

Efficient Processing of Updates in Dynamic XML Data

Changqing Li

Department of CS
National University of Singapore

lichangq@comp.nus.edu.sg

Tok Wang Ling
Department of CS

National University of Singapore
lingtw@comp.nus.edu.sg

Min Hu
Department of COFM

National University of Singapore
g0406391@nus.edu.sg

Abstract

It is important to process the updates when nodes are
inserted into or deleted from the XML tree. All the
existing labeling schemes have high update cost, thus in
this paper we propose a novel Compact Dynamic Binary
String (CDBS) encoding to efficiently process the
updates. CDBS has two important properties which form
the foundations of this paper: (1) CDBS supports that
codes can be inserted between any two consecutive CDBS
codes with the orders kept and without re-encoding the
existing codes; (2) CDBS is orthogonal to specific
labeling schemes, thus it can be applied broadly to
different labeling schemes or other applications to
efficiently process the updates. We report our
experimental results to show that our CDBS is superior to
previous approaches to process updates in terms of the
number of nodes to re-label and the time for updating.

1. Introduction

With the rapidly increasing popularity of XML [6] for
data representation and exchange, there is a lot of interest
in query processing over data that conforms to an ordered
tree-structured data model. With the tree model, data
objects, e.g. elements, attributes, text data, etc., are
modeled as the nodes of a tree, and relationships are
modeled as the edges to connect the nodes of the tree.
Figure 1 shows an ordered XML tree.

XPath [4] and XQuery [5] are two main XML query
languages that express the structure of XML documents as
linear paths or twig patterns. For example, the XPath
query:

 /book[/title]//section[2]/preceding-sibling::section

finds all the section nodes that are siblings of section[2]
and these section sibling nodes should be before
section[2] (“preceding-sibling”). Meanwhile, section[2]
should be a descendant of book (“//”). In addition, book
should satisfy the restriction that it has a child title (“/”).

No matter the query is a linear path or a twig pattern,
the core operation is to efficiently determine the ancestor-
descendant, parent-child, sibling and ordering
relationships. To facilitate the determination of these
relationships, several labeling (numbering) schemes, e.g.
containment [1, 11, 18], prefix [8, 13, 15] and prime [16],
have been proposed. Based on the labels only, the
ancestor-descendant and parent-child relationships can be
fast determined.

If the XML is static, the existing labeling schemes can
efficiently process different queries. However if the XML
is dynamic, how to efficiently update the labels of the
labeling schemes becomes to an important research topic.

As we know, the elements in the XML are intrinsically
ordered, which is referred to as document order, i.e. the
element sequence in the XML document. The relative
order of two paragraphs in the XML is important because
the order may influence the semantics, thus the standard
XML query languages (e.g. XPath [4] and XQuery [5])
require the output of queries to be in document order by
default. Hence it is very important to maintain the
document order when the XML is updated.

Some researches [2, 8, 13, 14, 15, 16] have been done
to maintain the document order in XML updating.
However the update costs of these approaches are still
expensive. Therefore in this paper we focus on how to
dramatically decrease the update cost.

The main contributions of this paper include:
• We propose a novel Compact Dynamic Binary String

(CDBS) encoding, which supports that CDBS codes
can be inserted between any two consecutive CDBS
codes with the orders kept and without re-encoding the
existing codes.

• CDBS is orthogonal to specific labeling schemes, thus
it can be applied broadly to different labeling schemes
to avoid the re-labeling in XML updates.

• We design algorithms to implement our CDBS and
formally analyze the total code size of our CDBS, Figure 1. An ordered XML tree

book

title author chapter chapter

first_name last_name section section

which shows that our CDBS encoding is a very
compact encoding, yet it efficiently supports updates.

• We conduct comprehensive experiments to
demonstrate the benefits of our CDBS over the
previous approaches to process updates.

The rest of the paper is organized as follows. Section 2
reviews the related work. In Section 3, we illustrate that
the most important feature of this paper is that we
compare labels based on the lexicographical order; an
algorithm that can insert a binary string between two
binary strings with the lexicographical orders kept is also
proposed in this section which is the first foundation of
this paper. We propose our Compact Dynamic Binary
String (CDBS) encoding in Section 4. In Section 5, we
indicate that our CDBS encoding can be applied broadly
(the second foundation) to different labeling schemes, and
show how our CDBS processes the XML updates. In
Section 6, we discuss how to completely avoid the re-
labeling. The experimental results are reported in Section
7, and we conclude in Section 8.

2. Background and related work
2.1. Containment labeling scheme

Zhang et al [18] use a labeling scheme in which every
node is assigned three values: “start,end,level” (Figure 2).
For any two nodes u and v, u is an ancestor of v iff u.start
< v.start and v.end < u.end. In other words, the interval of
v is contained in the interval of u. Node u is a parent of
node v iff u is an ancestor of v and v.level – u.level = 1.

Although the containment scheme is efficient to
determine the ancestor-descendant (A-D) relationship, the
insertion of a node will lead to a re-labeling of all the
ancestor nodes of this inserted node and all the nodes after
this inserted node in document order (if we do not re-
label, not only can not the document order be maintained,
but also the containment scheme can not work correctly to
determine the A-D etc. relationships). This problem may
be alleviated if the interval size is increased with some
values unused [11]. However, large interval size wastes a
lot of numbers which causes the increase of storage, while
small interval size is easy to lead to re-labeling.

To solve the re-labeling problem, [2] uses Float-point
values for the “start”s and “end”s of the intervals. It seems
that Float-point solves the re-labeling problem [15]. But
in practice, Float-point is represented in a computer with a

fixed number of bits [2, 15]. As a result, at most 18 nodes
can be inserted at a fixed place [2] since [2] uses the
consecutive integer values at the initial labeling. Even if
[2] uses values with large gaps, it still can not avoid the
re-labeling due to the float-point precision. Thus using
real values instead of integers only provides limited
benefits for the label updating [15, 16].

2.2. Prefix labeling scheme

In the prefix labeling scheme, the label of a node is
that its parent’s label concatenates its own label
(self_label). For any two nodes u and v, u is an ancestor
of v iff label(u) is a prefix of label(v). Node u is a parent
of node v iff label(v) has no prefix when removing
label(u) from the left side of label(v).

DeweyID [15] (see Figure 3) labels the nth child of a
node with an integer n, and this n should be concatenated
to its parent’s label and the delimiter (e.g. “.”) to form the
complete label of this child node. In practice, DeweyID
uses UTF8 [17] encoding to process delimiters.

When a node is inserted, DeweyID needs to re-label
the sibling nodes after this inserted node and the
descendants of these siblings to maintain the document
order. [8] uses Binary String to label the XML tree, but it
has very large label sizes and can not avoid re-labelings.

OrdPath [13] is similar to DeweyID, but it only uses
the odd numbers at the initial labeling. When the XML
tree is updated, it uses the even number between two odd
numbers to concatenate another odd number. OrdPath
wastes half of the total numbers. The query performance
of OrdPath is worse than that of DeweyID since OrdPath
needs more time to decide the prefix levels based on the
even and odd numbers. Below is an example.

Example 2.1 Given three DeweyID labels “1”, “2” and
“3”, we know that they are siblings. But for OrdPath, its
labels are “1”, “3”, “5” etc.; when inserting a label
between “1” and “3”, it uses the even number between “1”
and “3” i.e. “2” to concatenate another odd number i.e.
“1” as the label of this inserted node, i.e. the inserted label
is “2.1”. In OrdPath, “2.1” is at the same level as “1”, 3”
etc., i.e. “2.1” is a sibling of “1” and “3”. This makes
OrdPath slow to determine the sibling, parent-child etc.
relationships in XML query processing. Therefore
OrdPath gets better update performance by decreasing the
query performance. That is not what we expect.

Figure 2. Containment scheme

1,18,1

2,3,2 4,9,2 10,11,2 12,17,2

5,6,3 7,8,3 13,14,3 15,16,3

Figure 3. Prefix scheme

1 2 3 4

2.1 2.2 4.1 4.2

2.3. Prime labeling scheme

Wu et al [16] use Prime numbers to label XML trees.
The root node is labeled with “1” (integer). Based on a
top-down approach, each node is given a unique prime
number (self_label) and the label of each node is the
product of its parent node’s label (parent_label) and its
own self_label. For any two nodes u and v, u is an
ancestor of v iff label(v) mod label(u) = 0. Node u is a
parent of node v iff label(v)/self_label(v) = label(u).

Prime uses the SC (Simultaneous Congruence) values
in Chinese Remainder Theorem [3, 16] to determine the
document order, i.e. SC mod self_label = document order
(the details can be found in [16]). When the document
order is changed, Prime only needs to re-calculate the SC
values instead of re-labeling, but the re-calculation is
much more time consuming.

2.4. Motivation

Although Prime supports order-sensitive updates
without re-labeling the existing nodes, it needs to re-
calculate the SC values based on the new ordering of
nodes. The re-calculation is very time consuming.

The main idea of other labeling schemes [2, 11]
(except Prime) is to leave some unused values for the
future insertions. When the unused values are used up
later, they have to re-label the existing nodes, i.e. they can
not avoid the re-labeling in XML updates.

Though OrdPath [13] is dynamic to some extent to
process the updates, it needs to use the addition and
division operations to calculate the even number between
two odd numbers (especially when many numbers are
deleted and the updates are frequent insertions), thus the
update cost of OrdPath is not so cheap.

In addition, the better update performance of OrdPath
does not come without a cost. It wastes half of the total
numbers which makes its label size larger, and it needs
more time to determine the prefix levels based on the even
and odd numbers in the XML query processing.

The method in [14] is used to balance the query and
update performance, but not to avoid re-labeling.

In this paper, we propose a novel Compact Dynamic
Binary String (CDBS) encoding. The size of our CDBS is
as small as the binary number encoding of consecutive
integer numbers. As we know, there is no gap between
two consecutive integer numbers; that means our CDBS is
the most compact and it need not leave unused values for
the future insertions. Yet our CDBS supports that CDBS
codes can be inserted between any two consecutive CDBS
codes. This is the most important benefit of our CDBS
over the previous approaches. In addition, our CDBS can
be applied broadly to different labeling schemes to
process updates.

3. Lexicographical order

The most important feature of our approach is that we
compare labels based on the lexicographical order rather
than the numerical order. In this section, we firstly
introduce the definition of lexicographical order for
binary strings and then propose an algorithm that can
always insert a binary string between two
lexicographically ordered binary strings. This algorithm is
the foundation of this paper which guarantees that we can
update the XML without re-labeling the existing nodes.

Definition 3.1 (Lexicographical order) Given two
binary strings SL and SR (SL represents the left binary
string and SR represents the right binary string), SL is said
to be lexicographically equal to SR iff they are exactly the
same. SL is said to be lexicographically smaller than SR
(SL SR) iff
(a) the lexicographical comparison of SL and SR is bit by

bit from left to right. If the current bit of SL is 0 and
the current bit of SR is 1, then SL SR and stop the
comparison, or

(b) SL is a prefix of SR.

Example 3.1 Given two binary strings “0011” and “01”,
“0011” “01” lexicographically because the comparison
is from left to right, and the 2nd bit of “0011” is “0”, while
the 2nd bit of “01” is “1”. Another example, “01”
“0101” because “01” is a prefix of “0101”.

Next based on Algorithm 1, Theorem 3.1 and Example

3.2, we illustrate how to insert a binary string SM (SM
represents the middle binary string) between two
lexicographically ordered binary strings SL and SR such
that SL SM SR lexicographically.

Theorem 3.1 Given any two binary strings SL and SR
which are both ended with “1” and SL SR, we can
always find a binary string SM based on Algorithm 1
such that SL SM SR lexicographically.

Due to space limitations, we omit the proofs of all the
lemmas, theorems and corollaries in this paper. All the
proofs can be found in a long version [9] of this paper.

Algorithm 1: AssignMiddleBinaryString(SL, SR)
Input: SL SR; SL and SR are both ended with “1”
Output SM such that SL SM SR lexicographically

Description:
 1: if size(SL) ≥ size(SR) then //Case (1)
 2: SM = SL ⊕ “1” // ⊕ means concatenation
 3: else if size(SL) < size(SR) then //Case (2)
 4: SM = SR with the last bit “1” changed to “01”
 5: end if
 6: return SM

Example 3.2 To insert a binary string between “0011”
and “01”, the size of “0011” is 4 which is larger than the
size 2 of “01”, therefore we directly concatenate one more
“1” after “0011” (see lines 1 and 2 in Algorithm 1). The
inserted binary string is “00111”, and “0011” “00111”
 “01” lexicographically. To insert a binary string
between “01” and “0101”, the size of “01” is 2 which is
smaller than the size 4 of “0101”, therefore we change the
last “1” of “0101” to “01”, i.e. the inserted binary string is
“01001” (see lines 3 and 4 in Algorithm 1). Obviously
“01” “01001” “0101” lexicographically.

Next we use an example to show why we require the

last bit of the binary string to be “1”.

Example 3.3 Suppose there are two binary strings “0” and
“00”. “0” “00” lexicographically because “0” is a
prefix of “00”, but we can not insert a binary string SM
between “0” and “00” such that “0” SM “00”. Hence
we require the binary strings to be ended with “1”.

Algorithm 1 is the foundation of this paper which can
help to process updates efficiently.

When the labeling scheme is a prefix scheme, based on
Theorem 3.1, we can insert one label between two labels
without re-labeling the existing nodes. When the labeling
scheme is a containment scheme, we may need to insert
the “start” and “end” two values at one place. The
following Corollary 3.3 guarantees that two labels can be
inserted between two labels without re-labeling.

Lemma 3.2 The SM returned by Algorithm 1 is ended
with “1”.

Corollary 3.3 Given any two binary strings SL and SR
which are both ended with “1” and SL SR, we can
always find two binary strings SM1 and SM2 such that SL
SM1 SM2 SR lexicographically.

Theorem 3.1 and Corollary 3.3 guarantee that we have

low update costs in XML updating.
Algorithm 1 proposed in this paper is dynamic and can

be applied to any two ordered binary strings (ended with
“1”) for insertions. On the other hand, to maintain the
high query performance, we should not increase the label
size when reducing the update cost (see Section 4).

4. A compact dynamic binary string encoding

In this section, we propose a Compact Dynamic Binary
String encoding, called CDBS. All the codes (binary
strings) of CDBS are ended with “1”. CDBS encoding is
as compact as the traditional binary number encoding of
consecutive integer numbers, and based on Algorithm 1,
CDBS supports updates efficiently.

Table 1. Binary and our CDBS encodings
Integer
number V-Binary V-CDBS F-Binary F-CDBS

1 1 00001 00001 00001
2 10 0001 00010 00010
3 11 001 00011 00100
4 100 0011 00100 00110
5 101 01 00101 01000
6 110 01001 00110 01001
7 111 0101 00111 01010
8 1000 011 01000 01100
9 1001 0111 01001 01110

10 1010 1 01010 10000
11 1011 10001 01011 10001
12 1100 1001 01100 10010
13 1101 101 01101 10100
14 1110 1011 01110 10110
15 1111 11 01111 11000
16 10000 1101 10000 11010
17 10001 111 10001 11100
18 10010 1111 10010 11110

Total
size

(bits)
64 64 90 90

We firstly use an example to illustrate how our CDBS

encodes a set of numbers, and use examples to simply
analyze the total size of the CDBS codes. Next the formal
encoding algorithm in Section 4.1 and the formal size
analysis in Section 4.2 will be easier to understand.

Table 1 shows the binary number encoding and our
CDBS encoding of 18 numbers. We choose 18 as an
example because the total “start” and “end” values in
Figure 2 are 18. In fact, CDBS can encode any number
(not only 18; see the formal algorithm in Section 4.1).

When encoding 18 integer numbers in binary, they are
shown in Column 2 (V-Binary Column) of Table 1 which
are with Variable lengths, called V-Binary.

Column 3 (V-CDBS Column) of Table 1 shows our
CDBS, called V-CDBS because its codes are also with
Variable lengths. The following steps show the details of
how to get our V-CDBS codes (binary strings).

Step 1: In the encoding of the 18 numbers, we suppose
there is one more number before number 1, say number 0,
and one more number after number 18, say number 19.

Step 2: We firstly encode the middle number with binary
string “1”. The middle number is 10 where 10 is
calculated in this way, 10 = round(0+(19–0)/2). The V-
CDBS code of number 10 is “1” (see Table 1).

Step 3: Next we encode the middle number between 0
and 10, and between 10 and 19. The middle number
between 0 and 10 is 5 (5=round(0+(10-0)/2)) and the
middle number between 10 and 19 is 15
(15=round(10+(19-10)/2)).

Step 4: To encode number 5, the code size of number 0 is
0 (the V-CDBS code of number 0 corresponding to SL in
Algorithm 1 is empty now), and the code size of number
10 is 1 (the V-CDBS code of number 10 corresponding to
SR in Algorithm 1 is “1” now with size 1 bit). This is Case
(2) where size(SL) < size(SR) (see Algorithm 1). Thus
based on lines 3 and 4 in Algorithm 1, the V-CDBS code
of the number 5 is “01” (“1”→ “01”).

Step 5: To encode number 15, the 10th code (SL) is “1”
now with size 1 bit, and the 19th code (SR) is empty now
with size 0 bit. This is Case (1) where size(SL) ≥ size(SR)
(see Algorithm 1). Therefore based on lines 1 and 2 in
Algorithm 1, the V-CDBS code of the number 15 is “11”
(“1”⊕ “1”→ “11”).

Step 6: Next we encode the middle numbers between 0
and 5, between 5 and 10, between 10 and 15, and between
15 and 19, which are the numbers 3, 8, 13 and 17
respectively. The encodings of these numbers are still
based on Case (1) or Case (2).

In this way, all the numbers except 0 will be encoded
because the round function will reach the larger value
(divided by 2), and we need to discard the V-CDBS code
for number 19 since number 19 does not exist actually.

Also we can encode the integer numbers 1-18 with
Fixed length binary numbers, called F-Binary (F-Binary
Column of Table 1). Since 18 needs 5 bits to store, zero
or more “0”s should be added before each code of V-
Binary. On the other hand, when representing our CDBS
using Fixed length, called F-CDBS, we concatenate “0”s
after the V-CDBS codes (F-CDBS Column of Table 1).

Example 4.1 It can be seen from Table 1 that V-Binary
has one code “1” with size 1 bit, two codes “10” and “11”
with sizes 2 bits, four codes “100”, “101”, “110” and
“111” with sizes 3 bits, etc., and the total size of V-Binary
is 64 bits. Also we can see that our V-CDBS has one code
“1” with size 1 bit, two codes “01” and “11” with sizes 2
bits, four codes “001”, “011”, “101” and “111” with sizes
3 bits, etc., and the total size of our V-CDBS is also 64
bits. This means that our V-CDBS is as compact as the
traditional binary number encoding of consecutive integer
numbers. Note that there are no gaps between two
consecutive integer numbers, hence our V-CDBS is the
most compact. It is similar for F-Binary and our F-CDBS.

Example 4.2 Table 1 shows that V-Binary has smaller
total code size than F-Binary. However, we also need to
store the size of each V-Binary code, the maximal size for
a code is 5, e.g. the size of “10010” is 5. We need to store
this 5 using fixed length of bits (“101”; 3 bits). The sizes
of other codes should also be stored using fixed length of
bits (3 bits), therefore the total code size for V-Binary is
3× 18+64=118 bits which is larger than the bits required
by F-Binary. It is similar for our V-CDBS and F-CDBS.

4.1. Encoding algorithm

Because F-CDBS is that some “0”s are concatenated
after the V-CDBS codes, we focus on V-CDBS to
introduce the algorithm.

Algorithm 2 is the V-CDBS encoding algorithm. We
use the SubEncoding procedure to get all the codes of the
numbers (except 0).

SubEncoding is a recursive procudure, the input of
which is an array codeArr, the left position “PL” and the
right position “PR” in the array codeArr. This procedure
assigns codeArr[PM] (corresponding to SM in Algorithm 1)
using the AssignMiddleBinaryString algorithm
(Algorithm 1), then it uses the new left and right positions
to call the SubEncoding procedure itself, until each
(except the 0th) element of the array codeArr has a value.

Note that SL and SR in the input of Algorithm 1 can be
empty when Algorithm 1 is called by SubEncoding here.
If SL and SR are both empty, their sizes are both equal to 0,
and SM is “1” based on lines 1 and 2 in Algorithm 1. If SL
is empty and SR is not empty, size(SL) < size(SR), and we
process SM based on lines 3 and 4 in Algorithm 1; SM
SR after insertion. If SL is not empty and SR is empty,
size(SL) > size(SR), and we process SM based on lines 1
and 2 in Algorithm 1; SL SM after insertion.

Theorem 4.1 Given a number N, Algorithm 2 can encode
all the numbers from 1 to N with our V-CDBS codes.

Lemma 4.2 All the V-CDBS codes are ended with “1”.

Theorem 4.3 All the V-CDBS codes are lexicographically
ordered.

Example 4.3 The V-CDBS codes in Table 1 are
lexicographically ordered from top to bottom.

Algorithm 2: Encoding (N)
Input: A positive integer N
Output: The V-CDBS codes for numbers 1 to N

Description:
 1: suppose there is one more number before the first
 number, called number 0, and one more number after the
 last number, called number (N+1)
 2: SubEncoding(codeArr, 1, N)
 //here codeArr is an array with size (N+2)
 3: discard the 0th and (N+1)th elements of the codeArr

Procedure SubEncoding (codeArr, PL, PR)
/*SubEncoding is a recursive procedure; codeArr is an array,
PL is the left position, and PR is the right position*/
 1: PM = round((PL+PR)/2)
 2: if PL+1<PR then
 3: codeArr[PM]=
 assignMiddleBinaryString(codeArr[PL], codeArr[PR])
 4: SubEncoding(codeArr, PL, PM)
 5: SubEncoding(codeArr, PM, PR)
 6: end if

Lemma 4.2 and Theorem 4.3 guarantee that the
conditions in Theorem 3.1 and Corollary 3.3 are satisfied,
therefore we can insert without re-labeling in updates
based on CDBS.

4.2. Size analysis

The size in this paper refers to bits and the log in this
paper is used as the logarithm to base 2.

V-Binary For V-Binary, one number is stored with one
bit (“1”; see Table 1), two numbers are stored with two
bits (“10” and “11”), four numbers are stored with three
bits (“100”, “101”, “110” and “111”), ···, therefore the
total size of V-Binary is

)1(242322211 32 +×+⋅⋅⋅+×+×+×+× nn
12 1 +×= +nn (1)

Suppose the total number of codes is N, which should
be equal to 12222 110 −=+⋅⋅⋅++ +nn . Thus formula (1)
becomes to

)1log()1log(++−+ NNNN (2)

V-CDBS When considering our V-CDBS, it has one
number stored with one bit (“1”), two numbers stored
with two bits (“01” and “11”), four numbers stored with
three bits (“001”, “011”, “101” and “111”), ···, therefore
our V-CDBS has the same total code size as V-Binary.

In addition, since V-Binary and our V-CDBS are with
variable length, we need to store the size of each code. A
fixed-length number of bits are used to store the size of
each code. The maximal size for a code is)log(N . To
store this size, the bits required are))log(log(N , and the
total bits required to store the sizes of all the variable
codes are))log(log(NN . When taking formula (2) into
account, the total sizes of V-Binary and our V-CDBS are
both

)1log())log(log()1log(++−++ NNNNNN (3)

F-Binary To store N numbers with fixed lengths, the size
required is

)log(NN (4)

The size of the F-Binary code also needs to be stored,
but needs to be stored only once, which needs size

))log(log(N . Therefore the total size for F-Binary is

))log(log()log(NNN + (5)

F-CDBS has the same total code size as formula (5).

Note that for simplicity, we omit the ceiling functions
on the log functions in all the formulas.

Theorem 4.4 V-CDBS and F-CDBS are the most
compact variable and fixed length binary string
encodings which support updates efficiently.

5. Applying CDBS to different labeling
schemes for update processing

In this section, we mainly illustrate how our V-CDBS
can be applied to different labeling schemes. F-CDBS is
similar since it is that some zeros are concatenated after
the V-CDBS codes.

5.1. Applications of CDBS

We firstly describe a property which is the second
foundation of this paper (the first one is Theorem 3.1).

Property 5.1 Our V-CDBS (F-CDBS) is orthogonal to
specific labeling schemes, thus it can be applied broadly
to different labeling schemes or other applications which
need to maintain the order in updates.

When we replace the “start” and “end” values 1-18 of
the containment scheme [18] in Figure 2 (similar for other
containment schemes [1, 7, 11]) with our V-CDBS codes
in Table 1 and based on the lexicographical comparison, a
V-CDBS based containment labeling scheme is formed,
called V-CDBS-Containment.

Similarly, we can replace the integer numbers (see
Figure 3) in the prefix labeling scheme [15] with our V-
CDBS codes, then a V-CDBS based prefix labeling
scheme is formed, called V-CDBS-Prefix. We use the
following example to show V-CDBS-Prefix.

Example 5.1 From Figure 3, we can see that the root has
4 children. To encode 4 numbers based on Algorithm 2,
the V-CDBS codes will be “001”, “01”, “1” and “11”.
Similarly if there are two siblings, their self_labels are
“01” and “1”. Figure 4 shows V-CDBS-Prefix.

Similarly we can apply our V-CDBS to the prime
labeling scheme to record the document order. But
because Prime employs the modular and division
operations to determine the ancestor-descendant etc.
relationships, its query efficiency is quite bad (see Section
7 for the experimental results). Therefore we do not
discuss in detail how our V-CDBS is applied to Prime.

Till now, the question will be asked that our V-CDBS
only has the orders but does not have the exact position of
each code, which is a deficiency when compared to the V-
Binary codes. For example, from a V-Binary code “110”,
we can immediately know that “110” corresponds to the
integer number 6. However, if we delete the V-Binary

 Figure 4. V-CDBS-Prefix scheme

001 01 1 11

01.01 01.1 11.01 11.1

codes “100” and “101”, “110” is now not the 6th number
but the 4th number in order. In this paper, we focus on the
dynamic XML in which there are a lot of deletions and
insertions, therefore V-Binary does NOT have merits over
our V-CDBS in processing the nth position label.

In addition, it is not to say that our V-CDBS can not
immediately get the exact position in the static
environment. Based on an inverse processing of
Algorithm 2, we can get the exact position of each V-
CDBS code by calculations only. However, the static
XML is not an emphasis of this paper, thus we do not
show the details on calculating the V-CDBS positions.

5.2. Processing of updates

5.2.1. Updates based on V-CDBS-Prefix and V-CDBS-
Containment. The deletion of a node will not affect the
relative orders of the nodes in the XML. Hence we mainly
discuss how to process the insertions based on V-CDBS.

If we want to insert a sibling node before “01.01” in
Figure 4, the self_label of the inserted node is “001” (see
lines 3 and 4 in Algorithm 1; complete label is “01.001”).
Theorem 3.1 guarantees that we need not re-label the
existing nodes but we can keep the orders. The insertions
at other places also need not re-label the existing nodes.

Similarly if we insert a sibling node before “5,6,3” in
Figure 2, we should insert two values (“start” and “end”)
between the start of “4,9,2” i.e. “4” and the start of
“5,6,3” i.e. “5”. The existing schemes can not insert a
number between “4” and “5”, but our V-CDBS codes for
“4” and “5” are “0011” and “01” (see Table 1), and
Corollary 3.3 guarantees that we can insert two binary
strings between “0011” and “01” with the orders kept.
The inserted two binary strings can be either “00111” and
“001111”, or “001101” and “00111” (see Algorithm 1).
That means we need not re-label the existing nodes, but
we can keep the containment scheme working correctly.

After insertion, we can further insert other nodes.

5.2.2. Frequent updates. The size analysis in Section 4.2
is based on the initial encoding. Algorithm 2 shows that
our encoding algorithm is step by step insertions of nodes
evenly at different places. Therefore if a sequence of
nodes are inserted randomly at different places of the
XML, the size analysis in Section 4.2 is still valid, and the
query performance will not be decreased.

For the case that nodes are always inserted at a fixed
place (skewed insertion) of the XML, the size of our V-
CDBS increases fast. [8] proves that any deterministic
labeling scheme which does not re-label nodes must in the
worst case assign one label with size O(N). Our V-CDBS
can not escape from this claim also, i.e. O(N) is the upper
bound of the size of each V-CDBS code. OrdPath [13]
also has this skewed insertion problem.

6. Completely avoid re-labeling

CDBS proposed in Section 4 still can not completely
avoid re-labelings in XML updates. Here is an example.

Example 6.1 The size field of each V-CDBS code is
stored with fixed length (e.g. 3; see Example 4.2). If many
nodes are inserted into the XML tree, the size of the
length field (e.g. 3) is not enough for the new labels, then
we have to re-label all the existing nodes. Even if we
increase the size of the length field (e.g. 3) to a larger
number, it still can not completely avoid the re-labeling,
and it will waste the storage space. This is called the
overflow problem in this paper. Similarly F-CDBS and
OrdPath [13] (when separating different labels based on
sizes, e.g. separate “1.1” and “1.3”) will encounter the
overflow problem also.

To completely avoid the re-labeling, we use the
quaternary encoding approach in [10], called QED. In
QED, four quaternary numbers “0”, “1”, “2” and “3” are
used, and each quaternary number is stored with 2 bits,
i.e. “00”, “01”, “10” and “11”. Only “1”, “2” and “3” will
appear in the QED code itself; we use “0” as the separator
to separate different codes, and “0” will never encounter
the overflow problem, thus QED can completely avoid the
re-labeling in updates. The details of QED can be found
in [10].

On the other hand, though QED can completely avoid
the re-labeling, it is not the most compact, i.e. its size is
larger than the size of V-CDBS, and its update cost is
larger than V-CDBS, i.e. it needs to modify the last 2 bits
of the neighbor label, while V-CDBS only needs to
modify the last 1 bit.

7. Experimental evaluation

7.1. Experimental setup

7.1.1. Test bed and datasets. We evaluate and compare
the performance of different labeling schemes. The
scheme names containing a “CDBS” or “QED” are all our
schemes; all the others are prior schemes. The schemes
with a “-Prefix” at the end of the scheme names are prefix
schemes, and with a “-Containment” at the end of the
scheme names are containment schemes.

All the schemes are implemented in Java and all the
experiments are carried out on a 3.0 GHz Pentium 4
processor with 1 GB RAM running Windows XP
Professional.

Table 2 shows the characteristics of the test datasets.
D1 to D6 are all real-world XML data from [12]. We
choose these datasets because they have different
characteristics, i.e. their file number, fan-out, depth, and
total number of nodes are quite different.

Table 2. Test datasets

Datasets Topics # of files Max/average fan-
out for a file

Max/average
depth for a file

Total # of nodes
for each dataset

D1 Movie 490 14/6 5/5 26044
D2 Department 19 233/81 4/4 48542
D3 Actor 480 37/11 5/5 56769
D4 Company 24 529/135 5/3 161576
D5 Shakespeare’s play 37 434/48 6/5 179689
D6 NASA 1882 1188/9 7/5 370292

7.1.2. Overview of experiments. In Section 7.2, we test
how our CDBS (V-CDBS and F-CDBS) works on the
static XML data which shows that our CDBS does not
work worse even in the static environment of XML. When
nodes are intermittently inserted into the XML, in Section
7.3 we show that our CDBS works much better (11 times)
compared to the existing labeling schemes except OrdPath
and Float-point. Though it seems that OrdPath and Float-
point also work well in intermittent insertions, in Section
7.4 we illustrate that our approach is much better (more
than 300 times) to process the frequent updates than
OrdPath and Float-Point.

7.2. Performance study on static XML

We compare the label size and query performance of
different labeling schemes.

7.2.1. Label size. Figure 5 shows the label sizes of
different labeling schemes on datasets D1-D6.

Prime has very large label size because it skips a lot of
numbers to get the prime numbers and it uses the product
of the parent label and the self label as the label of a node,
which both make its label size very large.

For the prefix schemes, our CDBS can be encoded
with the UTF8 [17] encoding or the OrdPath [13]
encoding to process the delimiters. If we use UTF8 to
process the delimiters, our CDBS(UTF8)-Prefix has the
same label size as DeweyID(UTF8)-Prefix. If we use
OrdPath encodings to process the delimiters, our
CDBS(OrdPath)-Prefix has smaller label size than
OrdPath-Prefix because we do not waste the even
numbers. Since the UTF8 and OrdPath encodings are
existing techniques, we do not compare the UTF8 or
OrdPath encoding of our CDBS, DeweyID and OrdPath
prefix schemes. In [10], we propose the QED encoding.
The “0” in QED can be used as the delimiters. Our QED-
Prefix has smaller label size than the prefix schemes
DeweyID(UTF8)-Prefix [15, 17] and Binary-String-Prefix
[8]. In later comparisons, we only compare the prefix
schemes OrdPath-Prefix [13] and our QED-Prefix
because they are dynamic. OrdPath-Prefix has two kinds
of codes (see [13] for the details), which are represented

0

10

20

30

40

50

D1 D2 D3 D4 D5 D6
Datasets

To
ta

l l
ab

el
 s

iz
e

fo
r e

ac
h

da
ta

se
t

(1
,0

00
,0

00
 b

its
)

Prime

OrdPath1-Pref ix

OrdPath2-Pref ix

QED-Pref ix

Float-point-Containment

V-Binary-Containment

F-Binary-Containment

V-CDBS-Containment

F-CDBS-Contianment

QED-Contianment

Figure 5. Label sizes of different labeling
schemes on D1-D6

with names OrdPath1-Prefix and OrdPath2-Prefix. Figure
5 shows that our QED-Prefix has smaller label size than
OrdPath1-Prefix and OrdPath2-Prefix.

For the containment schemes, Float-point-Containment
has larger label size than other containment schemes. Our
V-CDBS-Containment has the same label size as V-
Binary-Containment, and our F-CDBS-Containment has
the same label size as F-Binary-Containment; these results
indicate that our V-CDBS and F-CDBS encodings are the
most compact variable and fixed length dynamic
encodings. The label size of QED-Containment is larger
than the label size of V-CDBS-Containment.

7.2.2. Query performance. As described in [15], we
scaled up (replicated) D5 10 times to test the queries.
Table 3 shows the ordered and un-ordered queries (Q1-
Q6) and the number of nodes retrieved.

Figure 6 shows the response time (seconds) of queries
Q1-Q6.

Prime has very large response time because it has very
large label size and it employs the modular and division
operations to determine the ancestor-descendant etc.
relationships which are very expensive.

OrdPath1-Prefix and OrdPath2-Prefix have worse
query performance than our QED-Prefix because their
label sizes are larger and it is slow for them to decode the
OrdPath1 and OrdPath2 codes and slow to separate the
prefix levels (see [13] for the details).

Table 3. Test queries on the scaled D5

Queries # of nodes
Retrieved

Q1 /play/act[4] 370

Q2 /play//personae[./title]/pgroup[.//grpdescr]/pers
ona 2690

Q3 /play/personae/persona[12]/preceding-sibling::* 4240
Q4 //act[2]/following::speaker 184060
Q5 //act/scene/speech 309330
Q6 /play/*//line 1078330

5228 9055

0

5

10

15

20

Q1 Q2 Q3 Q4 Q5 Q6

Queries

Re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Prime

OrdPath1-Pref ix

OrdPath2-Pref ix

QED-Pref ix

Float-point-Containment

V-Binary-Containment

F-Binary-Containment

V-CDBS-Containment

F-CDBS-Containment

QED-Containment

Figure 6. Response time of queries Q1-Q6

Float-point-Containment has much larger response

time due to its larger label size. Our CDBS-Containment
(“V-” and “F-”) has smaller response time than Binary-
Containment (“V-” and “F-”) because our encodings can
directly compare labels from left to right no matter the
labels have variable lengths or fixed lengths. The response
time of QED-Containment is larger than that of V-CDBS-
Containment.

7.3. Performance study on intermittent updates

Same as [16], we select one XML file Hamlet in D5 to
test the update performance (it is similar for other XML
files). Hamlet has 5 act elements. We test the following 5
cases (see Table 4 and Figure 7): inserting an act element
before act[1], inserting an act element before act[2], ···,
and inserting an act element before act[5].

Table 4 shows the number of nodes for re-labeling
when applying different labeling schemes. V-Binary-
Containment and F-Binary-Containment need to re-label
many nodes in the 5 cases. Note that the Hamlet file has
totally 6636 nodes. Though V-Binary-Containment and F-
Binary-Containment are the most compact, they need to
re-label the existing nodes at each time when a node is
inserted into the XML.

For Prime, the number of SC values that are required
to re-calculate is counted in Table 4. Because Prime uses
each SC value for every five nodes [16], the number of
SC values required to re-calculate is 1/5 of the number of
nodes required by V-Binary-Containment and F-Binary-

Containment to re-label. Note that it is impossible to use a
single SC value for all the nodes in the XML since the SC
value will be too large a number.

In the five cases, OrdPath-Prefix (OrdPath1-Prefix and
OrdPath2-Prefix; without overflow here), our QED-
Prefix, Float-point-Containment (less than 18 nodes at a
fixed place), our CDBS-Containment (“V-” and “F-”;
without overflow here), and our QED-Containment need
not re-label any existing nodes. Our V-CDBS-
Containment and F-CDBS-Containment are the most
compact, yet they need not re-label the existing nodes in
intermittent updates.

Next we study the total time (processing time + I/O
time) for updates. Figure 7 shows the LOG2 of the total
update time (ms) (Y-axis) of different labeling schemes.
The total time required by Prime to re-calculate the SC
values is much larger (at least 191 times) than the time
required by Binary-Containment (“V-” and “F-”) to re-
label the nodes. Prime theoretically is a good scheme for
updates, but it is not practicable. In contrast, the total
update time of OrdPath-Prefix, our QED-Prefix, Float-
point-Containment, our CDBS-Containment (“V-”, “F-”),
and our QED-Containment is less than 1/5 of the total
update time of Binary-Containment. Note that the update
time of our CDBS-Containment, QED-Containment, and
QED-Prefix is only 1/11 of the update time of Binary-
Containment.

Table 4. Number of nodes to re-label in updates

Number of nodes to re-label (5 cases) Labeling schemes 1 2 3 4 5
Prime 1320 1025 787 487 261

OrdPath1-Prefix 0 0 0 0 0
OrdPath2-Prefix 0 0 0 0 0

QED-Prefix 0 0 0 0 0
Float-point-Containment 0 0 0 0 0
V-Binary-Containment 6596 5121 3932 2431 1300
F-Binary-Containment 6596 5121 3932 2431 1300
V-CDBS-Containment 0 0 0 0 0
F-CDBS-Containment 0 0 0 0 0

QED-Containment 0 0 0 0 0

4

8

12

16

20

1 2 3 4 5

Cases

Lo
g2

(T
ot

al
 u

pd
at

e
tim

e
(m

s)
) Prime

OrdPath1-Prefix

OrdPath2-Prefix

QED-Pref ix

Float-point-Containment

V-Binary-Containment

F-Binary-Containment

V-CDBS-Containment

F-CDBS-Containment

QED-Containment

Figure 7. Total time for updates

Figure 7 shows that the update time differences among
OrdPath, Float-point and our approaches are not very
large (2 times only). This is because the update time of
OrdPath, Float-point and our approaches is mainly the I/O
time in intermittent updates. When considering the
processing time only, our approaches are much better
because we only needs to modify the last 1 or 2 bits of the
neighbor label which is much cheaper. Section 7.4
illustrates the update time differences among OrdPath,
Float-point and our approaches.

7.4. Performance study on frequent updates

When nodes are intermittently inserted into the XML,
Prime and Binary-Containment (“V-” and “F-”) have
much larger update time, thus it will be a disaster for them
to execute the frequent and tiny insertions, which makes
them impossible to answer any queries in the frequent
insertion environment.

In [10], we show that our QED works much better than
(more than 300 times) OrdPath-Prefix and Float-point-
Containment to process frequent updates.

Compared with QED [10] which needs to modify the
last 2 bits of the neighbor label to get the inserted label,
our V-CDBS only needs to modify the last 1 bit which is
cheaper. If the frequent updates happen uniformly at
different places of the XML data, it is not easy to lead our
V-CDBS to re-labeling. Thus our V-CDBS works better
to process the uniformly frequent insertions than QED
because its label size and update cost are smaller.

On the other hand, if the insertions are always at a
fixed place, it is easy to lead our V-CDBS to re-labeling
due to the overflow problem. Therefore it is better to use
our QED in [10] to process the updates if the insertions
are always at a fixed place, i.e. skewed insertions, because
our QED can completely avoid the re-labeling.

8. Conclusion and future work

In this paper, we have proposed a novel dynamic
binary string encoding which is orthogonal to specific
labeling schemes, thus it can be applied broadly to
different labeling schemes or other applications to
efficiently maintain the orders in updates.

Our CDBS (“V-” and “F-”) is as compact as the most
compact binary (“V-” and “F-”) number encoding, thus it
will not decrease the query performance, yet our CDBS
supports intermittent and uniformly frequent updates
efficiently. Our V-CDBS only needs to modify the last 1
bit of the neighbor label to get the inserted label which is
the cheapest approach compared to all the other existing
approaches.

We will further discuss how to efficiently process the
skewed insertion problem in the future.

References

[1] R. Agrawal, A. Borgida, and H. V. Jagadish.

Efficient Management of Transitive Relationships in
Large Data and Knowledge Bases. In Proc. of ACM
SIGMOD, pp253-262, 1989.

[2] T. Amagasa, M. Yoshikawa, and S. Uemura. QRS: A
Robust Numbering Scheme for XML Documents. In
Proc. of ICDE, pp705-707, 2003.

[3] J. A. Anderson and J. M. Bell. Number Theory with
Application, Prentice-Hall, New Jersey, 1997.

[4] A. Berglund et al. XML path language (XPath) 2.0.
W3C working draft 04, 2005.

[5] S. Boag et al. XQuery 1.0. W3C working draft 04,
2005.

[6] T. Bray et al. Extensible markup language (XML) 1.0
third edition W3C recommendation, 2000.

[7] V. Christophides et al. On labeling schemes for the
semantic web. In Proc. of WWW, pp544-555, 2003.

[8] E. Cohen, H. Kaplan, and T. Milo. Labeling Dynamic
XML Trees. In Proc. of PODS, pp271-281, 2002.

[9] C. Li. Querying and Updating XML Data Based on
Labeling Schemes. Ph.D Thesis of National
University of Singapore. 2005.

[10] C. Li and T. W. Ling. QED: A Novel Quaternary
Encoding to Completely Avoid Re-labeling in XML
Updates. In Proc. of CIKM, pp501-508, 2005.

[11] Q. Li and B. Moon. Indexing and Querying XML
Data for Regular Path Expressions. In Proc. of
VLDB, pp361-370, 2001.

[12] NIAGARA Experimental Data. Available at:
http://www.cs.wisc.edu/niagara/data.html

[13] P. E. O'Neil et al. ORDPATHs: Insert-Friendly XML
Node Labels. In Proc. of ACM SIGMOD, pp903-908,
2004.

[14] A. Silberstein, H. He, K. Yi, and J. Yang. BOXes:
Efficient Maintenance of Order-Based Labeling for
Dynamic XML Data. In Proc. of ICDE, pp285-296,
2005.

[15] I. Tatarinov et al. Storing and querying ordered XML
using a relational database system. In Proc. of ACM
SIGMOD, pp204-215, 2002.

[16] X. Wu, M. L. Lee, and W. Hsu. A Prime Number
Labeling Scheme for Dynamic Ordered XML Trees.
In Proc. of ICDE, pp66-78, 2004.

[17] F. Yergeau, UTF-8, A Transformation Format of ISO
10646. Request for Comments (RFC) 2279, January
1998.

[18] C. Zhang et al. On Supporting Containment Queries
in Relational Database Management Systems. In
Proc. of ACM SIGMOD, pp425-436, 2001.

