
A Theory for Entity-Relationship View Updates

Tok-Wang Ling Mong-Li Lee

Department of Information Systems & Computer Science
National University of Singapore

10 Kent Ridge Crescent
Singapore 0511

Abstract. The traditional problem of updating relational databases
through views is an important practical problem that has attracted much
interest. In this paper, we examine the problem of view update in Entity-
Relationship based database management systems [17] where the
conceptual schema is represented by a normal form ER diagram [16] and
views may be modelled by ER diagrams. We develop a theory within the
framework of the ER approach that characterizes the conditions under which
there exist mappings from view updates into conceptual schema updates.
Concepts such as virtual updates and three types of insertability are
introduced.

1. Introduction

Views are external schemas. They increase the flexibility of a database by allowing
multiple users to see the data in different ways. They offer a measure of protection by
letting users have access to only part of the data and preventing the users from
accessing data outside their view. They provide logical independence by allowing
some changes to be made to the conceptual schema without affecting the application
Pn%ramS.

For a view to be useful, users must be able to apply retrieval and update operations
to it. These operations on the view must be translated into the corresponding
operations on the conceptual schema instances. [191 describes how we can
automatically generate the external-to-conceptual mapping and the conceptual-to-
internal mapping of an ER based DBMS. Using this mapping, retrievals from a view
can always be mapped into equivalent retrievals from the conceptual schema.

A mapping is also required to translate view updates into the corresponding updates
on the conceptual schema. However, such a mapping does not always exist, and even
when it does exist, it may not be unique [6]. The problem of updating relational
databases through views is an important practical problem that has attracted much
interest [1, 2, 3, 7, 8, 10, 11, 12, 13, 15, 231. The user specifies queries to be
executed against the database view; these queries are translated to queries against the
underlying database through query modification [241. One of the problems in
updating through views lies in determining whether a given view modification can be
correctly translated by the system. To define an updatable view, a view designer must
be aware of how an update request in the view will be mapped into updates of the
underlying relations. In current practice, updates must be specified against the

263

underlying database rather than against the view. This is because the problem of
updating relational databases through views is inherently ambiguous [111. How this
ambiguity is handled is an important characteristic that differentiates various
approaches to supporting view updates. Yet, none has been able to handle the view
update problem satisfactorily.

There are two approaches to the problem of mapping view updates. One approach is
to regard the conceptual schema and view as abstract data types [lo]; the view
definition not only describes how view data are derived from the conceptual schema
instances, but also how operations on the view are mapped into (that is, implemented
using) operations on the conceptual schema [22,23]. This approach is dependent on
the database designer to design views and their operational mappings and to verify
that the design is correct; that is, that the conceptual schema operations indeed
perform the desired view operations “correctly”.

The second approach is to define general translation procedures [2,4,7,11,13,15].
These procedures input a view definition, a view update, and the current schema
instances. They produce, if possible, a translation of the view update into conceptual
schema updates satisfying some desired properties. [7] develops a theory within the
framework of the relational model that characterizes precisely the conditions under
which there exist mappings from view updates into conceptual schema updates
satisfying various properties. He formalize the notion of update translation and derive
conditions under which translation procedures will produce correct translations of
view updates. However, the problem of choosing among several alternative updates
sequences that might be available for performing a desired relational view update still
exists. Our approach to view update in the ER approach eliminates this problem.

[111 analyses the possible translations of particular classes of update operations for
relational views and obtains the semantics of the application to choose among the
alternative translations from a dialog with the database administrator at view-object
definition time. However, Keller’s update policy of translating deletion or insertion
against a selection view into a modification of the operand view or base relation has
some problems. For example, consider the- relation EMP which contains each
employee’s number, name, location, and whether the employee is a member of the
company baseball team. Given the following view definition,

Select *
From EMP
Where Baseball = ‘Yes’

[12] proposes that the request to delete an employee from the view should be
translated into a modification of the Baseball attribute value to ‘No’. However,
complication arises when the domain of the selection attribute has more than two
values or the selection condition is a conjunction of terms.

On the other hand, there has been a lack of literature in the area of view update for the
ER approach. The problem of view update in the ER approach is quite different from
that in relational databases as views in ER approach are not necessarily flat relations.
Furthermore, the ER approach uses the concepts of entity types and relationship sets
and incorporates some of the important semantics about the real world ivhich helps
us in resolving ambiguity when translating view updates. For instance, the special
relationship sets such as ISA, UNION etc in the ER approach reflects inheritance in

264

the real world. In this paper, we examine the problem of view update in Entity-
Relationship based dambase management systems [171 (which is quite different from
relational databases) where views may be modelld by ER diagrams. Section 2 gives
the terminologies used in this paper. Section 3 explains what is meant by view
updatability in RR approach. We develop a theory within the framework of the ER
approach that characterizes the conditions under which there exist mappings from
view updates into conceptual schema updates in section 4.

2. Terminologies

[5] proposes the ER approach for database schema design. It uses the concepts of
entity type and relationship set. An entity type or relationship set has attributes
which represent its structural properties. An attribute can be singje-valued,
multivalued or composite. A minimal set of attributes of an entity type E which
uniquely identifies E is called a key of E. An entity type may have more than one
key and we designate one of them as the identifier of the entity type. A minimal set
of identifiers of some entity types participating in a relationship set R which
llniquely identifies R is called a key of R. A relationship set may have more than one
key and we designate one of them as the identifier of the relationship set. Note that
there are entity types in which entities cannot be identified by the values of its own
attributes, but has to be identified by its relationship with other entities. Such an
entity type is called a weak entity type and the relationship set which is used to
identify the entity is said to be an identifier dependent relationship set. If the
existence of an entity in one entity type depends upon the existence of a specific
entity in another entity type, such a relationship set and entity type are called
existence dependent relationship set and weak entity type. An entity type which is
not a weak entity type is called a regular entity type. A relationship set which
involves weak entity type(s) is called a weak relationship set. A relationship set
which does not involve weak entity types is called a regular relationship set. In the
ER approach, recursive relationship sets and weak relationship sets such as existence
dependent (EX) and identjfier dependent (ID) relationship sets are allowed. We can
also have special relationship sets such as ISA, UNION, INTERSECT etc. For more
details, see [16].

Using the ER approach in a systematic way, we can construct ER based external
views. An entity type in an ER external view is called an external or view entity
type. There is a one-to-one correspondence between the entities of a view entity type
and the entities of some entity type which is called the base entity type of the view
entity type, in the conceptual schema. A relationship set in an ER external view is
called an external or view relationship set. Unlike the view entity type, the
relationships of a view relationship set may not have a one-to-one correspondence
with the relationships of any relationship set in its corresponding conceptual schema.
A view relationship set can be derived by applying some join, project, and/or
selection operations on one or more relationship sets and special relationships such
as ISA, UNION, INTERSECT, etc [17].

An attribute in a view is called an external or view attribute. A view entity type may
include some or all the attributes of its base entity type. A view entity type may also
include attributes from an entity type which is connected to its base entity type by

one or more relationship sets in the conceptual schema. We define a derivation as a
list of conceptual schema relationship sets which are involved in natural joins to
obtain a view attribute. If a view attribute A has a derivation <RI, R2, R,>,
where Ri is a relationship set in the conceptual schema, 1 <= i <= n, then we call A
a derived attribute. The base attribute of A can be in R, or in some participating
entity type of Rn. We can obtain a derived relationship set from by joining all the
relationship sets in the attribute derivation. A derivation also specifies how a view
relationship set is obtained from the relationship sets in the conceptual schema. A
special case of derived attributes occurs if the derivation of a view attribute A
contains only special relationship sets. We call such attributes inherited attributes.
Multi-level attribute inheritance is allowed. If a view attribute A has associated with
it some functions or arithmetic expressions, then we call A a computed attribute. A
view attribute can also be obtained from a combination of computation and
derivation, or computation and inheritance. We consider such an attribute as
computed. For more details, see [141.

[14] proposes an ER schema and view data definition language. Figure 2 shows an
ER external view which is based on the example medical database in Figure 1. We
illustrate the view definition obtained during the construction of this external view in
an ER based DBMS Workbench [183. This is a user-friendly graphical tool which
allows the design of database conceptual schema, definition of user views based on a
schema, and formulation of queries and updates against a view. The view definition
for Figure 2 is as follows. The keywords are in italics.

%- !%’
k7BWDOClFAT OFMEDICALDB

VIEW EM77Y TYPE EMPLOYEE /*By default, base and view entity types have same name*/.
(AlTRIBUTES (EMPNO, /+Base attribute is in base entity type of EMPLOYEE*/

HNAMB D- (cBMPLOYS>) OWib’EJZ (HOSPITAL))
IDI~VIIFI~ (EMPNO))

VIEwEK’77Y7YPEDOCfOR
(AZTRIBUTES (IZMPNO, QUAL,

NAME INHEWED (<UNION>) OU%‘,!LQ (BMPIXXBE).
AGE INHERfIED (<UNION>) OWNER (EMPIlXEJZ),

DNAMBDERIvED(cAlTACHTOs-)OK%‘ER(DE%’AR’l-mNlJ)
ILWVl7FIm (EMPNO))

VIEWENTlTY TYPE PATIBNT
(A7TRIBUfES (REGNO, PNAMB. AGE. SEX.

BEDNO DERIVED (.coamPY>)owER(occuPY))
IDfLWtFIER (RIZNO))

VIEWEhWlY TYPE NURSE
(ATTRIBUTES (EMPNO, RANK)

IDEWTFIER (EMPNO))
VIEW REUTIONSfiIP SET Ai%D-DOCI’OR

(PART-VIEW-EhWMES I DOCIOR. PATIENT 1
PPART-VI!+-Em indicates participating view entity types*/

IDENTIFIER (WcfoR. PATIENT)
DERIVATION (<WOW))

VIEW RELATIONSHIP SET Al-l-D-NURSE
(PART-VIEW-ENTITIES (NURSE, PATIENT)

IDlWi’lFIER (NURSE, PATIENT)
DERIVATION (<INcHARGE, OCCUPY>))

ISA (PART-VIEW-IWTITIES (DOCl-OR, EMI’LOYBE)
DERIVATION (<UNION>))

ISA (PART-VIEW-ENlIlIES (NURSE. BMPLQYBE)
DERIVATION (<UNION>))

266

I1

Figure 1: An Exmnple ER Mea&l Database

Figure 2: An Example ER External View of Conceptual Schema in Figure 1.

267

3. View Updatability in ER approach

An ER user view can be represented in Prolog by using a predicate symbol for each
entity type and relationship set [93. Using Figure 2 as an example, we have

EMpLoyEE~O*HNAME).
DCMZKR (EMF’NO. NAME, AGE, QUAI, DNAME).
NURSE(EMPNO;MNK).
PATlENT (REGNO, PNAMB, AGE, SEX, BEDNO).
A’ITD--R-PATIENT).
All-D-NURSE (NUR!X, PATIJZNT)

Note that the entity types in a relationship set predicate are complex objects. For
example, DOCTOR and PATIENT are complex objects in ATID-DOCTOR. QUAL
is a multi-valued attribute and is thus a list in DOCTOR predicate. Any composite
attribute is a complex object in its owner (entity type or relationship set) predicate.
Any weak entity type is a list of complex objects in the parent entity type predicate.

Thus, views in ER approach are not necessarily flat relations. As a result, view
update in the ER approach is different from that in relational model. It has the
following important unique features.

1. Entity Types
Identifiers of entity types are not modifiable. This is because they are
used as object identifiers in the relationship sets in which the entity
types participate in. Modification of entity type identifiers will cause
undesirable updating anomalies. The insertion of an entity requires the
identifer value to be defii.

2. Relationship Sets
Identifiers of relationship sets can be modified without causing any side
effects or updating anomalies. This is because a relationship specifies the
way participating entities are related. The attributes of a relationship set
and the identifiers of the participating entity types can be modified. No
update is allowed on the non-identifier attributes of the participating
entity types. The insertion of a relationship requires the identifer values
of all the participating entity types to be defined. It violates the meaning
of a relationship set in an ER database if we allow insertion to occur
when only the identifier of a relationship defined.

3. Multivalued Attributes and Weak Entity Types
Weak entity types are set-valued attributes in the parent entity type
predicate. Multivalued attributes are also sets in the owner predicate. We
use set operations such as REMOVE and APPEND to update such
attributes. For example, to reflect the fact that Dr Chew, employee
number 114211, has just received his MFRC degree and will be
transfered to the pediatrics department, we can have the following Prolog
goal to update the view entity type DOCTOR in Figure 2.

?- retrieve (doctor (114220, Name, Age, Qual. Dname)),
append U&al, W~C‘I, NewQuaQ
modify (doctor (114220, Name, Age, Qual. Dnsme),

doctor (114220, Name, Age, NewQual, pediatrics)).
4. Special Relationship Sets

268

Special relationship sets such as ISA, UNION, INTERSECT etc are
actually constraints and hence cannot be updated. However, inherited
attributes can be modikd using the identifiers of the participating entity
types in these special relationship sets.

We have the following principles that guide us in updating ER views.
1. There must be a clear one-to-one correspondence between the objects

(attributes, entity types and/or relationship sets) in the view and the
underlying database schema. That is, there must no ambiguity of origin
in the view objects.

2. The result of a view update must not violate the definition of the view.
This is because a user will not be able to retrieve the new updated data
through the view since they do not meet the conditions specified by the
view. We can enforce such an update rule by including the selection
criteria of views in the mapping rules.

3. Side effects that are results of the system’s actions to ensure that changes
in a view requested are consistent with the rest of the database are
permitted. The following definition introduce the concept of virtud
uplute to refer to such side effects.

Definition I : Let A be a subset of the attributes of an entity type or a relationship
set in a view. Let B be an attribute in the entity type or relationship set such that B
e A. If the value of the base attribute of B is a function of the values of the base
attributes of A, then the modification of any of the attributes in A will cause the
system to retrieve or re-compute the corresponding value of B whenever the value of
B is required. We call such an action virfuul update.

Note that virtual updates are automatically carried out by the system and not the user
to maintain database consistency after a view update. Virtual updates are important in
tile following cases.

1. Computed attributes in a view are not directly modifiable by the user. But
their values can be implicitly updated by the system.

2. Let E be the base entity type of a view entity type E’. Suppose E
contains attributes Al, A2, . . . Ah whose base attributes are not in E but
in another entity type F connected to E by relationship sets Rl, R2,
Rn. If the base attribute of Al is the identifier of the entity type F, and
Al has been determined to be modifiable in the view entity type E’, then
the modification of Al will cause the system to retrieve the
corresponding values of the attributes A2, . ..Ah whenever these values
alel-eqlkd.

3. Let <RI, R2, R,> be the derivation of a view relationship set R’.
Suppose R’ contains attributes Al, A2, . ..Ah whose base attributes are
in an entity type E, where E is a participating entity type in some
relationship set in the derivation, say Ri, for some i where 1 <= i <= n.
If the base attributes of Al is the identifier of E, and Al has been
determined to be modifiable in the view relationship set R’, then the
modification of Al will cause the system to retrieve the values of the
attributes A2, . ..Ah whenever these values are required.

269

4. A Theory for ER View Update

Next, we give a theory within the framework of the ER approach that characterixes
the conditions under which there exist mappings from view updates into conceptual
schema updates. Note that an entity type or relationship set is updatable if and only if
the entity type or relationship set is deletable, modifiable or insertable. We first
examine the conditions under which a view entity type or relationship set is deletable
or modifiable. A view entity type or relationship set is deletable (or modifiable) if we
are able to delete (or modify) some corresponding entities or relationships in the
database without violating any of the three view update principles stated in section 3.

Definition 2 : A’key-preserving projection is a projection of an entity type or
relationship set which includes a key of the entity type or relationship set.

Theorem I : Any view entity type is deletable. Let E be the .base entity type of a
view entity type E’. Any view attribute of E’ whose base attribute is in E and is not
part of the identifier of E is modifiable.
Proof : Trivial. n

Two sets of attributes X and Y in the relational model ate said to befunctionally
equivalent if and only if X + Y and Y i X. We can determine the functional
equivalence of these two sets of attributes using Armstrong’s axioms [21].

Definition 3 : Two sets of entity types Ei and Ej are functionally equivalent w.r.t. a
derivation <Rl, R2, R,>, denoted Ei C) Ej, if and only if we GUI establish that
the set of identifiers of the entity types in Ei is functionally equivalent to the set of
identifiers of the entity types in Ej from the functional dependencies in the
relationship sets RI, R2, Rn.

Figure 3 shows an ER diagram in which A is functionally equivalent to B w.r.t.
<RI>, but A + B, B -/+ A w.r.t. <R2>. Since B ts C in R3, we can conclude that
A f) C from the functional dependencies in <Rl, R3> (or we can say that A f) C
w.r.t. <RI, R3>) by transitivity.

Figure 3: An ER diagram to illustrate the filnctioti e@vdmce of em@’ mes-

Definition 4 : Let Ei be the set of participating entity types of a relationship set Ri
whose identifiers form a key of Ri. Similarly, let Ej be the set of participating entity
types of another relationship set Rj whose identifiers form a key of Rj. We say that

270

Ri and Rj are functionally equivalent, denoted Ri t) Rj, w.r.t. a derivation <Rl, R2,
. . . . Rn> if and only if Ei and Ej are functionally equivalent w.r.t. <Rl, R2, Rn>.

Theorem 2 : Let R be a view relationship set with the relationship derivation <Rl,
R2, Rn>. R has the following updatability if and only if R is functionally
equivalent to some relationship set Ri w.r.t. <Rl, R2, R,> where i E (1.2.
n):

1. R is deletable and
2. R is modifiable for those attributes which are also attributes of Ri.

Proof : If the view relationship set R is functionally equivalent to some conceptual
schema relationship set Ri w.r.t. cR1, R2, Rn>, where i E (i, 2, n), then
we have a one-to-one correspondence between the relationships of R and the
relationships of Ri. Thus when we delete a relationship of R, we delete the
corresponding relationship of Ri which is retrieved using the key value of R.
Moreover, when we modify the values of the attributes of a relationship of R, the
corresponding attributes’ values of the corresponding relationship in Ri retrieved
using the key value of R are modified. Otherwise, if R is not functionally equivalent
to any of the relationship set Rj w.r.t. cR1, R2, R,>, where j E (1, 2, n) ,
then there will not be a one-to-one correspondence between the relationships of R and
the relationships of Rj. Rj is not the base relationship set of R and the system will
not be able to determine uniquely the relationship to be deleted or modified. n

Corollary 1 : A view relationship set obtained from a key-preserving projection of a
base relationship set is modifiable and deletable. n

Theorem 1 restricts the modifiable attributes of a view entity type to those view
attributes whose base attributes are in the base entity type of the view entity type.
However, we can apply the argument used in proving theorem 2 to extend the
modifiable attributes of a view entity type to include derived attributes.

For example, the single-valued derived attribute DNAME in the view entity type
DOCTOR in Figure 2 can be modified as follows. We observe that the base attribute
of the key of the view entity type DOCTOR and the key of the conceptual schema
relationship set A’ITACHTO are functionally equivalent w.r.t. cAlTACHTO>, thus
resulting in a one-to-one correspondence between the view entities in DOCTOR and
the relationships in ATTACHTO. Hence, when we modify the value of the derived
attribute DNAME of a view entity in DOCTOR, the value of the base attribute of
DNAME in the corresponding relationship in ATTACHTO retrieved using the key
value of DOCTOR is modified.

We generalize this concept of modifying single-valued derived attributes of a view
entity type when certain conditions are satisfied in the following theorem.

Theorem 3 : Let E be the base entity type of a view entity type E’. Let A be a single
valued attribute of E’ with the attribute derivation <Rl, R2, Rn>. If the base
attribute of A is the identifier of some entity type F, a participating entity type in

271

Rn, then A is modifiable if and only if the derived relationship set of A is
functionally equivalent to Rn wr.t. 451, R2, Rn>.
Proof : The derived relationship set R of the view attribute A is constructed by
joining all the relationship sets in the attribute derivation of A and projecting out all
the participating entity types of Rl, R2, R, except E and F. Note that the
construction of the derived relationship set is similar to the construction of view
relationship sets. There is a one-to-one correspondence between the relationships of R
and the relationships of Rn if and only if R is functionally equivalent to R, w.r.t.
<RI, R2, Rn>. If the base attribute of A ‘is an identifier of F, then it is part of
the relationship set Rn. If A is a singlevalued attribute in E, then there is a one-to-
one correspondence between the entities in E’ and the relationships in R. Hence A is
modifiable if and only if R is functionally equivalent to R, w.r.t. <Rl, R2,
Rn>. w

Note that we do not allow the modification of any multivalued derived view attribute
A as it will be ambiguous. Each value of A, which is a set, will correspond to a set
of relationships in the conceptual schema and there is no unique translation of the
modification request.

Corokny 2 : Let E be the base entity type of a view entity type E’. If E’ contains a
single-valued attribute A whose base attribute is not in E, but is the identifier of
another entity type F which is connected to E by some regular binary relationship set
R, then A is modifiable. n

CoroZlury 3 : Let E be the base entity type of a view entity type E’. Let A be a
single-valued attribute of E’ with the attribute derivation <Rl, R2, Rn>. If the
base attribute of A is an attribute of R,, then A is modifiable if and only if the
derived relationship set of A is functionally equivalent to R, w.r.t. cR1, R2,
R,>. n

We next consider insertion in the ER approach. A view entity type or view
relationship set is insertable if we are able to insert some corresponding entities or
relationships into the database without violating any of our three view update
principles stated in section 3. Moreover, the entities or relationships inserted into the
ER database are subjected to meet the domain constraints, the key constraints, as well
as the referential constraints in the case of a relationship insertion.

Theorem 4 : A view entity type is insertable if and only if the identifier of its base
entity type is included in the view.
Proof : Trivial. n

Corollary 4 : A view entity type obtained from the selection of a base entity type is
always updatable. H

Theorem 5 : Let R be a view relationship set with relationship derivation <Rl, R2,
. . . . R,>. R is insertable for those attributes which are also the attributes of some
relationship set Ri where i E (1, 2 , n) if R is functionally equivalent to Ri w.r.t.

272

<RI, R2, Rn> and all the participating entity types of Ri are also the base entity
types of the participating view entity types of R.
Proof : If R is functionally equivalent to some relationship set Ri w.r.t. cR1, R2,
. . . . Rn>, then we have a one-to-one correspondence between the relationships of R
and the relationships of Ri. Ri is a base relationship set of R. Thus, the insertion of
a new relationship into R will be translated into an insertion of a corresponding
relationship into Ri. Now, to insert a relationship into the database, we require the
identifier values of its participating entities to be given. Thus, we can only insert a
new relationship into R if all the participating entity types of Ri are also the base
entity types of the participating view entity types of the view relationship set. n

Corollary 5 : A view relationship set obtained from the selection of a base
relationship set is always updatable. n

We refer to the class of view relationship sets that are determined to be insertable by
theorem 5 as Type I insertable. We can always find the mapping to translate any
insertion requests on these Type 1 insertable relationship sets. For example, Figure 4
shows a view relationship set R, obtained from a join of two conceptual schema
relationship sets Rl and R2, that is, derivation is <Rl, R2>. A’, B’ and c’ are the
view participating entity types of R, whose base entity types are A, B and C
respectively. R, is functionally equivalent to both Rl and R2. Hence, R, is Type 1
insertable with respect to both Rl and R2. To insert a relationship (a, b, c) into R,,
we insert the relationships (a, b) and (b, c) into Rl and R2 respectively if they do not
already exist in database. Otherwise, if both the relationships exist in the database,
we reject the insertion.

Figure 4: A view relatkmship set Rv obtainedfrom a join of the conceptual
schema relationship sets RI and R2.

However, the class of view relationship sets which are Type 1 insertable is very
restrictive. For example, Figure 5 shows a view relationship set R, obtained from a
join of the two conceptual schema relationship sets Rl and R2 in Figure 4, that is,
derivation is <Rl, R2>. Here, the common entity type B has been projected out from
the view. Although R, is not Type 1 insertable, but it is possible to insert a

273

relationship (a, c) into Rw without violating any of our view update principles. We
fiit check if a is participated in some relationship in Rl, that is, if there exists an
entity b of B such that the relationship (a, b) is in Rl. If the relationship (a, b) exists
in Rl and the relationship (b, c) does not exist in R2, then we can insert (b, c) into
R2. Otherwise, we reject the insertion.

Figure 5: A view relationship set Rw obtained from a join of the conceptual
schema relationship sets RI and R2 with the common entity type B
projected out.

We have a few observations from the second example.
1. Two possible situations can occur when we insert a relationship (a, c)

into R,. We try to retrieve the identifier value of B from Rl using the
key value of A’.
Case 1: The relationship (a, b) does not exist in Rl.

That is, a is not participated in any of the relationships in Rl.
For this case, there is no way we can insert the relationship (a,
c) into R,. Hence we reject the insertion.

Case 2: The relationship (a, b) exists in Rl.
Using the retrieved identifier value b of B, we can insert a
relationship (b, c) into R2 and still satisfy our three view update
principles. Hence the insertion of (a, c) into R, is translated
into the insertion of (b, c) into R2.

2. Although R, is not Type 1 insertable according to theorem 5, but we
have seen that it may still be possible to insert a relationship into R,.
We observe that although the participating entity type B of R2 does not
appear as a base entity type of some participating entity type of R,, but
the base entity type A of A’ is functionally equivalent to B w.r.t <Rl>.
R, is Type 3 insertable by the definition following theorem 6.

3. In the ER approach, the existence of an entity in a relationship could be
defined as either mandatory or optional. If we know that the existence of
the entity type A in the relationship set Rl is mandatory, then we can
always retrieve the identifier value of B in Rl given a key value of A.
Thus, we can always find the mapping to translate any insertion requests
on R,. R, is Type 2 insertable by the definition following theorem 6.

Definition 5 : Suppose an entity type Eifl is involved in a relationship set Rio with
another entity type Eil, and Eil is involved in a relationship set Ril with ,811 entity

274

type Ei2, and so on, and eventually we have an entity type Eij_1 involved in a
relationship set Rij 1 with an entity type Eij. If the existence of Eik is mandatory in
Rik (which may be-nary) for all k, 0 <= k < j, then we say that the existence of Eit,
is transitively mdrory in the relationship R which is obtained from a natural join
of all the relationship sets Rik

We will now define the concepts of Type 2 insertable and Type 3 insertable formally.

Theorem 6 : Let R be a view relationship set with the relationship derivation <Rl,
R-2, R,,>. R is insertable for those attributes which are also the attributes of
some relationship set Ri where i E (1,2,n) , if R is functionally equivalent to Ri
w.r.t. cR1, R2, R,>, and for each participating entity type E of Ri
either 1. E is a base entity type of some participating view entity types of R,
or 2. E is functionally equivalent to some entity type F w.r.t. a derivation T

such that F is a base entity type of some participating view entity type
of R and T is either <Rl , R2, Ri- l> or <Ri+ 1, Ri+2, R,>. n

We call the class of view relationship sets that are determined to be insertable by the
above theorem as Type 3 insertable. Moreover, if the existence of the entity type F
in the above theorem is transitively mandatory in the relationship set which is
obtained from a join of a set of relationship sets in the derivation T, then we call this
class of view relationship sets as Type 2 insertable. For example, the view
relationship set R, in Figure 4 has a relationship derivation <Rl, R2> and the
entity type A is functionally equivalent to B w.r.t. cRl>. R, is Type 2 insertable if
A is mandatory in Rl. Otherwise, R, is Type 3 insertable. In both cases, R2 is the
base relationship set of R,, that is, R, is insertable w.r.t. R2. Note that if a view
relationship set is Type 2 insertable, then any relationship insertion request is
subjected only to domain and key constraint checks. On the other hand, if a view
relationship set is Type 3 insertable, then any relationship insertion request is not
only subjected to domain and key constraint checks, but is also dependent on the
contents of the database.

Corollary 6: If a view relationship set is Type 1 insertable, then it is also Type 2
insertable. If a view relationship set is Type 2 insertable, then it is also Type 3
insertable. n

We conclude in the following theorem that if a view relationship set is not Type 3
insertable, then it is not insertable.

Theorem 7 : If a view relationship set is not Type 3 insertable, then it is not
insertable.
Proof: We will give an outline of the proof here.
Let R be a view relationship set with the relationship derivation <Rl, R2, R,>.
If R is not Type 3 insertable, then by theorem 6, for each of the relationship sets Ri,
1 <= i <= n, either R is not functionally equivalent to Ri w.r.t. <Rl, R2, Rn>,
or there exists some participating entity type E of Ri such that E is not the base

275

entity type of any participating view entity type of R, and E is not functionally
equivalent to any entity type F w.r.t. derivation T such that F is the base entity type
of some participating view entity type of R and T is either <Rl, R2, Ri-l> or
<Ri+l, Ri+2, --s Rn>.
Now if R is not functionally equivalent to Ri w.r.t. cR1, R2, R,>, then we do
not have a one-to-one correspondence between the relationships of R and the
relationships of Ri The insertion of any new relationship into R cannot be translated
into an insertion of some relationship into Ri. Therefore, Ri is not the base
relationship set of R.
If there exists some participating entity type E of Ri such that E is not the base
entity type of any participating view entity types of R, and E is not functionally
equivalent to any entity type F w.r.t. a derivation T such that F is the base entity
type of some participating view entity type of R and T is either cR1, R2, Ri-l>
or <Ri+l, Ri+2, Rn>, then there is no way we can obtain the identifier value of
E during an insertion of R. Therefore, Ri is not the base relationship set of R.
Hence, if R is not Type 3 insertable, then for each of the relationship sets Ri, 1 <= i
c= n, Ri is not the base relationship set of R. Therefore, R is not insertable. n

Theorem 4 restricts the attributes of a view entity type which can be given values in
an insertion of a view entity to those view attributes whose base attributes are in the
base entity type of the view entity type. However, we can allow values to be given
to derived attributes of a view entity type in an insertion of a new entity without
violating any of our view update principles.

For example, we may want to insert a new doctor into the view entity type
DOCTOR in Figure 2, and at the same time give the name of the department the
doctor is attached to. This insertion request can be translated into an insertion of a
corresponding entity into the base entity type of IXXTOR and an insertion of a
relationship into the conceptual schema relationship set ATTACHTO. The new
relationship which is inserted into ATTACHTO is created using the identifier values
of its two participating entity types, DOCTOR and DEPARTMENT, that is, the
user-given values for the attributes EMPNO and DNAME which are both in the view
entity type DOCTOR. We have a one-to-one correspondence between the
relationships in ATTACHTO and the entities in the view entity type DOCTOR since
the identifier of ATTACHTO is functionally equivalent to the key of the view entity
type DOCTOR. Hence, when we give a value to the derived attribute DNAME in an
insertion of a new view entity into the view entity type DOCTOR, a new
relationship is inserted into the relationship set ATTACHTO in the database in
addition to the insertion of a corresponding entity into the base entity type of
DOCTOR.

We say that a view attribute of a view entity type or view relationship set is
insertable if values can be given to it in an insertion of a new view entity or view
relationship into the view entity type or view relationship set respectively. We
generalize the concept of insemble derived uttribufes in the following theorem.

Theorem 8 : Let E be the base entity type of a view entity type E’ and let A be a
derived attribute of E’ with the attribute derivation <Rl, R2, R,> such that R, is

276

a binary relationship set. Suppose En is a common entity type of Rn_1 and Rn, and
F is the other participating entity type of Rn such that the base attribute of A is the
identifier of F. A is insertable if

1. the derived relationship set R of A is functionally equivalent to Rn w.r.t
CRl, R2. Rn>, and

2. E is functionally equivalent to En wf.t. <Rl, R2, Rn_l>, and
3. E is transitively mandatory in the relationship set which is obtained from

a join of the relationship sets Rl, R2, Rn, 1.
Proof : Recall that the derived relationship set R is obtained by joining all the
relationship sets in the attribute derivation of A and projecting out all the
participating entity types of Rl, R2, Rn except E and F. There is a one-to-one
correspondence between the relationships of R and the relationships of Rn if and only
if R is functionally equivalent to R, w.r.t. <Rl, R2, R,>. If E is functionally
equivalent to En w.r.t. <Rl, R2, R,-l>, and E is transitively mandatory in the
relationship set obtained from a join of the relationship sets Rl, R2, R,_l, then
R is Type 2 insertable with respect to Rn. If the base attribute of A is the identifier
of F, then it is part of the relationship set Rn. Therefore, if A is a single-valued
attribute in E’, then when A is given a value during an insertion of a view entity into
E’, we can insert a new relationship into the binary relationship set Rn using the
retrieved identifier value of En and the given value of A. If A is a multivalued
attribute in E’, then a set of values S will be given to A during an insertion of a view
entity into E’. In this case, we will insert ISI new relationships into Rn. Each of
these new relationships is created using the retrieved identifier value of En and a value
in S. These insertions will not cause any violation of our view update principles.
Hence, A is insertable. n

Corollary 7: Let E be the base entity type of a view entity type E’. If E’ contains an
attribute A whose base attribute is not in E, but is the identifier of another entity
type F which is connected to E by some regular binary relationship set R, then A is
insertable. n

Corollur~ 8: An inherited attribute is insertable. W

Based on the above theory developed, we have an algorithm to systematically
determine the updatability of view entity types and view relationship sets in a view.
In addition, this algorithm also determines the different types of insertability for view
relationship sets. Interested readers can refer to [20] for details of this View
Updatability Algorithm. We also have a View Update Translation Algorithm [20] to
translate a view update request into the corresponding database update based on the
results obtained from the View Updatability Algorithm. Information regarding the
updatability of a view generated from the View Updatability Algorithm is stored in
the data dictionary. The View Update Translation Algorithm will use these
information during any view update request translation.

We have seen that it is trivial to delete an entity from a deletable view entity type.
However, to insert a new entity into an insertable view entity type, we may need to
take into consideration the presence of inherited and/or derived attributes. If we have

277

derived attributes in the view entity type, then in addition to the insertion of a
corresponding entity into the base entity type of the view entity type, we will need to
insert a corresponding relationship into some relationship set. For example, to insert
a new doctor into the view in Figure 2, we have the Prolog goal

?- insert (doctor (116790, ‘H. Gob’, 35, [‘MBBS’, ‘MMed’], surgery)).

The View Update Translation Algorithm will translate this view insertion request
into the following three facts to be inserted into the dambase.

doctor (116790, [‘MBBS’, ‘MMed’]).
r Base attributes of BMPNO and QUAL are in base entity type */

employee (116790. ‘H. Gob’. 35).
/* NAME & AGE are inherited attributes with derivation <UNION>*/

attachto (116790, surgery).
/* DNAME is a derived attribute with derivation <ATTACHTO> */

To modify a particular doctor in the view entity type DOCTOR in Figure 2, we use
the given key value of the doctor to retrieve and modify the corresponding doctor
entity in the database if the attribute QUAL is given a new value. If either one or
both the attributes NAME and AGE are given new values, we modify the
corresponding employee entity. If the attribute DNAME is given a new value, we
modify the corresponding attachto relationship. Similar forms of translations can be
carried out for view update requests on relationship sets. View relationship sets
deletions and modifications are trivial. For view relationship set insertions, we need
to consider the three types of insertability.

5. Conclusions

We have proposed a theory within the framework of ER approach which characterizes
the conditions under which there exist mappings from view updates into conceptual
schema updates. We allowed the concept of virtual updates which are carried out by
the system to ensure that changes in a view requested are consistent with the rest of
the database. This is important in cases where the value of a view attribute cannot be
changed by the user but whose value is a function of the values of other modifiable
view attributes. With the concept of derivations, we are able to handle view updates
involving derived attributes, relationship set joins and multilevel inheritances through
the special relationship sets ISA, UNION etc. We have also defined three types of
insertability for view relationship sets. We can always find the mapping to translate
any insertion requests on Type 1 insertable view relationship sets. If a view
relationship set is Type 2 insertable, then any view relationship insertion request is
subjected to domain and key constraint checks. On the other hand, if a view
relationship set is Type 3 insertable, then any view relationship insertion request is
not only subjected to domain and key constraint checks, but is also dependent on the
contents of the database. We have also seen that if a view relationship set is Type 1
insertable, then it is also Type 2 insertable. If a view relationship set is Type 2
insertable, then it is also Type 3 insertable. Moreover, we proved that if a view
relationship set is not Type 3 insertable, then it is not insertable.

Based on the theory, we have developed the View Updatability Algorithm and the
View Update Translation Algorithm. These algorithms also take into consideration

278

the three types of insertability for view relationship sets. [161 has an algorithm which
gives a unique translation of a normal form ER diagram to a set of relations. Hence,
any update in the ER approach can be transIated uniquely to an equivalent update in
the relational database. Note that our approach to view update is intended to fit into
the framework of a general and systematic approach to the whole question of view
updating.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

F. Bancilhon and N. Spyratos: Update semantics and relational views, ACM
Trans. Database Systems 6 (4). 1981.
T. BarsaIou, et. al: Updating Relational Databases through Object-Based Views,
Proc. of the 1991 ACM SIGMOD Int. Conf. on Management of Data, May
1991.
C.R. Carlson and A.K. Arora: The updatability of relational views based on
functional dependencies, Third International Conputer Software and
Applications Conference, IEEE Computer Society, 1979.
M.C. Chan: Translation templates for updates issued on relation views, Tech.
Report 35, Dept. of Comp. Science, Monash University, Melbourne, Australia,
April 1983.
P.P. Chen: The Entity-Relationship Model: Toward a Unified View of Data,
ACM Transactions on Database Systems vol 1, no 1,1976, pp 166-192.
E.F. Cod& Recent Investigations in a Relational Database System, Information
Processing 74, North Holland, Amsterdam, 1974, pp 1017-1021.
U. Dayal and P.A. Bernstein: Gn the correct tmnshuion of update operations on
relational views, ACM Trans. Database Systems 7 (3). 1982.
A.L. Furtado, C.K. Sevcik and C.S. Santos: Permittting updates through views
of databases, Information Systems 4 (4). Pergamon Press, Great Britain, 1979.
J. Grant and T.W. Ling: Database Representation and Manipulation Using
Entity-Relationship Database Logic, Proc. of Methodologies for Intelligient
Ststem IV, Elsevier Science Pub. Co., 1989, pp 102-109.
J. Guttag: Abstract data types and the development of data structures,
Communications of ACM 20 (6), 1977, pp 396-404.
A.M. Keller: Algorithms for transhuing view updates to database updates for
views involving selections, projections and joins, 4th PODS, ACM, March
1985.
A.M. Keller: Choosing a view update translator by Dialog at view definition
time, Proc. of the 12th International Conference on Very Large Databases,
1986.
R. Lange&: View Updates in Relational Databases with an Independent
Scheme, ACM Transactions on Database Systems, Vol 15, No 1, March 1990,
pp 40-66.
M.L. Lee: An Entity-Relationship Based Database Management System, a
thesis submitted for the degree of Master of Science, National University of
Singapore, 1992.
S.B. Legg and K.J. McDonell: Translating update requests on user views,
technical report 77, Department of Computer Science, Monash University,
Melbourne, Austraha, Nov 1986.
T.W. Ling: A Normal Form for Entity-Relationship Diagrams, Proc. 4th
International Conference on Entity-Relationship Approach, 1985.

279

17.

18.

19.

20.

21.
22.

23.

24.

T.W. Ling: A Three Level Schema Architecture ER based Database
Management Systems, in: March, S.T. (ed), Entity-Relationship Approach,
North Holland, Amsterdam, 1987, pp 205-220.
T.W. Ling and M.L. Lee: A Graphical Entity-Relationship Based Database
Management System Workbench, Proc. 4th International Workshop on
Computer-Aided Software Engineering, 1990, pp 480495.
T.W. Ling. and ML. Lee: A Prolog Implementation of an ER based DBMS,
Proc. 10th Int. Conf. on ER Approach, 1991, pp 587605.
T.W. Ling and ML. Lee: View Update in Entity-Relationship Approach, to be
submitted for publication, 1992.
D. Maier: Theory of Relational Databases, Computer Science Press. 1983.
L. Rowe and K.A. Schoens: Data abstractions, views and updates in RIGEL, in
zl ACM-SIGMOD International Conf. on Management of Data, 1979, pp

- .
K.C. Sevcik and A.L. Furtado: Complete and compatible sets of update
operations, in International Conf. on Management of Data (ICMOD), 1978.
M. Stonebrakerz Implementation of integrity constraints and views by query
modification, Proc. ACM SIGMOD Int. Conf. on Management of Data, San
Jose, 1975, pp 65-78.

