
A Semantic Approach to Query Rewriting for
Integrated XML Data

Xia Yang1 Mong Li Lee1 Tok Wang Ling1 Gillian Dobbie2

1School of Computing, National University of Singapore
{yangxia,leeml,lingtw}@comp.nus.edu.sg

2Department of Computer Science, The University of Auckland, New Zealand
gill@cs.auckland.ac.nz

Abstract. Query rewriting is a fundamental task in query optimization and data
integration. With the advent of the web, there has been renewed interest in data
integration, where data is dispersed among many sources and an integrated
view over these sources is provided. Queries on the integrated view are rewrit-
ten to query the underlying source repositories. In this paper, we develop a
novel algorithm for rewriting queries that considers the XML hierarchy struc-
ture and the semantic relationship between the source schemas and the inte-
grated schema. Our approach is based on the semantically rich Object-
Relationship-Attribute model for SemiStructured data (ORA-SS), and guaran-
tees that the rewritten queries give the expected results, even where the inte-
grated view is complex.

1 Introduction

Many query rewriting algorithms have been developed for answering queries using
views in relational databases and in mediators. When answering queries using views,
the objective is to find efficient methods to answer a query using a set of materialized
views over the database, instead of accessing the database itself [5, 14, 16, 17].

In data integration, many systems construct a global or mediated schema from nu-
merous heterogeneous data sources [6, 13, 18]. Users issue queries on the global
schema, and the system will rewrite the query to the local sources. Each local source
may not necessarily contain all the information needed to answer the query. Partial
results from various local sources are combined to produce the result for the query.

When integration is carried out over XML repositories, query rewriting algorithms
need to take into consideration the hierarchical structure of XML schemas. This gives
rise to structural conflicts which need to be resolved during the rewriting process [22].
XML schemas such as DTD and XML Schema lack the semantic information neces-
sary for schema integration and query rewriting. Although proposals have been put
forth to augment DTD and XML Schema with information such as keys [2], and
functional dependencies [10], their semantics remain limited.

In this paper, we describe a rewriting algorithm for integrated views over XML re-
positories. The proposed algorithm utilizes the ORA-SS model [11] which provides
the necessary semantic information to produce expected answers even when the inte-
grated view is complex. In contrast to the work in [12] which describes how rela-

tional databases can be integrated into an XML global schema, we assume that the
local sources are XML repositories. XML schemas are first transformed to ORA-SS
schemas with enriched semantics [3]. An ORA-SS integrated schema can be obtained
using the algorithm in [21]. Compared to existing global-as-view approaches which
incorporate the integrated view definition in the unfolding process, our approach uses
a mapping table that is created during the integration process to rewrite queries. We
also use a query allocation table to find groups of local schemas that together can
answer a user query. When a query is decomposed to subqueries on the local schemas,
the subqueries for each group of local schemas are composed, and answers from the
composed queries are combined to give the expected results.

The rest of the paper is organized as follows. Section 2 reviews the ORA-SS
model. Section 3 describes the mapping table and the query allocation table. Section 4
gives the details of the proposed query rewriting algorithm. Section 5 compares our
approach with related work and we conclude in Section 6.

2 ORA-SS Model

Our rewriting algorithm employs the ORA-SS model which is a semantically rich
data model designed for semistructured data [11]. This model distinguishes between
objects, relationships and attributes. An object class in the ORA-SS model is similar
to the concept of an entity type in an ER model. An object class may be related to
other object classes through a relationship type. Attributes are properties, and may
belong to an object class or a relationship type. An attribute of an object class or
relationship type in an ORA-SS schema may be represented as an attribute or sub-
element in XML document. The main difference between the ORA-SS model and the
ER model is that the ORA-SS model has a tree-like structure, which is more suitable
for XML data. The nesting of the objects is reflected directly in the ORA-SS model.
Other concepts that can be modeled in ORA-SS diagrams and not in ER diagrams
include the ordering of elements and attributes, and fixed and default attribute values.
An algorithm to translate XML schemas to the ORA-SS Schema Diagram is given in
[3]. Note that user input may be needed to identify some semantics such as attributes
of relationship types.

project

partjno

pno supplier

sno

jp,2,1:n,1:n

jps,3,1:n,1:n

quantity
jps

<project jno=”j01”>
 <part pno=”p01”>
 <supplier sno=”s01”>
 <quantity>500</quantity>
 </supplier>
 </part>
</project>

Fig. 1(a). An XML document Fig. 1(b) ORA-SS schema of document in Fig. 1(a)

Fig. 1 shows an XML document and the corresponding ORA-SS schema diagram.
Object classes “project” and “part” are denoted by labeled rectangles. The label
“jps,3,1:n, 1:n” denotes a ternary relationship type “jps” involving object classes
“project”, “part” and “supplier”, with parent cardinality 1:n and child cardinality 1:n.

That is, parts in a project may have one or more suppliers and a supplier can supply
one or more parts to one or more project. Labeled circles denote attributes, and filled
circles indicate identifiers. Attributes with labeled edges are relationship type attrib-
utes. For example, “jno” is an attribute of object class “project”, while “quantity” is
an attribute of relationship type “jps”. Details on ORA-SS can be found in [11].

3 Mapping Table and Query Allocation Table

The proposed query rewriting algorithm utilizes two constructs: a mapping table and
a query allocation table. A mapping table is created when an integrated schema is
derived from the local schemas. This table contains the mappings from the integrated
schema to the local schemas. We use the path-to-path mapping defined in [4]. The
path from the root to the object class or attribute is captured in the mapping, so that
one can tell the context of the object class or attribute. This will differentiate object
classes and attributes with the same labels but different paths.

 museum

painting
mname

pname

mp,2,1:n,1:1

artist

painting
aname

 painting

pname artist

museum

artist
mname

 S1 S2 S3 S4

S5 S12345

Fig. 2. S12345 is the integrated schema of local schemas S1, S2, S3, S4 and S5

Table 1. Mapping table for integrated schema S12345 in Fig. 2

Integrated schema Local schema

S12345/museum S1/museum, S3/museum, S5/museum
S12345/museum/mname S1/museum/mname, S3/museum/mname,

S5/museum/mname
S12345/museum/painting S1/museum/painting, S2/painting, S4/artist/painting
S12345/museum/painting/pname S1/museum/painting/pname, S2/painting/pname,

S4/artist/painting/pname
S12345/museum/painting/artist S2/painting/artist, S4/artist
S12345/museum/painting/artist/aname S2/painting/artist, S4/artist/aname
S12345/museum/sponsor/funds S3/museum/funds, S5/museum/sponsor/funds
… …

an eam

funds

ma,2,1:n,1:n
mf,2,1:n,1:n

pname

pa,2,1:n,1:n

fno

museum

mname sculpture

sname artist

aname

sponsor

sname funds

fno

ms,2,1:n,1:1 mo,2,1:n,1:n

sa,2,1:n,1:n of,2,1:n,1:n

museum

painting

mname

pname artist

aname

sculpture

sname
artist

aname

artist

aname

sponsor

sname funds

fno

mp,2,1:n,1:1 ms,2,1:n,1:1 ma,2,1:n,1:n

mo,2,1:n,1:n

pa,2,1:n,1:n sa,2,1:n,1:n of,2,1:n,1:n

Consider Fig. 2 where schema S12345 is an integration of the local schemas S1, S2,
S3, S4, and S5. Table 1 shows a subset of the mapping table generated during the
integration process. The first column of the mapping table gives the path from the
root to each object class or attribute in the integrated schema; the second column
shows the local schema id and the path to the equivalent object classes or attributes in
the local schemas. When the mapping is not one-to-one, XQuery functions or user-
defined functions are given in the second column

A query in XQuery format has two main parts: the first part contains the selection
conditions, and the second part describes how the result is restructured. A query allo-
cation table stores the selection condition paths and the return result paths of a query,
as well as the local schemas where the data for these paths can be found. Details on
the construction of the query allocation table are given in Section 4.1.

4 Query Rewriting

In this section, we will present our approach to rewrite a query on the integrated
schema to query the local data sources. Partial information from various local data
sources may need to be combined to produce the results of the user query. There are
four steps in the proposed algorithm:

Step 1. Build the query allocation table.
Step 2. Group local schemas to form join groups that answer the user’s query.
Step 3. Decompose user query to subqueries on the local sources.
Step 4. Compose subqueries for local schemas in a join group.

4.1 Build Query Allocation Table

A query allocation table (QAT) consists of a selection condition table and a return
result table. The path of each selection condition and the return result is inserted into
the selection condition table and the return result table respectively. The associated
schemas identified from the mapping table are inserted into the corresponding rows.
Two special cases need to be considered which can be treated as two rules.

Case 1: If a path corresponds to a branch in an ORA-SS schema with n (n>1) rela-
tionship types, it must be split into n subrows, one for each relationship type.
Any attributes of an object class or a relationship type will appear in the row with
their object class or relationship type.

Case 2: If a path contains "//" or "/*/" and does not contain any recursive relationship
type, then the row that stores the original is retained and rows are created to store
the expansion of each path. An expanded path that contains more than one rela-
tionship type is handled using Case 1. If "//" or "/*/" involves some recursive re-
lationship type, then “//” or “/*/” will not need to be expanded.

Note that recursive relationship types are represented in the ORA-SS schema dia-
gram by using reference arrow to point to some ancestor in the same path. These

cases identify the relationship types involved in the query so that they can be handled
properly and the results returned are expected and correct. This also highlights the
advantage of using ORA-SS schema diagrams to distinguish between binary and n-
ary relationship types and treat them properly in the algorithm. For example, n-ary
relationship types should not be split into n-1 binary relationship types in the query
allocation table.

project

partjno

pno supplier

sno

jp,2,1:n,1:n

jps,3,1:n,1:n

quantity

jps
supplier2

sno

ps,2,1:n,1:n

 S1 S2 S3 S4 S1234

4 is the

Example 1: Consider the schemas in Fig 3, where schema S1234 is an integrated
sc

ject
jno}

pno}
 return {$s}} </part>}

</projec

Table 2. Query Allocation Table for Query Q1

Example 2: Let us now consider Fig. 2, and the query Q2 on the integrated
sc

S1, S2, S3

project

partjno

pno supplier

sno

jp,2,1

jps,3,

:n,1:n

1:n,1:n

quantity

jps

project

supplierjno

sno part

pno

js,2,1:n,1:n

jps,3,1:n,1:n

quantity
jps

project

part

jp,2,1:n,1:n

part

pno
supplier

sno

ps,2,1:n,1:n
jno

pno

Fig. 3. S123 integrated schema of S1, S2, S3 and S4

hema of schemas S1, S2, S3, and S4. We issue query Q1 on the integrated schema
to retrieve information about projects and their parts, and which supplier supplies the
part to the project. Table 2 shows the query allocation table for query Q1. We note
that the relationship type among project, part and supplier is a ternary relationship
type. Hence, in the return result table, the path “/project/part/supplier” is not split into
two paths. Since the local schema S4 does not model this ternary relationship type, it
is not associated with this path. This prevents the retrieval of wrong results by joining
the sources in S3 and S4.

Query Q1: for $j in /pro
 return <project> {$j/
 {for $p in $j/part
 return <part>{$p/

{for $s in $p/supplier
t>

Selection Condition Table: Empty
Return Result Table:

/project/jno
/project/part/pno S1, S2, S3
/project/part/supplier S1, S2,

hema S12345, which retrieves the names of artists that have works in a museum with
name “field”. The query allocation table is shown in Table. 3. The aim of QAT is to
find the join groups. Since the rewritten queries will need to refer to the user query on
the integrated schema, the QAT does not need to contain the details of selection con-
ditions such as “field” in Q2. Note /museum//aname is expanded into two XPath

expressions /museum/painting/artist/aname and /museum/sculpture/artist/aname each
of which are further split into two paths because of the binary relationship types. The
path “/museum//aname” is retained and rows for each expansion of this path are in-
serted in the QAT.

Query Q2: for $m in /museum[mname=”field”],$a in distinct-values($m//aname)

able 3. Query Allocation Table for Query Q2

S1, S3, S5

 return <artist> {$a} </artist>

T

Selection Condition Table :
/museum/mname

Ret e:

4.2 Identify Local Sources to Answer User Query

Next, we need to determine which local schemas must be combined to get the ex-

ery allocation table (QAT) to find the
joi

3: Consider the schemas in Fig. 4. The attribute “location” in S12345 is a
co

“/book/author” in the
Sel

S3

urn Result Tabl
/museum//aname
/museum/painting S1
painting/artist/aname S2, S4
/museum/sculpture S5
sculpture/artist/aname S5

pected results. These groups of local schemas are called join groups. The local sche-
mas in each join group must contain all the paths required for the selection condition
and must have at least one path for the result.

Algorithm GenerateJoinGroups scans the qu
n groups. Lines 1-5 create an ordering on the local schemas based on the rows in

which they first occur in the QAT and store the ordered list in lt. A local schema is
low in the ordering if it first occurs in the top row and high in the ordering if it first
occurs in the bottom row of the QAT. Lines 6-31 use a stack to find the join groups.
The local schemas are considered based on the ordering in the list lt from lowest to
highest. Initially the lowest local schema is pushed onto the stack, and the next
schema to be pushed onto the stack is the next lowest that occurs in a different row.
When the schemas on the stack cover all the selection condition paths in the QAT, we
output them as a join group. The top schema is popped off the stack, and the algo-
rithm goes on to find the next schema which could contribute to the user query. The
algorithm scans the schemas in the order of lt, so there is no duplication or missing
join groups.

Example
mbination of the attributes “address” and “postal code” in S5. The query Q3 re-

trieves the year and title of the books that were written by “Tom” in the year “2000”.
The corresponding query allocation table is shown in Table 4.

Algorithm GenerateJoinGroups first looks at the first row
ection Condition Table, and adds S1, S2, S3 in the list lt. Then it checks the sec-

ond row “/book/year”, and adds S4 in the list lt. Thus, the lt has local schema order as
S1, S2, S3, and S4. After the order is computed, S1 is first pushed on the stack, and
S2 is then considered. Since it does not add any extra paths, it is not pushed on the

stack. S3 is considered and because it does cover extra paths, it is pushed on the stack.
Together S1 and S3 cover all the path information in the QAT, so {S1, S3} is output
as a join group. S3 is then popped off the stack, S4 is considered. Together S1 and S4
cover all the path information, and {S1, S4} is output as a join group. {S2, S4} and
{S3} are output after that.

Note that {S2, S3} is not a join group, because although they cover all the path in-
fo

al result is found by taking the union of all the answers from the different
joi

e qat;

 lt;
t

d of row i
 and not

 add schemaij to list lt;

schemai is not in the top row in qat

the stack st;
ws of qat

Output {schemai};

j=i+1 to n if schemaj occurs in the rows,

push schemaj on the stack st;
 included all

rmation in the selection condition table of the QAT, S2 does not cover any more
path information that S3 does not cover and consequently would not add new answers
to the result of the query. Note that {S3} is a join group, even though {S1, S3} is also
a join group. The result from the rewritten query in {S1, S3} can return the result as
Q2, while {S3} can return the partial result which has missing information of the title
of book.

The fin
n groups. Given that the relationship type information is captured in the ORA-SS

model, the union can be based on the relationship type information. For each relation-
ship type, we take the deep union [23], that is, we take the union of the objects if and
only if all of their ancestors are the same.

Algorithm GenerateJoinGroups
 Input: Query allocation tabl
 Output: join groups
1. create an empty list
2. for i=1 to num_of_row of qa
3. for j=1 to num_of_schema_i
4. if schemaij is present in the rowi
in list lt
5.
6. n=the number of local sources in qat;
7. create an empty stack st;
8. for i=1 to n from lt
9. {
10. if
11. break;
12. push schemai on
13. if schemai is present in all ro
14. {
15.
16. st=null;
17. continue;
18. }
19. for
which the other schemas in st do not occur in, and
schemaj does not occur in all the rows that the top
element of st occurs in
20. {
21.
22. if (the local schemas in st has
the path information in qat)

23. {
24. outp
split by”,” in a “{}”;
25. pop the to
26. }
27. }
28. if
formation of the selection condition table and at leas
one result in return result table)
29. output all the schemas in
by”,” in a “{}”;
30. st=null;
31.}

ut all the schemas in the stack st

p schema off the stack st;

(j= =n and st has included all the path in-
t

the stack st split

 S1

12345

Query Q3: for $b in /book where $b/author=”Tom” and $b/year=”2000”

 Query Allocation Table for Query Q3

Return Result Table:

4.3 Decompose User Query to Subqueries on Local Sources

This step decomposes the user query into queries on the local schema based on the

when joining the subqueries.

S1, S2, S3

book

 S2 S3 S4 S5 S12345

Fig. 4. S is the integrated schema of local schemas S1, S2, S3, S4, S5

 return <result> {$b/year/text()} {$b/title/text()} </result>

Table 4.

Selection Condition Table:

join groups. Subqueries are composed to compute the answers in the same join group
in Step 4. Hence, in addition to retrieving the data required by the user query, we also
need the data necessary to join the parts of the answers from different local schemas
together. We call the classes that are necessary for joining the parts of answers as join
object classes. The key of the join object class is used for testing the equivalence

/book/author
/book/year S3, S4

/book/year S3, S4
/book/title S1

isbn author year title

publisher

name location

+book

bn author title
+

book

isbn author
+

book

isbn author year
+

book

isbn year

publisher

name address

book

isbn

postal code
is

A join object class depends on the semantics of the schema. We have 3 cases:
Case 1: For a join group, if there are n paths in the QAT from different local schemas

 the

Cas
e other

Cas
ses involved in this

E
“/bo s “/book/year”, “/book/author”. To an-
sw

the

will n a structure. We will first describe
ho

nly one object class or attribute. We have two cases.
The first case is for queries involving one object class or attribute, while the second

from either an object class or
bject classes and attributes

in

from a lo-
, vari-

abl

with a common ancestor in the user query, then the least common ancestor in
user query is a join object class. An object class O is the least common ancestor
of paths P1 and P2, if O is an object class that occurs in both P1 and P2, and O
does not have any descendant object class that also occurs in P1 and P2.

e 2: For a join group, if the paths in the QAT are from different local schemas,
and there is an object class that is the end of one path and the start of th
path, then this intermediate object class is a join object class.

e 3: For a join group, if two attributes of the same relationship type in a user
query are from different local schemas, then all the object clas
relationship type are join object classes.
xample 4: Recall Example 3 and the join group {S1, S3}. S1 provides
ok/title”, “/book/author” and S3 provide

er the query Q3, the subqueries from S1 and S3 need to be composed using the key
of their least common ancestor i.e. the key “isbn” of the join object class “book”.
We first consider the case where the local schemas are projections of the integrated
schema. The rewritten query for a local schema will effectively be a projection of
user query with the join object class identifier included in the return part of the re-
written query. The rewritten query can be derived as follows:

1. For every path in the let part, for part, where part and return part of the user
query, retain the path if it exists in the local schema.

2. Add the path to any join object class identifiers that are relevant to this local
schema in the join group being considered.

When the local schemas are not projections of the integrated schema, the query
eed to be rewritten based on the local schem

w to rewrite a user query for a local schema where the subquery on the local
schema returns only one object class or attribute. Then we discuss how to rewrite a
user query for a local schema where the subquery on the local schema returns many
object classes or attributes.

4.3.1 Subquery returns o

case is for queries involving more than one object class.

Case A1. Queries involve one object class or attribute
An object class in an integrated schema can originate

an attribute in a local schema, or it can be derived from o
one local schema.

Case A1-i. Integrated object class originates from a source object class.
When an integrated object class is mapped to an equivalent object class

cal schema, but the path from the root to the equivalent object class is different
e bindings in the for clause or let clause are changed according to the mapping

table that specifies the path of the equivalent source object class.

Example 5: Consider the schemas in Fig. 2. Query Q4 on the integrated schema
S12345 retrieves all the information on the object class “funds”, which is in path
“/museum/sponsor/funds”:

Query Q4: for $f in /museum/sponsor/funds
 return <result> {$f} </result>

Based on the mapping table, we have S12345/museum/sponsor/funds:
S3/museum/funds, S5/museum/sponsor/funds. This indicates that the query can be
rewritten to query local sources S3 and S5. The rewritten query on source S5 will be
the same as Q4, while the query on S3 will be as follows:

Query Q4_S3: for $f in /museum/funds
 return <result> {$f} </result>

Case A1-ii. Integrated object class originates from an attribute.
An object class can also originate from an attribute, because a concept can be ex-

pressed as an attribute in one schema, and as an object class in another schema. When
rewriting such queries, variable bindings in the for clause or let clause are changed
according to the mapping table that specifies the path of the equivalent attribute; the
equivalent object class is created in the return clause with the attribute as an attribute
of this object class.

Example 6: The following query is on the integrated schema S12345 of Fig. 2.
Query Q 5 retrieves the information of artists of the painting with pname “hero”.

Query Q5: for $p in /museum/painting
 where $p/pname=”hero”

 return <result> {$p/artist} </result>
Query Q5 will be rewritten for S2 and S4. Since schema S2 (see Fig. 2) models

“artist” as an attribute of the object class “painting”, Query Q5_S2 will compute the
information for artist on local schema S2:

Query Q5_S2: for $p in /painting
 where $p/pname=”hero”

return <result> <artist> <aname> {$p/artist/text()} </aname>
</artist> </result>

Case A1-iii. Integrated object class or attribute originates from a set of object classes
(attributes) or vice versa.

When one object class (attribute) in the integrated schema is the combination of
many object classes (attributes) of another local schema or vice versa, XQuery or
user-defined functions can be used to substitute the path in the user query.

Example 7: Consider the schemas in Fig. 4. Query Q6 retrieves the publisher loca-
tion of the book with isbn “7-5053-4849-3/TP.2370” on the integrated schema S12345:

Query Q6: for $b in /book
 where $b/isbn=”7-5053-4849-3/TP.2370”
 return <result>{$b/publisher/location}</result>

Q6 will be rewritten on S5. The mapping in the mapping table shows that
S12345/book/publisher/location:string-join((S5/book/publisher/address/text(),
S5/book/publisher/postalcode/text()),“ ”). We assume that the attribute “location” is

expressed by the address followed by a space and the postal code. The query on S5 is
shown in Query Q6_S5. It combines the address and postal code by the XQuery func-
tions from the mapping table. The rewritten query on S5 will be:

Query Q6_S5: for $b in /book
 where $b/isbn=”7-5053-4849-3/TP.2370”
 return <result> <location> {string-join(($b/publiser/address/text(),
 $b/publisher/postalcode/text()),” ”)}</location> </result>

Case A2. Query involves more than one object classes.
When the number of object classes in the query path is more than one, we need to

consider the structural relationship type between the object classes. There are two
cases: (1) object classes are swapped in the integrated schema, and (2) siblings in a
local schema are mapped to ancestor and descendent in the integrated schema.
Case A2-i.When object classes in the integrated schema are swapped in the hierarchy
compared to the local schema, the path in the subquery needs to be rewritten based on
the path of the local schemas.

Example 8: The following query on the integrated schema S12345 in Fig. 2 retrieves
all the “museum” which have the paintings by artist “David”.

Query Q7: for $m in /museum where $m/painting/artist/aname=”David”
 return<museum>{$m/mname/text()}</museum>
The join groups are {S1, S2} and {S1, S4}. In join group {S1, S4}, the join object

class is painting for S4. The projection subquery on S4 is:
Query Q7_S4’: for $p in /painting where $p/artist/aname=”David”
 return<painting>{$p/pname}</painting>
The path expression in the where clauses are changed to the corresponding object

class (attributes) by using /../. The rewritten query on S4 is:
Query Q7_S4: for $p in/artist/painting where $p/../aname=”David”

 return <painting>{$p/pname}</painting>
This query needs to be joined with the subquery for S1 to get the final result.

Case A2-ii. When two object classes have an ancestor-descendant relationship type in
the integrated schema, but they are siblings in the local schema, then the least com-
mon ancestor of these object classes must be used as binding variables to connect
them. The related path in the where and return clause must be revised based on the
structure of the local schemas.

Example 9: In Fig. 5, students work for projects, and students have their labs. The
lab also has coordinators. Consider the query Q8 on the integrated schema S123,
which retrieves a project lab coordinator where pno is “p01”.

Query Q8: for $p in /project where $p/@pno=”p01”
 return <result>{$p/student/lab/coordinator}</result>

The join groups are {S1, S3} and {S2, S3}. The return clause in Q8 shows that the
query path is from $p to lab. In order to rewrite the query for schema S1, the algo-
rithm looks for the nearest ancestor node that is common to both project and lab.
Student is then bound to the variable in the for clause as follows:

Query Q8_S1: for $s in /student where $s/project/@pno=”p01”
 return <result>{$s/lab/@lno}</result>

This query needs to join with the subquery for S3 to get the final result.

project

student

lab

pno

lno

sno

sp,2,1:n,1:n

sl,2,1:n,1:n

project

student

lab

pno

lno

sno

sp,2,1:n,1:n

sl,2,1:n,1:n

coordinator

name

lc,2,1:n,1:n

lab

coordinator

name

lno

lc,2,1:n,1:n

 student

project lab

pno lno

sn

o
sl,2,1:n,1:nsp,2,1:n,1:n

 S1 S2 S3 S123
Fig. 5. S123 is the integrated schema of local schemas S1, S2, S3

4.3.2 Subquery returns many object classes or attributes. Chen et al. in [3]
introduce an algorithm for the automatic generation of XQuery view definitions for
ORA-SS views, focusing on the view definitions for hierarchical structures of XML.
Due to space limitations we do not cover this case in this paper except to note that
their algorithm can be used to rewrite such queries.

4.4 Compose Subqueries for Join Group

When joining subqueries on local schemas in the same join group, the identifier of
the join object classes must be tested for equivalence.

We start by considering the basic case where the same object attributes are from
different local schemas. To compose subqueries from these local schemas in join
groups, the clauses for, where, and return are combined together with the join condi-
tion equivalence test inserted in the where clause.

We allow the return results to have missing information. The parent object will not
be removed from the return result if it has a missing child. For each return object or
attribute, the join equivalence condition test related to this return object or attribute is
nested in the appropriate part of the query.

Example 10: Consider the schemas in Fig. 4. and query Q9 that retrieves year and
title of the books that were written by “Tom” in year “2000” and retrieves the pub-
lisher name if the book’s publisher location is Singapore.

Query Q9: for $b in /book where $b/author=”Tom” and $b/year=”2000”
 return<result>{$b/year/text()} {$b/title/text()}{
 for $p in $b/publisher

 where contains ($b/publisher/location/text(),”Singapore”)
 return<publisher> {$b/publisher/name} </publisher> }

</result>
The join groups are {S1, S3, S5}, {S1, S4, S5}, {S2, S4, S5} and {S3, S5}. We

show the query example for the join group {S1, S3, S5}. The user query is decom-

posed into subqueries on the local schemas S1, S3, and S5. The join object class is
“book” for these local schemas. The subqueries on S1, S3 and S5 are shown below:

Query Q9_S1: for $b in /book
 where $b/author=”Tom”
 return <result> {$b/isbn/text()} {$b/title/text()} </result>
Query Q9_S3: for $b in /book

 where $b/author=”Tom” and $b/year=”2000”
 return <result> {$b/isbn/text()} {$b/year/text()} </result>
Query Q9_S5: for $b in /book
 where contains ($b/publisher/address/text(),”Singapore”)

 return<result>{$b/isbn/text()}
 <publisher>{$b/publisher/name} </publisher></result>

The composition of the subqueries for local schemas S1, S3 and S5 are as follows:
for $b1 in doc(“S1.xml”)/book, $b3 in doc(“S3.xml”)/book
where $b1/author=”Tom” and $b3/author=”Tom” and $b3/year=”2000”
and $b1/isbn=$b3/isbn
return <result>{$b3/year/text()} {$b1/title/text()}

{for $b5 in doc(“S5.xml”)/book
where contains ($b5/publisher/address/text(),”Singapore”) and
$b5/isbn=$b1/isbn
return<publisher> {$b5/publisher/name}<publisher>}</result>

Note that although the join object class for S1, S3 and S5 is book, the equivalence
tests are on separate lines in the rewritten query. This is because we allow parent
information to be returned even when a child object class is missing.

5 Comparison with Related Work

Amman et al. in [1] propose a mediator architecture for querying and integrating
XML data sources. Their global schema is described as an ontology, which is ex-
pressed in a light weight conceptual model. Similar to our algorithm, their method
also finds join groups, where the local sources of the join groups can together com-
pute the results for the user query. However, the limitation in [1] is that a query can-
not return nested structures.

Lakshmanan and Sadri in [8] propose an infrastructure for interoperability among
XML data sources. Mapping rules are created to map the items in local schemas to a
common vocabulary. They also address the query processing and optimization in the
system. For query processing, they differentiate between inter-source query and intra-
source query, which query across local schemas and within one local schema respec-
tively. Consistency conditions are used to optimize inter-source queries. One limita-
tion of this work is that when results from local schemas are joined, the join variable
is limited to the lowest common ancestor of nodes.

Yu and Popa in [22] introduce an algorithm for answering queries via a target
schema. The algorithm uses target constraints that are used to express data merging
rules. The mappings from the integrated schema and local schemas are tree to tree.

Generating such mappings is expensive, especially when the XML sources are com-
plicated.

The models that are utilized in the works [1, 8, 22] cannot specify whether a rela-
tionship type is binary or n-ary and do not distinguish between attributes of object
classes and attributes of relationship types from the local XML sources. The lack of
such semantic information may lead to the retrieval of wrong results as the following
example illustrates.

Example 11: Recall Example 1 where only S1 and S2 will be considered for the
query Q1. Since the works in [1, 8, 22] cannot distinguish between binary or n-ary
relationship types, they will join the sources from S3 and S4 to get the result, which is
not correct for the user query. The example below highlights the problem for the
attributes and n-ary realtionship. For simplicity, schemas S3 and S4 are omitted here.
Let the data source for S1 be X1, and the data source for S2 be X2 as shown in Table
5. Table 6 shows the results for query Q1 that are retrieved by our algorithm and the
methods in [1, 8, 22].

We observe that the results returned by the query rewriting method in [1, 8, 22]
contain the project with jno “j01” has part “p01”, which is supplied by suppliers with
sno “s01” and “s02”. This violates the local data sources X1 and X2, where the pro-
ject with jno “j01” has part “p01” is only supplied by suppliers with sno “s01”. This
is because the methods in [1, 8, 22] treat the relationship type between part and sup-
plier as a binary relationship type, instead of the intended ternary relationship type
involving project, part, and supplier. They treat the quantity as the attribute of part in
S2, so when they find the part with pno “p01” has quantity “100” in X1, and has
quantity “200” in X2, they will combine them to make the final result. This leads to
the wrong answer returned. In contrast, our algorithm takes the XML hierarchy struc-
ture into consideration and retrieves the correct answers.

To summarize, our algorithm differs from existing works in the following ways:
1. We treat binary and n-ary relationship types differently. Treating an n-ary rela-

tionship type as n-1 binary relationship types gives wrong results.
2. We treat attributes of object classes and attributes of relationship types differently

in the QAT and when we compose the sub queries of the local sources.
3. Our algorithm takes the XML hierarchy structure into consideration when doing

the rewriting.

Table 5. Data sources for S1 and S2 in Fig. 3

X1: X2:
<project jno=”j01”>
 <part pno=”p01”>
 <supplier sno=”s01”>
 <quantity> 100 </quantity>
 </supplier>
 </part>
</project>

<project jno=”j02”>
 <supplier sno=”s02”>
 <part pno=”p01”>
 <quantity> 200 </quantity>
 </part>
 </supplier>
</project>

Table 6. Results retrieved by our algorithm and [1, 8, 22]

Results obtained by our proposed algo-
rithm

Result obtained by [1, 8, 22]

<result>
 <project jno=”j01”>
 <part pno=”p01”>
 <supplier sno=”s01”>
 <quantity> 100 </quantity>
 </supplier>
 </part>
 </project>
 <project jno=”j02”>
 <part pno=”p01”>
 <supplier sno=”s02”>
 <quantity> 200 </quantity>
 </supplier>
 </part>
 </project>
</result>

<result>
 <project jno=”j01”>
 <part pno=”p01”>
 <supplier sno=”s01”>
 <quantity> 100 </quantity>
 </supplier>
 <supplier sno=”s02”>
 <quantity> 200 </quantity>
 </supplier>
 </part>
 </project>
 <project jno=”j02”>
 <part pno=”p01”>
 <supplier sno=”s01”>
 <quantity> 100 </quantity>
 </supplier>
 <supplier sno=”s02”>
 <quantity> 200 </quantity>
 </supplier>
 </part>
 </project>
</result>

6 Conclusion and Future Work

In this paper, we have introduced a semantic approach to rewrite queries for semis-
tructured data integration. A user’s queries on the integrated schema are rewritten to
query the local sources. When XML repositories are integrated there may be seman-
tics that are not expressed explicitly, and without the necessary semantics it is possi-
ble to misinterpret the meaning of the data and combine the results from different
local schemas to give unexpected results. Our algorithm uses the ORA-SS model to
describe the schemas of the local data sources and the integrated schemas. This al-
lows us to distinguish between binary and n-ary relationship types, attributes of ob-
ject classes and attributes of relationship types, and in turn treat these cases differ-
ently in our rewriting algorithm.

References
1. B. Amann, C. Beeri, I. Fundulaki, M. Scholl. Querying XML sources using an Ontology-

based Mediator. CoopIS, 2002.
2. P. Buneman, S. Davidson, W. Fan, C. Hara, W.C. Tan. Keys for XML. WWW Conference,

2001.
3. Y. Chen, T.W. Ling, M.L. Lee. Automatic Generation of XQuery View Definitions from

ORA-SS Views. ER, 2003.
4. S. Cluet, P. Veltri, D. Vodislav. Views in a Large Scale XML Repository. VLDB, 2001.
5. O.M. Duschka, M.R. Genesereth. Answering Recursive Queries Using Views. ACM

PODS, 1997.
6. L. Haas, D. Kossmann, E. Wimmers, J. Yang. Optimizing queries across diverse data

sources. VLDB, 1997.
7. A. Halevy. Theory of Answering Queries Using Views. ACM SIGMOD Record 29(4),

2000.
8. L.V.S. Lakshmanan, F. Sadri. Interoperability on XML Data. ICSW, 2003.
9. M.L. Lee, T.W. Ling, W.L. Low. Designing Functional Dependencies for XML. EDBT,

2002.
10. A. Levy. Logic-Based Techniques in Data Integration. Logic based artificial intelligence,

1999.
11. T.W. Ling, M.L. Lee, G. Dobbie. Semistructured Database Design, ISBN: 0-387-23567-1,

Springer, 2005.
12. I. Manolescu, D. Florescu, D. Kossman. Answering XML queries over heterogeneous data

sources. VLDB, 2001.
13. H. Garcia-Molina, Y. Papakonstantinou, D. Quass, et al. The TSIMMIS project: Integration

of heterogeneous information sources. Journal of Intelligent Information Systems, 1997.
14. K. Passi, E. Chaudhry. A Global-to-Local Rewriting Querying Mechanism using Semantic

Mapping for XML Schema Integration. ODBASE 2003.
15. K. Passi, L. Lane, S.Madria, Bipin C. Sakamuri, M. Mohania, S. Bhowmick. A Model for

XML Schema Integration. EC-Web, 2002.
16. R. Pottinger, A. Levy. A Scalable Algorithm for Answering Queries Using Views. VLDB,

2000.
17. M. Stonebraker. Implementation of integrity constraints and views by query modification.

ACM SIGMOD, 1975.
18. Xyleme. A dynamic warehouse for XML Data of the Web. IEEE Data Engineering Bulle-

tin, 2001.
19. H.Z. Yang, P.A. Larson. Query Transformation for PSJ-queries. VLDB, 1987.
20. X. Yang. Global Schema Generation and Query Rewriting In XML Integration. MSc thesis,

National University of Singapore, 2005.
21. X. Yang, M.L. Lee, T.W. Ling. Resolving Structural Conflicts in the Integration of XML

Schemas: A Semantic Approach. ER 2003.
22. C. Yu, L. Popa. Constraint-Based XML Query Rewriting for Data Integration. SIGMOD

2004.
23. P. Buneman, A Deutsch, W.C. Tan. A deterministic model for semistructured data. Work-

shop on Query Processing for Semistructured Data and Non-Standard Data Formats, 1998.

