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Abstract. Processing a twig pattern query in XML document includes
structural search and content search. Most existing algorithms only fo-
cus on structural search. They treat content nodes the same as element
nodes during query processing with structural joins. Due to the high
variety of contents, to mix content search and structural search suffers
from management problem of contents and low performance. Another
disadvantage is to find the actual values asked by a query, they have to
rely on the original document. In this paper, we propose a novel algo-
rithm V alue Extraction with Relational Table (V ERT ) to overcome
these limitations. The main technique of V ERT is introducing relational
tables to store document contents instead of treating them as nodes and
labeling them. Tables in our algorithm are created based on semantic
information of documents. As more semantics is captured, we can fur-
ther optimize tables and queries to significantly enhance efficiency. Last,
we show by experiments that besides solving different content problems,
V ERT also has superiority in performance of twig pattern query pro-
cessing compared with existing algorithms.

1 Introduction

XML plays an important role in information exchange nowadays. As a result,
how to process queries over XML documents efficiently attracts lots of research
interests. In most XML query languages (see, e.g. [2][3]), the queries are ex-
pressed as twig patterns. Finding all appearances of a twig pattern in an XML
document is a most significant operation in XML query processing.

Normally an XML query includes structural search and content search. E.g.
in a query

book[author = “Jack”]/title

book[author]/title is a structural search and author = “Jack” is a content
search. Most of existing works only focus on processing structural search ef-
ficiently and very few of them pay high attentions on contents. Content prob-
lems include how to properly manage contents, how to efficiently process content
search during query processing and how to extract contents to answer the queries.



E.g. TwigStack [4] and its subsequent algorithm TwigStackList [9] are optimal
for processing path and twig pattern queries, but they all suffer from content
problems when they process queries with content predicates, because they treat
contents the same as other element nodes and perform structural search for the
whole query. Although some algorithms like [12] and [11] use subsequence match-
ings to avoid problems on content search , they still suffer from other problems
such as cost for content result fetching in XML databases.

In this paper, we propose a new algorithm to solve different kinds of content
problems in twig pattern query processing. Our contribution can be summarized
as follows:

– We propose a new algorithm, namely Value Extraction with Relational Table
(VERT). Our approach combines value contents to related element or at-
tribute nodes and only assigns label to the element or attribute. Instead of
organizing tremendous number of streams for different contents, e.g. streams
for value content ‘33’, ‘Gehrke’ and so on for document in Fig. 1(a), we adopt
relational tables to store value contents together with their associated ele-
ments or attributes. In this point of view, we can reduce the number of
labeled nodes and also we can solve the management problem of contents
raised in previous algorithms.

– Content search can be accomplished efficiently by SQL queries on corre-
sponding relational tables with proper indexes. Furthermore, after finding
the appearances of a twig pattern we can easily get the desired value con-
tents from tables. As a result, our approach need not consider the document
storage for final results.

– Relational tables are created based on semantic information captured in doc-
uments. As more semantics is captured, we can further optimize the tables
and queries to achieve better performance, as shown in Section 5.

– Besides solving content problems, we also present experimental results to
show the superiority of V ERT and subsequent optimizations over previous
algorithms in performance of twig pattern query processing.

The rest of the paper is organized as follows. We first describe some related
works in Section 2. After that we discuss background knowledge and motivation
for our work in Section 3. The V ERT algorithm with two semantics based
optimizations is presented in Section 4. We present the experimental results in
Section 5 and conclude our work in Section 6.

2 Related Work

In early work, Zhang et al. [14] proposed a multi − predicatemergejoin al-
gorithm based on (DocId, Start, End, Level) containment labeling of a XML
document. Later an improved stack-based structural join algorithm is proposed



by Al-Khalifa et al. [1]. These two algorithms, as well as most of prior works
decomposed a twig pattern into a set of binary relationships, e.g. parent-child
and ancestor-descendant relationships. Then twig pattern matching could be
done by matching each binary relationship and combining these basic binary
matches. The main problem of such approaches is that intermediate result size
may be very large, even when the input and final result sizes are more man-
ageable. To overcome this limitation, Bruno et al. [4] proposed a holistic twig
join algorithm, TwigStack, which could avoid producing a large size of inter-
mediate result. However, this algorithm is only optimal for a twig pattern with
only ancestor-descendent relationships. There are many subsequent works [9] [8]
[5] [10] [7] [13] to optimize TwigStack in terms of I/O, or extend TwigStack
for different kinds of problems. In particular, Lu et al. [9] introduced a list
structure to make it optimal for queries containing parent-child relationships.
However, all these existing works only focus on structural search. For content
search they either treat content node the same as element node, or consider how
contents are stored and perform a separate operation on content search. V iST
[12] and PRIX [11] transform twig pattern queries into sequences and perform
subsequence matchings for query processing. They can solve problems on con-
tent search, but they still do not pay attention to fetching content results of
twig pattern queries, and are not efficient in structural search comparing with
TwigStack.

3 Background and Motivations

3.1 Data model and twig pattern

XML documents are commonly modelled as ordered trees, in which tree nodes
represent tags, attributes or text values, and edges represent element-subelement,
element-attribute, element-content or attribute-value pairs. We call these binary
relationships parent-child relationships (denoted by “/”). Queries normally ap-
pear to be twig patterns. A twig pattern is a small tree whose nodes stand for
tags, attributes or contents in a document. Different from the parent-child re-
lationship in XML tree, edges in twig query can also be ancestor-descendent
relationships (denoted by “//”) which stand for that some other nodes may
appear on the path between the two nodes connected by “//”.

Given a twig pattern query Q, finding all the occurrences in an XML tree T
is the main operation for query processing. A match of Q in T is identified by
a mapping of nodes and edges from Q to T such that query node predicates are
satisfied by corresponding nodes in the document and the relationships between
query nodes are satisfied by corresponding relationships between nodes in the
document.

3.2 Motivations

TwigStack and its supplementary works are optimal for twig query processing
in many cases. In this section, we take TwigStack as an example and discuss



some drawbacks of existing algorithms regarding to contents, which motivate
our research.

Similar as most existing algorithms, TwigStack processes content search
in the same way as structural search. The problems regarding to contents in
TwigStack can be summarized as follows:

1. In TwigStack, all the nodes including elements, attributes and contents in
an XML tree are labeled and the labels are organized in streams. When we
build streams for contents, stream management is a problem. Consider a
bookstore document shown in Fig. 1(a). There are a large number of books
and each of them has a unique ISBN number. For each ISBN number there is
a stream, e.g. a stream for ‘0-07-123057-2’, another stream for ‘0-07-124650-
9’ and so forth. The problem is how to manage the tremendous number of
streams. When a query in Fig. 1(b) is issued, it is time consuming to get all
the streams with numeric names which are greater than 15. Although we can
organize streams using B+ tree, after finding all the corresponding streams,
to combine labels in them by document order is also time consuming.

2. Streams for contents do not have semantic meanings. This may cause ad-
ditional checking. When the query is interested in books with price of 20,
structural search scans the stream T20. Since in T20 we do not differentiate
price and quantity, we need check all the labels in this stream though many
of them stand for quantity and definitely do not contribute to final answer.

3. When we issue a query over an XML document, what we need is not all
the twig pattern appearances represented as tuples of labels, but the content
results of that query. Like in the query example above, after finding a certain
number of twig pattern appearances which contain element ISBN and title,
we need to find their actual values. Since value contents are stored as stream
names and it is not practical to get them using labels, they have to move
into the document again. That is relevant to how to store and manage XML
document and is not negligible.

Our motivation is to avoid all these content problems raised in existing al-
gorithms. After that, twig pattern queries can be processed more efficiently not
only in content search, but also in entire execution.

4 VERT Algorithm

Some elements or attributes in XML documents describe certain properties of
their parent elements, e.g. title, price are properties of book in the bookstore
document. We use term property for such element or attribute, and term object
for the element described by property. In this section, we first present V ERT
algorithm to handle content problems and improve efficiency on content search.
Tables in V ERT store relationships between properties and their values. Then
in Section 4.4 we present another two approaches to optimize V ERT using



<book_store>
<book>

<ISBN>0-07-123057-2</ISBN>
<title>Database Management Systems</title>
<author>Ramakrishnan</author>
<author>Gehrke</author>
<price>33</price>
<quantity>20</quantity>

</book>
<book>

<ISBN>0-07-124650-9</ISBN>
<title>Introduction to Database Systems</title>
<author>Bressan</author>
<author>Catania</author>
<price>17</price>
<quantity>12</quantity>

</book>
……

</book_store>

(a) An XML document

CREATE TABLE title
(pre integer PRIMARY KEY,
post integer,
level integer,
value varchar(12));

INSERT INTO title (pre, post, level, value) 
VALUES (3, 4, 3, ‘Computing’);

SELECT pre, post, level
FROM title
WHERE value=‘Computing’
ORDER BY pre ASC;

ISBN

book

price

>15

ISBN

book

price’

title

(b) A twig pattern query

Fig. 1. An example of XML document and twig pattern query

semantic information. Tables in these optimizations store relationships between
objects and their properties with values.

4.1 XML document parsing in VERT

In our first approach, we use tables to store labels of properties and their values.
When we parse an XML document, we only label elements and attributes, and
put these labels into corresponding streams in document order. Contents in
document are not labeled, instead we put them in relational tables together
with labels of their property nodes. We adopt interval encoding labeling scheme
in our approach (see [6]). The detailed algorithm Parser is presented as follows.

There are three major steps when we parse an XML document: labeling the
elements, constructing streams for different types of elements or attributes, and
inserting each pair of property and value content into relational tables. SAX
reads the documents to transform each tag and content into event and line
3 captures the next event if there are more events in SAX stream. Based on
different types of events, different operations are performed accordingly. Line
4-16 are executed if the event e is a starting element. In this case, the first 2
steps are processed. The system first constructs an object for this element and
assigns a label to it. It then puts the label into the stream for that tag. A stack
S is used to temporarily store the object so that when an ending tag is reached,
the system can easily know on which object the operation will be executed. At
line 9-14, the system analyzes the attributes for this element if any. Based on
the same operating steps, it labels the attributes and puts labels into streams.
The attribute values are treated in the same way as element contents. Line 17-18



Algorithm 1 Parser
1: initialize Stack S
2: while there are more events in SAX stream do
3: let e = next event
4: if e is a start tag then
5: //step 1: label elements
6: create object o for e
7: assign label to o
8: push o onto S
9: for all attributes attr of e do

10: //we parse attributes in the same way as elements.
11: assign label to attr
12: put label of attr into stream Tattr

13: insert the label of attr and the value of attr into table Rattr

14: end for
15: //step 2: put labels of elements into streams
16: put label of o into stream Te

17: else if e is a content value then
18: set e to be the child content of the top object in S
19: else if e is an end tag then
20: // step 3: Insert contents with their parent element into tables
21: pop o from S
22: if o contains child contents then
23: insert label of o together with its child contents into table Re

24: end if
25: end if
26: end while

is the case that the event is a content type. Then the content is simply bound
to the top object in S for further insertion used. When the event is an ending
element in line 19-25, last step is processed, which is popping the top object
from the S and inserting the label together with contents into the table for that
object. A set of example tables are shown in Fig. 2(c). They are property-value
tables. The name of the tables are the property names and each table contains
two fields, the label of the property node and value content.

Example 1. Consider the XML data shown in Fig. 1(a), Parser assigns labels
to tags and the resulting labeled tree is shown in Fig. 2(a). Then all the labels
belonging to the same type of element in XML tree will be passed to the same
stream by document order as shown in 2(b). The contents in document together
with their parent elements will be stored in corresponding relational tables ac-
cording to the type of parent elements. Fig. 2(c) shows the resulting tables in
this example.

4.2 Query processing with V ERT

Twig pattern query processing involving contents is composed of two parts. First
we analyze and rewrite the query. During this part, for each leaf node which is



book_store

book

ISBN title author price    quantity

0-07-123057-2

Database Management Systems

Ramakrishnan

author

Gehrke
33

20

book

ISBN title author price    quantity

0-07-124650-9

Introduction to Database Systems

Bressan

author

Catani
17

12

(1:1000,1)

(2:15,2) (16:29,2)

(3:4,3) (5:6,3) (7:8,3) (9:10,3)(11:12,3)(13:14,3)(17:18,3)(19:20,3)(21:22,3)(23:24,3)(25:26,3) (27:28,3)

…

…

…

(a) Labeled XML tree

root

price>18

book

amount

Tbook_store - (1:1000,1) …

Tbook - (2:15,2) (16:29,2) …

TISBN - (3:4,3) (17:18,3) …

Ttitle - (5:6, 3) (19:20,3) …

Tauthor - (7:8,3) (9:10,3) (21:22,3) (23:24,3) …

Maths3

Biology(17:18,3)

……

(3:4,3)

valueLabel

TISBN

Tprice - (11:12,3) (25:26,3) …

Tquantity - (13:14,3) (27:28,3) …

(b) Streams for different elements

Introduction to 
Database Systems

(19:20,3)

……

Database 
Management Systems

(5:6,3)

ContentLabel

Rtitle

0-07-124650-9(17:18,3)

……

0-07-123057-2(3:4,3)

ContentLabel

RISBN

Bressan(21:22,3)

Catani(23:24,3)

Gehrke(9:10,3)

……

Ramakrishnan(7:8,3)

ContentLabel

Rauthor

17(25:26,3)

……

33(11:12,3)

ContentLabel

Rprice

12(27:28,3)

……

20(13:14,3)

ContentLabel

Rquantity

(c) Tables to store contents

Fig. 2. An example of labeled XML tree with resulting streams and tables by Parser

a value content, a new stream for its parent property node is constructed using
the table of that property. In the second part, we process the new query using
existing efficient algorithms, e.g. TwigStack in new searching space.

In the main algorithm V ERT , we first check for the validity of a given query
in line 2-4. Validity of a query Q is defined as whether Q is meaningful for
processing. Intuitively this validation can be accomplished by checking whether
all the content comparisons in query predicates have parent element. If there is
some content comparison in Q appearing in ancestor-descendance relationship
(‘//’) with an element, we consider Q is not meaningful and our algorithm rejects
such Q. Example 2 shows an invalid query. Line 6-12 recursively handle all
the content comparisons in two phases: creating new streams and rewriting the
predicates. In detail, Line 7-10 execute SQL selection on corresponding tables
based on the content comparison, and then put all the selected labels, which are
satisfied with the content comparison, into the new streams. Line 11 rewrites
the query in such a way that the content and their respective parent elements
or attributes are replaced by a new element which has an identical name as the
corresponding new stream. At the end of the algorithm, we use TwigStack or
other efficient algorithm to process the new query with new streams.



Algorithm 2 VERT
1: //check the validity of queries
2: if The query Q is not valid then
3: reject Q
4: end if
5: //step 1: construct new streams and new queries
6: while there are more content comparisons in predicates of Q do
7: let c be the next content comparison, and p be its parent element or attribute
8: create a new stream Xp′ for p
9: select the labels based on content c from the table Tp for p

10: put the selected labels into Xp′

11: rewrite the predicates such that replace sub-structure p/c by p′

12: end while
13: //step 2: process new queries in new streams
14: process the rewritten Q using existing efficient algorithms like TwigStack

Example 2. Consider the twig pattern query in Fig. 3(a). The value node with
content comparison ‘>15’ only has an ancestor instead of a parent. In this case
we are not sure whether the query wants to get the books with price greater than
15, or with the quantity greater than 15. As a result, this twig pattern query is
considered invalid and by the line 2-4, V ERT rejects this query.

Example 3. The twig pattern query in Fig. 3(b) is valid. By V ERT we first find
the predicate with content comparison, price > 15 in this case. In line 7-10,
we execute SQL in table Rprice to get all the labels of element price having
value content greater than ‘15’. Since all the records in database are inserted in
document order, we can directly add resulting labels into a new stream Tprice′ ,
which contains all the labels for price with value greater than 15. Then we
rewrite the twig pattern query where the substructure with node price and its
child node ‘>15’ is replaced by price′. To clearly explain price′ in the new query,
we use price>15 in Fig. 3(c). Finally we process TwigStack on the new query
using Tprice′ for node price>15.

4.3 Analysis of VERT

In this section, we will analyze our algorithm in four points of view: the manage-
ment of data including labeled nodes and streams, content extraction for both
predicates and final results, the size of streams to be searched and the number
of structural joins during query processing.

Data management V ERT combines contents and their parent elements to-
gether, and avoids labeling content nodes separately. Suppose an XML doc-
ument is a full tree with height of h and each element has k children on
average. Then the number of labeled elements is (kh−1-1)/(k-1) and the
number of contents is kh−2. When the document is large, the proportion
of contents to the sum of elements and contents is around (k-1)/(2k-1). In



CREATE TABLE title
(pre integer PRIMARY KEY,
post integer,
level integer,
value varchar(12));

INSERT INTO title (pre, post, level, value) 
VALUES (3, 4, 3, ‘Computing’);

SELECT pre, post, level
FROM title
WHERE value=‘Computing’
ORDER BY pre ASC;

ISBN

book

price

>15

ISBN

book

Price>15

title

title

ISBN

book

>15title

(a) Invalid query

CREATE TABLE title
(pre integer PRIMARY KEY,
post integer,
level integer,
value varchar(12));

INSERT INTO title (pre, post, level, value) 
VALUES (3, 4, 3, ‘Computing’);

SELECT pre, post, level
FROM title
WHERE value=‘Computing’
ORDER BY pre ASC;

ISBN

book

price

>15

ISBN

book

Price>15

title

title

ISBN

book

>15title

(b) Valid query

CREATE TABLE title
(pre integer PRIMARY KEY,
post integer,
level integer,
value varchar(12));

INSERT INTO title (pre, post, level, value) 
VALUES (3, 4, 3, ‘Computing’);

SELECT pre, post, level
FROM title
WHERE value=‘Computing’
ORDER BY pre ASC;

ISBN

book

price

>15

ISBN

book

price>15

title

title

ISBN

book

>15title

(c) Rewritten query of (b)

Fig. 3. Invalid and valid twig pattern queries

our algorithm, since contents are not labeled, the number of labeled nodes
in memory will be reduced nearly by half for large documents and then the
size of each stream will also be significantly narrowed down. Furthermore,
since large variety of contents are ignored, the number of streams for dif-
ferent types of labeled nodes is limited to the number of element types. So
the management of tremendous number of streams in previous work as men-
tioned in Section 3 can be solved.

Value extraction Consider the XML document in Fig. 1(a) and a query in
Fig. 3(b). When we extract the content ‘15’ to answer this query, in previous
approaches we need to move into the stream for content ‘15’. However, the
stream for ‘15’ contains different semantic labels like the price of a book
and the quantity of a book. To mix them together will cause unnecessary
search. Instead of searching in streams, V ERT handles contents in semantic
tables. In this case, we just move into the table for price and avoid searching
for content ‘15’ under quantity. Furthermore, after getting all the appear-
ances of ISBN and title tags which satisfy the constraint, we aim to find
the value contents under these tags. Previous approaches have to move into
document again to fetch them because the streams for such contents cannot
contribute to final result extraction. This depends how XML documents are
stored and is not negligible. V ERT can be very efficient to get the desired
content results without considering document storage because all the con-
tents are stored in tables instead of streams and we can directly get these
contents through SQL operations on tables. As a result, relational tables are
not only helpful in content search, but also usable to get desired contents
based on the labels found.

Stream searching reduction Pre-processing contents is essential to reduce
the size of streams. Consider the query that we want to find the quantity
for a book with ‘ISBN = 0 − 07 − 123057 − 2’ on the bookstore docu-
ment. If the number of different books is b, the size of stream for element
ISBN is also b in previous approaches, as shown in Fig. 4(a). Then we need



O(b) to scan all the labels in ISBN stream. V ERT processes selection in
advance, such that the new stream for ISBN is created based on content
‘0-07-123057-2’. That means the new stream has only 1 label inside since
ISBN is the key for books. Fig. 4(b) shows the rewritten query and size of
new stream. TISBN ′ is the new stream for element ISBN , and in Fig. 4(b)
we use ISBN0−07−123057−2 to explain ISBN ′. So when the selectivity of
an element is high, like in this example, V ERT also has high superiority to
previous algorithms because it significantly reduces the searching in stream.

Structural joins reduction There are two factors driving the high perfor-
mance of V ERT . One is searching space reduction as mentioned above and
the other factor is number of structural joins reduction. Still consider the
example in Fig. 4. The rewritten query has only two parent-child relation-
ships need structural joins, while the original query has three. As we know
structural join is an expensive operation, the reduction of structural joins
leads a higher performance. Optimizations to further reduce size of streams
and number of structural joins will be discussed in next section.

ISBN

book

quantity

0-07-123057-2

[StreamSize=n]

ISBN’=0-07-123057-2

book

quantity

[StreamSize=n] [StreamSize=1]

book’

amount

[StreamSize=1]

|Tbook|=b

|TISBN’|=1

(a) Original query with corresponding
stream size |Tbook|=b and |TISBN |=b

ISBN

book

quantity

0-07-123057-2

|Tbook|=b

[StreamSize=n]

ISBN0-07-123057-2

book

quantity

[StreamSize=n] [StreamSize=1]

book’

amount

[StreamSize=1]

|TISBN|=b

|TISBN’|=1

(b) Rewritten query for (a)
with corresponding stream size
|Tbook|=b, and stream size for node
ISBN0−07−123057−2=|TISBN′ |=1

Fig. 4. Original and rewritten query examples in VERT

4.4 Optimizations for VERT

Tables in V ERT store label of each property and its value content. This ap-
proach differentiates contents by properties. However, there are still more se-
mantics can be captured. With more semantic information, we can improve the
performance by further reducing size of streams and number of structural joins
in most documents. This motivates two approaches of optimizations for V ERT .



Observation 1: Generally, after knowing the value on a certain property of
an object, most queries want to find that object and then get some other proper-
ties of that object. For the query in Fig. 4, with the ISBN value we need to find
corresponding book and get the quantity of that book. After V ERT rewriting
the query, the size of stream for ISBN is significantly reduced. However the
size of stream for book is still b, which means we need to search all the b labels
in book stream although we know there is only one matches with the label in
ISBN stream. As a result, we can further rewrite the query to get the object
book directly from property ISBN value.

Optimization 1: Instead of storing labels of property nodes and their value
contents, we can put the labels of objects with property values into tables. E.g.
in the bookstore document we put value contents for ISBN , title and so forth
with labels of corresponding book in object/property tables as shown in Fig.
5(a). The ‘Label’ field of each table stores the label of object book and the
following ‘Content’ corresponds the value contents of different properties in dif-
ferent tables, e.g. in Rbook/ISBN ‘Content’ in each tuple is the ISBN value of
the book with ‘Label’ in the same tuple. The query in Fig. 4(a) is rewritten
accordingly, as shown in Fig. 5(b), where Tbook′ is the new stream for element
book and bookISBN=0−07−123057−2 is to explain book′. In new tables, we can di-
rectly select the label for book based on ISBN number in Rbook/ISBN without
considering tags for element ISBN . Now we not only reduce the size of Tbook,
but also reduce the number of structural joins to be 1. So we can get a higher
performance when we execute the new query.

Introduction to 
Database Systems

(16:29,2)

……

Database 
Management Systems

(2:15,2)

ContentLabel

Rbook/title

0-07-124650-9(16:29,2)

……

0-07-123057-2(2:15,2)

ContentLabel

Rbook/ISBN

Bressan(16:29,2)

Catani(16:29,2)

Gehrke(2:15,2)

……

Ramakrishnan(2:15,2)

ContentLabel

Rbook/author

17(16:29,2)

……

33(2:15,2)

ContentLabel

Rbook/price

12(16:29,2)

……

20(2:15,2)

ContentLabel

Rbook/quantity

(a) Tables in VERT optimization 1

ISBN

book

quantity

0-07-123057-2

|Tbook|=b

[StreamSize=n]

ISBN’=0-07-123057-2

book

quantity

[StreamSize=n] [StreamSize=1]

bookISBN=0-07-123057-2

quantity

[StreamSize=1]

|TISBN|=b

|Tbook|=b

|TISBN’|=1

(b) Rewritten query for
Fig 4(a) with stream size of
bookISBN=0−07−123057−2=
|Tbook′ |=1

Fig. 5. Tables and queries in VERT optimization 1

However, this optimization may lose order information in some cases. If we
want to get all the authors’ names of a certain book, since we ignore the element



author and get all the name contents from Rbook/author, we cannot differentiate
the order in document. This limitation can be solved by adding ordinal number
to different contents if the order is important.

Observation 2: There are some queries with multiple predicates on a certain
element. E.g. a query on the bookstore document: find the ISBN number of the
book with title ‘Database Management Systems’ and price of 33. To answer this
query, V ERT with optimization 1 needs to find the books with title ‘Database
Management Systems’ and books with price of 33 separately and join them to
get results. With semantic information, we know title and price are properties
of object book. If we have a table for this object which contains both of the
properties, books satisfying these two constraints can be found directly and
intermediate results can be avoided.

Optimization 2: A simple idea is to pre-merge tables in optimization 1
based on the same objects. But for multi-value properties, like author in our
example, it is not practical to merge it with other properties. The information
on multi-value properties can be found in document schema. After knowing this,
we can merge all the single-value properties of an object into one table and keep
tables for multi-value properties remain as what they are in optimization 1. The
resulting tables for bookstore document is shown in Fig. 6. In Rbook, each label of
book is stored with all the single-value property contents of that book. When we
process queries with multiple predicates on a certain object, we can do selection
in that object table using these predicate constraints in one time. In this way,
we can even simplify the query and prune intermediate results.
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Declarations: Optimizations of V ERT are based on semantics captured
from schema or document, or even declared by document owners. Generally, the
more semantic information known, the further our algorithm can be optimized
and the better performance can be achieved.

5 Experiments

In this section, we present experimental results on the performance of twig pat-
tern search under V ERT algorithms with and without optimizations, which
are introduced in section 4, and TwigStack. Final result extraction for each



query can be done simply by selection in corresponding tables in our approach,
however, in other algorithms it depends on the database implementation. The
comparison for final result extraction is not included in our experiments.

5.1 Experimental Settings

Implementation and Hardware: We implemented all algorithms in Java.
The experiments were performed on a 3.0GHz Pentium 4 processor with
1G RAM under OS of Windows XP.

XML Data Sets: We used three real-world and synthetic data sets for our ex-
periments: NASA, DBLP and XMark. NASA is a 25 MB document with com-
plex DTD schema. DBLP data set is a 127MB fragment of DBLP database.
The characteristic of this data set is simple DTD schema and large data
sources. We also used XMark benchmark data with size of 110MB.

Queries: We selected three meaningful queries for each data set. All the queries
chosen contain predicates with content comparison, since content predicates
appear in most practical queries. Generally, there are three types of queries:
queries with predicates on equality comparison, queries with predicates on
range comparison and queries with multiple predicates on different compar-
isons. The queries are shown in Table 1.

Query Data Set XPath Expression

Q1 NASA //dataset//source/other[/date/year>‘1919’ and year<‘2000’]/author
/lastName

Q2 NASA //dataset/tableHead[//field/name=‘rah’]//tableLinks //title

Q3 NASA //dataset/history/ingest[/date[/year>‘1949’ and year<‘2000’]
[/month=‘Nov’][/day>‘14’ and day<‘21’]]/creator /lastName

Q4 DBLP /dblp/article[/author=‘Jim Gray’]/title

Q5 DBLP //proceedings[/year>‘1999’]/isbn

Q6 DBLP //inproceedings[/title=‘A Flexible Modelling Approach for Software
Reliability Growth’][/year=‘1987’][/author=‘Sergio Bittanti’]
/booktitle

Q7 XMark //regions/africa/item[/mailbox/mail/from=‘Libero Rive’]
/description

Q8 XMark //item[//mail/date>‘Sep’]/location

Q9 XMark //item[/location=‘United State’][/mailbox/mail[/date=
‘02/11/1999’][/to=‘Aamer Krolokowski’]]/description

Table 1. Experimental queries



5.2 Experimental Results and Analysis

Our experiments mainly compare the stream management and total execution
time between TwigStack and our approaches. The implementation of TwigStack
adopts B+ tree to organize streams, which ensures high performance of content
stream management. The number of labeled nodes and number of streams to be
managed for the three data sets under the two approaches are shown in Table
2. This result validates the analysis about the data management in last section.

Data Set Number of Labeled Nodes Number of Streams
TwigStack VERT TwigStack VERT

NASA 997,987 532,963 121,833 68

DBLP 6,771,148 3,736,406 388,630 37

XMark 5,215,282 2,048,193 353,476 75

Table 2. Number of labeled nodes and streams using TwigStack and V ERT

The experimental results of execution time for the three data sets are shown
in Fig. 7. From the results, we can see the execution time reduction is significant
for all the queries in DBLP document. This is in accord with our analysis in
section 4.3, that is our approach works quite well for such XML document that
has simple schema but large data sources. In DBLP document, there are only
several types of data like proceedings, thesis, articles and so forth. There are large
quantity of works under each type. The properties of each work type that appear
as sub-elements in document are mostly the same and depth of the data tree is
3. As a result, for DBLP data, when we rewrite the query to reduce the query
depth, we prune tremendous number of unnecessary tag checkings. Q2 in NASA
data set is another example for the reason why V ERT has higher performance
than other approaches. The tag ‘name’ appears quite frequently in document
with different semantic meanings, however, in Q2 what we are interested is only
the field name. Instead of scanning all the ‘name’, our approach can move into
field names directly using semantic tables. In this way, the execution time can
be significantly reduced.

Comparing with optimization 1 and optimization 2 of V ERT , we can see
from the experimental result that for single-predicate queries there is no obvious
difference. However, for multi-predicate queries, optimization 2 has a better per-
formance as shown in Q3, Q6 and Q9. This again proves our analysis in Section
4.4.

6 Conclusion and future work

In this paper, we propose a novel algorithm V ERT to solve different content
problems raised in existing algorithms. Unlike TwigStack and its subsequent
algorithms, our approach uses semantic tables to do content search, and then
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Fig. 7. Execution time by TwigStack and VERT without optimizations, with opti-
mization 1 and with optimization 2 in three XML documents.

avoids the management of tremendous number data streams. Besides, V ERT
can efficiently extract contents for predicate comparisons during query process-
ing. Experimental results show that our method is much more efficient than
TwigStack for queries with content comparison as predicates. To answer the
query, our method need not consider how the document stored in database.
Instead, we can directly get the content results from tables.

One direction for future research to improve our algorithm is to discover
more semantics in XML document and combine the semantic information into
relational tables. Queries can be processed more efficient based on semantic ta-
bles and query rewriting by reducing unnecessary searches, number of structural
joins and intermediate results. Also, our relational approach gives a new scheme
to relate XML query processing algorithms to XML databases.
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