
Resolving Structural Conflicts
in the Integration of Entity-Relationship Schemas

Mong Li LEE Tok Wang LING

Department of Information Systems & Computer Science
National University of Singapore

(leeml, lingtw)@iscs.nus.sg

Abstract. Schema integration is essential to define a global schema that
describes all the data in existing databases participating in a distributed or
federated database management system. This paper describes a different
approach to integrate two Entity-Relationship (ER) schemas. We focus on
the resolution of structural conflicts. that is, when related real world
concepts are modelled using different constructs in different schemas.
Unlike previous works, our approach only needs to resolve the structural
conflict between an entity type in one schema and an attribute in another
schema and the other structural conflicts are automatically resolved. We
have an algorithm to transform an attribute in one schema into an
equivalent entity type in another schema without any loss of semantics or
functional dependencies which previous approaches have not considered.

1. Introduction

Schema integration involves merging several schemas into one integrated schema.
Recently, with the research into heterogenous database, this process finds an important
role in integrating export schemas into a federated schema in a federated database
system. There has been a large amount of work in the integration area: a
comprehensive and detailed survey by [2] discussed twelve methodologies for view or
database integration (or both), and new contributions continously appear in the
literature [3, 6, 8, 11, 13, 16, 171 and many more in [lo]. Most of these approaches
do not provide an algorithmic specification of the integration activities. They provide
only general guidelines and concepts on the integration process.

The schema integration process can be divided into five steps: preintegration,
comparison, conformation, merging, and restructuring. The schema comparison step
involves analysing and comparing schemas to determine correspondences among
objects and detect possible conflicts in the representation of the same objects in
different schemas. In the integration of ER schemas, we need to resolve the following
conflicts: (1) naming conflict, (2) structural conflict, (3) identifier (primary key)
conflict, (4) cardinality conflict, (!I) domain mismatch or scale differences.

In this paper, we will focus on the resolution of structural conflicts in the
integration of two ER schemas. Structural conflict occurs when related real world
concepts are modelled using different constructs in the different schemas. We take a
different approach to resolve such conflicts. Previous approaches [l, 13, 183 suggest
the following types of structural conflicts in the integration of ER schemas:
(1) an entity type in one schema is modeled as an attribute of an entity type or a
relationship set in another schema,
(2) an entity type in one schema is modeled as a relationship set in another schema,
(3) a relationship set in one schema is modeled as an attribute of an entity type or a
relationship set in another schema,
(4) an attribute of a relationship set is modeled as an attribute of an entity type.

425

We find that only the first type of conflicts is meaningful. We have a precise
algorithm to transform an attribute in one schema into an equivalent entity type in
another schema without any loss of semantics or functional dependencies [15]. We
advocate and show in this paper that the rest of the conflicts are automatically resolved
after we have resolved the first type of conflict. This paper is organized as follows.
Section 2 describes the ER model. Section 3 explains the terms and concepts we use
in the integration of ER schemas. Section 4 presents our approach to resolve structural
conflicts. Section 5 compares our approach with related works.

2. The Entity-Relationship Approach

The ER model, first introduced by Chen [4] incorporates the concepts of entity type
and relationship set. An entity type or relationship set has attributes which represent
its structural properties. An attribute can be single-valued (cardinality l-l or m-l) or
multivalued (cardinality l-m or m-n), or composite. A minimal set of attributes of an
entity type E which uniquely identifies E is called a key of E. An entity type may
have more than one key and we designate one of them as the identifier of the entity
type. A minimal set of identifiers of some entity types participating in a relationship
set R which uniquely identifies R is called a key of R. A relationship set may have
more than one key and we designate one of them as the identifier of the relationship
set. If the existence of an entity in one entity type depends upon the existence of a
specific entity in another entity type, then such a relationship set and entity type are
called existence dependent relationship set and weak entity type. A special case of
existence dependent relationship occurs if the entities in an entity type cannot be
identified by the values of their own attributes, but has to be identified by their
relationship with other entities. Such a relationship set is called identijier dependent
relationship ser. A relationship set which involves weak entity type(s) is called a weak
relationship set. An entity type which is not a weak entity type is called a regular
entity type. Recursive relationship sets and special relationship sets such as ISA,
UNION, INTERSECT etc, are allowed. A relationship set which is not weak or
special is called a regular relationship ser. For more details, see [141.

3. Schema Integration

Different approaches to the schema integration problem have been chosen in view
integration and database integration. The majority of the view integration papers
attempt to establish a semi-automated technique for deriving an integrated schema from
a set of integration assertions relating equivalent constructs in the views [7, 181. On
the other hand, database integration methodologies aim at providing a tool allowing
the DBA to build manually, by himself, the integrated schema, as a view over the
initial schemas [6, 161. In our integration of ER schemas, we will use the semi-
automatic assertion based approach to resolve structural conflicts.

Two entity types El and E2 from two different schemas are equivalent, denoted by
El = E2, if they model the same real world concept. Real world concepts may be
involved in a variety of associations called relationships. Two relationship sets Rl and
R2 from two different schemas are equivalent, denoted by Rl = R2, if they model the
same relationship involving the same real world concepts. Both Rl and R2 have the
same number of entity types and each of the participating entity type in R1 has a
corresponding equivalent participating entity type in R2. Two attributes Al and A2

426

from two different schemas are equivalent, denoted by AL = A2, if they model the
same property of some teal world concept or relationship.

A declarative statement asserting that a modelling construct in one schema is
somehow related to modelling construct in another schema is called an inter-schema
correspondence assertion (integration assertion for short). To ensure uniqueness of
names, we adopt a full naming convention
schemaname. ob jectname for objects (entity types or relationship sets) and
schemaname.objectname.attributename forattributes.

There are three types of integration assertions:
(1) Object equivalence: These are assertions which state that two entity types, two
relationship sets or two attributes are equivalent.
(2) Structure equivalence: These are assertions which state that a real world
concept in one mcdelling construct is equivalent to a real world concept in a different
modelling construct.
(3) Generalization: These are assertions which state that an entity type in one
schema is a generalization of an entity type in the other schema.

Figure la: Schem SI

Figure I b: Schema S2

Example 1 Consider the two schemas Sl and S2 in Figure 1. The DBA can
declare that entity types TOPICS and KEYWORDS are equivalent as they model the
same real world concept: Sl . TOPICS E' S2. KEYWORDS
Theit attributes NAME and TITLE are equivalent since they model the same property
OftheWneR%lworld CO~CZpt:Sl.TOPICS.NAME z S2.KEYWORDS.TITLE
The DBA can assert that entity type PUBLISHER in Sl is equivalent to the attribute
PUBLISHER in S2, that is, the concept publisher in the real world has been modelled
as an entity type PUBLISHER in one schema and as an attribute PUBLISHER in
XIOthtXSChema:Sl.PUBLISHER = S2.PUBLICATION.PUBLISHER
The DBA can declare that PUBLICATION in Sl is a more general concept than BOOK
in %?zSl.BOOK ISA S2 .PUBLICATION
Finally,ifwehave Sl.BOOK.TITLE E S2.PUBLICATION.TITLE, tbenthe
attribute TITLE of the entity type BOOK is an inherited attribute.

The following example explains why an attribute of a relationship set in one schema
cannot be equivalent to an attribute of an entity type in another schema unless one of
them is a derived attribute of the other schema.

Example 2 Consider the two schemas shown in Figure 2. The entity type
EMPLOYEE in Figure 2a is equivalent to the entity type EMPLOYEE in Figure 2b.

427

DEPT in Figure 2a is equivalent to DEPT in Figure 2b. The relationship set
WORKFOR in Figure 2a is equivalent to WORKFOR in Figure 2b. The attributes
EMPNO, NAME, SALARY and DNAME in Figure 2a are equivalent to EMPNO,
NAME, SALARY and DNAME in Figure 2b.

If the attribute JOINDATE in Figure 2a is equivalent to the attribute JOINDATE
in Figure 2b, then one of them is a derived attribute. Suppose JOINDATE in Figure
2a is a derived attribute, it is obtained from the schema in Figure 2b by joining the
entity type EMPLOYEE with the relationship set WORKFOR over the attribute
EMPNO. On the other hand, if JOINDATE in Figure 2a is not equivalent to
JOINDATE in Figure 2b, then they are homonyms. We could have JOINDATR in
Figure 2a model the date which an employee joins a department while JOINDATE in
Figure 2b model the date an employee joins the organization. This is a naming
conflict which can be easily resolved by renaming one of the attributes.

@isjfF~~~~

Figure 20: JOINDATE is an attribute of relationship set WORKFOR

Figure 26: JOINDATE is an attribute of entity type EMPLOYEE

We advocate that an attribute of a relationship set in one schema cannot be equivalent
to an attribute of an entity type in another schema unless one of them is a derived
attribute of the other schema. This is because conceptually, the semantics of these two
attributes are inherently different. An attribute of an entity type is a property of the
entity type. For example, EMPNO, ADDRESS and SALARY are properties of the
entity type EMPLOYEE. These attributes are not related in any way to the other
entity types or relationship sets in the schema. On the other hand, an attribute of a
relationship set is meaningful only when it is associated with all the participating
entity types in the relationship set. For example, suppose neither one of the attributes
JOlNDATE in Figure 2 are derived attributes. In Figure 2a, JOINDATE is meaningful
only when it is associated with EMPNO and DNAME together since it models the
date on which an employee assumes duty in a department of a company. This is the
actual meaning of the relationship construct in the ER approach. The value of
JOINDATR does not make sense with just the value of either EMPNO or DNAME
only. Furthermore, the value of JOINDATE will need to be updated whenever the
value of DNAME of a particular employee is updated. This is not so for JOINDATE
in Figure 2b as JOINDATR is a property of the entity type EMPLOYEE and models
the date an employee joins the company. The value of JOINDATE in Figure 2b need
not be updated if an employee is transfered from one department to another. Therefore,
if neither one of the attributes JOINDATE is a derived attribute and both of them are
supposed to have the same meaning, then one of them has been designed wrongly.

428

4. Resolution of Structural Conflicts

In this section, we will discuss our approach to resolve structural conflicts in the
integration of two ER schemas. We assume that all naming conflicts have been
resolved.

First, we resolve the structural conflicts involving an entity type and an attribute.
We have an algorithm to transform an attribute in one schema into an equivalent
entity type in another schema [151. This algorithm takes into consideration the
cardinality of the attribute and therefore the transformation is done without any loss of
semantics or functional dependencies. Next, we obtain a first-cut integrated schema by
merging the two schemas together. Common entity types and relationship sets are
superimposed. After the schemas are merged, we look for cycles in the merged ER
schema. We interact with the DBA to determine which relationship sets in the cycle
are redundant and can be removed from the merged schema. Finally, we build ISA
hierarchies based on the generalization assertions given.

We now describe how we resolve the structural conflict where an entity type in one
schema is modeled as an attribute in another schema. An example of this is given in
Figure 1 where the concept publisher in the real world has been modelled as an entity
type in schema Sl but is modelled as an attribute in schema S2. One reason why
different structures has been used is because the designers of the two schemas are
interested in different levels of details of the concept publisher. In schema S 1, the
database designer is interested in not only the name, but also the address of the various
publishers. Therefore, he models this concept as an entity type PUBLISHER with
attributes NAME and ADDRESS. On the other hand, the database designer of schema
S2 is only interested in the publishers (names of publishers) of the various
publication. Therefore, he models the publisher concept as an attribute of the entity
type PUBLICATION. We resolve this structural conflict by transforming the attribute
into an entity type. Our transformation takes into consideration the following factors:
(1) whether the attribute belongs to an entity type or a relationship set,
(2) whether the attribute is part of an identifier, a key or a composite attribute,
(3) the cardinality of an attribute, and
(4) the cardinality of the new entity type in the relationship sets it participates in.

These factors are not taken into consideration in previous approaches. It can be
easily shown that our transformation is semantics-preserving and dependency-
preserving [S, 9, 121. Note that the cardinalities of the participating entity types in a
relationship set R indicates the functional dependencies in R. Suppose R is a ternary
relationship set with participating entity types A, B and C with identifiers A#, B# and
C# respectively. If the cardinalities of A, B and C in R are n, m, 1 respectively, then
we have the functional dependency A#, B# + C# in R. That is, if the identifier of a
participating entity type of a relationship set R appears on the left hand side of a
functional dependency of R, then it has a cardinality of n in R. Otherwise, it has a
cardinality of 1 in R. However, note that if all the participating entity types of a
relationship set have cardinality 1, then their identifiers are functionally equivalent.

We will give a sketch of our transformation algorithm here. The details of the
algorithm can be found in [15]. The algorithm first considers if an attribute A belongs
to an entity type E, then there are four basic scenarios when we transform A to an
entity type EA with identifier A:
Case 1: A is not part of a key and not part of a composite attribute.

EA is connected to E by a new relationship set R.

429

Case 2: A is part of the identifier of E and there is no other key.
E becomes a weak entity type which is identifier dependent on EA.

Case 3: A u B is a key of E and there is another key (or identifier), or
A u B is a composite multivalued attribute, where B is a set of attributes.
Transform B to an entity type EB with identifier B.
EA and EB are connected to E by a new relationship set R.

Case 4: A u B is a composite m-l attribute, B is a set of attributes.
EA is connected to E by a new relationship set R.
B becomes a m-l attribute of R.

These various scenarios and their respective transformations are shown in Figure 3.
Note that the relationship set R is not restricted to binary relationships only.

K

4 A

Figure 3a: Case I - A is not part @a
key & not part of a composite attribute.
Entity type EA is connected to E by R.

Figure 3 b: Case 2 - A is part of the
identifzr and there is no other key.
E becomes a weak entity type which
is identifier dependent on EA.

Figure 3c: Case 3 - A is part @a key
and there is another key (or identifier).
New entity types E A and E B are
connected to E by R.
K-+A,B&A,B?,K

Figure 3d: Case 4 - A is part of a m:l
composite attribute. New entity type EA
is connected to E by R. B becomes an
attribute of R.

Figure 3: Transformations of an attribute A to an entity type EA .
A belongs to an entity type E.

On the other hand, if an attribute A belongs to a relationship set R, then there are
three basic scenarios when we transform A to an entity type EA with identifier A:
Case 1: A is not part of a composite attribute of R.

EA becomes a participating entity type of R.
Case 2: A u B is a composite multivalued or l-l attribute of R, B is a set of

attributes.
Transform B to an entity type EB.
EA and EB become participating entity types of R.

Case 3: A u B is a composite m-l attribute of R, B is a set of attributes.
EA becomes a participating entity type of R.
B becomes a m-l attribute of R.

These various scenarios and their respective transformations are shown in Figure 4.

Figure 4b: Case 2 - A is a part
of a 1 :l composite attribute
of R. EA & EB ~~COPJCZ

participating entity types of R.
El ,E2 +A,B &

A, B --j El , Ez
Figure 4c: Case 3 - A is part
of a m:i composite attribute of R.
EA becomes a participating entity
rype of R. B becomes a m:l
attribute of R.

Figure 4: Transformations of an attribute A into an entity type EA
A belongs to a relarionship set R.

5. Comparison with Related Works

In this section, we will compare our approach with previous works [l, 13, 191. We
will also show that the following types of structural conflicts are automatically
resolved after we resolve the structural conflict between an attribute and an entity type:
(1) an entity type in one schema is modeled as a relationship set in another schema,
(2) a relationship set in one schema is modeled as an attribute of an entity type or a
relationship set in another schema.

Note that the structural conflict between a relationship set in one schema and an
attribute of an entity type or a relationship set can be reduced to the structural conflict
between a relationship set and an entity type by transforming the attribute into an
equivalent entity type.

[l] resolves conflict involving relationship sets by transforming the relationship
set into an entity type. However, this introduces a prolifieration of entity types and
relationship sets which increases the complexity of integration. The approach in [19]
is not satisfactory because it will result in loss of semantics in the integrated schema.
Our investigation into the resolution of structural conflicts have led us to conclude
that these conflicts are actually avoidable once we have resolved any structural
conflicts between an entity type in one schema and an attribute in another schema.

Example 3 Consider the two schemas shown in Figure 5. Using the approach in
[11 to integrate these two schemas S3 and S4, they would reconcile the relationship set
OWNS in Figure Sa and the entity type OWNERSHIP in Figure Sb. [l] would
transform the relationship set OWNS in Figure 5a into an entity type called OWNS-E.
This new entity type OWNS-E is connected to PERSON and VEHICLE in Figure 5a
by two new relationship sets Rl and R2. Figure 5c shows the schema obtained. There
are several problems with this approach. First, we do not know the semantics of RI
and R2 or the cardinalities of the entity types participating in these two relationship
sets. We should not merge the schemes of Figure 5b and 5c just because structurally

431

they are identical. This is because we can have more than one relationship sets which
have distinctly different meanings between the same entity types. Second, the new
entity type OWNS-E in Figure 5c has no identifier. Even if we give an identifier for
OWNS-E, say O#, we do not know whether CERT# in Figure 5b and 0# are
equivalent. Third, it is not known how we can populate Rl and R2 from the original
relationship set OWNS. Finally, there may be loss of information if we arbitrary split
a relationship set into two or more relationship sets.

Figure Sa: Schema S3

Figure 5b: Schema S4

In our approach, we first resolve any structural conflicts between an entity type in
one schema and an attribute in another schema; in this example there is none. Then,
we proceed to merge the two schemas S3 and S4 (Figure 5d). We observe that there is
a cycle. We check with the DBA if the relationship set OWNS is actually derived from
a join of the two relationship sets OBTAINS and FOR over the common entity type
OWNERSHIB and the attribute CERT# has been projected out. If it is, this implies
that OWNS is redundant. Therefore we drop OWNS from the integrated schema. The
integrated schema is S4. Otherwise, if OWNS is not a derived relationship set and
therefore it is not redundant, then the integrated schema is shown in Figure 5d. Note
that any conflict between the attributes DATE in S3 and S4 can be easily resolved (see
discussion in Example 2).

Figure SC: Relationship set OWNS in S3 tran.#ormed to entity type OWNS-E by [Bati84].

Figure Sd: Schema obtained by merging S3 and S4 by our approach.

432

Example 4 Consider the following schemas S5 and S6 which is given in [191.

Figure 6a: k9z.m S5 Figure 66: Schema S6

[191 asserts that the relationship set INSURES in Figure 6a is equivalent to the entity
type CONTRACT in Figure 6b and transforms INSURES into an entity type
CONTRACT whose identifier is CONTRACT# and two binary relationship sets
SIGNS and OWNS which connects CONTRACT to PERSON and CAR respectively
(Figure 6c). The transformed schema S7 is then integrated with S6. This solution is
unsatisfactory because it results in loss of semantics. In schema S5, INSURES
associates a person who insures a car with a particular contract. However, in the
integrated schema, this association is split into two relationships: SIGNS associates a
person who signs a contract, and INSURANCE associates an insurance contract with a
car. The semantics in the original schema S5 is not maintained in the integrated
schema S7. This is because in schema S7, it is possible to have an insurance contract
for a car without requiring that the contract by signed by a person. On the other hand,
in schema S5, we require a person to be associated (or sign a contract) to insure a car.

~!iiiE$~*~

Figure 6c: Schema S7 tranrfrmed from S.5 by [Spac92/.

In our approach, we observe that the attribute CONTRACTS in schema S5 has been
modeled as an entity type CONTRACT in schema S6. We transform the attribute into
an entity type. The new entity type CONTRACT simply becomes another
participating entity type in INSURES (Figure 6d). Therefore INSURES becomes a
ternary relationship set. The entity type CONTRACT in Figure 6b is equivalent to the
entity type CONTRACT in Figure 6d and can therefore be merged. Compare the
semantics captured in Figure 6d with that in Figure 6c. There is no loss of semantics
in our final integrated schema because the ternary relationship set INSURES still
maintains the association of a person who insures a car with a particular contract.

SSNO

s

Figure 6d: Schema S8 obtained by transfwming the attribute COhTRACT#
in S5 into an entity type CONTRACT by our approach.

6. Conclusion

In this paper, we have presented a different methodology to integrate ER schemas. We
have focus on the resolution of structural conflicts and have given a detailed algorithm
to transform an attribute into an entity type without any loss of semantics. This

433

algorithm takes into consideration whether the attribute belongs to an entity type or a
relationship set, whether the attribute is part of an identifier, a key or a composite
attribute, and the cardinality of the attribute. Unlike previous works, we have shown
that our approach needs to resolve only one type of structural conflict, which is the
structural conflict between an entity type in one schema and an attribute in another
schema, and the other types of structural conflict are automatically resolved.

References
[l] Batini, C. and Lenzerini, M., A Methodology for Data Schema Integration in the

Entity-Relationship Model, IEEE Trans. Software Engineering, vol 10,6, 1984.
[2] Batini. C., Lenzerini, M. and Navathe, S.B., A Comparative Analysis of

Methodologies for Database Schema Integration, ACM Computing Surveys, Vol
18, No 4, December 1986, pp 323-364.

[3] Bouzenhoub and Commyn-Wattiau: View Integration by Semantic Unification
and Transformation of Data Structures, Proc. of the Int. ER Approach, 1990.

[4] Chen, P.P., The Entity-Relationship Model: Toward a Unified View of Data,
ACM Transactions on Database Systems vol 1, no 1.1976, pp 166-192.

[5l D’Atri, A., Sacca, D., Equivalence and Mapping of Database Schemas, in Proc.
10th VLDB Conf., 1984.

[@ Dayal, U. and Hwang, H., View Definition and Generalization for Database
Integration in Multibase: A System for Heterogenous Distributed Databases,
IEEE Transaction on Software Engineering Vol 10,6,1984, pp 628-644.

[7J Effelsberg, W. and Mannino, M.V., Attribute equivalence in global schema
design for heterogenous distributed databases, Information Systems 9(3), 1984.

[S] Elmasri, R. and Navathe, S., Object integration in logical database design, IEEE
First Int. Conf. on Data Engineering, 1984, pp 426-433.

[9] Hainaut, J.-L., Entity-Generating Schema Transformations for Entity-
Relationship Models, 10th Int. Conf. on Entity-Relationship Approach, 1992.

[lo] Kambayashi, Y., Rusinkiewicz, M. and Sheth, A., First Int. Workshop on
Interoperability in Multidatabase Systems, Kyoto, 1991.

[ll] Kaul, M. et. al, ViewSystem: Integrating Heterogenous Information Bases by
Object-Oriented Views, IEEE 6th Int. Conf. on Data Engineering, LA, 1990.

[12] Kobayashi, I., Losslessness and Semantic Correctness of Database Schema
Transformation: another look at Schema Equivalence, Information Systems Vol
11 No 1, 1986.

[133 Larson, J., Navathe, S. and Elmasri, R., A Theory of Attribute Equivalence in
Database with Application to Schema Integration, IEEE Trans. on Software
Engineering, 15449-463, 1989.

1141 Ling, T.W., “A Normal Form for Entity-Relationship Diagrams”, Proc. 4th
International Conference on Entity-Relationship Approach, 1985.

[15] Lee, M.L. and Ling, T-W., A Methodology for Structural Conflict Resolution in
the Integration of Entity-Relationship Schemas, Technical Report, August 1995.

1161 Motro, A., Superviews: Virtual integration of multiple databases, IEEE Trans.
on Software Engineering, 13(7), 1987, pp 785-798.

1171 Navathe, S.B. and Gadgil, S., A Methodology for View Integration in Logical
Database Design, 8th International Conference on VLDB, 1982, pp 142-152.

[18] Spaccapietra, S., Parent, C, and Dupont, Y., View Integration: A step forward in
solving structural conflicts, Technical Report, 1990.

[19] Spaccapietra, S., Parent, C., and Dupont, Y., Model independent assertions for
integration of heterogenous schemas, VLDB Journal, (I), 1992, pp 81-126.

