
A Semantic Approach to Keyword Search over
Relational Databases

Zhong Zeng, Zhifeng Bao, Mong Li Lee, and Tok Wang Ling

School of Computing, National University of Singapore
{zengzh, baozhife, leeml, lingtw}@comp.nus.edu.sg

Abstract. Research in relational keyword search has been focused on
the efficient computation of results as well as strategies to rank and out-
put the most relevant ones. However, the challenge to retrieve the intend-
ed results remains. Existing relational keyword search techniques suffer
from the problem of returning overwhelming number of results, many of
which may not be useful. In this work, we adopt a semantic approach to
relational keyword search via an Object-Relationship-Mixed data graph.
This graph is constructed based on database schema constraints to cap-
ture the semantics of objects and relationships in the data. Each node
in the ORM data graph represents either an object, or a relationship,
or both. We design an algorithm that utilizes the ORM data graph to
process keyword queries. Experiment results show our approach returns
more informative results compared to existing methods, and is efficient.

Keywords: Keyword Search, Relational Databases, Semantic Approach

1 Introduction

The success of web search engines has made keyword search the most popular
search paradigm for ordinary users. Given the rapid growth of structured data
repositories, the ability to support keyword search over such repositories enables
users to pose keyword queries easily without the need to have full knowledge of
the database schemas or structured query languages.

Research in relational keyword search has been focused on the efficiency
of computation of results from multiple tuples [9, 12, 8, 6, 4] as well as ranking
strategies to improve the quality of results [16, 17, 20]. The works in [16, 17,
12, 14, 13] examine the effectiveness of relational keyword queries. However, the
retrieval of informative results for relational keyword search remains a challenge.

We observe that when a user issues a keyword query, each keyword is usual-
ly directed at some object of interest, or relationship along with the associated
objects. This motivates us to design a semantic approach to increase the effec-
tiveness of relational keyword queries. In particular, we will construct an Object-
Relationship-Mixed data graph (ORM data graph) of the database which consists
of three types of nodes, namely object node, relationship node and mixed type
node. In contrast to the traditional data graph where each node corresponds to a

Student

tupleid sid name sex

s1 U054 John Williams Male

s2 A005 Edward Martin Male

s3 A021 Mary Smith Female

Course

tupleid cid title credit lid

c1 CS421 Database Design 4.0 Stnl

c2 CS526 Information Retrieval 3.0 JntK

c3 CS203 Java Programming 3.5 JntK

Lecturer

tupleid lid Name office email

l1 StnL Steven Lee COM2 215 slee@yyy.zz

l2 JntK Janet Kate COM1 316 jkate@mmm.nn

Qualification

tupleid lid degree major university

q1 StnL PhD CS University of Wisconsin-Madison

q2 StnL Master EE University of Toronto

q3 JntK PhD CS National University of Singapore

Enrol

tupleid sid cid grade

e1 U054 CS203 A

e2 U054 CS421 B

e3 A005 CS421 A

e4 A005 CS526 B

e5 A021 CS526 A

Fig. 1. Example relational database

tuple, a node in an ORM data graph may correspond to a list of tuples. We will
show that the ORM data graph can facilitate the retrieval of useful and relevant
information for relational keyword queries.

The contributions of our work are summarized as follows:

1. We identify limitations of existing approaches for relational keyword search
as they do not consider the objects and relationships represented by data
instances.

2. We design an ORM data graph of the database to capture the semantics
of objects and relationships in the data. Based on this graph, we develop
an algorithm to process queries depending on the types of nodes that the
keywords match.

3. We conduct comprehensive experiments to demonstrate the effectiveness and
efficiency of processing keyword queries using our ORM data graph approach
over existing approaches.

2 Motivating Example

Let us consider the sample relational database in Figure 1. The relations Student
and Lecturer store the core information about students and lecturers respective-
ly. The qualifications of a lecturer are captured in the relation Qualification
since each lecturer could have more than one qualification. The relation Course
stores both the core information about courses and the many-to-one relation-
ship between courses and lecturers. This reflects the application constraints that
each course is associated with only one lecturer. The relation Enrol captures the
many-to-many relationship between students and courses. The schema of this
database can be modeled as a schema graph [10, 9] where each node represents

(a) (b)

StudentCourse Enrol

Lecturer

Qualification

s1

s2 s3c2

e1e2

e3

e4 e5

c3

c1

l1

q1

q2 l2 q3

Fig. 2. The schema graph and the data graph for the example database in Fig. 1

a relation and each directed edge represents a foreign key-key constraint. Fig-
ure 2(a) shows the schema graph obtained. Correspondingly, the data instances
of the database can be modeled as a data graph [11, 8] where each node rep-
resents a tuple and each undirected edge represents a foreign key-key reference.
As Figure 2(b) shows, the data graph is undirected as direction is not a major
concern for query processing.

Example 1. Suppose a user issues the keyword query “Steven Lee” to retrieve all
the information about him. Existing works will only return his lid, name, office
and email, that is, the first tuple in the Lecturer relation. However, information
about the degrees and associated majors and universities of “Steven Lee”, which
are stored in the Qualification relation, is not retrieved.

Example 2. Suppose a user wants to know the information of the course where
a student “Mary” obtains grade “A”, and issues the keyword query “Mary A”.
Existing works will retrieve the third tuple in the Student relation and the last
tuple in the Enrol, as the two query keywords occur in these tuples respectively
and there exists a foreign key reference between them. This result is not infor-
mative as details such as the course id, title and credit is not retrieved.

In addition, relational keyword queries are also inherently ambiguous. Thus,
existing works would consider all the possible interpretations of a keyword query
and retrieve the corresponding information from the relational database. Con-
sequently, a huge number of results are returned although many of them are
probably not useful to the user.

Example 3. Suppose a user issues a keyword query “John Mary”. Figure 3 shows
two sample results obtained by existing works. Intuitively, the first result shown
in Figure 3(a) indicates that student “John Williams” is enrolled in the course
“Java Programming” and student “Mary Smith” is enrolled in the course “Infor-
mation Retrieval”. Both courses are taught by the same lecturer “Janet Kate”.
The second result shown in Figure 3(b) means that student “Edward Martin” is
enrolled in the same course “Database Design” as the student “John Williams”;

“Edward Martin” is also enrolled in the same course “Information Retrieval” as
another student “Mary Smith”. We observe that the first result is most likely
more useful to the user.

s1

s2 s3c2

e2

e3

e4 e5

c1s1

s3c2

e1

e5

c3

l2

(a) (b)

Fig. 3. Sample answers for query “John Mary” in Example 3

The above examples illustrate problems that arise when we do not consider
the underlying semantics in the relational database. This motivates us to develop
a semantic approach to answer keyword queries.

A relational database is typically designed using some conceptual model such
as the ER diagram to capture the semantics in the real world in terms of entity
and relationship types. Figure 4(a) shows the ER diagram for the relational
database in Figure 1. The process of semantics discovery essentially reverses the
translation from ER model to relational schema. There has been much research
on discovering semantics from relational schema such as [19]. Here, we build
upon these works and utilize primary key constraint and foreign key constraint
to classify the relations in a relational schema.

Similar to [19], we have 4 types of relations, namely, object relation, rela-
tionship relation, mixed relation and component relation. Intuitively, an object
(relationship) relation contains the majority of the attributes of an entity (rela-
tionship) type. A relation is a mixed relation if it encompasses both an entity type
and a relationship type. A mixed relation occurs when there is a one-to-many re-
lationship, e.g., the “Teach” relationship type in the ER diagram in Figure 4(a).
A component relation represents a component part or the multi-valued attribute
of an entity or relationship type, e.g, qualification is a multivalued attribute of
Lecturer and is translated to the Qualification relation.

Based on the type of each relation in the database, we construct an Object-
Relationship-Mixed data graph (ORM data graph) that consists of three types of
nodes, namely object node (rectangle), relationship node (diamond) and mixed
type node (hexagon). Each node typically includes some tuple in the correspond-
ing relation. Tuples in the component relations are attached to their correspond-
ing object (relationship or mixed) type nodes. In contrast to the traditional data
graph where each node corresponds to a tuple in the database, a node in an OR-
M data graph may correspond to a list of tuples. Two nodes are connected via
an edge if there exists a foreign key-key reference between tuples in the nodes.

(a) (b)

Student

Entrol

Course Teach Lecturer

sid name
sex

nationality

grade

cid title credit lid name office email

degree
major

university
L1

c1

e2

e3

s2

e1

s1

e4

c3

L2

c2 e5 s3

Object Node

Relationship Node

Mixed Node

Qualification

Fig. 4. The ER diagram and the ORM data graph for the database in Fig.1

Figure 4(b) shows the ORM data graph1 for the database in Figure 1. Node
L1 is an object node that includes the tuple l1 in the object relation Lecturer.
In addition, both tuple q1 and q2 in the component relation Qualification are
associated with l1 and attached to L1. Thus, node L1 corresponds to a list of
tuples {l1, q1, q2}. Node c1 is a mixed type node that corresponds to the tuple
c1. There is an edge between nodes L1 and c1 because of the foreign key-key
reference between the tuples l1 and c1.

We say that a query keyword matches a node in the ORM data graph if
the keyword occurs in some tuple in the node. We devise two ways to process
the query depending on the types of nodes that the keywords match. Consider
the query “Steven Lee” in Example 1. Since both the keywords match object
node L1 in the graph, we will retrieve all the information about the lecturer
object “Steven Lee”, including his qualifications. In other words, the three tuples
{l1, q1, q2} are returned as the answer.

For the keyword query “John A” in Example 2, the keyword “A” matches
relationship node e1, while the keyword “John” matches object node s1 that
is directly connected with e1. Thus, we will return the information about the
relationship along with all the participating objects, including the student object
“John” and the course object “Java Programming”.

Finally, for Example 3, since the keywords “John” and “Mary” both match
object nodes s1 and s3 in the ORM data graph, we will return a tree of nodes
{s1 − e1 − c3 − L2 − c2 − e5 − s3}. Note that the node L2 corresponds to a
lecturer object which is common to both s1 and s3.

1 We use uppercase to label a node in the ORM data graph if it corresponds to a list
of tuples, and lowercase if a node corresponds to a single tuple.

3 Proposed Approach

A keyword queryQ is defined asQ = {k1, k2, ..., kn}, where ki, i ∈ [1, n] denotes a
keyword. Each keyword is a term that specifies the user’s search interest. Existing
works consider that a keyword matches a tuple if the keyword is contained in
the values of this tuple, and the goal of keyword query processing is to return
the minimal number of tuples that collectively contain all the query keywords.
While this approach retrieves all the tuples that contain the query keywords,
the user will be overwhelmed with the large number of results. We observe that
when a user issues a keyword query, it is usually directed at some object, or a
relationship along with the associated objects.

Our proposed approach first utilizes key and foreign key constraints to classify
the relations in a relational schema into object, relationship,mixed or component
relations as follows:

1. A relation R is an object relation if there exists some relation R′ that refer-
ences R, and R does not reference other relations.

2. A relation R is a relationship relation if the primary key of R comprises more
than one disjoint foreign key.

3. A relation R is a mixed relation if (a) there exists two relations R′ and R′′

such that R′ references R and R references R′′, and (b) the primary key of
R does not contain more than one disjoint foreign key.

4. A relation R1 is a component relation if (a) no relation references R1, (b)
the primary key of R1 does not contain more than one disjoint foreign key,
and (c) the inclusion dependency R1[A1] ⊆ R[K] holds, where A1 is a subset
of attributes in R1 and K is a candidate key of R.

A mixed relation contains information about both objects and relationships.
We will use semantic dependencies to differentiate the objects and relationships
when processing the keyword query. For example, the mixed relation Emp(eno,
ename, birthdate, address, dno, joindate) contains information about the em-
ployee and the date s/he joins a department. In this case, joindate is an at-
tribute of the relationship between employee and department. This constraint

can be captured by the semantic dependency [15] {eno, dno} Sem−→ joindate, in-
dicating that the value of joindate will be updated when {eno, dno} is updated.
We consider the attributes eno, ename, birthdate, address the object part of the
relation, and the attribute joindate the relationship part.

For each object relation R, we cluster the tuples in R and its componen-
t relations. Similarly, for each relationship (mixed) relation R, we also clus-
ter the tuples in R and its component relations. Based on the clusters ob-
tained, we construct an undirected Object-Relationship-Mixed data graph (OR-
M data graph) G(V,E). Each node v ∈ V corresponds to a cluster of tu-
ples C. We have v.label = C, v.tids is the list of tuple ids in cluster C, and
v.type ∈ {object, relationship,mixed} depending on whether tuples in the clus-
ter are from an object relation, a relationship relation, or a mixed relation. An
edge e(u, v) ∈ E indicates a foreign key-key reference between tuples in u and v.

A query keyword k matches a node u in the ORM data graph G if k occurs
in some tuple in u. Let Obj(k) and Rel(k) be the sets of object and relationship
type nodes that match k respectively. Based on the semantic dependencies, if a
keyword k matches the object part of a mixed type node u, then we add u to
Obj(k). Otherwise, if k matches the relationship part of u, we add u to Rel(k).

If Obj(k) �= ∅, that is, k matches some object type nodes and/or the object
part of mixed type nodes, then we retrieve all the tuples associated with the
nodes in Obj(k). If Rel(k) �= ∅, that is, k matches some relationship type nodes
and/or the relationship part of mixed type nodes, then we retrieve the tuples
associated with each node v ∈ Rel(k), as well as the tuples in the object and
mixed type nodes that are directly connected to v in the ORM data graph. The
intuition is that when a keyword refers to some relationship, the user is either
interested in the information about the relationship, or the information about
the objects of the relationship. Thus, we will retrieve the information about the
relationship, as well as the information about all the participating objects of this
relationship.

After obtaining the tuples that match each keyword, we need to combine the
results from different keyword matches. Given a keyword query Q, we have two
main cases.

Case 1. ∃k ∈ Q,Rel(k) �= ∅
For this case, the keywords in the query match either object, relationship

or mixed type nodes. For each such k, we check each node v ∈ Rel(k) whether
the rest of the keywords match object and mixed type nodes that are directly
connected to v in the ORM data graph. If so, then we return this result. We can
view the result as a tree where the relationship node v is the root and the object
and mixed type nodes are the leaves.

Recall the keyword query “Mary A” in Example 2. The keyword “Mary”
matches object node s3, while keyword “A” matches relationship nodes {e1, e3, e5}
in the ORM data graph in Figure 4(b). Hence, we have Obj(“Mary”) = {s3}
and Rel(“A”) = {e1, e3, e5}. Since s3 and e5 are directly connected in the ORM
data graph, we return the tuples associated with e5, as well as the tuples in
s3 and c2 as the result. Intuitively, this result means that the student “Mary
Smith” obtained grade “A” for the course “Information Retrieval”.

Case 2. ∀k ∈ Q,Rel(k) = ∅.
For this case, all the keywords match only object and mixed type nodes and

we generate all the possible combinations of nodes from Obj(k1), Obj(k2),...,
Obj(k|Q|). For each node combination, we apply the standard graph traversal
method to find the set of Steiner trees that connects these nodes. For each Steiner
tree, we will check whether there exists a node v such that the path from each
keyword matched node to v comprises of nodes from different relations in the
schema. If so, we output this tree as a query result.

Recall our query “John Mary” in Example 3. Our algorithm will output the
Steiner tree in Figure 3(a) but not in Figure 3(b) as the the former contains
node l2 such that both paths l2− c3− e1− s1 and l2− c2− e5− s3 comprises
of nodes from different relations, while the latter does not contain a such node.

Algorithm 1 (ORMSearch) shows the details. The input is a keyword query
Q, ORM data graph G and parameter K. We initialize two priority queues PQo

and PQr to store candidate result trees ordered by the number of nodes in the
tree (Line 1). For each keyword k, we find the set of nodes in G that match k. We
partition the nodes into two sets: Obj(k) and Rel(k). For each node v ∈ Rel(k),
we create a tree Tv,k that consists of v and its neighboring nodes in the ORM
data graph G. Tv,k is associated with the keyword k to denote that k matches
some node in the tree. If the tree already exists in queue PQr, we update the
associated keywords of the tree by adding k. Otherwise, we insert the tree into
queue PQr (Lines 4-6). Similarly, for each node v ∈ Obj(k), we create a tree Tv,k

that consists of a root node v. If the tree exists in the queue PQo, we update
the associated keywords of the tree by adding k. Otherwise, we insert the tree
into PQo (Lines 8-10).

Next, we combine the results from different keyword matches. Lines 11-24
process the trees in PQr (Case 1). We initialize a variable count, and iteratively
dequeue a tree T from PQr. We obtain the set of keywords W associated with
T (Lines 13-14). For each query keyword k that does not appear in W , we check
whether k matches some node in T . If so, we put k into W (Lines 15-17). Finally,
if every query keyword matches some node in T , we will put T into Result and
increase count (Lines 19-20). This process terminates when count equals to K,
i.e., we have already found K number of results (Lines 21-22).

Lines 25-48 process the trees in PQo (Case 2). For each iteration, we dequeue
a tree T from PQo. Let v be the root of T and W be the set of keywords
associated with T . If every keyword matches some node in T , we put T into
Result and increase count (Lines 27-30). If count equals to K, we exit the loop.
Otherwise, we traverse the ORM data graphG to find the set of Steiner trees that
associate all the query keywords. We use tree grow and tree merge strategies in
[6] to expand Steiner trees associated with partial keywords to those associated
with all query keywords.

For each node u that is directly connected to v in G, we create a new tree T ′

from T by adding u as the new root of T ′ (Lines 36-37). This process is called
tree growing. We first check whether there exists a node y in the new tree T ′ such
that every path from y to a leaf node consists of nodes from distinct relations. If
so, then we check if PQo already contains a tree with root u and associated with
keywords W . If yes, then we update PQo with the smaller tree, else we insert
T ′ into PQo (Lines 38-40).

For each set of keywords W ′ such that W ′ is a subset of Q and W ′ has no
common keywords with W , we check whether we have found a tree T ′ with root
v and associated with keywords W ′ in previous iterations. If T ′ exists, we create
a new tree T ′′ by merging T ′ and T . T ′′ is rooted at v and associated with
keywords W ∪W ′ (Lines 42-44). This process is called tree merging. After that,
we check whether there exists a node y in the new tree T ′′ such that every path
from y to a leaf node consists of nodes from distinct relations. If so, we update
queue PQo with T ′′ (Lines 45-47). Finally, we return the top-K trees in Result
(Line 49).

Algorithm 1: ORMSearch

input : keyword query Q = {k1, ...kn}, K, ORM data graph G,
output: result set Result

1 Result ← ∅; PQo ← ∅; PQr ← ∅;
2 for i = 1 to n do
3 Let Rel(ki) be the set of relationship/mixed nodes in G that match ki;
4 foreach node v ∈ Rel(ki) do
5 create a tree Tv,ki

that consists of v and its neighboring nodes in G;

6 update PQr with Tv,ki
;

7 Let Obj(ki) be the set of object/mixed nodes in G that match ki;
8 foreach node v ∈ Obj(ki) do
9 create a tree Tv,ki

with root v;

10 update PQo with Tv,ki
;

11 count = 0;
12 while PQr �= ∅ do
13 T = dequeue PQr ;
14 Let W be the set of keywords that are associated with T ;
15 foreach keyword k ∈ Q−W do
16 if k matches some node in T then
17 W = W ∪ {k};
18

19 if W == Q then
20 add T to Result; count++;
21 if count = K then
22 break;
23

24

25 count = 0;
26 while PQo �= ∅ do
27 T = dequeue PQo;
28 let v be the root of T and W be the set of keywords associated with T ;
29 if W == Q then
30 add T to Result; count++;
31 if count = K then
32 break;
33

34 else
35 //Tree growing process
36 foreach node u that is directly connected to v in G do
37 create a new tree T ′ from T by adding u as the new root;

38 if ∃ node y ∈ T ′ s.t. every path from y to a leaf node consists of nodes from
distinct relations then

39 update PQo with T ′;
40

41 //Tree merging process

42 foreach set of keywords W ′ ⊂ Q s.t. W ∩W ′ = ∅ do
43 if ∃ tree T ′ s.t. v is the root of T ′ and W ′ is the set of keywords associated

with T ′ then
44 merge T ′ with T to form T ′′;
45 if ∃ node y ∈ T ′′ s.t. every path from y to a leaf node consists of nodes

from distinct relations then
46 update PQo with T ′′;
47

48

49 return the top-K trees in Result;

4 Performance Study

In this section, we evaluate the effectiveness and the efficiency of our seman-
tic approach. We adopt the traditional data graph approach as the baseline
because our approach also performs search directly on the data. We use the
well-established Steiner tree and the state of the art DPBF [6] implementation.
Since the ranking of results is orthogonal to this work, we will output query
results ordered by the number of nodes in the result.

Two real world datasets are used in our experiments: the Internet Movie
Database (IMDB)2 and the DBLP data (DBLP) [5]. For the IMDB dataset, we
convert a subset of its raw text files into 8 relations. The total number of tuples
is 2,168,813. For the DBLP dataset, the schema consists of 6 relations and the
data consists of 881,867 tuples. Table 1 shows the keyword queries used.

The experiments were performed on a Intel(R) Core(TM) i7-2600 CPU 3.40GHz
with 8GB of RAM. All the algorithms were implemented using JDK 1.7 and JD-
BC. The inverted indices are built using MySQL v5.5 fulltext index.

Table 1. Queries used in experiments

DBLP

DQ1 Keyword Search

DQ2 SIGMOD Jeffrey

DQ3 Jim Gray Alexander

DQ4 PageRank Computing research

DQ5 Query optimization Yannis Papakonstantinou

DQ6 Conceptual design relational database

DQ7 Ling Tok Wang Object Relationship

IMDB

IQ1 Christopher Nolan

IQ2 Woody Allen

IQ3 Johnny Depp Jack

IQ4 Jamie Paul Jones

IQ5 Steven Horse drama

IQ6 Peter Parker comedy

IQ7 American Comedy Page Ellen

4.1 Effectiveness Experiments

We first compare the query results returned by ORMSearch and DPBF. Table 2
shows a sample of the results for the IMDB dataset. We observe that the results
obtained by DPBF is not as informative as those obtained by ORMSearch. Q1
is a query about the movie “Inception”. ORMSearch retrieves all the informa-
tion about this movie but DPBF does not retrieve the genre information. Q2
is a query about the movie “Intouchables” and the character name “Nouvel”.
Compared to ORMSearch, DPBF provides no information about the actor who
played the character “Nouvel” in “Intouchables”. For Q3, ORMSearch retrieves
movies where Jeremy plays the character Cruise, as well as movies where both
Jeremy and Cruise act in. In contrast, DPBF retrieves 174 results, many of which
are not useful. The results for DBLP is similar and we omit it due to space limit.

Figure 5(a) and 5(b) show the number of results retrieved for each query
on both datasets when we set the result size to 7 and 9 respectively. We see
that DPBF typically produces more results than ORMSearch. Moreover, when
the result size increases from 7 to 9, the number of results returned by DPBF
increases significantly.

2 http://www.imdb.com/interfaces

Table 2. Results of queries for IMDB dataset

Query ORMSearch DPBF

Q1:
Inception

1. Movie: Inception 2010 Action Adventure Mystery 1. Movie: Inception 2010

Q2:
Intouchables
Nouvel

1. Movie: Intouchables 2011 Comedy Drama
Character: Nouvel auxiliaire 2
Actor: Cayrey, Jean Fran

1. Movie: Intouchables 2011
Character: Nouvel auxiliaire

Q3:
Cruise
Jeremy

1. Movie: Car Jack 2008 Action Adventure Crime
Character: Cruise
Actor: Anus, Jeremy

2. Movie: August 2008 Drama
Actor: Bobb, Jeremy
Actor: Cruise, Tom

3. Movie: Mission: Impossible-Ghost Protocol 2011
Actor: Renner, Jeremy
Actor: Cruise, Tom

1. Character: Cruise
Actor: Anus, Jeremy

2. Character: Cruise Guy
Actor: Palko, Jeremy

3. Movie: Knocked Down 2008
Character: Irving Cruise
Character: Cab Driver
Actor: Aimone, Jeremy

...

To further verify that our approach can achieve a better search quality than
the base line, we carried out a survey where we show the queries to 6 users and
collect the possible search intentions (at most 5) of each query. For each particu-
lar search intention, we generate an SQL statement and take the SQL execution
results. Results of all the SQLs form the ground truth for us to determine the
precision of the results obtained by ORMSearch and DPBF. Figure 5(c) and 5(d)
show that ORMSearch is able to achieve a much higher precision than DPBF
for most of the queries. Both ORMSearch and DPBF has a precision of 1.0 for
query DQ2 as it has only one possible search intention. The precision of DPBF is
low for query DQ6 as it is inherently ambiguous with a large number of possible
search intentions. However, ORMSearch is still able to improve the precision by
retrieving more informative and useful results.

4.2 Efficiency Experiments

Finally, we compare the execution time of the two approaches. Figure 6(a) and
Figure 6(b) show the results. As we can see, ORMSearch is about 2∼3 times
faster than DPBF, especially when the maximum result size is 9.

Besides the queries in Table 1, we also randomly generate 40 queries for each
dataset whose lengths vary from 2 to 5 keywords, with 10 queries for each query
size. For each query, we test the execution time of ORMSearch and DPBF for
retrieving first output 10, 50 and 200 results respectively. The average execution
time on cold cache is recorded in Figure 6(c) and Figure 6(d). On average,
ORMSearch is about 6∼8 times faster than DPBF. Further, the time required
by ORMSearch to retrieve 10, 50, and 200 results are almost the same, while the
execution time for DPBF increases. The gap between ORMSearch and DPBF
widens as the number of keywords increases. This is because our ORM data
graph has fewer nodes compared to the traditional data graph.

5 Related Work

Relational keyword search can be broadly classified into two categories: (a)
schema graph approach and (b) data graph approach. In the schema graph

1

4

16

64

256

1024

4096

16384

DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7

N
um

be
r o

f R
es

ul
ts

 (L
og

-s
ca

le
d)

DPBF size=7 ORMSearch size=7 DPBF size=9 ORMSearch size=9

1

4

16

64

256

1024

4096

IQ1 IQ2 IQ3 IQ4 IQ5 IQ6 IQ7

N
um

be
r o

f R
es

ul
ts

 (L
og

-S
ca

le
d)

DPBF size=7 ORMSearch size=7 DPBF size=9 ORMSearch size=9

(a) Number of Results (DBLP) (b) Number of Results (IMDB)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7

Pr
ec

is
io

n

DPBF size=7 ORMSearch size=7

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

IQ1 IQ2 IQ3 IQ4 IQ5 IQ6 IQ7

Pr
ec

is
io

n

DPBF size=7 ORMSearch size=7

(c) Precision (DBLP) (d) Precision (IMDB)

Fig. 5. Effectiveness of ORMSearch vs DPBF

0
1
2
3
4
5
6
7
8
9

10

DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7

Ex
ec

ut
io

n
Ti

m
e

(s
)

DPBF size=7 ORMSearch size=7 DPBF size=9 ORMSearch size=9

0

1

2

3

4

5

6

7

8

9

IQ1 IQ2 IQ3 IQ4 IQ5 IQ6 IQ7

Ex
ec

ut
io

n
Ti

m
e

(s
)

DPBF size=7 ORMSearch size=7 DPBF size=9 ORMSearch size=9

(a) Sample Queries on DBLP data (b) Sample Queries on IMDB data

0

5

10

15

20

25

30

35

2 3 4 5

Ex
ec

ut
io

n
Ti

m
e

(s
)

Number of Keywords

ORMSearch T10

DPBF T10

ORMSearch T50

DPBF T50

ORMSearch T200

DPBF T200

0
5

10
15
20
25
30
35
40
45
50

2 3 4 5

Ex
ec

ut
io

n
Ti

m
e

(s
)

Number of Keywords

ORMSearch T10

DPBF T10

ORMSearch T50

DPBF T50

ORMSearch T200

DPBF T200

(c) Random Queries on DBLP data (d) Random Queries on IMDB data

Fig. 6. Efficiency of ORMSearch vs DPBF

approach, the database schema is modeled as an undirected graph where each
node represents a relation and each edge represents a foreign key-key constraint.
To answer a keyword query, DBXploer [1] proposes join trees such that each leaf
relation covers some keyword with tuples containing that keyword, and all the
leaf relations collectively cover all keywords of the query. Thus, by joining all
the relations in a join tree, the output tuples will contain all keywords specified
in the query. Discover [10] tries to find join trees without any redundant leaf
relations that cover the same keywords as others. In addition, it allows dupli-
cate relations in join trees because a relation can join itself via a many-to-many
relationship with other relations. [9] is a variant of Discover, which relaxes the
requirement that the output tuples should contain all the keywords in a query.

In the data graph approach, the relational database is modeled as a graph
where each node corresponds to a tuple and each edge corresponds to a foreign
key-key reference. Banks [11] proposes a backward expansion search to find the
common node which connects a keyword node for each keyword via the shortest
path. An answer to a query is an Steiner tree with the common node as the
root and each keyword node as a leaf. [12] improves the performance of [11] by
using a bidirectional expansion technique to reduce the size of the search space.
[6] proposes dynamic programming to identify the top-k minimal group Steiner
tree in time exponential in the number of keywords. [8] proposes a bidirectional
index to improve query performance. [14] studies how to calculate the radius of
a graph and defines an answer to a keyword query as a subgraph which has a
user-specified radius and is relevant to each keyword. These works are focused
on the efficiency of relational keyword search and do not consider the quality of
the search results.

To improve the search quality, [9] adopts an IR-style ranking strategy to
evaluate the relevance of an answer. [16] further improves the search effectiveness
by normalizing the ranking formulae in [9]. Spark [17] considers all the tuples
in the answer as a visual document to avoid the side effect of overly rewarding
contributions of the same keyword. Banks [11] evaluates the relevance of an
answer tree by investigating its root and each leaf nodes. [20] measures the
importance of not only the root and leaf nodes, but also the intermediate nodes.
However, none of these works addresses the problems raised in Section 2.

Objectrank [2] considers the database as a set of objects. However, it is
not clear how database objects are detected. [18] proposes to infer the basic,
independent semantic unit of information in a database, but does not consider
the relationship between semantic units. [7] defines a query result as an object
summary (OS) about a particular data subject. The relationship between data
subjects is not considered. [3] proposed a statistical way to find the promising
search target(s) for an XML keyword query.

6 Conclusion

In this paper, we have examined the limitations of existing relational keyword
search methods, and proposed a semantic approach to address the problems of

retrieving informative and useful results. This is achieved by constructing an
ORM data graph to capture the semantics of objects and relationships in the
database. Compared to the traditional data graph, each node in the ORM data
graph is associated with a type and may correspond to a list of tuples. Based
on the ORM data graph, we devised an efficient algorithm to process keyword
queries. Experiments on two real world datasets verify the effectiveness and
efficiency of our approach.

References

1. S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A system for keyword-based
search over relational databases. In ICDE, 2002.

2. A. Balmin, V. Hristidis, and Y. Papakonstantinou. Objectrank: authority-based
keyword search in databases. In VLDB, 2004.

3. Z. Bao, T. W. Ling, B. Chen, and J. Lu. Effective xml keyword search with
relevance oriented ranking. In ICDE, 2009.

4. S. Bergamaschi, E. Domnori, F. Guerra, R. Trillo Lado, and Y. Velegrakis. Key-
word search over relational databases: a metadata approach. In SIGMOD, 2011.

5. R. Cyganiak. D2RQ benchemarking. http://sites.wiwiss.fu-berlin.de/suhl/
bizer/d2rq/benchmarks/.

6. B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin. Finding top-k min-cost
connected trees in databases. In ICDE, 2007.

7. G. J. Fakas, Z. Cai, and N. Mamoulis. Size-l object summaries for relational
keyword search. In VLDB, 2011.

8. H. He, H. Wang, J. Yang, and P. S. Yu. BLINKS: ranked keyword searches on
graphs. In SIGMOD, 2007.

9. V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient IR-style keyword
search over relational databases. In VLDB, 2003.

10. V. Hristidis and Y. Papakonstantinou. Discover: keyword search in relational
databases. In VLDB, 2002.

11. A. Hulgeri and C. Nakhe. Keyword searching and browsing in databases using
banks. In ICDE, 2002.

12. V. Kacholia, S. Pandit, and S. Chakrabarti. Bidirectional expansion for keyword
search on graph databases. In VLDB, 2005.

13. M. Kargar and A. An. Keyword search in graphs: finding r-cliques. In VLDB,
2011.

14. G. Li, B. C. Ooi, and J. Feng. EASE: an effective 3-in-1 keyword search method
for unstructured, semi-structured and structured data. In SIGMOD, 2008.

15. T. W. Ling and M. L. Lee. Relational to entity-relationship schema translation
using semantic and inclusion dependencies. Integr. Comput.-Aided Eng., 1995.

16. F. Liu, C. Yu, W. Meng, and A. Chowdhury. Effective keyword search in relational
databases. In SIGMOD, 2006.

17. Y. Luo, X. Lin, W. Wang, and X. Zhou. Spark: top-k keyword query in relational
databases. In SIGMOD, 2007.

18. A. Nandi and H. V. Jagadish. Qunits: queried units for database search. In CIDR,
2009.

19. L.-L. Yan and T. W. Ling. Translating relational schema with constraints into
OODB schema. In Database Semantics Conference, 1933.

20. X. Yu and H. Shi. CI-Rank: Ranking keyword search results based on collective
importance. In ICDE, 2012.

