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Abstract 
 

It is important to process the updates when nodes are 
inserted into or deleted from the XML tree. All the 
existing labeling schemes have high update cost, thus in 
this paper we propose a novel Compact Dynamic Binary 
String (CDBS) encoding to efficiently process the 
updates. CDBS has two important properties which form 
the foundations of this paper: (1) CDBS supports that 
codes can be inserted between any two consecutive CDBS 
codes with the orders kept and without re-encoding the 
existing codes; (2) CDBS is orthogonal to specific 
labeling schemes, thus it can be applied broadly to 
different labeling schemes or other applications to 
efficiently process the updates. We report our 
experimental results to show that our CDBS is superior to 
previous approaches to process updates in terms of the 
number of nodes to re-label and the time for updating. 
 
1. Introduction 
 

With the rapidly increasing popularity of XML [6] for 
data representation and exchange, there is a lot of interest 
in query processing over data that conforms to an ordered 
tree-structured data model. With the tree model, data 
objects, e.g. elements, attributes, text data, etc., are 
modeled as the nodes of a tree, and relationships are 
modeled as the edges to connect the nodes of the tree. 
Figure 1 shows an ordered XML tree. 

XPath [4] and XQuery [5] are two main XML query 
languages that express the structure of XML documents as 
linear paths or twig patterns. For example, the XPath 
query: 

     /book[/title]//section[2]/preceding-sibling::section 

 

 

finds all the section nodes that are siblings of section[2] 
and these section sibling nodes should be before 
section[2] (“preceding-sibling”). Meanwhile, section[2] 
should be a descendant of book (“//”). In addition, book 
should satisfy the restriction that it has a child title (“/”). 

No matter the query is a linear path or a twig pattern, 
the core operation is to efficiently determine the ancestor-
descendant, parent-child, sibling and ordering 
relationships. To facilitate the determination of these 
relationships, several labeling (numbering) schemes, e.g. 
containment [1, 11, 18], prefix [8, 13, 15] and prime [16], 
have been proposed. Based on the labels only, the 
ancestor-descendant and parent-child relationships can be 
fast determined. 

If the XML is static, the existing labeling schemes can 
efficiently process different queries. However if the XML 
is dynamic, how to efficiently update the labels of the 
labeling schemes becomes to an important research topic. 

As we know, the elements in the XML are intrinsically 
ordered, which is referred to as document order, i.e. the 
element sequence in the XML document. The relative 
order of two paragraphs in the XML is important because 
the order may influence the semantics, thus the standard 
XML query languages (e.g. XPath [4] and XQuery [5]) 
require the output of queries to be in document order by 
default. Hence it is very important to maintain the 
document order when the XML is updated. 

Some researches [2, 8, 13, 14, 15, 16] have been done 
to maintain the document order in XML updating. 
However the update costs of these approaches are still 
expensive. Therefore in this paper we focus on how to 
dramatically decrease the update cost. 

The main contributions of this paper include: 
• We propose a novel Compact Dynamic Binary String 

(CDBS) encoding, which supports that CDBS codes 
can be inserted between any two consecutive CDBS 
codes with the orders kept and without re-encoding the 
existing codes. 

• CDBS is orthogonal to specific labeling schemes, thus 
it can be applied broadly to different labeling schemes 
to avoid the re-labeling in XML updates. 

• We design algorithms to implement our CDBS and 
formally analyze the total code size of our CDBS, Figure 1. An ordered XML tree 

book 

title author chapter chapter 

first_name last_name section section 



 

which shows that our CDBS encoding is a very 
compact encoding, yet it efficiently supports updates. 

• We conduct comprehensive experiments to 
demonstrate the benefits of our CDBS over the 
previous approaches to process updates. 

The rest of the paper is organized as follows. Section 2 
reviews the related work. In Section 3, we illustrate that 
the most important feature of this paper is that we 
compare labels based on the lexicographical order; an 
algorithm that can insert a binary string between two 
binary strings with the lexicographical orders kept is also 
proposed in this section which is the first foundation of 
this paper. We propose our Compact Dynamic Binary 
String (CDBS) encoding in Section 4. In Section 5, we 
indicate that our CDBS encoding can be applied broadly 
(the second foundation) to different labeling schemes, and 
show how our CDBS processes the XML updates. In 
Section 6, we discuss how to completely avoid the re-
labeling. The experimental results are reported in Section 
7, and we conclude in Section 8. 
 
2. Background and related work 
2.1. Containment labeling scheme 
 

Zhang et al [18] use a labeling scheme in which every 
node is assigned three values: “start,end,level” (Figure 2). 
For any two nodes u and v, u is an ancestor of v iff u.start 
< v.start and v.end < u.end. In other words, the interval of 
v is contained in the interval of u. Node u is a parent of 
node v iff u is an ancestor of v and v.level – u.level = 1. 

Although the containment scheme is efficient to 
determine the ancestor-descendant (A-D) relationship, the 
insertion of a node will lead to a re-labeling of all the 
ancestor nodes of this inserted node and all the nodes after 
this inserted node in document order (if we do not re-
label, not only can not the document order be maintained, 
but also the containment scheme can not work correctly to 
determine the A-D etc. relationships). This problem may 
be alleviated if the interval size is increased with some 
values unused [11]. However, large interval size wastes a 
lot of numbers which causes the increase of storage, while 
small interval size is easy to lead to re-labeling. 

To solve the re-labeling problem, [2] uses Float-point 
values for the “start”s and “end”s of the intervals. It seems 
that Float-point solves the re-labeling problem [15]. But 
in practice, Float-point is represented in a computer with a 

 

 

fixed number of bits [2, 15]. As a result, at most 18 nodes 
can be inserted at a fixed place [2] since [2] uses the 
consecutive integer values at the initial labeling. Even if 
[2] uses values with large gaps, it still can not avoid the 
re-labeling due to the float-point precision. Thus using 
real values instead of integers only provides limited 
benefits for the label updating [15, 16]. 
 
2.2. Prefix labeling scheme 
 

In the prefix labeling scheme, the label of a node is 
that its parent’s label concatenates its own label 
(self_label). For any two nodes u and v, u is an ancestor 
of v iff label(u) is a prefix of label(v). Node u is a parent 
of node v iff label(v) has no prefix when removing 
label(u) from the left side of label(v). 

DeweyID [15] (see Figure 3) labels the nth child of a 
node with an integer n, and this n should be concatenated 
to its parent’s label and the delimiter (e.g. “.”) to form the 
complete label of this child node. In practice, DeweyID 
uses UTF8 [17] encoding to process delimiters. 

When a node is inserted, DeweyID needs to re-label 
the sibling nodes after this inserted node and the 
descendants of these siblings to maintain the document 
order. [8] uses Binary String to label the XML tree, but it 
has very large label sizes and can not avoid re-labelings. 

OrdPath [13] is similar to DeweyID, but it only uses 
the odd numbers at the initial labeling. When the XML 
tree is updated, it uses the even number between two odd 
numbers to concatenate another odd number. OrdPath 
wastes half of the total numbers. The query performance 
of OrdPath is worse than that of DeweyID since OrdPath 
needs more time to decide the prefix levels based on the 
even and odd numbers. Below is an example. 

 
Example 2.1 Given three DeweyID labels “1”, “2” and 
“3”, we know that they are siblings. But for OrdPath, its 
labels are “1”, “3”, “5” etc.; when inserting a label 
between “1” and “3”, it uses the even number between “1” 
and “3” i.e. “2” to concatenate another odd number i.e. 
“1” as the label of this inserted node, i.e. the inserted label 
is “2.1”. In OrdPath, “2.1” is at the same level as “1”, 3” 
etc., i.e. “2.1” is a sibling of “1” and “3”. This makes 
OrdPath slow to determine the sibling, parent-child etc. 
relationships in XML query processing. Therefore 
OrdPath gets better update performance by decreasing the 
query performance. That is not what we expect. 
 

 
Figure 2. Containment scheme 
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Figure 3. Prefix scheme 
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2.3. Prime labeling scheme 
 

Wu et al [16] use Prime numbers to label XML trees. 
The root node is labeled with “1” (integer). Based on a 
top-down approach, each node is given a unique prime 
number (self_label) and the label of each node is the 
product of its parent node’s label (parent_label) and its 
own self_label. For any two nodes u and v, u is an 
ancestor of v iff label(v) mod label(u) = 0. Node u is a 
parent of node v iff label(v)/self_label(v) = label(u). 

Prime uses the SC (Simultaneous Congruence) values 
in Chinese Remainder Theorem [3, 16] to determine the 
document order, i.e. SC mod self_label = document order 
(the details can be found in [16]). When the document 
order is changed, Prime only needs to re-calculate the SC 
values instead of re-labeling, but the re-calculation is 
much more time consuming. 
 
2.4. Motivation 
 

Although Prime supports order-sensitive updates 
without re-labeling the existing nodes, it needs to re-
calculate the SC values based on the new ordering of 
nodes. The re-calculation is very time consuming. 

The main idea of other labeling schemes [2, 11] 
(except Prime) is to leave some unused values for the 
future insertions. When the unused values are used up 
later, they have to re-label the existing nodes, i.e. they can 
not avoid the re-labeling in XML updates. 

Though OrdPath [13] is dynamic to some extent to 
process the updates, it needs to use the addition and 
division operations to calculate the even number between 
two odd numbers (especially when many numbers are 
deleted and the updates are frequent insertions), thus the 
update cost of OrdPath is not so cheap. 

In addition, the better update performance of OrdPath 
does not come without a cost. It wastes half of the total 
numbers which makes its label size larger, and it needs 
more time to determine the prefix levels based on the even 
and odd numbers in the XML query processing. 

The method in [14] is used to balance the query and 
update performance, but not to avoid re-labeling. 

In this paper, we propose a novel Compact Dynamic 
Binary String (CDBS) encoding. The size of our CDBS is 
as small as the binary number encoding of consecutive 
integer numbers. As we know, there is no gap between 
two consecutive integer numbers; that means our CDBS is 
the most compact and it need not leave unused values for 
the future insertions. Yet our CDBS supports that CDBS 
codes can be inserted between any two consecutive CDBS 
codes. This is the most important benefit of our CDBS 
over the previous approaches. In addition, our CDBS can 
be applied broadly to different labeling schemes to 
process updates. 

3. Lexicographical order 
 

The most important feature of our approach is that we 
compare labels based on the lexicographical order rather 
than the numerical order. In this section, we firstly 
introduce the definition of lexicographical order for 
binary strings and then propose an algorithm that can 
always insert a binary string between two 
lexicographically ordered binary strings. This algorithm is 
the foundation of this paper which guarantees that we can 
update the XML without re-labeling the existing nodes. 

 
Definition 3.1 (Lexicographical order  ) Given two 
binary strings SL and SR (SL represents the left binary 
string and SR represents the right binary string), SL is said 
to be lexicographically equal to SR iff they are exactly the 
same. SL is said to be lexicographically smaller than SR 
(SL   SR) iff 
(a) the lexicographical comparison of SL and SR is bit by 

bit from left to right. If the current bit of SL is 0 and 
the current bit of SR is 1, then SL   SR and stop the 
comparison, or 

(b) SL is a prefix of SR. 
 

Example 3.1 Given two binary strings “0011” and “01”, 
“0011”   “01” lexicographically because the comparison 
is from left to right, and the 2nd bit of “0011” is “0”, while 
the 2nd bit of “01” is “1”. Another example, “01”   
“0101” because “01” is a prefix of “0101”. 

 
Next based on Algorithm 1, Theorem 3.1 and Example 

3.2, we illustrate how to insert a binary string SM (SM 
represents the middle binary string) between two 
lexicographically ordered binary strings SL and SR such 
that SL   SM    SR lexicographically. 
 
Theorem 3.1 Given any two binary strings SL and SR 
which are both ended with “1” and SL   SR, we can 
always find a binary string SM  based on Algorithm 1 
such that SL   SM   SR lexicographically. 

 

Due to space limitations, we omit the proofs of all the 
lemmas, theorems and corollaries in this paper. All the 
proofs can be found in a long version [9] of this paper.  

 
Algorithm 1: AssignMiddleBinaryString(SL, SR) 
Input: SL   SR; SL and SR are both ended with “1” 
Output SM such that SL   SM   SR lexicographically 
 

Description: 
  1:  if size(SL) ≥  size(SR) then   //Case (1) 
  2:      SM = SL ⊕  “1”    // ⊕  means concatenation  
  3:  else if size(SL) < size(SR) then   //Case (2) 
  4:      SM = SR with the last bit “1” changed to “01” 
  5:  end if 
  6:  return SM 



 

Example 3.2 To insert a binary string between “0011” 
and “01”, the size of “0011” is 4 which is larger than the 
size 2 of “01”, therefore we directly concatenate one more 
“1” after “0011” (see lines 1 and 2 in Algorithm 1). The 
inserted binary string is “00111”, and “0011”   “00111” 
  “01” lexicographically. To insert a binary string 
between “01” and “0101”, the size of “01” is 2 which is 
smaller than the size 4 of “0101”, therefore we change the 
last “1” of “0101” to “01”, i.e. the inserted binary string is 
“01001” (see lines 3 and 4 in Algorithm 1). Obviously 
“01”   “01001”   “0101” lexicographically. 

 
Next we use an example to show why we require the 

last bit of the binary string to be “1”. 
 

Example 3.3 Suppose there are two binary strings “0” and 
“00”. “0”   “00” lexicographically because “0” is a 
prefix of “00”, but we can not insert a binary string SM 
between “0” and “00” such that “0”   SM   “00”. Hence 
we require the binary strings to be ended with “1”. 

Algorithm 1 is the foundation of this paper which can 
help to process updates efficiently. 

 

When the labeling scheme is a prefix scheme, based on 
Theorem 3.1, we can insert one label between two labels 
without re-labeling the existing nodes. When the labeling 
scheme is a containment scheme, we may need to insert 
the “start” and “end” two values at one place. The 
following Corollary 3.3 guarantees that two labels can be 
inserted between two labels without re-labeling. 

 
Lemma 3.2 The SM  returned by Algorithm 1 is ended 
with “1”. 
 
Corollary 3.3 Given any two binary strings SL and SR 
which are both ended with “1” and SL   SR, we can 
always find two binary strings SM1 and SM2 such that SL   
SM1   SM2   SR lexicographically. 

 
Theorem 3.1 and Corollary 3.3 guarantee that we have 

low update costs in XML updating. 
Algorithm 1 proposed in this paper is dynamic and can 

be applied to any two ordered binary strings (ended with 
“1”) for insertions. On the other hand, to maintain the 
high query performance, we should not increase the label 
size when reducing the update cost (see Section 4). 
 
4. A compact dynamic binary string encoding 
 

In this section, we propose a Compact Dynamic Binary 
String encoding, called CDBS. All the codes (binary 
strings) of CDBS are ended with “1”. CDBS encoding is 
as compact as the traditional binary number encoding of 
consecutive integer numbers, and based on Algorithm 1, 
CDBS supports updates efficiently. 

Table 1. Binary and our CDBS encodings 
Integer 
number V-Binary V-CDBS F-Binary F-CDBS 

1 1  00001 00001 00001 
2 10  0001 00010 00010 
3 11  001 00011 00100 
4 100  0011 00100 00110 
5 101  01 00101 01000 
6 110  01001 00110 01001 
7 111  0101 00111 01010 
8 1000  011 01000 01100 
9 1001  0111 01001 01110 

10 1010  1 01010 10000 
11 1011  10001 01011 10001 
12 1100  1001 01100 10010 
13 1101  101 01101 10100 
14 1110  1011 01110 10110 
15 1111  11 01111 11000 
16 10000  1101 10000 11010 
17 10001 111 10001 11100 
18 10010 1111 10010 11110 

Total 
size 

(bits) 
64 64 90 90 

 
We firstly use an example to illustrate how our CDBS 

encodes a set of numbers, and use examples to simply 
analyze the total size of the CDBS codes. Next the formal 
encoding algorithm in Section 4.1 and the formal size 
analysis in Section 4.2 will be easier to understand. 

Table 1 shows the binary number encoding and our 
CDBS encoding of 18 numbers. We choose 18 as an 
example because the total “start” and “end” values in 
Figure 2 are 18. In fact, CDBS can encode any number 
(not only 18; see the formal algorithm in Section 4.1). 

When encoding 18 integer numbers in binary, they are 
shown in Column 2 (V-Binary Column) of Table 1 which 
are with Variable lengths, called V-Binary. 

Column 3 (V-CDBS Column) of Table 1 shows our 
CDBS, called V-CDBS because its codes are also with 
Variable lengths. The following steps show the details of 
how to get our V-CDBS codes (binary strings). 

Step 1: In the encoding of the 18 numbers, we suppose 
there is one more number before number 1, say number 0, 
and one more number after number 18, say number 19. 

Step 2: We firstly encode the middle number with binary 
string “1”. The middle number is 10 where 10 is 
calculated in this way, 10 = round(0+(19–0)/2). The V-
CDBS code of number 10 is “1” (see Table 1). 

Step 3: Next we encode the middle number between 0 
and 10, and between 10 and 19. The middle number 
between 0 and 10 is 5 (5=round(0+(10-0)/2)) and the 
middle number between 10 and 19 is 15 
(15=round(10+(19-10)/2)). 



 

Step 4: To encode number 5, the code size of number 0 is 
0 (the V-CDBS code of number 0 corresponding to SL in 
Algorithm 1 is empty now), and the code size of number 
10 is 1 (the V-CDBS code of number 10 corresponding to 
SR in Algorithm 1 is “1” now with size 1 bit). This is Case 
(2) where size(SL) < size(SR) (see Algorithm 1). Thus 
based on lines 3 and 4 in Algorithm 1, the V-CDBS code 
of the number 5 is “01” (“1”→ “01”). 

Step 5: To encode number 15, the 10th code (SL) is “1” 
now with size 1 bit, and the 19th code (SR) is empty now 
with size 0 bit. This is Case (1) where size(SL) ≥  size(SR) 
(see Algorithm 1). Therefore based on lines 1 and 2 in 
Algorithm 1, the V-CDBS code of the number 15 is “11” 
(“1”⊕ “1”→ “11”). 

Step 6: Next we encode the middle numbers between 0 
and 5, between 5 and 10, between 10 and 15, and between 
15 and 19, which are the numbers 3, 8, 13 and 17 
respectively. The encodings of these numbers are still 
based on Case (1) or Case (2). 

In this way, all the numbers except 0 will be encoded 
because the round function will reach the larger value 
(divided by 2), and we need to discard the V-CDBS code 
for number 19 since number 19 does not exist actually. 

Also we can encode the integer numbers 1-18 with 
Fixed length binary numbers, called F-Binary (F-Binary 
Column of Table 1). Since 18 needs 5 bits to store, zero 
or more “0”s should be added before each code of V-
Binary. On the other hand, when representing our CDBS 
using Fixed length, called F-CDBS, we concatenate “0”s 
after the V-CDBS codes (F-CDBS Column of Table 1). 

 

Example 4.1 It can be seen from Table 1 that V-Binary 
has one code “1” with size 1 bit, two codes “10” and “11” 
with sizes 2 bits, four codes “100”, “101”, “110” and 
“111” with sizes 3 bits, etc., and the total size of V-Binary 
is 64 bits. Also we can see that our V-CDBS has one code 
“1” with size 1 bit, two codes “01” and “11” with sizes 2 
bits, four codes “001”, “011”, “101” and “111” with sizes 
3 bits, etc., and the total size of our V-CDBS is also 64 
bits. This means that our V-CDBS is as compact as the 
traditional binary number encoding of consecutive integer 
numbers. Note that there are no gaps between two 
consecutive integer numbers, hence our V-CDBS is the 
most compact. It is similar for F-Binary and our F-CDBS. 
 

Example 4.2 Table 1 shows that V-Binary has smaller 
total code size than F-Binary. However, we also need to 
store the size of each V-Binary code, the maximal size for 
a code is 5, e.g. the size of “10010” is 5. We need to store 
this 5 using fixed length of bits (“101”; 3 bits). The sizes 
of other codes should also be stored using fixed length of 
bits (3 bits), therefore the total code size for V-Binary is 
3× 18+64=118 bits which is larger than the bits required 
by F-Binary. It is similar for our V-CDBS and F-CDBS. 

4.1. Encoding algorithm 
 

Because F-CDBS is that some “0”s are concatenated 
after the V-CDBS codes, we focus on V-CDBS to 
introduce the algorithm. 

Algorithm 2 is the V-CDBS encoding algorithm. We 
use the SubEncoding procedure to get all the codes of the 
numbers (except 0). 

SubEncoding is a recursive procudure, the input of 
which is an array codeArr, the left position “PL” and the 
right position “PR” in the array codeArr. This procedure 
assigns codeArr[PM] (corresponding to SM in Algorithm 1) 
using the AssignMiddleBinaryString algorithm 
(Algorithm 1), then it uses the new left and right positions 
to call the SubEncoding procedure itself, until each 
(except the 0th) element of the array codeArr has a value. 

Note that SL and SR in the input of Algorithm 1 can be 
empty when Algorithm 1 is called by SubEncoding here. 
If SL and SR are both empty, their sizes are both equal to 0, 
and SM  is “1” based on lines 1 and 2 in Algorithm 1. If SL 
is empty and SR is not empty, size(SL) < size(SR), and we 
process SM  based on lines 3 and 4 in Algorithm 1; SM    
SR after insertion. If SL is not empty and SR is empty, 
size(SL) > size(SR), and we process SM  based on lines 1 
and 2 in Algorithm 1; SL   SM after insertion. 

 

Theorem 4.1 Given a number N, Algorithm 2 can encode 
all the numbers from 1 to N with our V-CDBS codes. 

 

Lemma 4.2 All the V-CDBS codes are ended with “1”. 
 

Theorem 4.3 All the V-CDBS codes are lexicographically 
ordered. 
 

Example 4.3 The V-CDBS codes in Table 1 are 
lexicographically ordered from top to bottom. 
 

Algorithm 2: Encoding (N) 
Input: A positive integer N 
Output: The V-CDBS codes for numbers 1 to N  
 

Description: 
  1: suppose there is one more number before the first  
      number, called number 0, and one more number after the  
      last number, called number (N+1) 
  2: SubEncoding(codeArr, 1, N)  
      //here codeArr is an array with size (N+2) 
  3: discard the 0th and (N+1)th elements of the codeArr 
 

Procedure SubEncoding (codeArr, PL, PR) 
/*SubEncoding is a recursive procedure; codeArr is an array, 
PL is the left position, and PR is the right position*/ 
  1: PM = round((PL+PR)/2) 
  2: if PL+1<PR then 
  3:   codeArr[PM]= 
           assignMiddleBinaryString(codeArr[PL], codeArr[PR]) 
  4:   SubEncoding(codeArr, PL, PM) 
  5:   SubEncoding(codeArr, PM, PR) 
  6: end if 



 

Lemma 4.2 and Theorem 4.3 guarantee that the 
conditions in Theorem 3.1 and Corollary 3.3 are satisfied, 
therefore we can insert without re-labeling in updates 
based on CDBS. 
 
4.2. Size analysis 
 
The size in this paper refers to bits and the log in this 
paper is used as the logarithm to base 2. 
 

V-Binary For V-Binary, one number is stored with one 
bit (“1”; see Table 1), two numbers are stored with two 
bits (“10” and “11”), four numbers are stored with three 
bits (“100”, “101”, “110” and “111”), ···, therefore the 
total size of V-Binary is 

)1(242322211 32 +×+⋅⋅⋅+×+×+×+× nn  
12 1 +×= +nn      (1) 

Suppose the total number of codes is N, which should 
be equal to 12222 110 −=+⋅⋅⋅++ +nn . Thus formula (1) 
becomes to 

)1log()1log( ++−+ NNNN    (2) 
 

V-CDBS When considering our V-CDBS, it has one 
number stored with one bit (“1”), two numbers stored 
with two bits (“01” and “11”), four numbers stored with 
three bits (“001”, “011”, “101” and “111”), ···, therefore 
our V-CDBS has the same total code size as V-Binary. 

In addition, since V-Binary and our V-CDBS are with 
variable length, we need to store the size of each code. A 
fixed-length number of bits are used to store the size of 
each code. The maximal size for a code is )log( N . To 
store this size, the bits required are ))log(log( N , and the 
total bits required to store the sizes of all the variable 
codes are ))log(log( NN . When taking formula (2) into 
account, the total sizes of V-Binary and our V-CDBS are 
both 

)1log())log(log()1log( ++−++ NNNNNN  (3) 
 

F-Binary To store N numbers with fixed lengths, the size 
required is 

)log( NN      (4) 

The size of the F-Binary code also needs to be stored, 
but needs to be stored only once, which needs size 

))log(log( N . Therefore the total size for F-Binary is 

))log(log()log( NNN +     (5) 
 

F-CDBS has the same total code size as formula (5). 
 

Note that for simplicity, we omit the ceiling functions 
on the log functions in all the formulas. 
 

Theorem 4.4 V-CDBS and F-CDBS are the most 
compact variable and fixed length binary string 
encodings which support updates efficiently. 

5. Applying CDBS to different labeling 
schemes for update processing 
 

In this section, we mainly illustrate how our V-CDBS 
can be applied to different labeling schemes. F-CDBS is 
similar since it is that some zeros are concatenated after 
the V-CDBS codes. 
 
5.1. Applications of CDBS 
 

We firstly describe a property which is the second 
foundation of this paper (the first one is Theorem 3.1). 

 

Property 5.1 Our V-CDBS (F-CDBS) is orthogonal to 
specific labeling schemes, thus it can be applied broadly 
to different labeling schemes or other applications which 
need to maintain the order in updates. 
 

When we replace the “start” and “end” values 1-18 of 
the containment scheme [18] in Figure 2 (similar for other 
containment schemes [1, 7, 11]) with our V-CDBS codes 
in Table 1 and based on the lexicographical comparison, a 
V-CDBS based containment labeling scheme is formed, 
called V-CDBS-Containment. 

Similarly, we can replace the integer numbers (see 
Figure 3) in the prefix labeling scheme [15] with our V-
CDBS codes, then a V-CDBS based prefix labeling 
scheme is formed, called V-CDBS-Prefix. We use the 
following example to show V-CDBS-Prefix. 

 

Example 5.1 From Figure 3, we can see that the root has 
4 children. To encode 4 numbers based on Algorithm 2, 
the V-CDBS codes will be “001”, “01”, “1” and “11”. 
Similarly if there are two siblings, their self_labels are 
“01” and “1”. Figure 4 shows V-CDBS-Prefix. 

Similarly we can apply our V-CDBS to the prime 
labeling scheme to record the document order. But 
because Prime employs the modular and division 
operations to determine the ancestor-descendant etc. 
relationships, its query efficiency is quite bad (see Section 
7 for the experimental results). Therefore we do not 
discuss in detail how our V-CDBS is applied to Prime. 

Till now, the question will be asked that our V-CDBS 
only has the orders but does not have the exact position of 
each code, which is a deficiency when compared to the V-
Binary codes. For example, from a V-Binary code “110”, 
we can immediately know that “110” corresponds to the 
integer number 6. However, if we delete the V-Binary 
 
 

 Figure 4. V-CDBS-Prefix scheme 
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codes “100” and “101”, “110” is now not the 6th number 
but the 4th number in order. In this paper, we focus on the 
dynamic XML in which there are a lot of deletions and 
insertions, therefore V-Binary does NOT have merits over 
our V-CDBS in processing the nth position label. 

In addition, it is not to say that our V-CDBS can not 
immediately get the exact position in the static 
environment. Based on an inverse processing of 
Algorithm 2, we can get the exact position of each V-
CDBS code by calculations only. However, the static 
XML is not an emphasis of this paper, thus we do not 
show the details on calculating the V-CDBS positions. 
 
5.2. Processing of updates 
 
5.2.1. Updates based on V-CDBS-Prefix and V-CDBS-
Containment. The deletion of a node will not affect the 
relative orders of the nodes in the XML. Hence we mainly 
discuss how to process the insertions based on V-CDBS. 

If we want to insert a sibling node before “01.01” in 
Figure 4, the self_label of the inserted node is “001” (see 
lines 3 and 4 in Algorithm 1; complete label is “01.001”). 
Theorem 3.1 guarantees that we need not re-label the 
existing nodes but we can keep the orders. The insertions 
at other places also need not re-label the existing nodes. 

Similarly if we insert a sibling node before “5,6,3” in 
Figure 2, we should insert two values (“start” and “end”) 
between the start of “4,9,2” i.e. “4” and the start of 
“5,6,3” i.e. “5”. The existing schemes can not insert a 
number between “4” and “5”, but our V-CDBS codes for 
“4” and “5” are “0011” and “01” (see Table 1), and 
Corollary 3.3 guarantees that we can insert two binary 
strings between “0011” and “01” with the orders kept. 
The inserted two binary strings can be either “00111” and 
“001111”, or “001101” and “00111” (see Algorithm 1). 
That means we need not re-label the existing nodes, but 
we can keep the containment scheme working correctly. 

After insertion, we can further insert other nodes. 
 
5.2.2. Frequent updates. The size analysis in Section 4.2 
is based on the initial encoding. Algorithm 2 shows that 
our encoding algorithm is step by step insertions of nodes 
evenly at different places. Therefore if a sequence of 
nodes are inserted randomly at different places of the 
XML, the size analysis in Section 4.2 is still valid, and the 
query performance will not be decreased. 

For the case that nodes are always inserted at a fixed 
place (skewed insertion) of the XML, the size of our V-
CDBS increases fast. [8] proves that any deterministic 
labeling scheme which does not re-label nodes must in the 
worst case assign one label with size O(N). Our V-CDBS 
can not escape from this claim also, i.e. O(N) is the upper 
bound of the size of each V-CDBS code. OrdPath [13] 
also has this skewed insertion problem. 

6. Completely avoid re-labeling 
 

CDBS proposed in Section 4 still can not completely 
avoid re-labelings in XML updates. Here is an example. 

 

Example 6.1 The size field of each V-CDBS code is 
stored with fixed length (e.g. 3; see Example 4.2). If many 
nodes are inserted into the XML tree, the size of the 
length field (e.g. 3) is not enough for the new labels, then 
we have to re-label all the existing nodes. Even if we 
increase the size of the length field (e.g. 3) to a larger 
number, it still can not completely avoid the re-labeling, 
and it will waste the storage space. This is called the 
overflow problem in this paper. Similarly F-CDBS and 
OrdPath [13] (when separating different labels based on 
sizes, e.g. separate “1.1” and “1.3”) will encounter the 
overflow problem also. 

 

To completely avoid the re-labeling, we use the 
quaternary encoding approach in [10], called QED. In 
QED, four quaternary numbers “0”, “1”, “2” and “3” are 
used, and each quaternary number is stored with 2 bits, 
i.e. “00”, “01”, “10” and “11”. Only “1”, “2” and “3” will 
appear in the QED code itself; we use “0” as the separator 
to separate different codes, and “0” will never encounter 
the overflow problem, thus QED can completely avoid the 
re-labeling in updates. The details of QED can be found 
in [10]. 

On the other hand, though QED can completely avoid 
the re-labeling, it is not the most compact, i.e. its size is 
larger than the size of V-CDBS, and its update cost is 
larger than V-CDBS, i.e. it needs to modify the last 2 bits 
of the neighbor label, while V-CDBS only needs to 
modify the last 1 bit. 
 
7. Experimental evaluation 

 
7.1. Experimental setup 

 
7.1.1. Test bed and datasets. We evaluate and compare 
the performance of different labeling schemes. The 
scheme names containing a “CDBS” or “QED” are all our 
schemes; all the others are prior schemes. The schemes 
with a “-Prefix” at the end of the scheme names are prefix 
schemes, and with a “-Containment” at the end of the 
scheme names are containment schemes. 

All the schemes are implemented in Java and all the 
experiments are carried out on a 3.0 GHz Pentium 4 
processor with 1 GB RAM running Windows XP 
Professional. 

Table 2 shows the characteristics of the test datasets. 
D1 to D6 are all real-world XML data from [12]. We 
choose these datasets because they have different 
characteristics, i.e. their file number, fan-out, depth, and 
total number of nodes are quite different. 



 

Table 2. Test datasets 

Datasets Topics # of files Max/average fan-
out for a file 

Max/average 
depth for a file 

Total # of nodes 
for each dataset 

D1 Movie 490 14/6 5/5 26044 
D2 Department 19 233/81 4/4 48542 
D3 Actor 480 37/11 5/5 56769 
D4 Company 24 529/135 5/3 161576 
D5 Shakespeare’s play 37 434/48 6/5 179689 
D6 NASA 1882 1188/9 7/5 370292 

 

 
7.1.2. Overview of experiments. In Section 7.2, we test 
how our CDBS (V-CDBS and F-CDBS) works on the 
static XML data which shows that our CDBS does not 
work worse even in the static environment of XML. When 
nodes are intermittently inserted into the XML, in Section 
7.3 we show that our CDBS works much better (11 times) 
compared to the existing labeling schemes except OrdPath 
and Float-point. Though it seems that OrdPath and Float-
point also work well in intermittent insertions, in Section 
7.4 we illustrate that our approach is much better (more 
than 300 times) to process the frequent updates than 
OrdPath and Float-Point. 
 
7.2. Performance study on static XML 
 

We compare the label size and query performance of 
different labeling schemes. 
 
7.2.1. Label size. Figure 5 shows the label sizes of 
different labeling schemes on datasets D1-D6. 

Prime has very large label size because it skips a lot of 
numbers to get the prime numbers and it uses the product 
of the parent label and the self label as the label of a node, 
which both make its label size very large. 

For the prefix schemes, our CDBS can be encoded 
with the UTF8 [17] encoding or the OrdPath [13] 
encoding to process the delimiters. If we use UTF8 to 
process the delimiters, our CDBS(UTF8)-Prefix has the 
same label size as DeweyID(UTF8)-Prefix. If we use 
OrdPath encodings to process the delimiters, our 
CDBS(OrdPath)-Prefix has smaller label size than 
OrdPath-Prefix because we do not waste the even 
numbers. Since the UTF8 and OrdPath encodings are 
existing techniques, we do not compare the UTF8 or 
OrdPath encoding of our CDBS, DeweyID and OrdPath 
prefix schemes. In [10], we propose the QED encoding. 
The “0” in QED can be used as the delimiters. Our QED-
Prefix has smaller label size than the prefix schemes 
DeweyID(UTF8)-Prefix [15, 17] and Binary-String-Prefix 
[8]. In later comparisons, we only compare the prefix 
schemes OrdPath-Prefix [13] and our QED-Prefix 
because they are dynamic. OrdPath-Prefix has two kinds 
of codes (see [13] for the details), which are represented  
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Figure 5. Label sizes of different labeling 
schemes on D1-D6 
 
with names OrdPath1-Prefix and OrdPath2-Prefix. Figure 
5 shows that our QED-Prefix has smaller label size than 
OrdPath1-Prefix and OrdPath2-Prefix. 

For the containment schemes, Float-point-Containment 
has larger label size than other containment schemes. Our 
V-CDBS-Containment has the same label size as V- 
Binary-Containment, and our F-CDBS-Containment has 
the same label size as F-Binary-Containment; these results 
indicate that our V-CDBS and F-CDBS encodings are the 
most compact variable and fixed length dynamic 
encodings. The label size of QED-Containment is larger 
than the label size of V-CDBS-Containment. 
 
7.2.2. Query performance. As described in [15], we 
scaled up (replicated) D5 10 times to test the queries. 
Table 3 shows the ordered and un-ordered queries (Q1-
Q6) and the number of nodes retrieved. 

Figure 6 shows the response time (seconds) of queries 
Q1-Q6.  

Prime has very large response time because it has very 
large label size and it employs the modular and division 
operations to determine the ancestor-descendant etc. 
relationships which are very expensive.  

OrdPath1-Prefix and OrdPath2-Prefix have worse 
query performance than our QED-Prefix because their 
label sizes are larger and it is slow for them to decode the 
OrdPath1 and OrdPath2 codes and slow to separate the 
prefix levels (see [13] for the details). 



 

Table 3. Test queries on the scaled D5 

Queries # of nodes 
Retrieved 

Q1 /play/act[4] 370 

Q2 /play//personae[./title]/pgroup[.//grpdescr]/pers
ona 2690 

Q3 /play/personae/persona[12]/preceding-sibling::* 4240 
Q4 //act[2]/following::speaker 184060 
Q5 //act/scene/speech 309330 
Q6 /play/*//line 1078330 
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Figure 6. Response time of queries Q1-Q6 

 
Float-point-Containment has much larger response 

time due to its larger label size. Our CDBS-Containment 
(“V-” and “F-”) has smaller response time than Binary-
Containment (“V-” and “F-”) because our encodings can 
directly compare labels from left to right no matter the 
labels have variable lengths or fixed lengths. The response 
time of QED-Containment is larger than that of V-CDBS-
Containment. 
 
7.3. Performance study on intermittent updates 
 

Same as [16], we select one XML file Hamlet in D5 to 
test the update performance (it is similar for other XML 
files). Hamlet has 5 act elements. We test the following 5 
cases (see Table 4 and Figure 7): inserting an act element 
before act[1], inserting an act element before act[2], ···, 
and inserting an act element before act[5]. 

Table 4 shows the number of nodes for re-labeling 
when applying different labeling schemes. V-Binary-
Containment and F-Binary-Containment need to re-label 
many nodes in the 5 cases. Note that the Hamlet file has 
totally 6636 nodes. Though V-Binary-Containment and F-
Binary-Containment are the most compact, they need to 
re-label the existing nodes at each time when a node is 
inserted into the XML. 

For Prime, the number of SC values that are required 
to re-calculate is counted in Table 4. Because Prime uses 
each SC value for every five nodes [16], the number of 
SC values required to re-calculate is 1/5 of the number of 
nodes required by V-Binary-Containment and F-Binary-

Containment to re-label. Note that it is impossible to use a 
single SC value for all the nodes in the XML since the SC 
value will be too large a number. 

In the five cases, OrdPath-Prefix (OrdPath1-Prefix and 
OrdPath2-Prefix; without overflow here), our QED-
Prefix, Float-point-Containment (less than 18 nodes at a 
fixed place), our CDBS-Containment (“V-” and “F-”; 
without overflow here), and our QED-Containment need 
not re-label any existing nodes. Our V-CDBS-
Containment and F-CDBS-Containment are the most 
compact, yet they need not re-label the existing nodes in 
intermittent updates. 

Next we study the total time (processing time + I/O 
time) for updates. Figure 7 shows the LOG2 of the total 
update time (ms) (Y-axis) of different labeling schemes. 
The total time required by Prime to re-calculate the SC 
values is much larger (at least 191 times) than the time 
required by Binary-Containment (“V-” and “F-”) to re-
label the nodes. Prime theoretically is a good scheme for 
updates, but it is not practicable. In contrast, the total 
update time of OrdPath-Prefix, our QED-Prefix, Float-
point-Containment, our CDBS-Containment (“V-”, “F-”), 
and our QED-Containment is less than 1/5 of the total 
update time of Binary-Containment. Note that the update 
time of our CDBS-Containment, QED-Containment, and 
QED-Prefix is only 1/11 of the update time of Binary-
Containment. 
 
Table 4. Number of nodes to re-label in updates 

Number of nodes to re-label (5 cases) Labeling schemes 1 2 3 4 5 
Prime 1320 1025 787 487 261 

OrdPath1-Prefix 0 0 0 0 0 
OrdPath2-Prefix 0 0 0 0 0 

QED-Prefix 0 0 0 0 0 
Float-point-Containment 0 0 0 0 0 
V-Binary-Containment 6596 5121 3932 2431 1300 
F-Binary-Containment  6596 5121 3932 2431 1300 
V-CDBS-Containment 0 0 0 0 0 
F-CDBS-Containment 0 0 0 0 0 

QED-Containment 0 0 0 0 0 
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Figure 7. Total time for updates 



 

Figure 7 shows that the update time differences among 
OrdPath, Float-point and our approaches are not very 
large (2 times only). This is because the update time of 
OrdPath, Float-point and our approaches is mainly the I/O 
time in intermittent updates. When considering the 
processing time only, our approaches are much better 
because we only needs to modify the last 1 or 2 bits of the 
neighbor label which is much cheaper. Section 7.4 
illustrates the update time differences among OrdPath, 
Float-point and our approaches. 
 
7.4. Performance study on frequent updates 
 

When nodes are intermittently inserted into the XML, 
Prime and Binary-Containment (“V-” and “F-”) have 
much larger update time, thus it will be a disaster for them 
to execute the frequent and tiny insertions, which makes 
them impossible to answer any queries in the frequent 
insertion environment.  

In [10], we show that our QED works much better than 
(more than 300 times) OrdPath-Prefix and Float-point-
Containment to process frequent updates. 

Compared with QED [10] which needs to modify the 
last 2 bits of the neighbor label to get the inserted label, 
our V-CDBS only needs to modify the last 1 bit which is 
cheaper. If the frequent updates happen uniformly at 
different places of the XML data, it is not easy to lead our 
V-CDBS to re-labeling. Thus our V-CDBS works better 
to process the uniformly frequent insertions than QED 
because its label size and update cost are smaller. 

On the other hand, if the insertions are always at a 
fixed place, it is easy to lead our V-CDBS to re-labeling 
due to the overflow problem. Therefore it is better to use 
our QED in [10] to process the updates if the insertions 
are always at a fixed place, i.e. skewed insertions, because 
our QED can completely avoid the re-labeling. 
 
8. Conclusion and future work 
 

In this paper, we have proposed a novel dynamic 
binary string encoding which is orthogonal to specific 
labeling schemes, thus it can be applied broadly to 
different labeling schemes or other applications to 
efficiently maintain the orders in updates. 

Our CDBS (“V-” and “F-”) is as compact as the most 
compact binary (“V-” and “F-”) number encoding, thus it 
will not decrease the query performance, yet our CDBS 
supports intermittent and uniformly frequent updates 
efficiently. Our V-CDBS only needs to modify the last 1 
bit of the neighbor label to get the inserted label which is 
the cheapest approach compared to all the other existing 
approaches. 

We will further discuss how to efficiently process the 
skewed insertion problem in the future. 
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