
Resolving Constraint Conflicts in the
Integration of Entity-Relationship Schemas

Mong Li LEE Tok Wang LING

Department of Information Systems & Computer Science
National University of Singapore

email: {leeml, lingtw}@iscs.nus.sg

Abstract. In this work, we address the problem of constraint conflicts while integrating
the conceptual schemas of multiple autonomous databases modeled using the Entity-
Relationship (ER) approach. This paper presents a detailed framework to resolve three
types of constraint conflicts, domain constraint conflicts, attribute constraint conflicts
and relationship constraint conflicts. There are two types of domain constraint conflict,
convertible and inconvertible. We distinguish two types of convertible domain
constraints conflict, reversible and irreversible, and present an algorithm to resolve
domain constraint conflicts. We identify six factors that can contribute to conflict in
attribute constraints: imprecise constraint design, domain mismatch, incomplete
information, imprecise semantics, value inconsistency and set relation between object
types. In relationship constraint conflict resolution, we examine the set relation between
equivalent relationship sets and the functional dependencies that hold in these
relationship sets. Our conflict resolution approach does not assume that equivalent entity
types or relationship sets in two schemas model exactly the same set of instances in the
real world. Furthermore, our approach enforces the most precise constraints and enables
the retrieval of all the data in the local databases via the integrated schema.

1. Introduction

Schema integration involves merging several schemas into one integrated schema.
More precisely, schema integration has been defined as “the activity of integrating the
schemas of existing or proposed databases into a global, unified schema” [2]. With
the current research into heterogenous databases, this process plays an important role
in integrating export schemas into a global schema. [8] proposes an Entity-
Relationship (ER) based federate4 database system where local schemas modeled in
the relational, network or hierarchical models are first translated into the
corresponding ER export schemas before they are integrated. In the integration of ER
export schemas into a global schema, the following conflicts need to be resolved:
1. Naming conflict - Synonyms and homonyms are the two sources of naming

conflicts. Renaming is a frequently chosen solution in traditional methodologies.
2. Type conflict - Same real world concept may be represented in two schemas

using different modeling constructs. For example, the concept of Publisher may
be modeled as an entity type in one schema and as an attribute in another
schema.

3. Key conflict - Different keys may be assigned as the identifier of the same
concept in different schemas. For example, attributes Ssno and Empno may be
identifiers for the entity type Employee in two schemas. Given a precise known

395

correlation (1: 1) between the two keys, this conflict is solved by asking the
integrator which key to be used as the identifier in the integrated schema.

4. Constraint conflict - Two schemas may represent different constraints on the
same concept. For example, an attribute Phoneno may be single-valued in one
schema and multivalued in another schema. Another example involves different
constraint on a relationship set such as Teach; one schema may represent it as
1:n (a course has one instructor) whereas the other schema may represent it as
m:n (some courses may have more than one instructor).

Previous research has concentrated mostly on the resolution of type conflicts [1, 5,
6, 121. Little attention has been paid to constraint conflicts. [13] identifies the roles
of integrity constraints in database interoperation while [l l] examines the integrity
constraints that can be defined in an integrated schema. The global integrity
constraints obtained can be used to optimise queries at the integrated schema level.
We can reduce the average response time for global query processing by eliminating
subqueries which yield empty results and formulating the global query into its
optimised equivalent. Another possible use of global integrity constraints is in the
validation of update transactions, preventing the formulation of subtransactions
which will be rejected by the local transaction manager.

Two or more databases modeling the same real world situation, using the same data
model and using the same data semantics may possess very different sets of integrity
constraints based on the knowledge acquisition skills of their respective designers.
We may even have conflicting constraints. This paper investigates how we can
resolve the various constraint conflicts that occurs when we integrate ER schemas.

We have the following constraints in the ER model:
1. Domain (value set) constraints on the possible values that an attribute can take.
2. Attribute constraints, which specify whether an attribute of an entity type or

relationship set is single-valued or multivalued.
3. Relationship constraint, which specify constraints on the participation of entity

types in relationship sets.

Our approach to the resolution of these constraint conflicts is guided by the
following principles:
1. Enforce the most precise constraints in the integrated schema.
2. Retrieve all the data in the local databases via the integrated schema.

Two entity types from two different schemas are semantically equivalent if they
model the same real world concept. Real world concepts may be involved in a variety
of associations called relationship sets. Two relationship sets from two different
schemas are semantically equivalent if they model the same set of relationships
involving the same real world concepts. The sets of instances of a pair of
semantically equivalent object types (entity types or relationship sets) can be related
in one of the following ways: EQUAL, SUBSET, OVERLAP, DISJOINT. For
example, if the entity types Book from two schemas Sl and S2 model exactly the
same set of books in the real world, then we have Sl .Book EQUAL S2.Book. If S 1
models Chinese books while S2 models English books, then we have Sl .Book
DISJOINT S2.Book. If Sl models all Chinese books while S2 models all Chinese
and English books, then we have Sl.Book SUBSET S2.Book. If SI models all

396

Chinese and English books while S2 models all English and Japanese books, then
we have S 1 .Book OVERLAP S2.Book.

The rest of the paper is organized as follows. Section 2 briefly describes the ER
model. Sections 3,4 and 5 describe the resolution of conflicts in domain constraints,
attribute constraints and relationship constraints respectively.

2. The Entity-Relationship Approach

The ER approach introduced by Chen [4] attracted considerable attention in systems
modeling and database design [3, 41. The ER concepts correspond to structures
naturally occuring in information systems which enhance the ability of designers to
describe accurately a universe of discourse. The integration of databases in a federated
database system is best performed at the conceptual model level using the ER
approach [2, lo] because it has the semantics for defining all the desirable mappings.

The ER model incorporates the concepts of entity type and relationship set. An entity
type or relationship set has attributes which represent its structural properties. An
attribute can be single-valued, multivalued or composite. A minimal set of attributes
of an entity type E which uniquely identifies E is called a key of E. An entity type
may have more than one key and we designate one of them as the identifier of the
entity type. A minimal set of identifiers of some entity types participating in a
relationship set R which uniquely identifies R is called a key of R. A relationship set
may have more than one key and we designate one of them as the identifier of the
relationship set. If the existence of an entity in one entity type depends upon the
existence of a specific entity in another entity type, then such a relationship set and
entity type are called existence dependent relationship set and weak entity type. A
special case of existence dependent relationship occurs if the entities in an entity type
cannot be identified by the values of their own attributes, but has to be identified by
their relationship with other entities. Such a relationship set is called identzjier
dependent relationship set. Existence dependent (EX) relationship sets and identifier
dependent (ID) relationship sets are also called weak relationship sets. An entity type
which is not a weak entity type is called a regular entity type. In the ER approach,
recursive relationship sets and special relationship sets such as ISA, UNION,
INTERSECT etc, are allowed. A relationship set which is not weak or special is
called a regular relationship set. The structure of a database organized according to the
ER model can be represented by a diagrammatic technique called an Entity-
Relationship Diagram (ERD). The ERD has proven to be a useful database design
tool. For more details, see [7].

3. Resolving Conflict in Domain Constraints

Conflicts in domain constraints are also known as domain mismatch. This occurs
when we have conflict between the domains of equivalent attributes. For example,
the value set for an attribute ExamScore may be in grades (A, B, C etc) in one
database and in marks in another database.

There are two types of domain mismatch: convertible and inconvertible domain
mismatch. While inconvertible domain mismatch is self-explanatory, we distinguish
two types of convertible domain mismatch: reversible and irreversible. Examples of

397

reversible domain mismatch (or scale differences) are 0” in Celsius corresponds to 32”
in Fahrenheit, and 1 kilogram corresponds to 2.2 pounds. Mismatches of this type is
easily resolved with a conversion function between the domains.

Attributes with irreversible domain mismatch are attributes whose domains are at
various levels of explicitness. Examples include a grade of ‘A’ in one database being
equivalent to a score in the range of 80 to 100 in another database, and a cuisine of
‘Chinese’ in one database versus ‘Hunan’ in another database. For mismatches of this
type, each value in one domain, say A, is a sub-concept with respect to a value in
another domain, say B. Hence each value in domain B corresponds to a set of values
in domain A. The conversion between A and B is irreversible. We can convert from
A to B, but not from B to A, denoted by A =j B.

Example I. Let entity types Restaurant in schemas Sl and S2 be semantically
equivalent. Let rl be an instance of Sl .Restaurant and r2 an instance of
S2.Restaurant such that rl and r2 refer to the same real world restaurant. Let Cuisine
be an attribute of Restaurant. We have rl.Cuisine = {Chinese} and r2.Cuisine =
{ Hunan, Cantonese}. Note that Hunan and Cantonese cuisines are Chinese cuisines.
We have Domain(S2.Restaurant.Cuisine) 3 Domain(S 1 .Restaurant.Cuisine) which
indicates an irreversible domain mismatch. We can convert from the domain of
S2.Restaurant.Cuisine to that of Sl.Restaurant.Cuisine but not vice versa. We
construct a domain mismatch hierarchy from the domains of the attributes Cuisine
(Fig. 1). In the domain mismatch hierarchy, the domain of S2.Restaurant.Cuisine is
at a lower level than that of S 1 .Restaurant.Cuisine. Note that no total order exists in
the domain mismatch hierarchy.

Asian

Japanese Thai Indonesian Chinese

Hunan SzeChuan Cantonese

Fig. 1. Domain mismatch hierarchy for Cuisine

This irreversible domain mismatch in Sl .Restaurant.Cuisine and
S2.Restaurant.Cuisine can be resolved by considering the set relation between the
equivalent entity types S 1 .Restaurant and S2.Restaurant. If S 1 .Restaurant EQUAL
(or SUBSET) S2.Restaurant, then domain of Cuisine in the integrated schema will
be that of S2.Cuisine. This ensures that we will be able to retrieve all the various
cuisines via the integrated schema. On the other hand, if S2.Restaurant SUBSET
Sl .Restaurant, then domain of Cuisine in the integrated schema is the union of
Domain(S 1 .Restaurant.Cuisine) and Domain(S2.Restaurant.Cuisine). This is because
for all the real world restaurant instances r which are modeled in both S 1 .Restaurant
and S2.Restaurant, r.Cuisine E Domain(S2.Restaurant.Cuisine). However, for
restaurants r which are modeled in Sl.Restaurant only, r.Cuisine E
Domain(S 1 .Restaurant.Cuisine). Similarly, if S2.Restaurant OVERLAP (or
DISJOINT) S 1 .Restaurant, then domain of Cuisine in the integrated schema is the
union of Domain(Sl.Restaurant.Cuisine) and Domain(S2.Restaurant.Cuisine).

398

The following algorithm resolves conflicts in domain constraints. If we have a
reversible domain mismatch between two equivalent attributes, then it is immaterial
which of the attributes’ domain is used in the integrated schema. This is because a
conversion function defines a one-to-one mapping between the attributes’ domains.

Algorithm Resolve-DomainConstraint

Let 01 and 02 be two semantically equivalent object types in different schemas and
A be an attribute of both 01 and 02. 01 .A and 02.A are semantically equivalent.
Let 0 be the integrated object type of 01 and 02 and A be the integrated attribute of
0 1 .A and 02.A.
Case 1: No domain mismatch.

Domain(0.A) is either Domain(O1 .A) or Domain(02.A).
Case 2: Convertible domain mismatch.

Case 2.1: Reversible domain mismatch.
Domain(0.A) is either Domain(O1 .A) or Domain(02.A).

Case 2.2: Irreversible domain mismatch.
Case 2.2.1: 01 EQUAL 02.

Without loss of generality, let Domain(O1.A) s Domain(02.A).
Domain(0.A) is Domain(O1.A) to retrieve all values for attribute A via
the integrated schema.

Case 2.2.2: OI SUBSET 0,.
If Domain(O1.A) 3 Domain(02.A)
Then Domain(0.A) is Domain(O1 .A) u Domain(02.A) ’
Else /* Domain(02.A) =$ Domain(OI .A) */

Domain(0.A) is Domain(02.A) *.
Case 2.2.3: 01 OVERLAP 02 or 01 DISJOINT 02.

Domain(0.A) is Domain(O1 .A) u Domain(02.A).
Case 3: Inconvertible domain mismatch.

Domain(0.A) is Domain(0l.A) u Domain(02.A).

After we have determined the domain of an integrated attribute, we may face the
possibility of value inconsistencies. Consider two databases DBl and DB, held by
different booksellers. Both contain an entity type Book with attributes ISBN, Title,
Publisher, Price. Assuming that any domain mismatch in the attribute Price has been
resolved, the same book may be priced differently by the two booksellers.
Inconsistency in the attributes’ values arises because ISBN -+ Price is a local
constraint, which is valid in the context of a specific database only. When we

’ For all t E 01, clearly t.A E Domain(O1.A). On the other hand, for all t E 02 and t @ 01,

t.A E Domain(02.A). Therefore, Domain(0.A) is Domain(O1.A) u Domain(02.A).

’ For all t E 01 implies t E 02 since we have 01 SUBSET 02. For all t E 02, clearly t.A E
Domain(02.A). Therefore, Domain(0.A) is Domain(02.A).

integrate the two databases, ISBN --+ Price is no longer true. Instead, we derive the
global constraint {ISBN, DB} + Price where DB is a new attribute whose domain is
the set of database names.

We distinguish three approaches to handle conflict in attribute values depending on
the semantics of the attributes.
1. Ignore

This indicates a situation where we do not deal with possible value conflict. We
can choose any of the values. For example, the publisher of a particular book
can be retrieved from either one of the databases.

2. Avoid
Choose one of the databases as the most reliable source of values for the
integrated attribute.

3. Resolve
Case 1: Single-valued attributes

Value inconsistency is resolved by using a resolution ,function which
derives a value(s) for the integrated attribute from the attribute values in
the component databases. Examples of resolution functions include A4A.X
MIN, A VERAGE, SUM and UNION. For the function UNION, we may
need to quality each of the component attribute value by the database
name. For example, given two booksellers’ databases DBl and DBz, a
database integrator may choose to resolve value inconsistency in the
attribute Price by keeping all the various booksellers’ prices in the
integrated attribute, in which case we will have the set of values
{DB 1 .Price, DB2.Price) for the integrated attribute. Note that the UNION
function will cause the integrated attribute to be multivalued.

Case 2: Multivalued attributes
Inconsistency in the sets of values for the equivalent attributes in the
component databases can be resolved by using the UNION function.

4. Resolving Conflict in Attribute Constraints

Attribute constraints are also known as attribute cardinalities. A single-valued
attribute can be 1: 1 (one-to-one) or m: 1 (many-to-one). A multivalued attribute can
be 1:m (one-to-many) or m:m (many-to-many). Attribute constraint conflict occurs
when two semantically equivalent attributes do not have the same cardinalities.

Conflict in attribute constraints is resolved in two phases:
Phase 1. Establish whether the integrated attribute is single-valued or multivalued.
Phase 2. Determine precisely which type of single-valued or multivalued cardinal&y

for the integrated attribute, that is 1: 1 versus m: 1 or 1 :m versus m:m.

We identify six possible factors that can lead to inconsistency in attribute constraints.
We first illustrate these factors informally using an example. A detailed and precise
algorithm is given later in the section. Let 01 and 02 be two semantically equivalent
object types and A be an attribute of both 01 and 02. Let 0 be the integrated object
type of 0, and 0, and A be the integrated attribute of O,.A and 02.A. Suppose
01 .A is single-valued and 0z.A is multivalued.

400

1. Imprecise constraint design
If for all instances t in 0, and t.02.A has exactly one value, then it is possible
that the multivalued cardinality of 0z.A has been imprecisely designed. We
should verify the constraint design with the database integrator. If the integrator
is very sure that there may exist some instance t in 0, such that t.02.A has
more than one value, then 0.A is multivalued. Otherwise, we change the
constraint of 02.A to single-valued and the conflict is resolved.

2. Domain mismatch
Reversible domain mismatch does not contribute to attribute constraint conflict.
If we have an irreversible domain mismatch such that Domain(02.A) a
Domain(OI .A), then a value in Domain(0I.A) may correspond to a set of values
in Domain(02.A). That is, for all tl E 01, t2 E 0.2 such that tl, t2 refer to the
same real world instance, all the values in t2.A can be converted to the same
single t l .A value. No actual constraint conflict exists and 0.A is multivalued. If
the domains of 0I.A and 02.A are inconvertible, then 0.A is multivalued.

3. Incomplete information
If there exist some instance t in 02 and t.A has more than one value, then 0 l .A
may contain incomplete information. This occurs when 0I.A and 02.A have
exactly the same semantics. For example, both 0l.A and 02.A may model the
name of a person. However, 02.A includes the aliases of a person. In this case,
0.A will be multivalued.

4. Imprecise semantics
If 01 .A and 02.A do not have exactly the same semantics, then we may not
have any actual constraint conflict. For example, 0 1 .A may model the highest
qualification of a person while 02.A may model the set of qualifications of a
person. If the integrator still choose to merge these two attributes, then 0.A will
be multivalued. Otherwise, 01 .A and 02.A will not be integrated.

5. Value inconsistency
As mentioned in the previous section, value inconsistency arise because of local
constraints. The integrator may choose to take the union of all the values in the
equivalent attributes. In this case, 0.A will be multivalued.

6. Set Relation between Object Types
If 01 and 0, do not model exactly the same set of objects in the real world, then
we may not have any actual constraint conflict. For example, if 01 SUBSET
02, then 01.A is more restrictive-than 02.A. This may indicate that for all tl E
01, t2 E 0, where t 1, t2 refer to the same real world instance, t2.A is single-
valued. However, for some t E 02 and t +z 01, t.A is multivalued. Hence, 0.A
is multivalued to enable retrieval of all information in 0, and 02 via 0.
Similarly, if 01 DISJOINT (or OVERLAP) 02, then t.A is single-valued for all
t E 01 and t +z 02, and t.A is multivalued for all t E 02 and t e 0 I. Therefore,
there is no actual constraint conflict and 0.A is multivalued.

401

Some of the factors such as set relation between object types, domain mismatch and
value inconsistency are orthogonal. We can have more than one factors causing a
constraint conflict. The order of checking for the possible factors is important
because it affects the constraint of the integrated attribute. The following algorithm
determines the cause(s) of an attribute constraint conflict and resolves it.

Algorithm Check-Conflict-Cause

Let O1 and 02 be two object types and A be an attribute of both 0, and 0,. Let 0
be the integrated object type of 01 and 02 and A the integrated attribute of 0, and
0,. Let OI.A be single-valued and 0z.A be multivalued.
Step 1. Check 02.A for imprecise constraint design.

If V t E 02, t.A has exactly one value
Then Verify constraint design of 02.A with database integrator.

If integrator confirms imprecise constraint design
Then Change OZ.A to single-valued.

0.A is single-valued. Goto Step 6.
I* Conflict resolved. Just check for value inconsistency */

Step 2. Check for domain mismatch.
If the domains of 0, .A and 02.A are inconvertible
Then 0.A is multivalued. Goto Step 6.
Else /* Check for irreversible domain mismatch. Reversible domain

mismatch do not cause conflict. */
Let K be the identifer of 0, and 0,.
If for each tl E O,, t2 E 02, t1.K = t2.K and all t2.A values can
be converted to the same single t 1 .A value
Then 0.A is multivalued. Goto Step 5.

/* Check if set relation between object type is also a cause
of conflict. Check for value inconsistency in Step 6. *I

Step 3. Check for incomplete information.
If 0, .A and 02.A have exactly the same semantics
Then Inform integrator 01 .A contains incomplete information.

0.A is multivalued. Goto Step 5.
Step 4. Check for imprecise semantics.

If 0, .A and 02.A do not have exactly the same semantics
Then Inform integrator of the imprecise semantics.

If integrator still want to integrate 01.A and 02.A
Then 0.A is multivalued. Goto Step 5.
Else 01.A and 02.A will not be integrated. Exit.

Step 5. Check set relation between object types.
If (O,.A SUBSET 02.A) or (O,.A OVERLAP 02.A) or
(01 .A DISJOINT 02.A)
Then 0.A is multivalued.

Step 6. Check for value inconsistency.
If there exists potential value inconsistency

Then Ask integrator for the resolution function RF.
If RF = UNION Then 0.A is multivalued.

Example 2 Consider again the databases DBl and DB2 held by different
booksellers. Suppose we have a constraint conflict in the attribute Price:
DBl .Book.Price is single-valued and DBz.Book.Price is multivalued. Let
DB.Book.Price be the integrated attribute. In the process of determining the cause(s)
of the attribute constraint conflict, we discover the following facts:
Fact 1. Cardinal@ of DB2.Book.Price has been imprecisely designed because each

book in DB2 has only one selling price.
Fact 2. There is a potential value inconsistency in DBl.Book.Price and

DB2.Book.Price because the different booksellers may price the same book
differently. This is because of the local constraint ISBN + Price. The
integrator removes this attribute value inconsistency by taking the union of
all the prices for the integrated attribute Price.

Fact 3. DB 1 .Book OVERLAP DB2.Book.
Fact 1 automatically resolves the constraint conflict which arises because of
imprecise constraint design. Therefore, we do not need to consider the OVERLAP set
relation between DBl.Book and DBz.Book. At this point, the integrated attribute
DB.Book.Price is single-valued. However, Fact 2 alerts us to a potential value
inconsistency because of the local constraint. If the integrator resolves this
inconsistency by taking the average selling price for the integrated attribute (Step 6
in Algorithm Check-Conflict-Cause), then DB.Book.Price remains single-valued.
However, if the integrator resolves the value inconsistency by taking the union of all
the prices for the integrated attribute, then DB.Book.Price becomes multivalued.

In Phase 2, we want to determine a more precise type of single-valued or multivalued
attribute constraint for the integrated attribute. Given two object types 01 and 02 and
an attribute A of both 01 and 0,. Let 0 be the integrated object type of 0 1 and 0,.
Both 01 .A and 0z.A are either single-valued or multivalued attributes. We denote the
cardinality of an attribute A by Card(A) = x:y where x, y is equal to 1 or m. Let
Card(Ol .A) = 1 :y and Card(02.A) = m:y where y = 1 or m. We derive a more precise
constraint for the integrated attribute 0.A as follows:

If 3 s, t E 0, such that s f t and s.A = t.A
Then Card(0.A) = m:y
Else Verify constraint design with the integrator.

If integrator confirms imprecise constraint design
Then Card(0.A) = 1 :y which is more precise
Else Card(0.A) = m:y.

Finally, if there is no conflict in the cardinalities of the equivalent attributes, then
Card(0.A) is equal to either Card(O1.A) or Card(02.A) since both cardinalities are the
same. This is true except when the cardinalities of both 01 .A and 02.A are either 1: 1
or 1 :m. If we have for 01 SUBSET 0, or 01 OVERLAP 02 or 01 DISJOINT 02,
then the cardinalities of 01.A and 02.A are local constraints which valid in the

context of their respective databases only. These constraints may not hold in the

403

integrated database. For example, if we have 01 DISJOINT 02 and Card(O1.A) =
Card(02.A) = 1: 1, then Card(0.A) = m: 1 (Fig. 2).

Fig. 2. The mappings from
01 and 02to A are both 1:l.

We can similarly resolve any cardinality conflicts of attributes AI and A2 should
they belong to relationship sets RI and R2 of two databases respectively. Note that
our approach attempts to determine the most precise constraints in the integrated
schema without compromising the retrieval of information from the local databases.

5. Resolving Conflict in Relationship Constraints

Next we proceed to resolve conflicts in relationship constraints. These are cardinal&y
constraints on the participating entity types in a relationship set which actually
indicate functional dependencies in the relationship set. Conflicts in these constraints
occur when the same participating entity types of a relationship set have different
cardinalities in the different databases.

Fig. 3: A relationship set R can have more than one cardinal&y constraints
which indicate more than one functional dependencies in R.

Fig. 3 shows a relationship set R with participating entity types A, B and C with
identifiers A#, B# and C# respectively. R has two constraints as follows:
1. The first constraint where the cardinalities of A, B and C in R are m, m, 1

respectively implies that the functional dependency {A#, B#} -+ C# holds in R.
2. The second constraint where the cardinalities of A, B, and C in R are m, 1, m

respectively implies that the functional dependency {A#, C#} -+ B# holds in R.

In general, each functional dependency in a relationship set represents a cardinality
constraint on its participating entity types. If the identifier of a participating entity
type E of a relationship set R appears on the left hand side of a functional dependency
in R, then E has a cardinality of m in R with respect to that cardinality constraint in
R. Otherwise, if the identifier of E appears on the right hand side of a functional
dependency in R, then E has a cardinal@ of 1 in R with respect to that cardinal@
constraint in R. There is no functional dependencies in R if the cardinal&y of each of
the participating entity types in R is m. However, the cardinal&y constraint of 1: 1

404

between entity types A and B in a binary relationship set actually represents two
functional dependencies A# -+ B# and B# + A#.

Example 3 Consider the two schemas given in Fig. 4a and Fig. 4b which
models the ternary relationship between student, subject and teacher.

l/m I

Fig. 4a: Schema Sl

Student

m

r&P-
Teache 0 T#

Fig. 4b: Schema S2

The following constraints apply in the relationship set S 1 .SJT:
1. For each subject, each student of that subject is taught by only one teacher.
2. Each teacher teaches only one subject.

From the first constraint, we have {S#, J#J -+ T#. From the second constraint, we
have T# + J#. These functional dependencies are reflected by the two sets of
cardinal@ constraints in Sl.SJT. A dash “-” in the cardinal@ of the entity type
Student means that it is not involved in the second constraint. We have no cardinality
constraint or non-trivial functional dependency in the relationship set S2.SJT. That
is, the cardinality of each of the participating entity types in S2.SJT is m.
When we integrate these two schemas, we need to reconcile these two diffferent
relationship constraints. Our resolution approach will enforce the most precise
constraints in the integrated schema and enable the retrieval of all the data in the local
databases via the integrated schema. We examine the set relation between these two
relationship sets and the functional dependencies that hold in these relationship sets.
Let Fl and F2 be the sets of functional dependencies that hold in Sl .SJT and S2.SJT
respectively. F l = ({ S#, J#) + T#, T# + J#} and F2 = 0.
Case 1: Sl.SJT EQUAL S2.SJT

The integrated relationship set needs to enforce all the constraints from both
Sl.SJT and S2.SJT. The set of functional dependencies that hold in the
integrated relationship set is Fl u F2 = {{S#, J#} + T#, T# -+ J#} which is
more precise. Sl is the integrated schema. We also conclude Fl holds in S2.

Case 2: SI.SJT OVERLAP (or DISJOINT) S2.SJT

405

In order to retrieve all the data in the databases modeled by Sl and S2 via the
integrated schema, the integrated relationship set needs to enforce the least
restricted constraints. The set of functional dependencies in the integrated

relationship set is FI + n F,
+

which contains no non-trivia1 functional

dependencies, F+ denotes the closure of F [Maie83]. The integrated schema is
S2 and there is no real constraint in the integrated relationship set. All the
participating entity types in the integrated relationship set have cardinality m.

Case 3: Sl.SJT SUBSET S2.SJT
A relationship in Sl.SJT will need to satisfy the constraints in FI u Fq
while a relationship in S2.SJT but not in Sl.SJT will need to satisfy the
constraints in F2 only. Therefore, in order to retrieve all the data in the
databases modeled by Sl and S2, the integrated relationship set needs to
enforce the constraints in F2 only, which is the set of functional dependencies
in the superset relationship set S2.SJT. The integrated schema is S2 and there
is no non-trivial functional dependency in the integrated relationship set.

Case 4: S2.SJT SUBSET Sl.SJT
As in Case 3, the integrated relationship set contains the same set of
functional dependencies as the superset relationship set. The integrated schema
is S 1 and the set of functional dependencies { { S#, J#} -+ T#, T# + J#> holds
in the integrated relationship set. We can also conclude that S2.SJT should
have the more precise functional dependencies { { S#, J#} -+ T#, T# -+ J#} .

From the set of functional dependencies that hold in the integrated relationship set,
we can obtain the cardinality constraints of the participating entity types in the
relationship set. It is easy to obtain Fl u F2. However, it may not be so obvious

how we can obtain the cardinalites of the participating entity types from Fl+ n Fz+.
Note that we cannot simply take the intersection of F I and FT. For example, given
two sets of functional dependencies Fl = (A + B, B + C} and F2 = {A + C}, then

F, n F2 = 0. But Fl+ n FZf = {A + C}+.

The following proposition summarizes the resolution of relationship constraint
conflicts. We assume any erroneous or imprecise constraint designs have been
detected by examining the databases.

Proposition I: Let Rl and R2 be two semantically equivalent relationship sets. Let
FI and F2 be sets of functional dependencies that hold in RI and R2 respectively. Let
F be the set of functional dependencies that hold in the relationship set R obtained by
integrating Rl and R2. Each pair of semantically equivalent participating entity types
from the two schemas will be merged into an entity type in the integrated schema.
Case 1: RI EQUAL R2 Then F = Fl u F2.
Case 2: RI SUBSET R2 Then F = F2.

Case 3: R, OVERLAP R2 or Rl DISJOINT R2 Then F = FI+ n F2f
Pros< Each functional dependency in F represent a cardinal&y constraint among the
partwpating entity types in the integrated relationship set.

Case 1: If Rl EQUAL R, then Rl and R2 contain the same relationships at all
points in time. A relationship r in the integrated relationship set R can be
found in both Rl and R2. Therefore r needs to satisfy all the constraints that
hold in Rl and R2. Hence, we have F = Fl u F2.

Case 2: If R 1 SUBSET R2 then all the relationships in Rl also exists in R2. A
relationship in Rl will need to satisfy all the constraints in F 1 u F2 while

a relationship in R2 but not Rl will need to satisfy the constraints in F2
only. Hence, we have F = (Fl u F2) n F2 = F2. Note that if F 1 c F2,
then clearly the set of functional dependencies in Fl is imprecise. That is,
F2 should also hold in Rl.

Case 3: If Rl OVERLAP R2 or Rl DISJOINT R2 then a relationship r in the
integrated relationship set R can be found in either Rl or R2. Therefore r
needs to satisfy either Fl or F2. R will contain the least restrictive
constraints which is the set of functional dependencies common in both Rl

and R2. Hence, we have F = Fl+ n F2+.

Note that unlike the resolution of attribute constraint conflicts, the resolution of
relationship constraint conflicts do not require us to consider factors such as domain
mismatch, incomplete information, imprecise semantics and value inconsistency.
This is because these factors are either not applicable or do not influence the
constraint resolution.

6. Conclusion

In this paper, we have focused on the resolution of constraint conflicts in the
integration of ER schemas. We have given a detailed framework to resolve conflicts
in domain constraints, attribute constraints and relationship constraints, There ate
two types of domain mismatch, convertible and inconvertible domain mismatch. We
distinguished two types of convertible domain mismatch, namely reversible and
irreversible domain mismatch. We gave an algorithm to resolve these domain
constraint conflicts. We also distinguished three approaches to handle value
inconsistency or conflict in attribute values depending on the semantics of the
attributes.

In the resolution of attribute constraint conflicts, we identified six factors that could
contribute to the conflict: imprecise constraint design, irreversible domain mismatch,
incomplete information, imprecise semantics, value inconsistency and set relation
between object types. We developed an algorithm to check for these various conflict
causing factors and showed that the order of checking for these factors is important.
In the resolution of relationship constraint conflicts, we examined the set relation
between the equivalent relationship sets and the functional dependencies that hold in
these relationship sets. Our conflict resolution approach does not assume that
corresponding equivalent entity types or relationship sets in two schemas model
exactly the same set of instances in the real world. Our approach enforces the most
precise constraints and enables the retrieval all the data in the local databases via the
integrated schema.

407

References

[1] Batini, C. and Lenzerini, M., A Methodology for Data Schema Integration in the
Entity-Relationship Model, IEEE TransSoftware Engineering, SE-lo, pp 650-
664, 1984.

[2] Batini, C., Lenzerini, M. and Navathe, S.B., A Comparative Analysis of
Methodologies for Database Schema Integration, ACM Computing Surveys,
Vol 18, No 4, December 1986, pp 323-364.

[3] Chan, E.P.F. and Lochovsky, F.H., A Graphical Data Base Design Aid using
the Entity-Relationship Model, in Entity-Relationship Approach to Systems
Analysis and Design, North Holland, 1980, pp 295-3 10.

[4] Chen, P.P., The Entity-Relationship Model: Toward a Unified View of Data,
ACM Transactions on Database Systems vol 1, no 1, 1976, pp 166-192.

[5] Larson, J., Navathe, S. and Elmasri, R., A Theory of Attribute Equivalence in
Database with Application to Schema Integration, IEEE Trans. on Software
Engineering, 15:449-463, 1989.

[6] Lee, M.L. and Ling, T.W., Resolving Structural Conflicts in the Integration of
Entity Relationship Schemas, Proc. 14th Int. Conference on Object-Oriented and
Entity-Relationship Modeling, 1995.

[7] Ling, T.W., “A Normal Form for Entity-Relationship Diagrams”, Proc. 4th
International Conference on Entity-Relationship Approach, 1985.

[8] Ling, T.W. and Lee, M.L., Issues in an Entity-Relationship Based Federated
Database System, in Proceedings of the International Symposium on
Cooperative Database Systems for Advanced Applications, Japan, 1996.

[9] D. Maier: Theory of Relational Databases, Computer Science Press, 1983.

[lo] Navathe, S.B., Elmasri, R. and Larson, J., Integrating User Views in Database
Design, IEEE Computer 19, 1, 1986, pp 50-62.

[1 I] Reddy, M.P., Prasad, B.E. and Gupta, A., Formulating global integrity
constraints during derivation of global schema, Data & Knowledge Engineering
16, 1995.

[12] Spaccapietra, S., Parent, C., and DuPont, Y., Model independent assertions for
integration of heterogenous schemas, VLDB Journal, (1), 1992, pp 8 1- 126.

[131 Vermeer, M and Apers, P.M.G., The Role of Integrity Constraints in Database
Interoperation, Proc. of the 22nd VLDB Conference, India, 1996.

