /painting where $p/artist/aname=”David” 
                         return<painting>{$p/pname}</painting> 
The path expression in the where clauses are changed to the corresponding object 

class (attributes) by using /../. The rewritten query on S4 is: 
Query Q7_S4:  for $p in/artist/painting where $p/../aname=”David” 

               return <painting>{$p/pname}</painting> 
This query needs to be joined with the subquery for S1 to get the final result. 

Case A2-ii. When two object classes have an ancestor-descendant relationship type in 
the integrated schema, but they are siblings in the local schema, then the least com-
mon ancestor of these object classes must be used as binding variables to connect 
them. The related path in the where and return clause must be revised based on the 
structure of the local schemas.  

Example 9: In Fig. 5, students work for projects, and students have their labs. The 
lab also has coordinators. Consider the query Q8 on the integrated schema S123, 
which retrieves a project lab coordinator where pno is “p01”.  

Query Q8: for $p in /project where $p/@pno=”p01” 
         return <result>{$p/student/lab/coordinator}</result> 

The join groups are {S1, S3} and {S2, S3}. The return clause in Q8 shows that the 
query path is from $p to lab. In order to rewrite the query for schema S1, the algo-
rithm looks for the nearest ancestor node that is common to both project and lab. 
Student is then bound to the variable in the for clause as follows:  



Query Q8_S1: for $s in /student     where $s/project/@pno=”p01” 
                return  <result>{$s/lab/@lno}</result> 

This query needs to join with the subquery for S3 to get the final result. 
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Fig. 5.  S123 is the integrated schema of local schemas S1, S2, S3 

 

4.3.2   Subquery returns many object classes or attributes. Chen et al. in [3] 
introduce an algorithm for the automatic generation of XQuery view definitions for 
ORA-SS views, focusing on the view definitions for hierarchical structures of XML. 
Due to space limitations we do not cover this case in this paper except to note that 
their algorithm can be used to rewrite such queries. 

4.4   Compose Subqueries for Join Group 

When joining subqueries on local schemas in the same join group, the identifier of 
the join object classes must be tested for equivalence. 

We start by considering the basic case where the same object attributes are from 
different local schemas. To compose subqueries from these local schemas in join 
groups, the clauses for, where, and return are combined together with the join condi-
tion equivalence test inserted in the where clause.  

We allow the return results to have missing information. The parent object will not 
be removed from the return result if it has a missing child. For each return object or 
attribute, the join equivalence condition test related to this return object or attribute is 
nested in the appropriate part of the query.  

Example 10: Consider the schemas in Fig. 4. and query Q9 that retrieves year and 
title of the books that were written by “Tom” in year “2000” and retrieves the pub-
lisher name if the book’s publisher location is Singapore. 

Query Q9: for $b in /book    where $b/author=”Tom” and $b/year=”2000” 
     return<result>{$b/year/text()} {$b/title/text()}{ 
   for $p in $b/publisher 

   where contains ($b/publisher/location/text(),”Singapore”) 
  return<publisher> {$b/publisher/name} </publisher> } 

</result> 
The join groups are {S1, S3, S5}, {S1, S4, S5}, {S2, S4, S5} and {S3, S5}. We 

show the query example for the join group {S1, S3, S5}. The user query is decom-



posed into subqueries on the local schemas S1, S3, and S5. The join object class is 
“book” for these local schemas. The subqueries on S1, S3 and S5 are shown below: 

Query Q9_S1:  for $b in /book 
                    where $b/author=”Tom” 
                   return <result> {$b/isbn/text()} {$b/title/text()} </result> 
Query Q9_S3: for $b in /book 

          where $b/author=”Tom” and $b/year=”2000” 
              return <result> {$b/isbn/text()} {$b/year/text()} </result> 
Query Q9_S5: for $b in /book  
          where contains ($b/publisher/address/text(),”Singapore”) 

         return<result>{$b/isbn/text()} 
        <publisher>{$b/publisher/name} </publisher></result> 

The composition of the subqueries for local schemas S1, S3 and S5 are as follows: 
for $b1 in doc(“S1.xml”)/book, $b3 in doc(“S3.xml”)/book 
where $b1/author=”Tom” and $b3/author=”Tom” and $b3/year=”2000”  
and $b1/isbn=$b3/isbn 
return <result>{$b3/year/text()} {$b1/title/text()} 

{for $b5 in doc(“S5.xml”)/book   
where contains ($b5/publisher/address/text(),”Singapore”) and 
$b5/isbn=$b1/isbn 
return<publisher> {$b5/publisher/name}<publisher>}</result> 

Note that although the join object class for S1, S3 and S5 is book, the equivalence 
tests are on separate lines in the rewritten query. This is because we allow parent 
information to be returned even when a child object class is missing. 

5   Comparison with Related Work 

Amman et al. in [1] propose a mediator architecture for querying and integrating 
XML data sources. Their global schema is described as an ontology, which is ex-
pressed in a light weight conceptual model. Similar to our algorithm, their method 
also finds join groups, where the local sources of the join groups can together com-
pute the results for the user query. However, the limitation in [1] is that a query can-
not return nested structures. 

Lakshmanan and Sadri in [8] propose an infrastructure for interoperability among 
XML data sources. Mapping rules are created to map the items in local schemas to a 
common vocabulary. They also address the query processing and optimization in the 
system. For query processing, they differentiate between inter-source query and intra-
source query, which query across local schemas and within one local schema respec-
tively. Consistency conditions are used to optimize inter-source queries. One limita-
tion of this work is that when results from local schemas are joined, the join variable 
is limited to the lowest common ancestor of nodes. 

Yu and Popa in [22] introduce an algorithm for answering queries via a target 
schema. The algorithm uses target constraints that are used to express data merging 
rules. The mappings from the integrated schema and local schemas are tree to tree. 



Generating such mappings is expensive, especially when the XML sources are com-
plicated. 

The models that are utilized in the works [1, 8, 22] cannot specify whether a rela-
tionship type is binary or n-ary and do not distinguish between attributes of object 
classes and attributes of relationship types from the local XML sources. The lack of 
such semantic information may lead to the retrieval of wrong results as the following 
example illustrates. 

Example 11: Recall Example 1 where only S1 and S2 will be considered for the 
query Q1. Since the works in [1, 8, 22] cannot distinguish between binary or n-ary 
relationship types, they will join the sources from S3 and S4 to get the result, which is 
not correct for the user query. The example below highlights the problem for the 
attributes and n-ary realtionship. For simplicity, schemas S3 and S4 are omitted here. 
Let the data source for S1 be X1, and the data source for S2 be X2 as shown in Table 
5. Table 6 shows the results for query Q1 that are retrieved by our algorithm and the 
methods in [1, 8, 22]. 

We observe that the results returned by the query rewriting method in [1, 8, 22] 
contain the project with jno “j01” has part “p01”, which is supplied by suppliers with 
sno “s01” and “s02”. This violates the local data sources X1 and X2, where the pro-
ject with jno “j01” has part “p01” is only supplied by suppliers with sno “s01”. This 
is because the methods in [1, 8, 22] treat the relationship type between part and sup-
plier as a binary relationship type, instead of the intended ternary relationship type 
involving project, part, and supplier. They treat the quantity as the attribute of part in 
S2, so when they find the part with pno “p01” has quantity “100” in X1, and has 
quantity “200” in X2, they will combine them to make the final result. This leads to 
the wrong answer returned. In contrast, our algorithm takes the XML hierarchy struc-
ture into consideration and retrieves the correct answers. 

To summarize, our algorithm differs from existing works in the following ways: 
1. We treat binary and n-ary relationship types differently. Treating an n-ary rela-

tionship type as n-1 binary relationship types gives wrong results. 
2. We treat attributes of object classes and attributes of relationship types differently 

in the QAT and when we compose the sub queries of the local sources. 
3. Our algorithm takes the XML hierarchy structure into consideration when doing 

the rewriting.  
 

Table 5. Data sources for S1 and S2 in Fig. 3 

X1: X2: 
<project jno=”j01”> 
    <part pno=”p01”> 
        <supplier sno=”s01”> 
             <quantity> 100 </quantity> 
        </supplier> 
    </part> 
</project> 

<project jno=”j02”> 
    <supplier sno=”s02”> 
        <part pno=”p01”> 
             <quantity> 200 </quantity> 
        </part> 
    </supplier> 
</project> 

 

 



 

 

Table 6. Results retrieved by our algorithm and [1, 8, 22] 

Results obtained by our proposed algo-
rithm  

Result obtained by [1, 8, 22] 

<result> 
    <project jno=”j01”> 
        <part pno=”p01”> 
            <supplier sno=”s01”> 
                <quantity> 100 </quantity> 
            </supplier> 
        </part> 
    </project> 
    <project jno=”j02”> 
        <part pno=”p01”> 
            <supplier sno=”s02”> 
                <quantity> 200 </quantity> 
            </supplier> 
        </part> 
    </project> 
</result> 

<result> 
    <project jno=”j01”> 
        <part pno=”p01”> 
            <supplier sno=”s01”> 
                <quantity> 100 </quantity> 
            </supplier> 
            <supplier sno=”s02”> 
                <quantity> 200 </quantity> 
            </supplier> 
        </part> 
    </project> 
    <project jno=”j02”> 
        <part pno=”p01”> 
            <supplier sno=”s01”> 
                <quantity> 100 </quantity> 
            </supplier> 
            <supplier sno=”s02”> 
                <quantity> 200 </quantity> 
            </supplier> 
        </part> 
    </project> 
</result> 

 

6   Conclusion and Future Work 

In this paper, we have introduced a semantic approach to rewrite queries for semis-
tructured data integration. A user’s queries on the integrated schema are rewritten to 
query the local sources. When XML repositories are integrated there may be seman-
tics that are not expressed explicitly, and without the necessary semantics it is possi-
ble to misinterpret the meaning of the data and combine the results from different 
local schemas to give unexpected results. Our algorithm uses the ORA-SS model to 
describe the schemas of the local data sources and the integrated schemas. This al-
lows us to distinguish between binary and n-ary relationship types, attributes of ob-
ject classes and attributes of relationship types, and in turn treat these cases differ-
ently in our rewriting algorithm.  
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