
Update XML Data by Using Graphical Languages

Wei Ni and Tok Wang Ling
Department of Computer Science, School of Computing,

National University of Singapore, Singapore
Computing 1, Law Link, Singapore, S117590
{niwei, lingtw}@comp.nus.edu.sg

Abstract
To be a full-featured data exchange format, XML should
support not only queries but also updates on its contents.
The new W3C XML update facility has proposed a set of
operators (insert, delete, replace and rename) and
expressions to modify XML data. However, the new
update standard is an extension of XPath/XQuery. As a
result, it requires the full knowledge about complex
XPath/XQuery writing techniques, which is too difficult
for common users to use. In this paper, we intuitively
represent XML update expressions as graphs. Based on
our previous works of GLASS (Graphical query
LAnguages for Semi-Structured data), we make an
extension, named as GLASSU, to support the new XML
update facility. To our best knowledge, it is the world first
graphical language that supports XML updates.
Keywords: XML, Update, Graphical Language

1 Introduction
XML [14] is now fast becoming the standard format of
web data storing, exchanging and publishing. Today, all
leading database management system (DBMS) vendors
have released their new products supporting XML data
storing, publishing and querying. However, to become a
full-featured data exchanging standard, XML has to
support not only queries but also updates on data contents.
Brief history of XML updates: XML update is not a
new problem. Various works have been proposed for
XML updates in different database systems since late
1990s along with the birth of XML. Lorel [1] system and
its language support XML update in an OQL-style
language and it has been implemented on the base of an
object-oriented DBMS. The prototype of the W3C’s
XML update facilities can be traced back to the working
draft [6] in year 2000. This working draft, also known as
XUpdate, has a set of update operators including insert
(with before or after), append (i.e. to insert as the last
child element), remove, and update. After that, the
research works in [13] has discussed the co-operation
between XQuery and update operators including insert,
delete, update, rename and replace, which was focused on
the method of implementing update on the XML data that
were mapped and stored in relational DBMS. Besides, the
extended XML-RL [8] has proposed a declarative XML

update language based on XML-RL which is originally a
declarative XML query language. XPathLog [9] is a rule-
based data manipulation language that only supports
element creation and modification.
Based on the existing research works, W3C has released
the new standard called XML update facility [17] in July
2006. The new standard has formally defined 4 update
operators (insert, delete, replace and rename) and a new
operator called transform. The transform operator will
create a modified copy of the original data. The term
“copy” here is especially a view and the transform
expression can be regarded as a “create view” clause in
XML1. In this paper, we use the term “view” instead of
“copy” to avoid ambiguity.
Our motivation: Update expressions do not work alone.
They always appear along with XPath[15]/XQuery[18]
expressions combined with conditions. Therefore, a user
should have the full knowledge of XPath/XQuery writing
techniques before hi/she can use the new update facilities.
Unfortunately, the complexity of writing XPath/XQuery
expressions makes it difficult for common users to pose
their XML updates.
Yet fortunately, XML data has a tree-like structure that
can be naturally represented as graphs. In fact, graphs
have been widely used in almost all fields of XML data
applications such as modeling [7, 10], editing [12], and
querying [3, 4, 11] in the past few years. Inspired by the
above research works and successful applications, we
propose to represent XML updates, i.e. update expressions
and their conditions, in graphs to help common users
manipulate their XML data more easily than using
XPath/XQuery expressions.
Like textual languages, where the XML update is an
extension of existing XML query languages, our
graphical XML update language is also an extension of
existing graphical XML query languages. In [11], we
have proposed a graphical XML query language, which is
named as GLASS (Graphical query LAnguage for Semi-
Structured data). The GLASS was designed on the base
of ORA-SS (Object-Relationship-Attribute model for
Semi-Structured data) [7], a rich semantic data model for
XML. We select GLASS to do the XML update extension
because of two reasons. The first reason is that GLASS
has the most powerful expressive capability in
comparison current existing graphical XML query
languages. It supports not only the traditional queries

1 Notice that there is no “create view” clause in current
XML query standard. Therefore, the transform expression
just plays role of “create view” in XML and the “copy”
here may not be a materialized one.

Copyright © 2007, Australian Computer Society, Inc. This paper
appeared at the Twenty-Sixth International Conference on
Conceptual Modeling - ER 2007 - Tutorials, Posters, Panels and
Industrial Contributions, Auckland, New Zealand. Conferences in
Research and Practice in Information Technology, Vol. 83. John
Grundy, Sven Hartmann, Alberto H. F. Laender, Leszek Maciaszek
and John F. Roddick, Eds. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

such as selection, projection, join and aggregation but
also advanced features including swapping, quantification,
negation and conditional output construction (if-then
clause). Also, with the semantics in ORA-SS, GLASS is
concise and clear for query representation. The second
reason is the rich semantic information captured in ORA-
SS. Traditional XML schema languages, e.g. DTD[14]/XSD
[16] and their equivalents, do not represent the semantics
in XML data such as object ID2, relationship types and
relationship type attributes. Such semantic information is
extremely important for machines (software) to precess
XML query correctly. In the scenario of XML updates,
the semantic information is still important to achieve
valid update result with respect to both structural and
semantic constraints.
In this paper, we mainly focus on the extension work for
XML updates, which is named as “GLASSU”. We
propose this extension to make XML update expressions
more intuitive and easier to use.
Organization: The rest of this paper is organized as
follows. In Section 2, we give some preliminary
knowledge about the new W3C XML update facility, the
ORA-SS and GLASS. In Section 3, we introduce our
extension work for graphical XML update expressions.
With examples, we demonstrate how to express the new
XML update facility in our graphical expressions. In
Section 4 we make a brief summary of this paper and
highlight future works on this direction.

2 Preliminary knowledge
In this section, we introduce the formal semantics of the 5
operators in the new W3C update facilities. After that, we
also give a brief review of our previous works in XML
data modeling (ORA-SS) and query representation
(GLASS).

2.1 W3C XML update facility
There are four XML update operators: insert, delete,
replace, rename; and one auxiliary operator - transform
to make copies (views) for modification instead of the
source data.
Terms in explanation: All preserved keywords are written
in capital letters. The src_exp and tgt_exp refer to source
expression and target expression in XML updating
respectively. The tgt_exp is the navigation to the place(s)
where the update operation should be applied. It is a
compulsory component in every update expression. In
contrast, the src_exp refers to those newcomers in the
result after the update operation, which is often used in the
insertion and replacement.
The general format and the semantics of the five operators
are explained as follows.
(1) Insert
The general format of the insert expression is

DO INSERT src_exp prep tgt_exp
which means to insert the node(s) with its (their)
substructures described by the src_exp into a document at

2 In ORA-SS, the object concept refers to real world objects and
the object ID identifies different real world object instances, not
just for element instances.

a certain position about the node(s) specified by the
tgt_exp. The prep is the preposition that specifies the
position of the insertion, which can be INTO (by default),
BEFORE, AFTER, AS FIRST and AS LAST.
(2) Delete
The general format of the delete expression is

DO DELETE tgt_exp
which means to delete the sub-trees rooted at the node(s)
specified by the tgt_exp.
(3) Replace
The replace has two different formats for either semantics
of replacing nodes with sub-structures or modifying the
values of certain nodes.
The first format, corresponding to the first semantic
meaning, is

DO REPLACE tgt_exp WITH src_exp
which means to replace the node(s) with sub-structures
specified by the tgt_exp with the node(s) with sub-
structures described by the src_exp. The src_exp nodes
will take the hierarchical position of the nodes of tgt_exp.
The second format, corresponding to the second semantic
meaning, is

DO REPLACE VALUE OF tgt_exp WITH src_exp
which means to modify the value (i.e. PCDATA or
CDATA content) of the node (i.e. instance of XML
element or attribute respectively) specified by the tgt_exp
with the value of the src_exp without changing the
original node’s name, position and its sub-structures in
the document tree.
(4) Rename
The general format of the delete expression is

DO RENAME tgt_exp AS new_name
where the new_name can be either a string or a variable.
The rename operator only changes the tag name of an
XML element or the name of an XML attribute.
(5) Transform
The transform operator is NOT an update operator. It is
used to create a view to which the above 4 XML update
operators will be applied. The format of the transform
operator is

TRANSFORM $var := src_exp MODIFY update_exp
where $var is the user-defined name (in form of variable)
of the created nodes in the view with sub-structures
specified by src_exp; update_exp is the expression(s) of
the above 4 XML update operators we have listed.
With the transform expression, the updates are used to
create a view with the nodes of $var. Therefore, the
update_exp in the transform expression will not be
applied to the original XML document.

2.2 ORA-SS and GLASS
The ORA-SS is a rich semantic data model for XML data.
In comparison with other XML data models such as DOM
[2], OEM [10], Dataguide [5], XML Graph [4], etc., ORA-
SS can capture and express much richer semantics in XML
data such that:
(1) It models the XML data into object classes, relationship

types and attributes.
(a) Object classes are for those internal nodes (complex

XML elements that contain child elements and/or
XML attributes) in an XML document tree.

(b) Relationship types are the relationship types among
different object classes on one path.

(c) Attributes are usually those leaf nodes (XML
attributes and simple XML elements with PCDATA
only) in an XML document tree.

(2) It differentiates the attributes of object classes from
those of relationship types.

(3) It uses object ID attributes instead of the key, which is
more convenient in use.

(4) It can express n-ary (n≥2) relationship types among
different object classes on one path.

(5) It expresses the participation constraints of object class
instances in n-ary relationship types.

(6) It expresses the functional dependency, object class
inheritance and other semantics.

All these above semantics are crucial for XML storage,
query and management in DBMS. However, the
DTD/XSD and previously mentioned XML data models
do not express these important semantics. Only ORA-SS
catches them all by using its schema diagram, functional-
dependency diagram and inheritance diagram.
In this paper, we mainly use the schema diagram in ORA-
SS, which is also the core component of the data model.
The Example 1 in Fig. 1 gives a comparison between
DTD and ORA-SS schema diagram. In Fig. 1, the
complex XML element supplier, part and project are
modeled as object classes; all other simple XML elements
and XML attributes are modeled as attributes. The filled
circle means this ORA-SS attribute is the object ID
attribute of the corresponding ORA-SS object class.
Example 1. (ORA-SS schema diagram & DTD of “spj.xml”)

<!ELEMENT supplier (part+)>
 <!ATTLIST supplier sid ID #REQUIRED>
 <!ELEMENT sname PCDATA>
 <!ELEMENT part (price, spec?, project*)>
 <!ATTLIST part pid CDATA #IMPLIED
 pname CDATA>
 <!ELEMENT price PCDATA>
 <!ELEMENT spec PCDATA>
 <!ELEMENT project (jname, qty)>
 <!ATTLIST project jid CDATA #IMPLIED >
 <!ELEMENT jname PCDATA>
 <!ELEMENT qty PCDATA>

The DTD schema

supplier

part

project

sid

pid

sp, 2, +, +

spj, 3, *, +

jid

sname

pname price

jname qty

sp

spjspec
?

The ORA-SS schema diagram

Fig. 1. An ORA-SS schema diagram showing the
binary and ternary relationship types.

There are two relationship types defined in the schema
diagram.
The label “sp, 2, +, +” means: “sp” is a binary
relationship type between supplier and part where each
supplier supplies one or many different parts and one part

can be supplied by one or many different suppliers.
The label “spj, 3, *, +” means: “spj” is a ternary
relationship type among supplier, part and project, where
each combination of supplier and part corresponds to zero
or many different projects and one project is associated
with one or many different combination of supplier and
part instances.
The last but the most important semantic information in
Fig. 1 is the difference between object class attributes and
relationship attributes. By default, an attribute is
associated with its parent object class. However, some
attributes are not only determined by their parent object
classes. For example, the price value is determined by the
combination of supplier and part instances. Thus, the
price is an attribute of the binary relationship type sp.
Similarly, the qty (quantity) is an attribute of the ternary
relationship type spj, which means the qty value is
determined by the combination of supplier, part and
project instances along the same path in the XML
document tree.
The GLASS is a graphical XML query language proposed
on the base of ORA-SS. A typical GLASS query consists
of 4 parts:
(1) The left hand side graph (LHS graph) indicates the

query conditions.
(2) The right hand side graph (RHS graph) specifies the

result construction.
(3) The links explicitly declare the mapping between the

components in LHS and RHS graphs.
(4) The condition logic window is an optional field for

user to write complex query conditions such as
quantifiers, negations, logic/mathematic expressions
and conditional output construction (e.g. IF-THEN
clause).

Query 0: (An GLASS query example)
Find all suppliers who supply some parts to the project
“J001”; display the supplier with sid, sname, all parts
they supply (not only those for J001) with pid, pname
and price.

supplier

project

+

 @jid
='J001'

supplier

part
sid

pid

sname

pname price

spj.xml

Fig. 2. The GLASS query graph for Query 0.

3 GLASSU
A user is supposed to know the data schema and semantics
before he/she proposes an XML update. In this paper, the
XML schema is assumed to be represented by ORA-SS
schema diagram.

3.1 The notations for XML updates
In comparison with our previous works of GLASS, the
graphical representation of XML updates should be more
precise in specifying paths and positions (especially for
insertion) in an XML document tree. It also requires a
one-to-one mapping from XML components to visual
notations. To meet the requirement of XML updates, we

add some new notations.
In Table 1, we list all the notations of graphical XML
updates. It should be emphasized that,
(1). The attribute in ORA-SS (the circle) can be either a

simple element or an attribute in an XML document
tree. However, when drawing a graph for updating or
querying, we should specify the original data type
exactly. Thus, we use the circle with “@” to distinguish
XML attributes from simple XML elements.

(2). The Value node (the filled triangle) is important for
XML updates with respect to the semantics of the
keyword “VALUE OF”. If it is below an element, it
means the PCDATA content of the element; if it is
below an attribute, it means the CDATA value of the
attribute.

(3). The label of the Action node (curved rectangle) can be
the 4 basic update operators: insert, delete, replace and
rename.

XML and
XML
update

component
s

Notations for
XML updates
in GLASSU

Notation
name

Notation
meaning

Complex
XML element

Supplier Rectangle
Supplier is a
complex element in
XML

Simple XML
element Sname

Circle Sname is a simple
element in XML

XML attribute
@Sid

Circle with
“@”

Sid is an attribute in
XML

Action, the
XML update
operator

INSERT
target source

Curved

rectangle An INSERT action

Value of XML
element or
XML attribute

Filled
triangle -

Functions,
mathematic
formulas

+1

Hexagon To increase the value
by 1

Parent-child
relationship
(“/”)

 Arrow -

Ancestor-
descendant
relationship
(“//”)

+
Arrow

(with “+”) -

IDREF/IDREF
S

Dashed
Arrow

Table 1. The visual notations and their meanings for
XML updates.

3.2 The graphical XML update expressions
An XML update graph consists of 3 parts, from left to
right, they are:
(1). Condition part - indicates where the update operation

shall be applied, which is an optional part for updates;
(2). View part - generates a view from the condition part

for updating, the specification of output, which is an
optional part when the update is applied to the source
data;

(3). Action part - specifies what kind of update operation
is applied and the corresponding sources for
modification, which is a required part for any
graphical update expressions.

The condition part and view part are separated by a single

vertical line; and the view part and action part are
distinguished by a double vertical line. Fig. 3 indicates the
relation between the extension GLASSU and the original
GLASS.

Condition part,
original data

source

View
construction

part

Action
part

(optional) (required)(optional)

Condition part
Result construction

part
GLASS

LHS graph RHS graph

GLASSU

(optional) (required)

Fig. 3. The comparison between the structures of

GLASS and GLASSU.

View
construction

part

Action
part

Format 1.

Condition part,
original data

source

Action
part

Condition part,
original data

source

View
construction

part

Action
part

Format 2.

Format 3.

Fig. 4. The 3 different formats of GLASSU

expressions

Although both the condition part and view part are
optional in the extended graphical representation for
XML update, they cannot be omitted at the same time.
Moreover, when the view part is omitted, the single
vertical line between the condition part and view part
should not be omitted. We illustrate the three different
general formats of GLASSU expressions in Fig. 4, where
the update action can be either applied to the source data
or used to construct a view with respect to transformation.
Example 2. (The DTD and ORA-SS schema diagram of
“project.xml”)

<!ELEMENT project (jname, description, member+,
 numOfMember)>
 <!ATTLIST project jid ID #REQUIRED>
 <!ELEMENT jname PCDATA>
 <!ELEMENT description PCDATA>
 <!ELEMENT member (mname, jobTitle+)>
 <!ATTLIST member mid CDATA #IMPLIED >
 <!ELEMENT mname PCDATA>
 <!ELEMENT jobTitle PCDATA>
 <!ELEMENT numOfMember PCDATA>

The DTD schema

project

member
jid

mid
+

jname description numOfMember

mname jobTitle

pm, 2, +, +

pm

The ORA-SS schema diagram

Fig. 5. The ORA-SS schema and DTD of the XML
document “project.xml”

Format 1 is used when the update action is applied to

construct a view.
Format 2 is the general format that contains both the

condition part and the view part. In this format, a
view is generated according to the specification in
the condition part. If the target arrow of the action
part points to the source (condition) part, it means the
update should change the source data. Otherwise, if
the target arrow points to the view part, the update is
applied to construct a view only.

Format 3 is used when the update action is applied to the
source data, probably the most common format of an
update. With this format, all contents in the source data,
specified by the condition part, will be changed by the
update action. Notice that, after such an update, the
changes in the source data should be propagated to all
its derived views in a DBMS. The update propagation is
important but beyond the discussion in this paper.

In our following discussion, all query examples are
proposed on the XML data “spj.xml” and “project.xml”
with their ORA-SS schemas in Example 1 and Example 2.
(1) Insertion, target arrow and source link
Query 1. In the “spj.xml”, insert a new project instance that

the supplier “S001” supplies the part “P001” to the
new project; and the quantity of the part is 100 unit.

FOR $p IN doc(“spj.xml”)/supplier[@sid= “S001”]
/part[@pid = “P001”]

RETURN
 DO INSERT
 <project @jid = “J003”>
 <jname>Rocket</jname>
 <qty>100</qty>
 </project >
 AFTER
 $s/sname

XML update expression

supplier

part

 @pid
='P001'

@sid
='S001'

INSERT
spj.xml

project

 @jid
='J003'

 jname
='Rocket '

 qty
=100

GLASSU update expression

Fig. 6. The XML update expression and our graphical
representation of Query 1.

In Fig. 6, the graphical update expression is in Format 3
(See Fig. 4.), which consists of condition part and action
part (the view part is omitted).
In the action part, there is an INSERT action with two
out-stretching edges. The first edge is a line that links the
action with the new project instance. This line, which we
call “source-line”, is used to link the action and the
graphical expressions corresponding to the src_exp. The
second edge is an arrow which points to the part. The
arrow, which we call “target-arrow”, points to the target
node and/or target position of the action corresponding to
the tgt_exp in Section 2.1. By default, the target arrow
points to the parent node with the default preposition
“INTO”. We can add the key word label “AS FIRST” or
“AS LAST” on the target arrow, which indicates that the
inserted instance will the first/last child element of the
target node. Only when the preposition is “BEFORE” or

“AFTER”, the target arrow should point to the node for
reference which is in fact the sibling node of the inserted
instance.
(2) Replacement and function
Query 2. In “project.xml”, project “J001”, the member

“M. Antony” is replaced by “J. Caesar” and “J.
Caesar” should take all job titles of “M.
Antony”. (without VALUE OF)

Query 3. In the “spj.xml”, increase the price value of
part “P001” under each supplier by 10%. (with
VALUE OF)

The example of Query 2 demonstrates the semantics of
replacing nodes without using the keyword “VALUE
OF”. Because the original member “M. Antony” will be
replaced, we should remember his job titles in project
“J001” before it is replaced. To achieve this, we have to
use the transform expression to create a temporary view.
After that, we construct the new member instance “J.
Caesar” and put the job titles in the temporary view under
“J. Caesar”. Finally, we replace the new instance to the
old one in the original data. The GLASSU expression in
Fig. 7 is of Format 2.

FOR $j IN doc(“project.xml”)
 /project[@jid = “J001”]
LET $m := $j/member[mname = “M. Antony”]
RETURN
 TRANSFORM
 COPY $c := $m
 DO REPLACE
 $m
 WITH
 <member @mid = ‘M007’>
 <mname>J. Caesar</mname>
 $c/jobTitle
 </member>

XML update expression

member

REPLACE
project

project.xml

 @jid
='J001'

 mname
='M. Antony'

member

jobT itle

member

jobTitle

 mname
='J. Caesar'

 mid
='M007'

GLASSU update expression

Fig. 7. The XML update expression and our graphical
representation of Query 2.

FOR $p IN
doc(“spj.xml”)/supplier
 /part[@pid = “P001”]
RETURN
 DO REPLACE VALUE OF
 $p/price
 WITH
 $p/price*1.1

REPLACE

 price*1.1 @pid
= 'P001'

supplier
spj.xml

part

price

XML update expression GLASSU update expression

Fig. 8. The XML update expression and our graphical
representation of Query 3.

In comparison, Query 3 is a replacement on the value of
an XML node. To express the semantics of “VALUE OF”,
we use the value node (the filled triangles). In the
condition part, the triangle below the price means “the
value of the price element”; and in the action part, the
target-arrow points to the triangle under the price in the
condition part. The source-line that links to the price

attribute indicates which nodes are involved in the
function or mathematic formula in the hexagon. This is
important when there are several different attributes are
involved or the source node appears under different
object class nodes.
(3) Deletion
Query 4. (Deletion) In the “project.xml”, below the

project “J001”, the member “G. Octavian” will
no longer be the project leader. Thus, we will
delete the corresponding job title.

FOR $oct IN doc(“project.xml”)/project[@jid= ‘J001’]
/member[mname=‘G. Octavian’]

$jt IN $oct/jobTitle
WHERE $jt = “Project leader”
RETURN
 DO DELETE
 $jt

XML update expression

project

DELETE

project.xml

 jobTitle
='Project leader'

member

 mname
='G. Octavian'

 @jid
='J001'

GLASSU update expression

Fig. 9. The XML update expression and our graphical
representation of Query 2.

In comparison with the other update operators, the delete
operator always has only one operand – the target node(s)
to delete.
(4) Rename and Transformation
Query 5. Create a view from “project.xml”, rename the

first member element of each project as
“project_leader”.

FOR $p IN
doc(“project.xml”)/project
RETURN
 TRANSFORM
 COPY $tp := $p
 DO RENAME
 $tp/member[1]
 AS
 “project_leader”
 RETURN $tp

project RENAME

project.xml

member

[1]

project_leader

XML update expression GLASSU update expression

Fig. 10. The XML update expression and our
graphical representation of Query 5.

The graphical XML update expression in Fig. 10 is in
Format 1 (in Fig. 4) that only contains the view part and
action part. Therefore, we create a view of the original
data; and, within the view, we rename the first member
element under each project element as project leader,
which will not change the source data.

4 Summary
In this paper, we focus on the problem of XML update
representation. Our extension work in this paper brings
contributions in two folds. On one hand, we inherit the fruit of
an existing graphical query language: GLASS and re-use its
expressive power to represent complex path navigation and/or
query conditions. One the other hand, the extension enhances
the graphical query language into a full-featured one that now

support both data query and data update.
Related Works: There has been several research works
proposed on the subject of graphical XML query
representation such as the graphical XML query
languages [3, 4, 11] and graphical user interfaces (GUIs)
[12]. However, none of the current existing graphical
XML query languages includes the XML update. To our
best knowledge, our extension of GLASS, namely
GLASSU, is the first extension of a graphical XML query
language to represent XML update expressions.
Future Works: The XML update brings the problem of
validation. As we have mentioned that we choose ORA-
SS model because the rich semantics in ORA-SS is the
base of the validation of semantic constraints. Therefore,
one future research direction is the semantic validation of
XML updates, especially for data centric XML data.

References:
[1] Abiteboul, S., Quass, D., McHugh, J., Widom, J., and

Wiener, J. (1996): The Lorel query language for
semistructured data. Journal on Digital Libraries, 1(1).

[2] Apparao, V. and Byrne, S. (1998): Document object model
(DOM) level 1 specification. W3C Recommendation.

[3] Braga, D., Campi, A., and Ceri, S. (2005): XQBE: A Visual
Interface to the Standard XML Query Language. ACM
Transactions on Database Systems, Vol. 30, No. 2, p398-
443.

[4] Ceri, S., Comai, S., Damiani, E., Fraternali, P., Paraboschi,
S., and Tanca, L. (1999): XML-GL: a graphical language of
querying and restructuring XML documents. Proc. WWW8.

[5] Goldman, R. and Widom, J. (1997): Dataguides: Enabling
query formulation and optimization in semi-structured
databases. Proc. VLDB1997.

[6] Laux, A., Martin, L. (2000): XUpdate - XML Update
Language. W3C Working Draft.

[7] Ling, T. W., Lee, M. L., Dobbie, G. (2005): Semistructured
Database Design. Springer Science + Business media, Inc.

[8] Liu, M., Lu, L., Wang, G. (2003): A Declarative XML-RL
Update Language. Proc. ER 2003.

[9] May, W. (2001): XPathLog: A Declarative, Native XML
Data Manipulation Language. Proc. IDEAS'01.

[10] McHugh, J., Abiteboul, S., Goldman, R., Quass, D., and
Widom, J. (1997): Lore: A database management system for
semi-structured data. SIGMOD Record, 26(3):54-66.

[11] Ni, W. and Ling, T. W. (2003): GLASS: A Graphical Query
Language for Semi-Structured Data. Proc. DASFAA2003.

[12] Papakonstantinou, Y., Petropoulos, M., and Vassalos, V.
(2002): QURSED: Querying and Reporting Semistructured
Data. Proc. ACM SIGMOD.

[13] Tatarinov, I., Ives, Z.G., Halevy, A.Y., and Weld, D.S.
(2001): Updating XML. Proc. ACM SIGMOD.

[14] Extensible Markup Language (XML)
http://www.w3.org/XML/ Accessed Aug 2007.

[15] XML Path Language (XPath) http://www.w3.org/TR/xpath
Accessed Aug 2007.

[16] XML Schema http://www.w3.org/XML/Schema Accessed
Aug 2007.

[17] XQuery Update Facility W3C Working Draft 11 July 2006
http://www.w3.org/TR/2006/WD-xqupdate-20060711/
Accessed Aug 2007.

[18] W3C XML Query (XQuery)
http://www.w3.org/XML/Query/ Accessed Aug 2007.

