
Designing Good Semi�structured Databases

Sin Yeung Lee� Mong Li Lee� Tok Wang Ling� Leonid A� Kalinichenko�

� School of Computing � Institute for Problems of Informatics
National University of Singapore Russian Academy of Sciences

fjlee� leeml� lingtwg�comp�nus�edu�sg leonidk�synth�ipi�ac�ru

Abstract� Semi�structured data has become prevalent with the growth
of the Internet and other on�line information repositories� Many orga�
nizational databases are presented on the web as semi�structured data�
Designing a �good� semi�structured database is increasingly crucial to
prevent data redundancy� inconsistency and updating anomalies� In this
paper� we de�ne a semi�structured schema graph and identify the var�
ious anomalies that may occur in the graph� A normal form for semi�
structured schema graph� S��NF� is proposed� We present two approaches
to design S��NF database� namely� restructuring by decomposition and
the ER approach� The �rst approach consists of a set of rules to decom�
pose a semi�structured schema graph into S��NF� The second approach
uses the ER model to remove anomalies at the semantic level�

� Introduction

The growth of the Internet and other on�line information repositories has greatly
simpli�ed the access to numerous sources of information�data� especially through
the World Wide Web� The data is presented in various forms� At one extreme
we �nd data coming from traditional relational�object�oriented databases� with
a completely known structure� At the other extreme we have data which is
fully unstructured� eg images� sounds and raw text� But most of the data fall
somewhere in between 	semi�structured
 for a variety of reasons� the data may
be structured� but the structure is not known to the user� the user may know
the structure� but chooses to ignore it for browsing purposes� Examples of semi�
structured data include HTML documents where the structure is imposed by
tags� and bibliography �les where some structure is imposed by �elds such as
the author and the title to an otherwise unstructured text �le� Note that the
tags and �elds are optional�

The nature of semi�structured data is fundamentally di�erent from data in
traditional databases and hence raises many new issues� Some of the common
scenarios involve extracting data from the diverse information repositories across
the Internet� and integrating the data from heterogeneous sources� These tasks
are made more di
cult because we have only a partial knowledge of the structure
and that the structure is potentially �deeply nested� or even cyclic� Many re�
searchers have proposed semi�structured data models� databases� and languages
to model� store and query the World Wide Web data ����� �� ��� ���� These works
use some graph or tree models ��� ��� which provide a �exible representation of

data coming from arbitrary heterogenous sources� Proposed query languages are
closely tied to these data models�

Unfortunately� there is no notion of a precise or explicit schema in all these
semi�structured databases� All the schematic information is embedded in the
graphs which may change dynamically�The lack of a schema poses two problems�
First� it is di
cult for a user to formulate a meaningful query on the semi�
structured data without any knowledge of how the data is organized� Second� it
is di
cult for the query processor to generate e
cient plans for queries on the
semi�structured data without any schema to guide it� As a result� ��� introduces
DataGuides which dynamically generate and maintain structural summaries of
semi�structured databases� The Dataguides are used in the Lore DBMS ���� for
the user to carry out structure browsing and query formulation� as well as for
the query processor to optimize query execution� More work to discover schemas
from semi�structured data can be found in ������� �� and others�

However� to date� we observe that the concept of a well�formed or a nor�
mal form semi�structured schema has never been considered� This has come to
our attention because data redundancy and data inconsistency may occur in
a semi�structured database if the schema is not designed properly� In a tradi�
tional database� redundancy has inevitably caused updating anomalies ���� A
well�established technique to remove undesirable updating anomalies and data
redundancy from relations and nested relations is normalization ���� ������ ���
�������

In this paper� we will focus on how to design good semi�structured databases�
We assume that we can extract the schema from a semi�structured data source
or database� We will de�ne the concept of a semi�structured schema graph and
investigate the various anomalies that may appear in this model� A normal form
for semi�structured schema graph� S��NF� is proposed� Our normal form not
only deals with functional dependencies and multivalued dependencies� but also
removes identi�ed anomalies from the semi�structured schema graph� Two ap�
proaches to designing S��NF databases are given� namely� the restructuring ap�
proach and the Entity�Relationship 	ER
 approach� The former consists of a set
of rules to decompose a semi� structured schema graph into S��NF while the lat�
ter uses the ER model to remove the anomalies and redundancies at the seman�
tic level� We envisage the growing importance of well designed semi�structured
databases due to the increasing popularity of XML for data representation on
the Web ����

The rest of the paper is organized as follows� Section � gives the de�nitions of
various concepts in a semi�structured schema graph� The anomalies that may oc�
cur in the graph is also presented� In section �� a normal form for semi�structured
schema graph� S��NF� is de�ned� We also show how we can restructure a semi�
structured schema graph to obtain S��NF which does not have the undesirable
anomalies� Section � discusses the ER approach to designing a S��NF database�
Finally� we conclude in Section ��

� Semi�Structured Graph� De�nition and Anomalies

Data modeling people have long noticed the fact that if the database attributes
are �xed in structure� the modeling power of the data model is greatly reduced�
With the introduction of XML� semi�structured data model becomes widespread�
However� the problem of anomalies� which was well solved for various relational
models� including the �at relation model ��� ��� and the nested relation model
����� will appear again� In this section� we de�ne the concept of Semi�Structured
Schema Graph and discuss various anomalies that may appear in this model�

��� Motivating Example

We use the Object Exchange Model 	OEM
 ���� adopted in Stanford�s Lore
DBMS ���� to represent semi�structured data� OEM is self�describing as each
object contains its own schema and there is no distinction between schema and
data� Each object in OEM has an object identi�er 	oid
 and a value� The value
is either atomic� that is� integer� real� string� gif� html� audio� or complex� that
is� a set of object references denoted as a set of 	label� oid
 pairs� The labels
are taken from the atomic type string� We can visualize OEM as a labeled
graph in which vertices correspond to objects and edges represent the object�
subobject relationship� Each edge has a label describing the precise nature of
the relationship� Based on the OEM� Lorel ��� uses the familiar select�from�where
syntax and path expressions to traverse the semi�structured data� For example�
the path expression Student�Course speci�es the Course subobjects of object
Student�

&10 &11 &12 &13

Student

&2

&1
Name

Course
&3

&5 &6 &7 &8

"John"

Code Title Grade
Tutor Tutor

&9

&4

Course

"CS101" 89"Java"

Code Title Grade Tutor

Name Office
Feedback

&14 &15 &16

"Tan" 8

Name
Office

&17 &18

"Lim"

"IT321" "Database" "A"

&21 &22 &23

Name Feedback

10

Office

"Tan"
&19

Office

"S15 04-26"

&20

9

Feedback

Building Room

&24 &25

Building Room

&28 &29

"S16" "05-13" "S16" "05-13"

Building Room

"S17" "03-18"

&26 &27

Fig� �� Example of an OEM graph

Student

#2

#1
Name

#3

#4 #5 #6

string string/integerstring

Course*

string

TitleCode Grade

#8 #9 #10

string integer

Building Room

string string

#11 #12

#7

Tutor*

Name Office*
Feedback

Fig� �� Schema of Figure 	

Figure � shows an example of a OEM graph� A student 	with attribute Name

can be enrolled in many courses 	with attributes Code and Title
� The student�s
grade for a course is kept in the attribute Grade� A tutor� with attributes Name
and O
ce� can teach more than one course� A student can have more than one
tutor for a course� The student�s evaluation of a course tutor is kept in the
attribute Feedback� There is no �xed or regular structure in the graph

�� a student may take zero� one or more courses
�� a course may have one or more tutors
�� a tutor may have one or more o
ces
�� a student�s course grade may be in marks 	�����
 or in grades 	A� B� C� D�

F

�� a tutor�s o
ce may be a string or a complex structure consisting of building

and room

The associated schema is shown in Figure ��
The semi�structured database in Figure � is not well�designed because it

contains data redundancy� The code and title of a course will be stored as many
times as the number of students taking the course� Similarly� information of a
tutor such as his�her o
ce and age will also be duplicated since a tutor can
teach more than one course and more than one student� Such data redundancies
can be removed if we have links� denoted by dashed edges� to Course and Tutor
objects as shown in Figure �� The associated schema is shown in Figure ��

��� De�nition of Semi�Structured Schema Graph �S��Graph�

De�nition ��� A Semi�Structured Schema Graph �S��Graph� is a directed
graph de�ned as follows�

89

&7

Name

"A"

&12

&23

Feedback

10

&8’’

Student

&2

&1
Name

"John"
&4’

Course
Course

Code

&4

&10 &11

"IT321" "Database"

Title

&3

&5

"CS101" "Java"

&6

Code Title

Course

Course

Course

Course

&3’

Grade

&8
&9

Name Office

"Tan"

Feedback

8

&16

Office

&17 &18

"Lim"

&20

Feedback

9

&8’ &9’

&15&14

Tutor Tutor

Tutor

Tutor

&19

Office

"S15 04-26"

Tutor

Tutor

Grade

Tutor

Tutor

Building Room

"S16" "05-13"

&24 &25 Building Room

"S17" "03-18"

&26 &27

Fig� �� A Well�Designed Semi�Structured Database

#8 #9
string

#11 #12
string string

Name

#2
string

#7’

Feedback

#10

integer

Grade

#6

string/integer

Tutor

Student

#1
Name

Course
Office*

Building
Room

Tutor

#3

#4 #5

Code Title

string string

Course

#3’

Course

#7

Tutor

Fig� �� Schema of the Well�Designed Semi�Structured Database in Figure �

Each node of the graph can be classi�ed into one of the following types�

�� entity node is a node which represents an entity� This entity can be of basic
atomic data type such as string� date or complex object type such as student�
If the entity node represents a basic atomic data type instead of a complex
object type� then the entity node is also known as leaf entity node� Intuitively�
a leaf node does not have any child 	de�ned later
 in the S��Graph� We
further attach the atomic data type as a label to the corresponding leaf
entity node in the S��Graph�

�� reference node is a node which references to another entity node�

Each directed edge in the graph is associated with a tag� The tag represents the
relationship between the source node and the destination node� The tag may be
su
xed with a ���� The interpretation of tag and the su
x depend on the type
of edge� There are three types of edges�

�� Component Edge
A node V� is connected to another node V� via a component edge with a tag
T if V� is a component of V�� We represent this edge by a solid arrow line� If
T is su
xed with a ���� the relationship is interpreted as �The entity type
represented by V� has many T�� Otherwise� the relationship is interpreted
as �The entity type represented by V� has at most one T��

�� Referencing Edge
A node V� is connected to another node V� via a referencing edge if V� refer�
ences the entity represented by node V�� We represent this edge by a dashed
arrow line� In this case� the relationship is interpreted as �V� references V���

�� Root Edge
A node V� is pointed by a root edge with a tag T if the entity type represented
by V� is owned by the database� We represent this edge by a solid arrow line
without any source node for the edge� The tag T is not su
xed� In this
case� the edge is interpreted as �The database has many T�� Furthermore�
we shall call V� as a root node in the S��Graph�

Finally� some roles R can be associated with a node V if there is a directed
�component or referencing� edge pointing to V with tag R after removing any
su
x ����

�

Example �� In Figure �� node �� represents an entity node� which represents
the entity STUDENT� This is also one of the root nodes in the S��Graph� This
node is associated with the role �Student�� Node �� is another entity node of
which database instance holds a string representing the NAME of a student� It
is associated with the role �Name�� It is also a leaf node associated the atomic
data type �string�� Hence any �NAME� data is of string type� The directed edge
between node �� and node �� represents �Each STUDENT has at most one
NAME��

Node ��� is a reference node� It references the entity node which represents
COURSE� In this case� ��� represents the same entity as in ��� The edge con�
necting �� and ��� is interpreted as �Each STUDENT has many COURSEs��

Note that in a more complex example� a node can be associated with more
than two roles� For example� a PERSON can be both a LAB�MEMBER as well
as a LAB�SUPERVISOR�

De�nition ��� Given a S��Graph G� if a node P of role RP is connected via
a component edge to another node C of role RC� then RP is referred to as a
strongly connected parent of RC� and RC as a strongly connected child of RP �
Similarly� if there is a path of only component edges which connects a node A
of role RA to a node D of role RD� then RA is said to be a strongly connected
ancestor of RD� If RA is a strongly connected ancestor of RD� then RD is one
of the strongly connected descendants of RA� �

Example �� Refer to Figure �� Student is a strongly connected parent of Tutor�
and O
ce is a strongly connected descendent of Tutor� However� O
ce is not
a strongly connected descendent of Student because any path that connects a
node of Student role to a node of O
ce role must go through a referencing edge
between node �� and node ����

In the above example� we see that strongly connected ancestor is not neces�
sarily transitive� In fact� the strongly connected parent resembles to the physical
parents of the hierarchical database models such as IMS� In this case� the logical
parents is realized through our referencing edges�

For the rest of the paper� we shall refer strongly connected ancestor simply
as ancestor� Likewise� we shall refer strongly connected descendent� strongly
connected parent and strongly connected child as descendent� parent and child
respectively�

��� Anomalies of Semi�Structured Data

A database in a RDBMS can be considered as a special form of semi�structured
data� In general� semi�structured data involves anomalies which are similar to
those identi�ed for �NF relations� Before we illustrate the various anomalies� we
will �rst de�ne the database instance a semi�structured data graph� which is
an image of a given schema�

De�nition ��� A semi�structured data graph D with respect to a S��Graph G

is a graph showing a database instance such that

�� 	Node correspondance

Each node v in D is associated with one and only one node V of role R in G�
We call V in the schema the de	nition node of the data node v� Furthermore�
v is playing the role R�

�� 	Edge correspondance

A component edge inD is represented by a solid arrow line� If v� is connected
to v� via a component edge e with tag T � then their de�nition nodes in G

must be likewise connected via a component edge E with tag T � with or
without su
xed with ���� We call the edge E in G the de	nition edge of
the edge e in D� Likewise for the referencing edge which is represented by a
dashed arrow line�

�� 	Root correspondance

For each node v� there must be another node w whose de�nition node is
a root node in G� such that either v is w itself or v is connected to w via
component edges�

�� 	Data type correspondance

Each node v whose de�nition node is a leaf entity node V with data type
Type in G must be associated with a data of the matching data type Type�

�� 	Cardinal correspondance

For each compononent edge e with tag T connecting u to v� if the tag associ�
ated with e�s de�nition edge is not su
xed with ���� then u cannot connect
to another node w with the same tag T �

Furthermore� v� in D is an ancestor of v� in D if the de�nition node of v� is an
ancestor of the de�nition node of v�� The de�nition of descendant� parent and
child can be de�ned similarily�
Finally� we say that the semi�structured data graph D is an image of G� �

Figure � is a semi�structured data graph which is an image of the S��Graph
in Figure �� This design is not a good design because many anomalies occurs� For
example� each tutor has one name� but this information may appear many times
in a semi�structured data graph as each tutor may teach many students� For
example� the name �Tan� is repeated twice in the semi�structured data graph in
Figure �� Now� we encounter some anomalies� If a female tutor needs to change
her surname after marriage� we must make sure that all the appearances of this
information are consistent� This is the rewriting anomaly� Similarly� if the
course is not mounted� the information about the tutor may be deleted together
with its parent� This is the deletion anomaly�

Note that due to the �exibility of semi�structured data� there is no insertion
anomaly� To insert a tutor and his name� it is possible to insert a new tree that
indicates the above information�

In a semi�structured data graph� an object instance can be connected to
multiple occurrences of objects of the same role� This introduces other types of
anomalies that do not happen in relation in RDBMS that permits only atomic�
valued attributes� One of the anomalies can be illustrated as follows�

Refer to Figure � again� a tutor can have a set of o
ces� Since a tutor may
appear more than once in the graph� the information �Tan has an o
ce at S��
������� which is independent of the Student and Course the tutor teaches� is
repeated twice in the graph� This introduces anomaly�We refer to such anomaly
as set anomaly�

� A Normal Form for Semi�Structured Schema Graph
�S��NF�

In order to remove the anomalies that may exist in a given semi�structured data�
we de�ne a normal form for it� In this section� the concept of SS�dependency
and this new normal form� called S��NF� is described�

��� SS�Dependency

De�nition ��� Given a S��Graph G� and let A ! � A�� � � � � Am � be a
sequence of roles in G� The sequence A is called hierarchical role sequence if Ai
is an ancestor of Aj whenever j � i� �

De�nition ��� Given a S��graph G� and a semi�structured data graph D which
is an image of G� Let A ! � A�� � � � � Am � be an hierarchical role sequence in
G such that Ai is an ancestor of Aj whenever j � i� An instance of A wrt G in
D is a sequence of nodes� � a�� � � � � am � in D such that ai is of role Ai and ai
is the ancestor of aj whenever j � i� �

De�nition ��� Given a S��graph G� and a semi�structured data graph D which
is an image of G� let e ! � a�� � � � � am � and e� ! � a�

�� � � � � a
�

m � be two
instances in D of an hierarchical role sequence A ! � A�� � � � � Am � in G� e
agrees e� if and only if for every corresponding node ai in e and a

�

i in e
�� we have

�� If ai and a�

i are atomic data� then they have the same value�
�� If ai and a�

i are objects� then they represent the same object� �

�� If ai and a�

i are references to another objects� then the two object instances
referenced by ai and a�

i are the same object�

�

Example �� Refer to Figure �� the instance � "�� � agrees with the instance
� "��� �� as both of them reference the same object represented in "�� On
the other hand� the instance � "��"� � does not agree with the instance
� "��"��� as their course codes are di�erent�

De�nition ��	 With respect to a S��Graph G� for a hierarchical role sequence
� A�� � � � � Am �� where Ai is an ancestor of Aj whenever i � j� and a single
entity type B where B is a descendent of Am� we have A�� � � � � Am SS�determines
B� denoted as

A�� � � � � Am !� B

if in any semi�structured data graph D which is an image of G� whenever any two
di�erent instances e� and e� of A in D agree� it implies that the set of instances
in D of role B having e� as an ancestor is the same as that of having e� as an
ancestor� �

Example
� Refer to the S��Graph in Figure �� we have Tutor !� Office� The
set of o
ces that a tutor has solely dependent on the tutor information� and is
not dependent on the courses he�she teaches� nor the students he�she has� This
SS�dependency can be illustrated by one of its images as shown in Figure �� The
two instances �� "� �� and �� "�� �� agree as they represent the same
tutor �Tan�� Their o
ce data also agree as they both hold the same value �S��
�������

� Deciding if two objects are the same depends on the underlying database model� In
general� it can be decided by at least two ways
 same key value� and same object�id�

On the other hand� we observe that Tutor �!� Feedback� Refer to Figure
�� although the instance �� "��� agrees with �� "�� ��� their descendent
instances of role Feedback� �� "�� �� and �� "�� ��� do not agree� For
this database� the correct SS�dependency should be Student� Course� Tutor !�
Feedback�

Theorem �� Let G be a S��Graph� A and B be two hierarchical role sequences
such that any of the roles of A is an ancestor of each role in B� We have the
following properties for SS�dependency�

�� �re
exivity� For any A� A !� A�
�� �generalization of functional dependency� if A �� B� then A !� B�
�� �left augmentation� Let C be a role that is an ancestor of each role in B and

A !� B� then AC !� B where AC represents the hierarchical role sequence
containing all the roles in both A and C�

� �right augmentation� Let C be a role that is a descendent of each role in B

and A !� B� then A !� BC� where BC represents the hierarchical role
sequence containing all the roles in both B and C�

�� �transitivity� For any three role sets A�B�C� if A !� B and B !� C� then
A !� C�

Proof� The proof of these properties follows directly from the de	nitions of
SS�dependency and functional dependency�

De�nition ��
 Let A and B be two hierarchical role sequences� If there exists
a hierarchical role sequence C such that

A !� B and
B !� C and
B ��� A

then we say that C is transitively SS�dependent on A via B� �

Example �� Refer to Figure �� Code� are transitively SS�dependent on Student
via Course since

Student !� Course

Course !� Code

Course ��� Student

Theorem �� Given a S��Graph G� if a role C in G is transitively SS�dependent
on another role A via role B� then there exists a semi�structured data graph D

which is an image of G such that the rewriting anomaly occurs upon updating
the data of role C�

Proof� We can build a semi�structured data graph as follows�

�� We 	rst construct two instances a� and a� of role A such that they do not
agree�

�� we construct the descendents of a� and a� such that they are of role B and
represent an identical object� Since B ��� A� it does not contradict the as�
sumption that a� and a� does not agree�

�� Since B !� C� for the set of descendents of b� which plays the role C� it
must be the same as the set of descendents of b� with the role C�

We have now constructed a semi�structured data graph� If we update the
information of C under b�� it can cause inconsistency unless updating is also
done at the same time to the information of C under b��

Hence� there is a semi�structured data graph D� which is an image of the
given S��Graph G� such that the rewriting anomaly occurs when we update C�

��� S��NF and decomposition of a S��Graph

De�nition ��� A S��Graph G is said to be in S��NF if there is no transitive
SS�dependency in the graph� �

In order to restructure a S��graph to reduce redundancy� we need to remove
any transitive SS�dependency in a given S��Graph� If this can be done� then the
schema will be in S��NF� In this paper� we adopt the decomposition approach to
remove transitive dependencies� However� as in the case of relational database�
decomposition approach by no means ensures a good solution� Integrity con�
straint information can be lost during the decomposition� Indeed� as mentioned
in ����� it is not always possible to remove every transitive dependency in a nested
relation solely by decomposition� As semi�structured data is even more �exible
than nested relation� our decomposition method can only transform the schema
to reduce redundancy� but may not always remove all transitive dependencies
and achieve S��NF� Hence� in future research� we will purpose another synthesis
method similar to Bernstein ��� and Ling�s ���� method to generate a S��NF
scheme and at the same time� guaranteeing that no constraint information is
lost�

The basic operation of our restructuring is to introduce new reference nodes
and decompose the given schema graph� The main goal is to remove transitive
SS�dependency in the graph� This can be done by the following step�

Given a S��Graph G� we can decompose it to to reduce redundancy�

�� For each role B� if there does not exist a role set A such that
	a
 A !� B and
	b
 B ��� A�
then skip the rest of the following steps and continue to check for another
role�

�� Let Cj be the set of the children of B such that
	a
 B !� Cj�
	b
 for every descendent of Cj which is of role D� we have B !� D�
If there is no such Cj� then skip the rest of the following steps and continue
to check for another entity type�

�� 	Graph decomposition
 Otherwise� duplicate the node V which has the role
B to form a new node V �� It will be the root of a new tree� Move each of the
Cj and all the descendents of Cj and their corresponding edges under V ��
Now� replace the original node V by a reference node� This reference node
shall reference V �� The tag of the referencing edge will be B�

Example �� Refer to the schema represented in the S��Graph in Figure �� we
want to restructure the schema to reduce redundancies�

�� We �rst inspect the role Student� Since there does not exist another role
A such that A !� Student� there is no redundancy caused by the Student
role�

�� The next role is Name� We have Student !� Name� but there is no de�
scendent of Name� so our algorithm skips this role and checks for other
roles�

�� For the role Course� we have Student !� Course� Consider the node �� in
Figure �� it has four children� ��� ��� �� and ��� For �� which represents
Code� since Course !� Code� hence� Code is one of the Cj� Similarly� T itle
is another Cj as Course !� T itle� However� Grade and Tutor are in Cj as
Course �!� Grade and Course �!� Tutor� We now decompose this graph�
The subtree Course� Code and T itle are disconnected from Student� The
original node �� is renamed as ���� It also becomes a reference node which
references the entity node Course 	node ��
�

�� Similarly� when we inspect the role Tutor� we �nd out that

	a
 We have Student� Course !� Tutor� but Tutor ��� Student� Course�
	b
 Furthermore� Tutor !� Tutor�Name� hence Tutor�Name is one of the

Cj�
	c
 Since Tutor !� Office� Building�Room� Office is another Cj� Note

that the role Office has two children� Building and Room� Our algo�
rithm requires us to verify that the set of Room and Building that a
tutor has can be solely dependent on Tutor only� and does not require
extra information such as Course and Student�

	d
 Finally� Feedback is not one of the Cj since Tutor �!� Feedback�

Another decomposition is done to duplicate node ���
�� No other remaining role requires further decomposition� Our restructuring

step stops�

The �nal restructured S��Graph is shown in Figure �� The new schema is also
in S��NF�

	 ER Approach to Semi�Structured Database Design

The task of designing �good� semi�structured database can be made easier if we
have more semantics� ��� proposed a normal form for the ER model� ���� used
the ER normal form to design normal form nested relations� Brie�y speaking�
a set of nested relations is in normal form 	NF�NR
 if we translate this set of
nested relations into relations which are at least in third normal form� This top�
down approach ����� which consists of normalizing an ER diagram and converting
a normalized ER diagram into a set of normal form nested relations� has two
advantages�

�� Normalizing an ER diagram e�ectively removes ambiguities� anomalies and
redundancies at a semantic level�

�� Converting a normalized ER diagram into a set of nested relations results in
a database schema with clean semantics and in good normal form�

In this section� we will discuss how we can use the ER approach to design good
semi�structured databases�

The ER approach uses the concepts of entity types and relationship sets to
capture real world semantics� An entity type or relationship set has attributes
which represents its structural properties� Attributes can be single�valued or mul�
tivalued� Figure � shows the ER diagram for our Student�Course�Tutor example�
We see that students� courses and tutors are modeled as entity types Student�
Course and Tutor respectively� Student has an attribute Name while Course
has attributes Code and Title� Tutor has a single�valued attribute Name and
a composite multivalued attribute O
ce� Here� we assume that Student�Name�
Course�Code and Tutor�Name are the identi�ers of the entity types Student�
Course and Tutor respectively� The relationship set Enrol captures the associ�
ation that a student is enrolled in a course and has a single�valued attribute
Grade� Since a student taking a course is taught by some tutors� we need to
associate the relationship set Enrol with the entity type Tutor� This is accom�
plished using aggregation which e�ectively allows us to view Enrol as an entity
type for the purpose of participation in other relationship sets� This association
is captured in the relationship set SCT� Feedback is a single�valued attribute in
SCT as its value is given by the student for each tutor teaching him in some
course� It is clear that the ER diagram is also in normal form ����

Name

Student Course

Tutor

Name Title

Building Room

Office

Grade

Feedback

Code

Enrol

SCT

Fig� �� Entity�Relationship Diagram for Student�Course�Tutor Example

We now outline the translation of the normal form ER diagram into a semi�
structured schema graph� Details of the translation algorithm will be given in a
full paper�

�� Each entity type E becomes an entity node N with role E� Each attribute A
of E is a node which is connected to E by a Component edge with tag A�

�� For each n�ary relationship set R� we �rst construct a path to link the par�
ticipating entity types of R� Let 	 V�� V�� V�� � � � � Vk
 be the path� Vertex
V� corresponds to some participating entity type of R which is associated
with some entity node N�� Each vertex Vi� where � � i � n� corresponds to
either a participating entity type of R or a combination of two or more par�
ticipating entity types of R� We next create reference nodes N�� N�� ���� Nk

that is associated with V�� V�� ���� Vk respectively� Then we have a component
edge from Ni to Ni��� where � � i � k � �� Each reference node Ni� where
� � i � k� also has referencing edge	s
 to the entity node	s
 that is asso�
ciated with the participating entity type	s
 of R corresponding to Vi� Any
attribute A of R is a node which is connected to Nk by a component edge
with tag A� Note that relationships which are involved in aggregations have
to be processed �rst because they will establish portions of a subsequent
path�

The ER diagram in Figure � can be translated to the semi�structured schema
graph in Figure � as follows� The entity types Student� Course and Tutor become
entity nodes ��� ��� �� respectively� The attributes also become nodes and are
connected to their owner entity type by component edges� We need to process
the relationship Enrol before SCT because Enrol is involved in an aggregation�
Suppose we choose to construct the path 	 Student� Course
 from the partici�
pating entity types of Enrol� then the relationship set Enrol becomes a reference
node ���� and the entity node �� has a component edge to ���� which in turn
has a referencing edge to the entity type ��� The attribute Grade is a component
of the reference node ���� The relationship set SCT also becomes a reference
node ���� The path corresponding to SCT must be 	 Student� Course� Tutor

because Enrol is an aggregate in the relationship set SCT and it has earlier estab�
lished the 	 Student� Course
 portion of the path� Node ��� has a component
edge to ��� which in turn has a referencing edge to ��� The attribute Feedback
is a component of the reference node ���� We observe that the semi�structured
schema graph obtained is not unique but is dependent on the path constructed�

 Conclusion

In this paper� we have shown the importance of designing good semi�structured
databases� We de�ned a semi�structured schema graph for semi�structured databases�
We identi�ed various anomalies� including rewriting anomaly� deletion anomaly
and set anomaly� that may arise if a semi�structured database is not designed
properly and contains redundancies� We proposed a normal form for semi�
structured schema graph� S��NF� We present two approaches to design good
semi�structured databases� namely� the restructuring approach and the ER ap�
proach� The former uses the decomposition technique to normalize a semi�
structured schema graph which may not guarantee a good solution while the
latter uses the normal form ER model to obtain a normal form semi�structured

schema graph� Our de�nition of the semi�structured schema graph attempts to
correspond to the XML de�nition so that we can apply our technique to design
good XML databases in future�

References

	� S� Abiteboul� D� Quass� J� Widom� and J� Wiener� The lorel query language for
semistructured data� International Journal on Digital Libraries� 	�	�� 	

��

�� P�A� Bernstein� Synthesizing third normal form relations form functional depen�
dencies� ACM Transactions on Database Systems� ��	�
�����
�� 	
���

�� T� Bray� J� Paoli� and C� Sperberg�McQueen� Extensible markup language �xml�
	��� W�C Recommendation available at http
��www�w��org�TR�	

�� 	

��

�� P� Buneman� S� Davidson� M� Fernandez� and D� Suciu� Adding structure to
semistructured data� In Int� Conference on Database Theory� 	

��

�� P� Buneman� S� Davidson� G� Hillebrand� and D� Suciu� A query language and
optimization technique for unstructured data� In Proc� ACM SIGMOD� 	

��

�� E�F� Codd� Further normalization of the database relational model� Database
Systems� edited by Randell Rustin� 	
���

�� M� Fernandez� D� Florescu� A� Levy� and D� Suciu� A query language for a web�site
management system� SIGMOD Record� ������ 	

��

�� R� Goldman and J� Widom� Dataguides
 Enabling query formulation and opti�
mization in semistructured databases� In Proc� of the ��rd VLDB� 	

��

� T�W� Ling� A normal form for entity�relationship diagrams� In Proc� of �th Int�

Conference on Entity�Relationship Approach� pages ������ 	
���
	�� T�W� Ling� A normal form for sets of not�necessarily normalized relations� In Proc�

of ��nd Hawaii Int� Conference on Systems Science� pages �������� 	
�
�
		� T�W� Ling� F�W� Tompa� and T� Kameda� An improved third normal form for

relational databases� ACM Transactions on Database Systems� ����
��
����� 	
�	�
	�� T�W� Ling and L�L� Yan� Nf�nr
 A practical normal form for nested relations�

Journal of Systems Integration� �
��
����� 	

��
	�� D� Maier� Theory of relational databases� Pitman� 	
���
	�� A� Makinouchi� A consideration on normal form of not�necessarily normalized

relation in the relational data model� In Proc� of �rd VLDB� 	
���
	�� J� McHugh� S� Abiteboul� R� Goldman� and J� Widom� Lore
 A database manage�

ment system for semistructured data� SIGMOD Record� ������ 	

��
	�� S� Nestorov� J� Ullman� J� Wiener� and S� Chawathe� Objects
 Concise represen�

tation of semistructured hierarchical data� In Proc� of the ��th Int� Conference on

Data Engineering� 	

��
	�� Z�M� Ozsoyoglu and L�Y� Yuan� A normal form for nested relations� ACM Trans�

actions on Database Systems� 	�	��
			�	��� 	
���
	�� Y� Papakonstantinou� H� Garcia�Molina� and J� Widom� Object exchange across

heterogeneous information sources� In IEEE International Conference on Data

Engineering� pages ��	����� 	

��
	
� M�A� Roth and H�F� Korth� The design of 	nf relational databases into nested

normal form� In Proc� of ACM SIGMOD� 	
���
��� J�D� Ullman� Principles of database systems� Computer Science Press� 	
���
�	� K� Wang and H�Q� Liu� Schema discovery from semistructured data� In Int�

Conference on Knowledge Discovery and Data Mining� 	

��

