Designing Good Semi-structured Databases

Sin Yeung Lee! Mong Li Lee! Tok Wang Ling® Leonid A. Kalinichenko?

L School of Computing 2 Institute for Problems of Informatics
National University of Singapore Russian Academy of Sciences
{jlee, leeml, lingtw }@comp.nus.edu.sg leonidk@synth.ipi.ac.ru

Abstract. Semi-structured data has become prevalent with the growth
of the Internet and other on-line information repositories. Many orga-
nizational databases are presented on the web as semi-structured data.
Designing a “good” semi-structured database is increasingly crucial to
prevent data redundancy, inconsistency and updating anomalies. In this
paper, we define a semi-structured schema graph and identify the var-
ious anomalies that may occur in the graph. A normal form for semi-
structured schema graph, S3-NF, is proposed. We present two approaches
to design S3-NF database, namely, restructuring by decomposition and
the ER approach. The first approach consists of a set of rules to decom-
pose a semi-structured schema graph into S3-NF. The second approach
uses the ER model to remove anomalies at the semantic level.

1 Introduction

The growth of the Internet and other on-line information repositories has greatly
simplified the access to numerous sources of information/data, especially through
the World Wide Web. The data is presented in various forms: At one extreme
we find data coming from traditional relational /object-oriented databases, with
a completely known structure. At the other extreme we have data which is
fully unstructured, eg images, sounds and raw text. But most of the data fall
somewhere in between (semi-structured) for a variety of reasons: the data may
be structured, but the structure is not known to the user; the user may know
the structure, but chooses to ignore it for browsing purposes. Examples of semi-
structured data include HITML documents where the structure is imposed by
tags, and bibliography files where some structure i1s imposed by fields such as
the author and the title to an otherwise unstructured text file. Note that the
tags and fields are optional.

The nature of semi-structured data is fundamentally different from data in
traditional databases and hence raises many new issues. Some of the common
scenarios involve extracting data from the diverse information repositories across
the Internet, and integrating the data from heterogeneous sources. These tasks
are made more difficult because we have only a partial knowledge of the structure
and that the structure is potentially ”deeply nested” or even cyclic. Many re-
searchers have proposed semi-structured data models, databases, and languages
to model, store and query the World Wide Web data [1,5,7, 18, 15]. These works

use some graph or tree models [5, 18] which provide a flexible representation of

data coming from arbitrary heterogenous sources. Proposed query languages are
closely tied to these data models.

Unfortunately, there is no notion of a precise or explicit schema in all these
semi-structured databases. All the schematic information is embedded in the
graphs which may change dynamically. The lack of a schema poses two problems.
First, it is difficult for a user to formulate a meaningful query on the semi-
structured data without any knowledge of how the data is organized. Second, it
is difficult for the query processor to generate efficient plans for queries on the
semi-structured data without any schema to guide it. As a result, [8] introduces
DataGuides which dynamically generate and maintain structural summaries of
semi-structured databases. The Dataguides are used in the Lore DBMS [15] for
the user to carry out structure browsing and query formulation, as well as for
the query processor to optimize query execution. More work to discover schemas
from semi-structured data can be found in [21,16,4] and others.

However, to date, we observe that the concept of a well-formed or a nor-
mal form semi-structured schema has never been considered. This has come to
our attention because data redundancy and data inconsistency may occur in
a semi-structured database if the schema is not designed properly. In a tradi-
tional database, redundancy has inevitably caused updating anomalies [6]. A
well-established technique to remove undesirable updating anomalies and data
redundancy from relations and nested relations is normalization [13,20, 14,17,

19,12].

In this paper, we will focus on how to design good semi-structured databases.
We assume that we can extract the schema from a semi-structured data source
or database. We will define the concept of a semi-structured schema graph and
investigate the various anomalies that may appear in this model. A normal form
for semi-structured schema graph, S3-NF, is proposed. Our normal form not
only deals with functional dependencies and multivalued dependencies, but also
removes identified anomalies from the semi-structured schema graph. Two ap-
proaches to designing S3-NF databases are given, namely, the restructuring ap-
proach and the Entity-Relationship (ER) approach. The former consists of a set
of rules to decompose a semi- structured schema graph into S3-NF while the lat-
ter uses the ER model to remove the anomalies and redundancies at the seman-
tic level. We envisage the growing importance of well designed semi-structured
databases due to the increasing popularity of XML for data representation on

the Web [3].

The rest of the paper is organized as follows. Section 2 gives the definitions of
various concepts in a semi-structured schema graph. The anomalies that may oc-
cur in the graph is also presented. In section 3, a normal form for semi-structured
schema graph, S3-NF, is defined. We also show how we can restructure a semi-
structured schema graph to obtain S3-NF which does not have the undesirable
anomalies. Section 4 discusses the ER approach to designing a S3-NF database.
Finally, we conclude in Section 5.

2 Semi-Structured Graph: Definition and Anomalies

Data modeling people have long noticed the fact that if the database attributes
are fixed 1n structure, the modeling power of the data model is greatly reduced.
With the introduction of XML, semi-structured data model becomes widespread.
However, the problem of anomalies, which was well solved for various relational
models, including the flat relation model [2,11] and the nested relation model
[12], will appear again. In this section, we define the concept of Semi-Structured
Schema Graph and discuss various anomalies that may appear in this model.

2.1 Motivating Example

We use the Object Exchange Model (OEM) [18] adopted in Stanford’s Lore
DBMS [15] to represent semi-structured data. OEM is self-describing as each
object contains its own schema and there is no distinction between schema and
data. FEach object in OEM has an object identifier (oid) and a value. The value
is either atomic, that is, integer, real, string, gif, html, audio, or complex, that
is, a set of object references denoted as a set of (label, oid) pairs. The labels
are taken from the atomic type string. We can visualize OEM as a labeled
graph in which vertices correspond to objects and edges represent the object-
subobject relationship. Each edge has a label describing the precise nature of
the relationship. Based on the OEM, Lorel [1] uses the familiar select-from-where
syntax and path expressions to traverse the semi-structured data. For example,
the path expression Student. Course specifies the Course subobjects of object
Student.

Student

NM Course
Course
(&)

4 or
(13
N " "Database" "A"
Name " oice g , . ack Name/ Office Fesdback
Feet
@ G

9 "Tan" 10
Building oom

@ @

"05-13"

Building Room

"316" "05-13"

Fig. 1. Example of an OEM graph

Tutor*

) G2

string string

Fig. 2. Schema of Figure 1

Figure 1 shows an example of a OEM graph. A student (with attribute Name)
can be enrolled in many courses (with attributes Code and Title). The student’s
grade for a course is kept in the attribute Grade. A tutor, with attributes Name
and Office, can teach more than one course. A student can have more than one
tutor for a course. The student’s evaluation of a course tutor is kept in the
attribute Feedback. There is no fixed or regular structure in the graph

1. a student may take zero, one or more courses

2. a course may have one or more tutors

3. a tutor may have one or more offices

4. a student’s course grade may be in marks (0-100) or in grades (A, B, C, D,
P

5. a tutor’s office may be a string or a complex structure consisting of building
and room

The associated schema is shown in Figure 2.

The semi-structured database in Figure 1 is not well-designed because it
contains data redundancy. The code and title of a course will be stored as many
times as the number of students taking the course. Similarly, information of a
tutor such as his/her office and age will also be duplicated since a tutor can
teach more than one course and more than one student. Such data redundancies
can be removed if we have links, denoted by dashed edges, to Course and Tutor
objects as shown in Figure 3. The associated schema is shown in Figure 4.

2.2 Definition of Semi-Structured Schema Graph (S3-Graph)

Definition 2.1 A Semi-Structured Schema Graph (53-Graph) is a directed
graph defined as follows,

Student

NMW
Course

Course

Tutor

’

Code T% e

@) &o)

"CS101" "Java'
\ "IT321" Database
\
' Feedback
Tutor\
\
Tutor T
Name, of
Tan

Building ..le.. "S15 04-26"
Building Room

"516" 05— 13"

"S17" "03-18"

Fig. 3. A Well-Designed Semi-Structured Database

\(Course wdent NUTOF
Name @ =TTttt

Name/
* Office*
<) .
string @ \\ srln @
string . ; string
(;fmrse) Building Room
string string

Fig. 4. Schema of the Well-Designed Semi-Structured Database in Figure 3

Each node of the graph can be classified into one of the following types:

1. entity node is a node which represents an entity. This entity can be of basic
atomic data type such as string, date or complex object type such as student.
If the entity node represents a basic atomic data type instead of a complex
object type, then the entity node is also known as leaf entity node. Intuitively,
a leaf node does not have any child (defined later) in the S3-Graph. We
further attach the atomic data type as a label to the corresponding leaf
entity node in the S3-Graph.

2. reference node is a node which references to another entity node.

Each directed edge in the graph is associated with a tag. The tag represents the
relationship between the source node and the destination node. The tag may be
suffixed with a “*”. The interpretation of tag and the suffix depend on the type
of edge. There are three types of edges:

1. Component Edge
A node V; is connected to another node V5 via a component edge with a tag
T if V5 is a component of V;. We represent this edge by a solid arrow line. If
T is suffixed with a “*”, the relationship is interpreted as “The entity type
represented by V4 has many 7”. Otherwise, the relationship is interpreted
as “The entity type represented by V; has at most one 77.

2. Referencing Edge
A node V] is connected to another node Vs via a referencing edge if V; refer-
ences the entity represented by node V5. We represent this edge by a dashed
arrow line. In this case, the relationship is interpreted as “V; references 14”.

3. Root Edge
A node V1 18 pointed by a root edge with a tag T if the entity type represented
by V1 is owned by the database. We represent this edge by a solid arrow line
without any source node for the edge. The tag 7' 1s not suffixed. In this
case, the edge is interpreted as “The database has many 7”. Furthermore,
we shall call V; as a root node in the S3-Graph.

Finally, some roles R can be associated with a node V if there is a directed
(component or referencing) edge pointing to V' with tag R after removing any
suffix “*7.

O

Ezample 1. In Figure 4, node #1 represents an entity node, which represents
the entity STUDENT. This is also one of the root nodes in the S3-Graph. This
node is associated with the role “Student”. Node #2 is another entity node of
which database instance holds a string representing the NAME of a student. It
is associated with the role “Name”. It is also a leaf node associated the atomic
data type “string”. Hence any “NAME” data is of string type. The directed edge
between node #1 and node #2 represents “Each STUDENT has at most one
NAME”.

Node #3’ is a reference node. It references the entity node which represents
COURSE. In this case, #3’ represents the same entity as in #3. The edge con-
necting #1 and #3’ is interpreted as “Each STUDENT has many COURSEs”.

Note that in a more complex example, a node can be associated with more
than two roles. For example, a PERSON can be both a LAB-MEMBER as well
as a LAB-SUPERVISOR.

Definition 2.2 Given a S3-Graph G, if a node P of role Rp is connected via
a component edge to another node C' of role R, then Rp is referred to as a
strongly connected parent of R¢, and R¢ as a strongly connected child of Rp.

Similarly, if there is a path of only component edges which connects a node A
of role R4 to a node D of role Rp, then R4 1s said to be a strongly connected
ancestor of Rp. If R4 1s a strongly connected ancestor of Rp, then Rp 1s one
of the strongly connected descendants of R4. a

Ezample 2. Refer to Figure 4, Student is a strongly connected parent of Tutor,
and Office is a strongly connected descendent of Tutor. However, Office is not
a strongly connected descendent of Student because any path that connects a
node of Student role to a node of Office role must go through a referencing edge

between node #7 and node #7’.

In the above example, we see that strongly connected ancestor is not neces-
sarily transitive. In fact, the strongly connected parent resembles to the physical
parents of the hierarchical database models such as IMS. In this case, the logical
parents is realized through our referencing edges.

For the rest of the paper, we shall refer strongly connected ancestor simply
as ancestor. Likewise, we shall refer strongly connected descendent, strongly
connected parent and strongly connected child as descendent, parent and child
respectively.

2.3 Anomalies of Semi-Structured Data

A database in a RDBMS can be considered as a special form of semi-structured
data. In general, semi-structured data involves anomalies which are similar to
those 1dentified for INF relations. Before we illustrate the various anomalies, we
will first define the database instance — a semi-structured data graph, which is
an 1mage of a given schema.

Definition 2.3 A semi-structured data graph D with respect to a S3-Graph G
is a graph showing a database instance such that

1. (Node correspondance)
Each node v in D is associated with one and only one node V of role R in .
We call V' in the schema the definition node of the data node v. Furthermore,
v is playing the role R.

2. (Edge correspondance)
A component edge in D is represented by a solid arrow line. If v; is connected
to va via a component edge e with tag 7', then their definition nodes in G
must be likewise connected via a component edge E with tag 7', with or
without suffixed with “*”. We call the edge F in G the definition edge of
the edge e in D. Likewise for the referencing edge which is represented by a
dashed arrow line.

3. (Root correspondance)
For each node v, there must be another node w whose definition node is
a root node in G, such that either v is w itself or v is connected to w via
component edges.
4. (Data type correspondance)
Each node v whose definition node is a leaf entity node V with data type
Type in GG must be associated with a data of the matching data type Type.
5. (Cardinal correspondance)
For each compononent edge e with tag T' connecting u to v, if the tag associ-
ated with e’s definition edge is not suffixed with “*” then u cannot connect
to another node w with the same tag 7'

Furthermore, v1 in D is an ancestor of vs in D if the definition node of v; is an
ancestor of the definition node of v5. The definition of descendant, parent and
child can be defined similarily.

Finally, we say that the semi-structured data graph D is an image of G. a

Figure 1 is a semi-structured data graph which is an image of the S3-Graph
in Figure 2. This design is not a good design because many anomalies occurs. For
example, each tutor has one name, but this information may appear many times
in a semi-structured data graph as each tutor may teach many students. For
example, the name “Tan” is repeated twice in the semi-structured data graph in
Figure 1. Now, we encounter some anomalies. If a female tutor needs to change
her surname after marriage, we must make sure that all the appearances of this
information are consistent. This is the rewriting anomaly. Similarly, if the
course 1s not mounted, the information about the tutor may be deleted together
with its parent. This is the deletion anomaly.

Note that due to the flexibility of semi-structured data, there is no insertion
anomaly. To insert a tutor and his name, it is possible to insert a new tree that
indicates the above information.

In a semi-structured data graph, an object instance can be connected to
multiple occurrences of objects of the same role. This introduces other types of
anomalies that do not happen in relation in RDBMS that permits only atomic-
valued attributes. One of the anomalies can be illustrated as follows.

Refer to Figure 1 again, a tutor can have a set of offices. Since a tutor may
appear more than once in the graph, the information “Tan has an office at 516
05-13”, which is independent of the Student and Course the tutor teaches, is
repeated twice in the graph. This introduces anomaly. We refer to such anomaly
as set anomaly.

3 A Normal Form for Semi-Structured Schema Graph
(S3-NF)

In order to remove the anomalies that may exist in a given semi-structured data,
we define a normal form for it. In this section, the concept of SS-dependency
and this new normal form, called S3-NF is described.

3.1 SS-Dependency

Definition 3.1 Given a S3-Graph G, and let A = € Ay,---, Ay > be a
sequence of roles in (. The sequence A is called hierarchical role sequence if A;
is an ancestor of A; whenever j > 1. a

Definition 3.2 Given a S3-graph GG, and a semi-structured data graph D which
is an image of G. Let A = < Ay, ---, Ay, > be an hierarchical role sequence in
G such that A; is an ancestor of A; whenever j > ¢. An instance of A wrt & in
D 1s a sequence of nodes, < ay, - -, ay > in D such that a; is of role A; and a;
is the ancestor of a; whenever j > 1. a

Definition 3.3 Given a S3-graph GG, and a semi-structured data graph D which
is an image of G, let e = < a1, -, a;,m > and ¢ = K a'1, -+, d'n > be two
instances in D of an hierarchical role sequence A = <« Ay, A > in G, e
agrees €’ if and only if for every corresponding node a; in € and a’; in €/, we have

1. If a; and a’; are atomic data, then they have the same value.

2. If a; and a'; are objects, then they represent the same object. !

3. If a; and a'; are references to another objects, then the two object instances
referenced by a; and d'; are the same object.

O

Ezample 3. Refer to Figure 3, the instance < &8’ > agrees with the instance
< &8 >>. as both of them reference the same object represented in &8. On
the other hand, the instance < &3,&b5 > does not agree with the instance
< &4, &10 > as their course codes are different.

Definition 3.4 With respect to a S3-Graph G, for a hierarchical role sequence
<K Ay, -+, Ay >, where A; is an ancestor of A; whenever ¢ < j, and a single
entity type B where B is a descendent of A,,, we have Ay, -, A, SS-determines
B, denoted as
Al, s An, — B

if in any semi-structured data graph D which is an image of G, whenever any two
different instances e; and es of A in D agree, it implies that the set of instances
in D of role B having e; as an ancestor is the same as that of having e, as an
ancestor. O

Ezxample 4. Refer to the S3-Graph in Figure 2, we have Tutor = O f fice, The
set of offices that a tutor has solely dependent on the tutor information, and is
not dependent on the courses he/she teaches, nor the students he/she has. This
SS-dependency can be illustrated by one of its images as shown in Figure 1: The
two instances 7 &8 7 and "<« &13 7 agree as they represent the same
tutor ”Tan”. Their office data also agree as they both hold the same value ”S16
05-137.

! Deciding if two objects are the same depends on the underlying database model. In
general, it can be decided by at least two ways: same key value, and same object-id.

On the other hand, we observe that Tutor #=- Feedback. Refer to Figure
1, although the instance 7 &8 >>»” agrees with "< &13 >>»” | their descendent
instances of role Feedback, "<& &16 >” and "< &23 >”, do not agree. For
this database, the correct SS-dependency should be Student, Course, Tutor —
Feedback.

Theorem 1. Let G be a 53-Graph, A and B be two hierarchical role sequences
such that any of the roles of A is an ancestor of each role in B, We have the
following properties for SS-dependency:

1. (reflexivity) For any A, A — A.

2. (generalization of functional dependency) if A — B, then A — B.

3. (left augmentation) Let C be a role that is an ancestor of each role in B and
A = B, then AC = B where AC represents the hierarchical role sequence
containing all the roles in both A and C,

4. (right augmentation) Let C' be a role that is a descendent of each role in B
and A = B, then A — BC'. where BC' represents the hierarchical role
sequence containing all the roles in both B and C',

5. (transitivity) For any three role sets A, B,C, if A=— B and B = C, then
A= C.

Proof: The proof of these properties follows directly from the definitions of
SS-dependency and functional dependency.

Definition 3.5 Let A and B be two hierarchical role sequences, If there exists
a hierarchical role sequence C' such that

A — B and

B = (' and

B4— A

then we say that C' is transitively SS-dependent on A via B. a

Ezxample 5. Refer to Figure 2, Code, are transitively SS-dependent on Student
via Course since

Student —> C'ourse

Course =—» Clode

Course /— Student

Theorem 2. Giwen a S3-Graph G, if a role C' in G is transitively SS-dependent
on another role A via role B, then there exists a semi-structured data graph D
which 1s an image of G such that the rewriting anomaly occurs upon updating
the data of role C'.

Proof: We can build a semi-structured data graph as follows,

1. We first construct two instances a1 and as of role A such that they do not
agree.

2. we construct the descendents of a1 and ay such that they are of role B and
represent an identical object. Since B +— A, it does not contradict the as-
sumption that ay and as does not agree.

3. Since B = C, for the set of descendents of by which plays the role C', it
must be the same as the set of descendents of bs with the role C.

We have now constructed a semi-structured data graph. If we update the
wnformation of C' under by, it can cause inconsistency unless updating is also
done at the same time to the information of C' under bs.

Hence, there 1s a semi-structured data graph D, which is an tmage of the
given S3-Graph G, such that the rewriting anomaly occurs when we update C'.

3.2 S3-NF and decomposition of a S3-Graph

Definition 3.6 A S3-Graph G is said to be in S3-NF if there is no transitive
SS-dependency in the graph. ad

In order to restructure a S3-graph to reduce redundancy, we need to remove
any transitive SS-dependency in a given S3-Graph. If this can be done, then the
schema will be in S3-NF. In this paper, we adopt the decomposition approach to
remove transitive dependencies. However, as in the case of relational database,
decomposition approach by no means ensures a good solution. Integrity con-
straint information can be lost during the decomposition. Indeed, as mentioned
in [12], it is not always possible to remove every transitive dependency in a nested
relation solely by decomposition. As semi-structured data is even more flexible
than nested relation, our decomposition method can only transform the schema
to reduce redundancy, but may not always remove all transitive dependencies
and achieve S3-NF. Hence, in future research, we will purpose another synthesis
method similar to Bernstein [2] and Ling’s [11] method to generate a S3-NF
scheme and at the same time, guaranteeing that no constraint information is
lost.

The basic operation of our restructuring is to introduce new reference nodes
and decompose the given schema graph. The main goal is to remove transitive
SS-dependency in the graph. This can be done by the following step:

Given a S3-Graph G, we can decompose it to to reduce redundancy.

1. For each role B, if there does not exist a role set A such that
(a) A= B and
(b) B 4 A,
then skip the rest of the following steps and continue to check for another
role.

2. Let C} be the set of the children of B such that
(a) B= C},

(b) for every descendent of C; which is of role D, we have B = D.
If there is no such Cj, then skip the rest of the following steps and continue
to check for another entity type.

3. (Graph decomposition) Otherwise, duplicate the node V' which has the role
B to form a new node V’. It will be the root of a new tree. Move each of the
C; and all the descendents of C; and their corresponding edges under V.
Now, replace the original node V' by a reference node. This reference node
shall reference V. The tag of the referencing edge will be B.

Ezrample 6. Refer to the schema represented in the S3-Graph in Figure 2, we
want to restructure the schema to reduce redundancies.

1. We first inspect the role Student. Since there does not exist another role
A such that A = Student, there is no redundancy caused by the Student
role.

2. The next role is Name. We have Student =— Name, but there is no de-
scendent of Name, so our algorithm skips this role and checks for other
roles.

3. For the role C'ourse, we have Student = C'ourse. Consider the node #3 in
Figure 2, it has four children: #4, #5, #6 and #7. For #4 which represents
Code, since Course => Code, hence, Code is one of the C;. Similarly, T'itle
is another C; as C'ourse = Thtle. However, Grade and T'utor are in C; as
Course 7= Grade and Course 7= Tutor. We now decompose this graph.
The subtree C'ourse, C'ode and Title are disconnected from Student. The
original node #3 is renamed as #3’. It also becomes a reference node which
references the entity node Course (node #3).

4. Similarly, when we inspect the role Tutor, we find out that

(a) We have Student, Course = Tutor, but Tutor +— Student, Course.

(b) Furthermore, Tutor = Tutor.Name, hence Tutor.Name is one of the
Cj.

(c) Since Tutor = Of fice, Building, Room, Office is another C;. Note
that the role Of fice has two children, Building and Room. Our algo-
rithm requires us to verify that the set of Room and Building that a
tutor has can be solely dependent on T'utor only, and does not require
extra information such as C'ourse and Student.

(d) Finally, Feedback is not one of the C; since Tutor #= Feedback.

Another decomposition is done to duplicate node #7.
5. No other remaining role requires further decomposition. Our restructuring
step stops.

The final restructured S3-Graph is shown in Figure 4. The new schema is also

in S3-NF.

4 ER Approach to Semi-Structured Database Design

The task of designing ”good” semi-structured database can be made easier if we
have more semantics. [9] proposed a normal form for the ER model. [10] used
the ER normal form to design normal form nested relations. Briefly speaking,
a set of nested relations is in normal form (NF-NR) if we translate this set of
nested relations into relations which are at least in third normal form. This top-
down approach [10], which consists of normalizing an ER diagram and converting
a normalized ER diagram into a set of normal form nested relations, has two
advantages:

1. Normalizing an ER diagram effectively removes ambiguities, anomalies and
redundancies at a semantic level.

2. Converting a normalized ER diagram into a set of nested relations results in
a database schema with clean semantics and in good normal form.

In this section, we will discuss how we can use the ER approach to design good
semi-structured databases.

The ER approach uses the concepts of entity types and relationship sets to
capture real world semantics. An entity type or relationship set has attributes
which represents its structural properties. Attributes can be single-valued or mul-
tivalued. Figure 5 shows the ER diagram for our Student-Course-Tutor example.
We see that students, courses and tutors are modeled as entity types Student,
Course and Tutor respectively. Student has an attribute Name while Course
has attributes Code and Title. Tutor has a single-valued attribute Name and
a composite multivalued attribute Office. Here, we assume that Student.Name,
Course.Code and Tutor.Name are the identifiers of the entity types Student,
Course and Tutor respectively. The relationship set Enrol captures the associ-
ation that a student is enrolled in a course and has a single-valued attribute
Grade. Since a student taking a course is taught by some tutors, we need to
assoclate the relationship set Enrol with the entity type Tutor. This is accom-
plished using aggregation which effectively allows us to view Enrol as an entity
type for the purpose of participation in other relationship sets. This association
is captured in the relationship set SCT. Feedback is a single-valued attribute in
SCT as its value is given by the student for each tutor teaching him in some
course. It is clear that the ER diagram is also in normal form [9].

I

Student @ Course

Tutor
; Office
o i
Fig. 5. Entity-Relationship Diagram for Student-Course-Tutor Example

We now outline the translation of the normal form ER diagram into a semi-
structured schema graph. Details of the translation algorithm will be given in a
full paper.

1. Each entity type E becomes an entity node N with role E. Each attribute A
of E is a node which is connected to E by a Component edge with tag A.

2. For each n-ary relationship set R, we first construct a path to link the par-
ticipating entity types of R. Let < Vi, Va5, Vs, -+ Vi = be the path. Vertex
V1 corresponds to some participating entity type of R which is associated
with some entity node Ni. Each vertex V;, where 2 < ¢ < n, corresponds to
either a participating entity type of R or a combination of two or more par-
ticipating entity types of R. We next create reference nodes N, N3, ..., Ng
that is associated with Vs, V3, ..., Vi respectively. Then we have a component
edge from N; to Njy1, where 1 <7 < k — 1. Each reference node N;, where
2 < i < k, also has referencing edge(s) to the entity node(s) that is asso-
ciated with the participating entity type(s) of R corresponding to V;. Any
attribute A of R is a node which is connected to Ny by a component edge
with tag A. Note that relationships which are involved in aggregations have
to be processed first because they will establish portions of a subsequent
path.

The ER diagram in Figure 5 can be translated to the semi-structured schema
graph in Figure 4 as follows. The entity types Student, Course and Tutor become
entity nodes #1, #3, #7 respectively. The attributes also become nodes and are
connected to their owner entity type by component edges. We need to process
the relationship Enrol before SCT because Enrol is involved in an aggregation.
Suppose we choose to construct the path < Student, C'ourse = from the partici-
pating entity types of Enrol, then the relationship set Enrol becomes a reference
node #3’, and the entity node #1 has a component edge to #3’, which in turn
has a referencing edge to the entity type #£3. The attribute Grade is a component
of the reference node #3’. The relationship set SCT also becomes a reference
node #7’°. The path corresponding to SCT must be < Student, Course, Tutor =
because Enrol is an aggregate in the relationship set SCT and it has earlier estab-
lished the < Student, Course = portion of the path. Node #3’ has a component
edge to #7” which in turn has a referencing edge to #£7. The attribute Feedback
is a component of the reference node #7°. We observe that the semi-structured
schema graph obtained is not unique but is dependent on the path constructed.

5 Conclusion

In this paper, we have shown the importance of designing good semi-structured
databases. We defined a semi-structured schema graph for semi-structured databases.
We identified various anomalies, including rewriting anomaly, deletion anomaly
and set anomaly, that may arise if a semi-structured database i1s not designed
properly and contains redundancies. We proposed a normal form for semi-
structured schema graph, S3-NF. We present two approaches to design good
semi-structured databases, namely, the restructuring approach and the ER ap-
proach. The former uses the decomposition technique to normalize a semi-
structured schema graph which may not guarantee a good solution while the
latter uses the normal form ER model to obtain a normal form semi-structured

schema graph. Our definition of the semi-structured schema graph attempts to
correspond to the XML definition so that we can apply our technique to design
good XML databases in future.

References

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.
21.

S. Abiteboul, D. Quass, J. Widom, and J. Wiener. The lorel query language for
semistructured data. International Journal on Digital Libraries, 1(1), 1997.

P.A. Bernstein. Synthesizing third normal form relations form functional depen-
dencies. ACM Transactions on Database Systems, 4(1):277-298, 1976.

. T. Bray, J. Paoli, and C. Sperberg-McQueen. Extensible markup language (xml)

1.0. W3C Recommendation available at http://www.w3.org/TR/1998, 1998.

P. Buneman, S. Davidson, M. Fernandez, and D. Suciu. Adding structure to
semistructured data. In Int. Conference on Database Theory, 1997.

P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query language and
optimization technique for unstructured data. In Proc. ACM SIGMOD, 1996.

. E.F. Codd. Further normalization of the database relational model. Database

Systems, edited by Randell Rustin, 1972.

M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query language for a web-site
management system. SIGMOD Record, 26(3), 1997.

R. Goldman and J. Widom. Dataguides: Enabling query formulation and opti-
mization in semistructured databases. In Proc. of the 23rd VLDB, 1997.

. T.W. Ling. A normal form for entity-relationship diagrams. In Proc. of 4th Int.

Conference on Fntity- Relationship Approach, pages 24-35, 1985.

T.W. Ling. A normal form for sets of not-necessarily normalized relations. In Proc.
of 22nd Hawazii Int. Conference on Systems Science, pages 578-586, 1989.

T.W. Ling, F.W. Tompa, and T. Kameda. An improved third normal form for
relational databases. ACM Transactions on Database Systems, 2(6):329-346, 1981.
T.W. Ling and L.L. Yan. Nf-nr: A practical normal form for nested relations.
Journal of Systems Integration, 4:309-340, 1994.

D. Maier. Theory of relational databases. Pitman, 1983.

A. Makinouchi. A consideration on normal form of not-necessarily normalized
relation in the relational data model. In Proc. of 3rd VLDB, 1977.

J. McHugh, S. Abiteboul, R. Goldman, and J. Widom. Lore: A database manage-
ment system for semistructured data. SIGMOD Record, 26(3), 1997.

S. Nestorov, J. Ullman, J. Wiener, and S. Chawathe. Objects: Concise represen-
tation of semistructured hierarchical data. In Proc. of the 13th Int. Conference on
Data Engineering, 1997.

Z2.M. Ozsoyoglu and L..Y. Yuan. A normal form for nested relations. ACM Trans-
actions on Database Systemns, 1(12):111-136, 1987.

Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange across
heterogeneous information sources. In IEEE International Conference on Data
FEngineering, pages 251-260, 1995.

M.A. Roth and H.F. Korth. The design of Inf relational databases into nested
normal form. In Proc. of ACM SIGMOD, 1987.

J.D. Ullman. Principles of database systems. Computer Science Press, 1983.

K. Wang and H.Q. Liu. Schema discovery from semistructured data. In Int.
Conference on Knowledge Discovery and Data Mining, 1997.

