
TwigTable: using semantics in XML twig

pattern query processing

Huayu Wu, Tok Wang Ling, Bo Chen, and Liang Xu

School of Computing, National University of Singapore
{wuhuayu, lingtw, chenbo, xuliang}@comp.nus.edu.sg

Abstract. In this paper, we demonstrate how the semantic informa-
tion, such as value, property, object class and relationship between object
classes in XML data impacts XML query processing. We show that the
lack of using semantics causes different problems in value management
and content search in existing approaches. Motivated on solving these
problems, we propose a semantic approach for XML twig pattern query
processing. In particular, we design TwigTable algorithm to incorporate
property and value information into query processing. This information
can be correctly discovered in any XML data. In addition, we propose
three object-based optimization techniques to TwigTable. If more seman-
tics of object classes are known in an XML document, we can process
queries more efficiently with these semantic optimizations. Last, we show
the benefits of our approach by a comprehensive experimental study.1

1 Introduction

XML query processing has been studied for over a decade. In most XML query
languages, e.g., XPath [4] and XQuery [5], queries are expressed as twig patterns.
Finding all occurrences of a twig pattern query in an XML document is consid-
ered the core operation for XML query processing. This process is also referred
as twig pattern query processing or twig pattern matching. More background on
XML queries and twig pattern matching is discussed in Section 2.1.

Normally an XML query is composed of structural search and content search.
Consider an XPath query Q1 that finds the subject name of the book with the
title of “Network”, issued to the XML data in Fig. 1:

Q1: //subject[//book/title=“Network”]/name

In this query, //subject[//book/title]/name is a structural search, aiming to
find all matches in the document that satisfy this structural constraint; while the
predicate title=“Network” is a content search, which filters the structural search
1 This is an extended and updated version of the previously published paper [30]. The

major extension includes a discussion on semantics in XML, a technique to process
queries across multiple twig patterns, discussions on potential problems of optimized
tables, a new optimization scheme with semantics of relationship, and a comparison
with the schema-aware relational approach in experiments.

result based on the specified value comparison. Most state-of-the-art XML query
processing approaches only focus on employing effective index, e.g., inverted
lists (details shown in Section 2.2), to improve the efficiency of performing joins
between nodes in more complex twig pattern queries, without distinguishing
between structural search and content search. This attempt is proven efficient
for structural search without considering values. However, due to the different
characteristics between leaf value nodes and internal non-value nodes in XML
data, using inverted lists to manage values and to process content search in
the same way as structural search will cause problems in managing tremendous
number of inverted lists and performing costly structural join for content search.

Besides the inefficiency in content search, which is caused by ignoring the
semantic information of value and non-value nodes, existing approaches may
also suffer from efficiency problems in structural search. To look deeper into the
semantics of non-value document nodes, we can find that a non-value document
node may further correspond to an object or a property. Most real life queries
aim to find desired objects based on the value predicates on their properties.
However, none of existing approaches takes semantics of object and property
into account when they manage inverted list index and process queries. The
ignorance of such semantics would result in scanning many useless labels in
inverted lists during structural search. The details are discussed in Section 3.2
and Section 5.1.

In this paper, we propose a semantic approach for twig pattern query process-
ing. Motivated by solving the problems caused by a lack of using semantics on
object, property and value in existing approaches, we propose semantics-based
relational tables incorporated with inverted lists of tags to aid twig pattern query
processing. In particular, relational tables are used to store values, while inverted
lists are used to index internal document nodes, including property nodes and
object nodes, but not values nodes. We design TwigTable algorithm to perform
content search and structural search separately with the two kinds of indexes
in twig pattern matching. Content search is performed by table selection before
structural search. Because content search is always a predicate between a prop-
erty and a value, after performing content search the size of the inverted list
of the relevant property node is reduced due to the selectivity of the predicate,
and the twig pattern query can be simplified by removing value comparisons.
Matching a simplified twig pattern with reduced inverted lists for several query
nodes will reduce the complexity of structural search, and thus improve the twig
pattern matching performance. Finally, the semantic tables can help to extract
actual values to answer the queries that ask for property values or object details,
which is not efficient to achieve in other structural join based algorithms.

We also need to highlight that the relational tables are constructed based
on semantic information such as the relationship among object, property and
value. The semantics of property is common for any XML document, i.e., the
parent node of each value must be the property of that value. Based on this
default semantic information, we initially store each value with its property in
the corresponding property table. When more of an object’s semantics is known,

bookstore
(1:5000,1)

subject
(2:307,2)

name
(3:6,3)

“computer”
(4:5,4)

book
(8:29,4)

title
(13:16,5)

author
(17:20,5)

publisher
(9:12,5)

price
(21:24,5)

quantity
(25:28,5)

“Hillman”
(10:11,6)

“Network”
(14:15,6)

“Green”
(18:19,6)

45
(22:23,6)

30
(26:27,6)

 ……

……

books
(7:306,3)

book
(30:55,4)

title
(35:38,5)

author
(39:42,5)

publisher
(31:34,5)

price
(47:50,5)

quantity
(51:54,5)

“Elco”
(32:33,6)

“Database”
(36:37,6)

“White”
(40:41,6)

35
(48:49,6)

15
(52:53,6)

author
(43:46,5)

“Brown”
(44:45,6)

Fig. 1. The bookstore document with all nodes labeled by containment scheme

we propose three optimization techniques to change the tables to be object based.
We will show that using object-based tables, a query can be processed even more
efficiently. In a word, with more semantic information known, our approach is
more efficient to process twig pattern queries.

The rest of the paper is organized as follows. We first describe some back-
ground information in Section 2. After that we revisit related work and discuss
the motivation of our research in Section 3. The TwigTable algorithm with three
semantic optimizations is presented in Section 4 and Section 5. We present the
experimental results in Section 6 and conclude our work in Section 7.

2 Background

2.1 Data model and twig pattern query

Normally an XML document is modeled as an ordered tree, without consid-
ering ID references. Fig. 1 (ignoring node labels) shows the tree structure of
a bookstore document. In an XML tree, the internal nodes represent the ele-
ments and attributes in the document, and the leaf nodes represent the data
values which are either a text in an element or an attribute value. Thus a node
name is a tag label, an attribute name or a value. Edges in an XML tree reflect
element-subelement, element-attribute, element-value, and attribute-value pairs.
Two nodes connected by a tree edge are in parent-child (PC) relationship, and
the two nodes on the same path are in ancestor-descendant (AD) relationship.

The core query pattern in most standard XML query languages (e.g., XPath
and XQuery) is also in a tree-like structure, which is often referred as a twig
pattern. In particular, an XPath query is normally modeled as a twig pat-
tern query, and an XQuery query is normally modeled as several twig patterns

linked by joins. For example, the XPath query Q1 in Section 1, i.e., //sub-
ject[//book/title=“Network”]/name, can be represented as a twig pattern query
in Fig. 2(a). Example 1 shows the twig patterns for an XQuery expression.

subject

name book

title

“Network”
(a) Twig pattern for XPath query Q1

book

title

“Network”

author

book

title

t1 t2

author

(b) XQuery query Q2 can be expressed
by joining the two twig patterns t1 and
t2 based on author value

Fig. 2. Example twig pattern expressions

Example 1. A query to find the titles of all books written by the author of the
book “Network” can be expressed by XQuery:

Q2: For $a in distinct-values(doc(“bookstore.xml”)
//book[title=“Network”]/author)

For $b in doc(“bookstore.xml”)//book
Where $b/author=$a
Return <book>$b/title</book>

A typical XQuery processor normally models a query by twig patterns to further
process it. The XQuery expression Q2 can be transformed into two twig patterns
t1 and t2, which are linked by a join on the author nodes, as shown in Fig. 2(b).

In a twig pattern query, an edge can be either single-lined or double-lined,
which constraints the two matched nodes in either a PC relationship or an AD
relationship. Since a twig pattern normally models an XPath expression, we al-
low the leaf nodes of a twig pattern query to also be a range value comparison or
even a conjunction/disjunction of several value comparisons, if the correspond-
ing XPath expression contains such predicates. For example, the twig pattern
representation of the XPath query //book[price>20 and price<30]/title contains
a conjunction of value comparison “>20 and <30” under the query node price.

The process to find all the occurrences of a twig pattern in an XML document
is called twig pattern matching. A match of a twig pattern Q in a document
tree T is identified by a mapping from the query nodes in Q to the document
nodes in T, such that: (i) each query node either has the same string name as
or is evaluated true based on the corresponding document node, depending on
whether the query node is an element/attribute node or a value comparison;

(ii) the relationship between the query nodes at the ends of each “/” or “//”
edge in Q is satisfied by the relationship between the corresponding document
nodes. Matching Q to T returns a list of n-ary tuples to answer Q, where n is the
number of nodes in Q and each tuple (a1, a2,..., an,) consists of the document
nodes a1, a2,..., an, which identify a distinct match of Q in T.

2.2 Document labeling and inverted list

Checking whether two document nodes satisfy the PC or AD relationship speci-
fied in a twig pattern pattern query is essential to twig pattern query processing.
To facilitate the PC and AD relationship checking, we normally assign a posi-
tional label (label for short, if no confusion arises) to each document node. There
are multiple labeling schemes proposed for XML data, among which the contain-
ment scheme [37] and the prefix scheme [26] are most popular. There are also
several dynamic encoding schemes [16][33] to avoid re-labeling for dynamic doc-
uments. In this paper, we use the containment labeling scheme for illustration,
as shown in Fig. 1. It can be replaced by other schemes as long as they are
sufficient for PC and AD relationship determination.

Labels are usually organized by inverted lists. Normally, for each type of doc-
ument node, there is a corresponding inverted list to store the labels of all nodes
of this type in document order. To process a query, only relevant inverted lists
are scanned to perform structural join based on the query constraints. Because
in most algorithms, an inverted list is scanned in a streaming fashion, it is also
referred as a label stream, or simply a stream in some work.

2.3 Semantics of object, property and value in XML data

Object (or entity) is an important information unit in data management, e.g., the
ER approach to design a relational database. In data-centric XML databases,
object also plays an important role, as most XML queries ask about information
of objects. An object normally has several properties to describe it from different
aspects. Property is also referred as attribute. To differentiate it from attribute
type in document schema (e.g., DTD), we use the term property in this paper.

In our work, we use semantics of value, property, object and relationship
among objects to improve the performance of XML twig pattern query process-
ing. Usually, such semantic information can be provided by the XML database
designer. Next we briefly discuss how to discover the semantic information, in
case it is not available from database designers.

Identifying values is trivial. Each non-tag text in an XML document is a
value, and it must appear as a leaf node in the corresponding document tree.
Furthermore, we can also infer that the parent node of each value node in an
XML tree corresponds to the property of that value. For example, in Fig. 1 the
“Network” is a value and its parent node title is the property of this value. This
inference of value and property always holds for any document, regardless of
whether more semantics is provided or not. Thus our basic algorithm TwigTable
constructs relational tables based on property and value.

Semantics on object contributes to our optimizations to further improve
query processing performance, as presented in Section 5. However, to discover
semantics of object and relationship between objects is not so trivial. Intuitively,
we may consider the parent node of each property as the corresponding object.
For example, in the document in Fig. 1, the subject nodes and the book nodes are
all objects, because they are parent nodes of properties such as name, publisher,
title, etc. However, in some documents, properties do not directly connect to
their objects. For example, if the document further groups the properties of a
book as shown in the two examples in Fig. 3, the parent node of a property may
not be the associated object.

book

title

author

publisher price quantity

“Elco” “Database”

“White”

35 15author

“Brown”

authors

book

title authorpublisher price quantity

“Elco” “Database” “White” 35 15

author

“Brown”

basicInfo saleInfo

Fig. 3. Two alternative design of book in the bookstore document

Two or more objects that are related to each other are normally reside along
the same path in an XML tree. However, the properties of a relationship are not
easy to identify. Because of the hierarchical structure of XML data, a property of
the relationship between two objects is normally stored under the deeper object
of the relationship. This brings difficulty to distinguish it from the properties
of that deeper object. Later in Fig. 11 we show an example document in which
quantity is a property of the relationship between branch and book, but this
property appears as a child node of the deeper object book, together with other
book properties. The situation may be even more complex when dealing with
ternary or n-ary relationships.

There are many attempts to discover the semantics such as object and rela-
tionship between objects in an XML document. Generally, there are categorized
into three classes.

1. Using available tools and information. There are semantic rich models that
work as a schema for XML documents. For example, the ORA-SS [17] model
can distinguish between properties, objects and relationships, as well as spec-
ify the degree of n-ary relationships and indicate if a property belongs to an
object or a relationship. If such model is available alongside an XML docu-
ment, we can easily discover useful semantic information. Also as semantic
web is rapidly developed, there are many ontologies available for different
domains. By exploring the ontology of relevant domains, we can have desired
semantic information of an XML document.

2. Mining schema or document. Liu et al. [18] infer objects by analyzing DTD.
[9] and [35] propose algorithms to discover the semantics such as keys and

functional dependencies in XML documents, which can help to identify ob-
jects and relationships. There are also many data mining techniques, such
as the decision tree, that can be adopted to infer semantic information.

3. User interaction. In many web-based information management systems [10][25],
they use mass collaboration to seek feedback from users to improve semantics
identification.

In this paper, we do not offer any new technique to discover objects and rela-
tionships in an XML document. All the existing semantics discovery techniques
can be used in our work for semantic optimizations. The guideline is that our al-
gorithm is initially built on the semantics of property and value. This information
can be correctly inferred from the document structure. When more semantics
on object is known, we can incorporate such information into relational table
construction, to further improve the performance of query processing.

3 Related work and motivation

3.1 Related work

In the early stage, there are many research efforts on storing and querying XML
data using RDBMS. In those relational approaches, they shred XML data into
relational tables, and convert XML queries into SQL statements to query the
database. The node-based approach [37][13], the edge-based approach [11] and
the path-based approach [34][22] shred XML documents based on different kinds
of tree components. However, they all suffer from efficiency problems when deal-
ing with structural search. The node-based approach and the edge-based ap-
proach need too many costly table joins to process a twig pattern query. The
path-based approach is not efficient to handle “//”-axis. The schema-aware de-
composition methods [24][6] are proven more efficient than schemaless methods
[27], but they are still not efficient for structural search when the document struc-
ture is complex. For example, consider a fragment <VP><NP><VP><NP>
<PP>...</PP></NP></VP></NP></VP> in the TreeBank data [28]. The
schema-aware approach can hardly decide what tables between VP and NP
should be joined and how many times to join them for the query VP//NP. In
short, the relational approach is only suitable for the XML data with regular
structure, because of its weakness in structural search.

Later, many native approaches are proposed to process twig pattern queries.
One direct native approach is the navigational approach, which traverses tree-
structured XML documents to find the occurrences of query patterns. Similar to
the navigational approach, some works ([29][23]) transform XML documents and
twig pattern queries into sequences, and perform subsequence matching. Both
the navigational approach and the subsequence matching approach require a high
I/O cost, as the whole document will be considered during query processing.

The structural join based approach is an important class of native approaches
to process XML twig pattern queries, and it has attracted most research interest.
In early work, Zhang et al. [37] proposed a multi-predicate merge join algorithm

based on the containment labeling of an XML document, and showed the supe-
riority over relational approaches. Later an improved stack-based structural join
algorithm is proposed by Al-Khalifa et al. [3]. These two algorithms, as well as
most of prior works decomposed a twig pattern into a set of binary relationships,
i.e., parent-child and ancestor-descendant relationships. Twig pattern matching
are done by matching every binary relationship and combining these basic binary
matches. The main problem of such approaches is that the intermediate result
size may be very large, even when the input and final result sizes are more man-
ageable. To overcome this limitation, Bruno et al. [7] proposed a holistic twig
join algorithm, TwigStack, which could avoid producing an unnecessarily large
intermediate result. However, this algorithm is only optimal for twig pattern
queries with only ancestor-descendent relationships. There are many subsequent
works [19][15][8][20][14][36] to optimize TwigStack, or extend TwigStack to solve
different kinds of problems. In particular, Lu et al. [19] introduced a list struc-
ture to make it optimal for queries containing parent-child relationships under
non-branching nodes. TSGeneric [15] improved the query performance by index-
ing each inverted list and skipping labels within one list. Chen et al. [8] divided
an inverted list into several sub-lists associated to each prefix path or each (tag,
level) pair and pruned some sub-lists before evaluating the twig pattern. Lu et
al. [20] used Extended Dewey labeling scheme and scanned only the labels of
leaf nodes in a twig query. [14] and [36] extended twig pattern query to support
OR-predicate and NOT-predicate separately. However, all these structural join
based work only focus on structural search. For the value node in each query
predicate, they normally treat it the same as element node and perform struc-
tural joins for the whole query structure. As a result, they suffer from several
problems as mentioned in the next section.

3.2 Motivation

The structural join based approaches are proven efficient in structural search.
However, because they do not consider the semantics of value and other types
of document nodes, they suffer from several problems during query processing.

1. Inverted list management. In most structural join based approaches, all
nodes including elements, attributes and values in an XML tree are labeled
and the labels of each type of nodes are organized in an inverted lists. When
we build inverted lists for values, the number of different values causes a
problem of managing a tremendous number of inverted lists. Based on our
investigation, a 100MB XML document contains over 300 thousand different
values, which correspond to 300 thousand inverted lists. This number will
linearly increase according to the document size increase.

2. Advanced content search. Since twig pattern query normally models
XPath expression, the advanced content search, such as numeric range search,
containment search or even conjunction/disjunction of several value compar-
isons, which often appear in XPath query predicates may also appear as a
leaf node in a twig pattern query. Without handling values specially, existing

approaches have difficulty in supporting these advanced content search. For
example, to process a query to find the books with the price greater than
15, it is time consuming to get all the inverted lists with the numeric names
greater than 15, and combine labels in them by document order, to perform
this range search. Also structural join with inverted lists can hardly support
containment search, such as //book[contains(@title, ‘XML query’)]/price.

3. Redundant search in inverted lists. Inverted lists for values do not have
semantic meanings. This may cause redundant search during inverted list
scanning. For example, when a query is interested in books with the price of
35 in the bookstore document, structural search scans the inverted list for
the value node ‘35’ (denoted by T35). Since in T35 we do not differentiate
whether a label corresponds to price or quantity, we need to check all labels
in this inverted list though many of them stand for quantity of 35, and
definitely do not contribute to the query result.

4. Actual value extraction. To answer a query, what we need is not twig
pattern occurrences represented as tuples of labels, but value results. For
example, after finding a number of occurrences of the twig pattern query
in Fig. 2(a), we need to know the value under each name node. One major
advantage of the structural join based approaches is that they only need to
load relevant inverted lists to process a query, instead of scanning the whole
document with high I/O cost. However, when a query asks for values of a
certain property, after getting a set of resulting labels of that property from
pattern matching, they cannot find the child value under each label using
inverted lists. To extract actual values, they have to read the document
again, which violate the initial objective in I/O saving.

Motivated on solving all these problems, we propose a semantic approach that
uses both inverted lists and relational tables to perform twig pattern matching.

4 TwigTable algorithm

4.1 An overview of TwigTable

In TwigTable, we pay attention to the semantics of value during index construc-
tion. We maintain inverted list index only for structural nodes (internal nodes).
For each value node, we store it into a relational table index2 with the label of
its property node, instead of labeling it and putting its label into an inverted
list as other approaches do. Then the number of inverted lists is limited to the
number of different element/attribute types in the document.

Query processing in TwigTable includes three steps. In the first step, we
perform content search for the value comparisons in query predicates, using re-
lational tables. After that, the query is rewritten by removing all value compar-
isons. In the second step, we perform structural search for the simplified query
2 To avoid the overhead on maintaining relational tables, the relational table index

can also be replaced by other types of index to bidirectional map values and their
properties. However, the trade-off is the inconvenience to support advanced content
search and to meet the requirements in our object-related optimizations.

pattern, using any structural join algorithms, e.g., TwigStack. The last step is
to return result to users. If the output node is a property type, the value result
can be extracted from tables, instead of accessing the original document.

4.2 Document parsing in TwigTable

When we parse an XML document, we only label elements and attributes, and
put the labels into corresponding inverted lists. Values in the document are not
labeled, instead we put them into relational tables together with the labels of
their parent property nodes. Normally this parsing step is only executed once for
an XML document, and after all relevant indexes are properly built during the
parsing step, the system is ready to process twig pattern queries over the given
document. The detailed algorithm Parser is presented in Algorithm 1.

Algorithm 1 Parser
Input: A SAX stream of the given XML document
Output: A set of inverted lists and a set of relational tables
1: initialize Stack S
2: while there are more events in SAX stream do
3: let e = next event
4: if e is a start tag then
5: //step 1: label elements
6: create object o for e
7: assign label to o
8: push o onto S
9: for all attributes attr of e do
10: //attributes are parsed in the same way as elements.
11: assign label to attr
12: put label of attr into the inverted list Tattr

13: insert the label of attr and the value of attr into the table Rattr

14: end for
15: //step 2: put labels of elements into inverted lists
16: put label of o into the inverted list Te

17: else if e is a value then
18: set e to be the child value of the top object in S
19: else if e is an end tag then
20: // step 3: Insert values with their parent element into tables
21: pop o from S
22: if o contains a child value then
23: insert label of o together with its child value into table Re

24: end if
25: end if
26: end while

We use the SAX to read the input document and transform each tag and
value into events. Line 3 captures the next event if there are more events in
the SAX stream. Based on different types of events, different operations are
performed accordingly. Line 4-16 are executed if the event e is a start tag. In
this case, the first two steps are triggered. The system first constructs an object
for this element and assigns a label to it. It then puts the label into the inverted
list for that tag. A stack S is used to temporarily store the object so that when
an end tag is reached, the system can easily tell on which object the operation
will be executed. At line 9-14, the system analyzes the attributes for an element
if any. Based on the same operating steps, it labels the attributes and puts labels
into inverted lists. The attribute values are treated in the same way as element

values. Line 17-18 is the case that the event is a value type. Then the value is
simply bound to the top object in S for further table insertion. When the event
is an end tag in line 19-25, the last step is performed, which is popping the top
object o from S and inserting the label of o together with its value into the
relational table for o, if it has a value.

Example 2. After parsing the bookstore document, the new labeled document
tree is shown in Fig. 4. Comparing to the document tree in Fig. 1, we can see
that TwigTable does not label value nodes. The advantages of this attempt are
reported in Section 6.

bookstore
(1:2600,1)

subject
(2:167,2)

name
(3:4,3)

“computer” book
(6:17,4)

title
(9:10,5)

author
(11:12,5)

publisher
(7:8,5)

price
(13:14,5)

quantity
(15:16,5)

“Hillman” “Network” “Green” 45 30

 ……

……

books
(5:166,3)

book
(18:31,4)

title
(21:22,5)

author
(23:24,5)

publisher
(19:20,5)

price
(27:28,5)

quantity
(29:30,5)

“Elco” “Database” “White” 35 15

author
(25:26,5)

“Brown”

Fig. 4. The bookstore document with only internal nodes labeled, during TwigTable
parsing

Some example relational tables which store data values are shown in Fig. 5.
The name of each table is a property name, and each table contains two fields,
the label of the property node and the corresponding child value. We call these
tables property tables.

label value

(7:8,5) Hillman

Rpublisher

(19:20,5) Elco

… …

value

Network

Rtitle

Database

…

...

value

Green

Rauthor

White

Brown

label

(9:10,5)

(21:22,5)

…

...

label

(11:12,5)

(23:24,5)

(25:26,5)

Fig. 5. Example property tables

Similar to inverted list, relational table also plays an index role to aid twig
pattern query processing. As a result, how to cope with document updates is
an important issue for both inverted lists and relational tables. Inverted lists

have been widely used and well studied for years. There are different ways to
maintain an inverted list for updates, e.g., employing a B+ tree on each list.
Here we discuss the maintenance of relational tables when the XML document
is updated. Actually the relational table is easy to maintain. If the document
is dynamic with frequent updates, we can adopt a dynamic labeling scheme to
label the document so that the update will not cause re-labeling of remaining
document nodes. Thus, any deletion or insertion only brings the update of the
relevant tuple, without affecting other tuples.

4.3 Query processing in TwigTable

As mentioned in Section 4.1, query processing in TwigTable contains three steps:
content search and query rewriting, structural search, and value extraction. The-
oretically, the first two steps, i.e., content search and structural search, can be
reordered. The reason why we perform content search before structural search is
that content search normally results in high selectivity. By performing content
search first, we can reduce the complexity of structural joins. This is similar to se-
lection push-ahead in relational query optimizers. The pseudo-code of TwigTable
query processing is presented in Algorithm 2.

Algorithm 2 TwigTable query processing
Input: A query Q and necessary inverted lists and relational tables
Output: A set of value results answering Q
1: //step 1: perform content search, construct new inverted lists and rewrite the query
2: while there are more value comparisons in predicates of Q do
3: let c be the next value comparison, and p be its property (parent element or attribute)
4: create a new inverted list Tp′ for p

5: select the labels based on c from the table Rp, and sort the resulting labels by document
order

6: put the selected labels into Tp′
7: rewrite the query to replace the sub-structure p/c by p′

8: end while
9: //step 2: perform structural search on the rewritten query with new inverted lists
10: process the rewritten pattern of Q using any existing efficient structural join algorithm like

TwigStack, to get labels for output nodes
11: remove newly created inverted lists
12: //step 3: return query answer
13: extract actual values with labels from corresponding tables, if the output node is a property

node; otherwise access the document to return subtrees.

We first perform content search in Line 2-8. The algorithm recursively han-
dles all value comparisons in two phases: creating new inverted lists based on the
predicates and rewriting the query to remove the processed value comparisons.
In more details, Line 3-6 execute SQL selection in the corresponding property ta-
bles based on each value comparison, and then put all the selected labels, which
satisfy the value comparison, into the new inverted list for the corresponding
property node. Line 7 rewrites the query in such a way that every value com-
parison and its parent property are replaced by a new query node which has an
identical name as the corresponding new inverted list. The second step is using
TwigStack or other efficient structural join algorithms to process the simplified
query with new inverted lists in Line 10-11. Last in line 13, we return result

based on labels of output nodes. In particular, we can extract actual values from
the corresponding table, if the output node is a property node.

Example 3. We use the twig pattern query in Fig. 2(a) to illustrate how TwigTable
works. In the first step, TwigTable identifies the only predicate with value com-
parison is title=“Network”. During content search, TwigTable executes an SQL
selection in the table Rtitle to get all the labels of the element title which have a
value of “Network”. Then we put the selected labels into a new inverted list for
title, Ttitle′ , and rewrite the twig pattern query to replace the sub-structure of
the node title and its child node “Network” by title’, as shown in Fig. 6(a). The
new query node title’ corresponds to the newly created inverted list Ttitle′ , in
which all labels satisfy the constraint title=“Network”. To clearly explain title’
in the rewritten query, we use titleNetwork in Fig. 6(a). Finally we use a twig
pattern matching algorithm, e.g., TwigStack to process the rewritten query in
Fig. 6(a), with the inverted list Ttitle′ for the node titleNetwork.

subject

name book

titleNetwork

(a) Rewritten query example

subject

name book

>20

(b) Invalid query example

Fig. 6. A rewritten query example and an invalid twig pattern query example

As described in Section 2.1, twig pattern query is an intermediate query
representation of formal XML query languages, e.g., XPath and XQuery. Since
in the predicate of an XPath or XQuery query, a value must link to a property
through an operator, e.g., price>20, the value comparison in a twig pattern query
must be a child (‘/’), instead of a descendant (“//”) of an internal query node.
A twig pattern expression shown in Fig. 6(b) is invalid, as the value comparison
follows a “//” edge. Semantically, this query cannot be well interpreted; and
practically, this query will never appear in XPath or XQuery expressions. We
do not consider such invalid twig patterns, thus our algorithm can perform any
content search using property tables.

Note that TwigTable saves I/O cost in value extraction when the output node
is a property node, because we do not need to visit the original document, but
only access relevant relational tables to find values. However, if the output node
matches some internal nodes with subelements in the document, the result should
be the whole subtree rooted at each matched node, instead of a single value. In
this case, TwigTable has no advantage in result return over other approaches.

4.4 Analysis of TwigTable

Label and inverted list management TwigTable combines values to their
parent elements, and avoids labeling value nodes separately. Then the num-

ber of labeled nodes in memory will be greatly reduced. Moreover, TwigTable
puts values into relational tables, instead of maintaining separate inverted
lists for them. Thus the problem of managing a tremendous number of in-
verted lists in previous work can be solved.

Content search TwigTable organizes values based on their property seman-
tics in tables. When the value in a query predicate has different semantic
meaning, i.e., corresponds to different properties, TwigTable only accesses
the correct property table to search the value. In contrast, other approaches
have to scan all such values to perform structural join, though many of them
correspond to other properties and definitely do not contribute to the result.

Inverted list searching reduction Performing content search before struc-
tural search in TwigTable can significantly reduce the size of relevant in-
verted lists. Consider the query in Fig. 2(a). Assume there is only one book
called “Network”. If the number of different books is b, the size of the in-
verted list for the property title is also b in previous approaches. We need
O(b) to scan all the labels in the inverted list for title. TwigTable processes
selection in advance, so that the new inverted list for title is created based
on the value “Network”. In this case the new inverted list has only one label
inside based on our assumption. Normally, when the selectivity of a prop-
erty is high, like in this example, TwigTable can significantly improve the
efficiency of structural search by greatly reducing the inverted list size for
this property.

Advanced search support Since TwigTable can use any existing RDBMS to
manage property tables, all the advanced searches which are supported by
the relational system are also supported in TwigTable.

We can observe that sequential scans and structural joins for labels of both
property node and value node in previous work are replaced by selections in
semantic tables in TwigTable. Actually in any relational database system, such
table selection can be done very efficiently. It is not surprising that replacing
structural join by selection for content search will improve the overall perfor-
mance.

Generally, TwigTable gains benefit from performing content search ahead of
structural search, and then reduce the complexity of structural search. Thus
most advantages discussed in this section hold only for queries with value pred-
icates, which are commonly seen in real life. When a query does not have value
comparison as predicate, we just follow any existing structural join algorithm to
perform structural search directly.

4.5 Queries across multiple twig patterns

A twig pattern can be used to model a simple query, e.g., a query that can
be represented by XPath. When a query is more complex, we need to model it
with multiple twig patterns and value-based joins are used to connect these twig
patterns. One example is shown in Fig. 2(b). As pointed out by [7], structural
join based algorithms can only efficiently process single-patterned queries. When

a complex query involves several twig patterns, either from the same document
or across different documents, structural join based algorithms will fail to work.

The reason why structural join based twig pattern matching algorithms can-
not process queries involving several twig patterns is that those algorithms can-
not perform value-based join between twig patterns using their inverted list
indexes. One naive approach is to match different twig patterns in such a query
separately. By considering each query node that are involved in value-based join
as an output node, they can then access the original document to retrieve the
child values for these query nodes. Last, they join the matching results from
different twig patterns based on the retrieved values. Obviously this attempt is
I/O costly, and also may produce a large size of intermediate result.

In TwigTable, we introduce relational tables to store values. This structure
offers an opportunity to process queries across multiple twig patterns. We observe
that a join operation between two twig patterns is based on a value comparison
between two properties in the two twigs. Using property tables, we can easily
perform the value based join. We use an example to illustrate how TwigTable is
extended to process such queries.

Example 4. Consider the query in Fig. 2(b). There are two twig patterns t1
and t2 are involved in this query. First, TwigTable estimates the selectivity
of each twig pattern. In this case, obviously t1 has a higher selectivity. Then
TwigTable matches t1 to the document, to get the value result of query node
author. Due to the high selectivity on title=“Network” w.r.t. the data in Fig. 4,
the matching result only returns one author name, which is “Green”. In the next
step, TwigTable joins the value result from the first twig pattern to the property
table which corresponds to the joining node in the second twig pattern. In this
example, we join the only value “Green” to Rauthor, to get a list of labels such
that all of them correspond to the value “Green”. Finally, we form a new inverted
list with the selected labels for the author node, and match t2 to the document.

Discussion TwigTable uses both inverted lists and tables for twig pattern
matching, which offers a good opportunity to process queries across pieces of
a document or across different documents. However, to process such a query, an
optimizer is necessary to decide which twig pattern should be matched first, to
reduce the searching space for other twig patterns. Such an optimizer is quite
similar to a relational optimizer, and needs to estimate the cost to matching
each twig pattern, the selectivity of each twig pattern, and also the cost and
the selectivity of each value-based join between twig patterns. In this paper, we
show the capability of TwigTable to process queries across multiple twig pat-
terns. How to generate an optimal query plan to evaluate such queries will be
further investigated.

5 Semantic optimizations

Tables in TwigTable are built based on the semantic relationship between prop-
erty and value. That is why we call them property tables. Using property tables

to perform content search may still not be efficient enough in some cases. Since
object is an important information unit for most queries, we can optimize the
property tables to be object based, to further improve the performance.

5.1 Optimization 1: object/property table

Motivation: Using property tables may still suffer from redundant search in rel-
evant inverted lists. Consider the query in Fig. 2(a). Supposing there are b books
in the bookstore and only one of them is called “Network”. After TwigTable
rewrites the query in Fig. 6, the size of the inverted list for title is reduced to 1.
However the size of the inverted list for book is still b, though we know one label
in it matches the label in the title inverted list. To solve this efficiency problem,
we propose an optimization scheme based on the object semantics.

Optimization: Instead of storing each value with the label of its associated
property node, we can put the property value and the label of the corresponding
object node into relational tables. For example, in the bookstore document we
put values of publisher, title and so forth with labels of the corresponding object
book into object/property tables as shown in Fig. 7(a). The ‘label’ field of each
table stores the label of the object and the following ‘value’ corresponds the value
of different properties in different tables. When we perform a content search, we
can directly select the object labels in the corresponding object/property tables
and construct a new inverted list for the object. To process the query in Fig. 2(a),
we perform the content search using Rbook/title to restrict the book labels based
on the condition on title value. After that the query can be further rewritten
accordingly, as shown in Fig. 7(b), where Tbook′ is the new inverted list for the
element book and we use booktitle=“Network” to explicitly explain book’. Here we
not only reduce the size of Tbook, but also further reduce the number of structural
joins and the number of query nodes by one. Then we can get better performance
when we execute the simplified query.

label value

(6:17,4) Hillman

Rbook/publisher

(18:31,4) Elco

… …

value

Network

Rbook/title

Database

…

…

value

Green

Rbook/author

White

Brown

label

(6:17,4)

(18:31,4)

…

…

label

(6:17,4)

(18:31,4)

(18:31,4)

(a) Tables in TwigTable Optimization 1

subject

booktitle=“Network”name

(b) Rewritten query
for Fig 2(a)

Fig. 7. Tables and rewritten query under TwigTable Optimization 1

This object-level optimization is general to all queries with a predicate on
a property to constraint an object. For the case that the same property type
belongs to multiple object classes, this optimization gains even more benefits,
as it avoids accessing those property nodes that do not belong to the required
object class by distinguishing their object semantics.

Discussion: [Ordinal Column] This optimization may lose order information for
multi-valued properties. Such information may be important in some cases. For
example, the order of authors is important, but from the book/author table we
cannot tell which author comes first for a certain book. To solve this limitation,
we can simply add an additional column in the corresponding object/property
table for such a multi-valued property, to indicate the ordinal information.

5.2 Optimization 2: object table

Motivation: It is quite normal that some queries contain multiple predicates
on the same object. Consider the query shown in Fig. 8(a), which aims to find
the subject of the book with the title of “Network” and the price less than 40.
To answer this query, Optimization 1 needs to find the labels of the books whose
title is “Network” and the labels of the books whose price is less than 40 sepa-
rately using the object/property tables, and intersect them. With more semantic
information, we know that title and price are both properties of the object book.
If we have one table for this object that contains the both properties, books
satisfying these two constraints can be found directly with one SQL selection.

subject

name book

title

“Network”

price

<40

(a) Query with multiple value predicates
under the same object

subject

booktitle=“Network”&price<40name

(b) Rewritten query for Fig 8(a) under
Optimization 2

Fig. 8. Example query with multiple value predicates under the same object and its
rewritten query in Optimization 2

Optimization: A simple idea is to merge the object/property tables in Opti-
mization 1 for each object class. For multi-valued properties, such as author in
our example, it is not practical to merge it with other properties. In this case, we
can merge all the single-valued properties of an object into one object table and
keep the object/property tables for multi-valued properties. The resulting tables
for the object class book in the bookstore document under this optimization are
shown in Fig. 9. In Rbook, each label of book is stored with all the single-valued
property values of that book. When we process queries with multiple predicates
on single-valued properties of an object, we can do a selection in that object ta-
ble based on multiple constraints in one time. For example, to process the query
in Fig. 8(a), we can select book labels based on the two predicates in Rbook

with one SQL selection. Then the original query can be rewritten as shown in
Fig. 8(b). Comparing with the Optimization 1 approach, we further simplify the
query and prune intermediate results for the two predicates.

label publisher

(6:17,4) Hillman

Rbook

(18:31,4) Elco

… …

title

Network

Database

…

price

45

35

…

quantity

30

15

…

…

value

Green

Rbook/author

White

Brown

…

label

(6:17,4)

(18:31,4)

(18:31,4)

Fig. 9. Tables for book in the bookstore document under TwigTable Optimization 2

Discussion: [Mixed table selection] If the multiple predicates involve both
single-valued properties and multi-valued properties, we can intersect the se-
lection result from the object table for the single-valued properties, with the
selection result from the object/property tables for the multi-valued properties.

[Rare property] Properties may optionally appear under the associated ob-
jects. In some cases, the occurrence of certain properties may be rare. We call
such properties rare properties. Suppose in the bookstore document, only a few
books have a second title, then second title is a rare property. If we put this rare
property as a column in the book table, there will be too many NULL entries.
Some relational database systems can deal with sparse attributes in the physical
storage. In case some other systems do not have this function, we can maintain
a separate table specially for all rare properties. The rare property table con-
tains: the object name, the rare property name, the object label and the property
value. Suppose in the bookstore document, second title is a rare property of book
and sale region is a rare property of magazine, the example rare property table
is shown in Fig. 10. Queries involving rare properties are processed by accessing
the rare property table with the object name and the property name.

object property

book second_title

Rrare_property

magazine sale_region

book second_title

label

(76:89,4)

(128:143,4)

(282:299,4)

value

An introduction to data mining

Singapore

A first course

… … … …

Fig. 10. Table for rare properties

[Vertical partitioning] An object table is obtained by merging the object/property
tables for all the single-valued property types under the same object class. When
there are many single-valued property types under a certain object class, the tu-
ple size of the corresponding object table will be very large, which results in a

high I/O cost in selection. A common way in RDBMS design to reduce such I/O
cost is the vertical partitioning of a table ([21]). We can refer to the query history
to see which properties often appear together in the same query, and then split
the original object table into several partitions according to such information.
Since vertical partitioning is not a new technique, we do not discuss it any more.

5.3 Optimization 3: relationship table

Motivation: The hierarchical structure of an XML document cannot reflect
the relationships between objects explicitly, however, such relationships do exist
usually. Consider another design of the bookstore document as shown in Fig. 11,
in which the books are also grouped by different branches. In Fig. 11, the quantity
is not a property of book, but a property of the relationship between branch
and book. Putting a relationship property into the object table of the property’s
nearest object does not affect the accuracy of query processing. Consider a query
to find the code of the branch that has some computer book with a low quantity,
i.e., less than 20, expressed in Fig. 12(a). If we have no idea on the relationship
between branch and book, but store the property quantity in the object table for
book, Optimization 2 will rewrite the query as in Fig. 12(b) for further matching.
However, since we aim to find qualified branches, matching the book node is
redundant. If we know the predicate is on the relationship between branch and
book, we may ignore book during pattern matching to improve efficiency.

bookstore
(1:2800,1)

subject
(2:197,2)

name
(3:4,3)

“computer”

book
(9:20,5)

title
(12:13,6)

author
(14:15,6)

publisher
(10:11,6)

price
(16:17,6)

quantity
(18:19,6)

“Hillman” “Network” “Green” 45 30

 ……

……

branches
(5:196,3)

book
(21:34,5)

title
(24:25,6)

author
(26:27,6)

publisher
(22:23,6)

price
(30:31,6)

quantity
(32:33,6)

“Elco” “Database” “White” 35 15

author
(28:29,6)

“Brown”

branch
(6:107,4)

code
(7:8,5)

“001”

 ……

Fig. 11. Another design of the bookstore document

Optimization: If we have the semantic information about the property of re-
lationship, we can introduce relationship tables. A relationship table store the
property value and the label of the participating objects of each relationship
instance. The example relationship table for the document in Fig. 11 is shown

in Fig. 13(a). When a relationship involves more than two objects, the corre-
sponding relationship table will include the labels of all the objects. Using the
relationship table, the query in Fig. 12(a) can be rewritten as in Fig. 13(b).
Compared to Optimization 2, the query is further simplified with the semantics
of relationship, and the size of the inverted list of the branch node is reduced.
Then the query processing performance will be further improved.

subject

name branch

book

quantity

“ computer” code

<20
(a) Example twig pattern query

subjectname=“computer”

branch

bookquantity<20code

(b) Rewritten query for Fig 12(a) under
Optimization 2

Fig. 12. Example query with predicate on relationship property and its rewritten query
in Optimization 2

labelbranch labelbook

(6:107,4) (9:20,5)

Rbranch-book

(6:107,4) (21:34,5)

… …

quantity

30

15

…

(a) Relationship table

subjectname=“computer”

branchbranch-book.quantity<20

code

(b) Rewritten query for Fig 12(a)
under Optimization 3

Fig. 13. Example relationship table and rewritten query in TwigTable Optimization 3

Discussion: [Overlapping predicates] A query node can be involved in both
an object predicate and a relationship predicate. For example, if the query in
Fig. 12(a) has an additional predicate on book price, the query node book will
be involved in two predicates (i.e., the relationship predicate and the object
predicate) overlapping on it. To handle overlapping predicates, we can perform
the content search based on different predicates separately, and then intersect
the label results to construct the temporary inverted list for the involved object.

[Merging object table and relationship table] If the semantics of participation
constraint between two object classes is known, we can merge the object table(s)

and the relationship table when the constraint is many-to-one or one-to-one. This
is similar to the translation from ER diagram to tables with the consideration of
participation constraints in relational database design. However, similar to the
vertical partitioning, how to physically maintain relational tables is generally
bound to the performance analysis for practical queries.

5.4 A summary

The optimization techniques are proposed around the semantics of object. This
object-level attempt is motivated by the fact that most queries ask about the
information of objects. Generally, as more semantic information is known, we
can optimize TwigTable to different levels, to get better performance.

When the object information is not available but we still need it to manage
data, we can roughly treat the parent node of each property as an object. As
indicated in Section 2.3, this inference may not be correct in some cases, but it
does not affect the correctness of twig pattern query processing. However, we
construct table index based on the semantics of object instead of the simple
structural information is because that object is the information unit in real life
queries. Optimizations in object level can minimize the number of structural joins
without affecting the processing of general queries. For example, if a person has
a composite property name with firstName and lastName. Because most queries
are issued to the object person, instead of to the property name only, if we con-
struct table based on name, with the property of firstName and lastName, after
the content search, we still have to join name with person. However, if we build
the table based on the real object person, i.e., incorporating name/firstName
and name/lastName into person table, any predicate on firstName or lastName
will result in a label filtering for person directly, to save a structural join.

6 Experiments

In this section, we conduct experiments to show the advantage of TwigTable. We
first compare our approach to a schema-aware relational approach [24], which
is considered more efficient than other relational approaches. Then we compare
TwigTable and its two optimizations to TwigStack, a typical structural join based
twig pattern matching algorithm. Note that in this experiment, our algorithms
take TwigStack to perform structural search, thus we compare to TwigStack to
show the benefit gained. We can also take any other structural join algorithm to
perform structural search. We do not compare with them because the comparison
with TwigStack is sufficient to show the advantage of our approach.

6.1 Settings

We implemented all algorithms in Java. The experiments were performed on a
dual-core 2.33GHz CPU and a 4GB RAM under Windows XP.

We used three types of real-world and synthetic data sets to compare the
performance of TwigStack and our approaches: NASA [1], DBLP and XMark

[32]. NASA is a 25MB document with deep and complex schema. DBLP data
set is a 127MB fragment of DBLP database. It is rather regular with a simple
DTD schema but a large amount of data values. We also used 10 sets of XMark
benchmark data with sizes from 11MB to 110MB for our experiments.

We selected three meaningful queries for each data set. All the queries contain
predicates with value comparisons, as value predicates appear in most practi-
cal queries. Generally, there are three types of query predicates: predicates of
equality comparison, predicates of range comparison and multiple predicates of
different comparisons under one object. The queries are shown in Fig. 14.

In TwigTable, we use the Sybase SQL Anywhere [2] to manage relational
tables, and inherit the default database parameters.

Data Set Query Path Expression

NASA

NQ1 //dataset//source//other[date/year>1919 and year<2000]/
author/lastName

NQ2 //dataset/tableHead[//field/name=‘rah’]//tableLinks //title

NQ3 //dataset//history//ingest[date[year>1949 and year<2000]
[month=‘Nov’][day>14 and day<21]]//creator/lastName

DBLP

DQ1 /dblp/article[/author=‘Jim Gray’]/title

DQ2 /dblp/proceedings[year>1979]/isbn

DQ3
/dblp/inproceedings[title=‘A Flexible Modeling Approach for
Software Reliability Growth’][year=‘1987’][author=‘Sergio
Bittanti’]/booktitle

XMark

XQ1 //regions/africa/item[//mailbox//mail/from=‘Libero Rive’]//
keyword

XQ2 //person[//profile/age>20]/name

XQ3 //open_auction[//bidder[time>18:00:00]/increase>5]/quantity

Fig. 14. Experimental queries

6.2 Comparison with Schema-aware Relational Approach

In this section, we compare TwigTable with a Schema-aware Relational Ap-
proach proposed in [24]. We name it SRA for short. We also use the Sybase SQL
Anywhere for SRA. Since this approach is weak in dealing with “//”-axis, we
adopt the proposal in [12] to augment it. SRA is proven more efficient than other
schemaless relational approach to process XML queries. The execution time for
both SRA and TwigTable to process the queries in NASA, DBLP and a 110MB
XMark data is shown in Fig. 15. Note that the Y-axis is in logarithmic scale.

From Fig. 15 we can see that for NASA and XMark data (NQ1-3, XQ1-3)
TwigTable is more efficient, but for DBLP data (DQ1-3) SRA is more efficient.

10000

100000

(m
s)

100

1000

10000

100000

ti
on

ti
m
e
(m

s)
10

100

1000

10000

100000

Ex
ec
ut
io
n
ti
m
e
(m

s)
1

10

100

1000

10000

100000

NQ1 NQ2 NQ3 DQ1 DQ2 DQ3 XQ1 XQ2 XQ3

Ex
ec
ut
io
n
ti
m
e
(m

s)

Queries

1

10

100

1000

10000

100000

NQ1 NQ2 NQ3 DQ1 DQ2 DQ3 XQ1 XQ2 XQ3

Ex
ec
ut
io
n
ti
m
e
(m

s)

Queries

SRA TwigTable

1

10

100

1000

10000

100000

NQ1 NQ2 NQ3 DQ1 DQ2 DQ3 XQ1 XQ2 XQ3

Ex
ec
ut
io
n
ti
m
e
(m

s)

Queries

SRA TwigTable

1

10

100

1000

10000

100000

NQ1 NQ2 NQ3 DQ1 DQ2 DQ3 XQ1 XQ2 XQ3

Ex
ec
ut
io
n
ti
m
e
(m

s)

Queries

SRA TwigTable

Fig. 15. Comparison result between SRA and TwigTable

DBLP data is rather regular and flat, thus the values in DBLP data can be per-
fectly shredded into relational tables. The maximum height of DBLP is 4, which
means using SRA shredding method, there is at most one table join required for
all queries and this join is between the table for root (containing only one tuple)
and another table. For such a relational-like document, the relational approach
is much more efficient, because table selection dominates the overall performance
and this operation can be performed very efficiently in all relational databases.

However, most real life XML data is not as regular as DBLP, otherwise, it
violates the advantage of the semi-structured format. As we see for NQ1-3 and
XQ1-3, when the document is deeper and more complex, i.e., requires more table
joins for SRA, the performance of SRA is badly affected.

6.3 Comparison with TwigStack

Space management We test the space issues in document parsing, including
the number of labeled nodes in memory, and the number of inverted lists and
the number of tables maintained on disk. We parse the NASA, the DBLP, and
a 110MB XMark data using the two approaches. The result is shown in Fig. 16.

Data
Number of Labeled Nodes Number of Inverted Lists

TwigStack TwigTable Saving

997,987 532,963 46.6%

6,771,148 3,736,406 44.8%

3,221,925 2,048,193 36.4%

NASA

DBLP

XMark

TwigStack TwigTable

121,833 68

388,630 37

353,476 79

Number of Tables

TwigStack TwigTable

N.A. 39

N.A. 26

N.A. 43

Fig. 16. Number of labeled nodes, inverted lists and tables in TwigStack and TwigTable

This result validates our analysis in Section 4.4 about the reduction of labeled
nodes in memory and the reduction of inverted lists. In TwigTable, the relational
tables are built based on different types of properties, so the number of tables is

limited to the number of different property types. We also use 10 sets of XMark
data, whose sizes vary between 11MB and 110MB, to further demonstrate the
superiority of TwigTable in space management. The experimental result is shown
in Fig. 17. We can see that the number of labeled nodes is scaled to the document
size for both approaches, and TwigTable always manages less labeled nodes. The
number of inverted lists is scaled to the size of document in TwigStack, whereas
this number is a constant in TwigTable. For a large data set it is not practical
to handle the tremendous number of inverted lists using TwigStack.

1 0.324273 0.072371 0.20613 7.9E-05
2 0.650335 0.124502 0.413111 7.9E-05
3 0.969617 0.164237 0.616229 7.9E-05
4 1.305245 0.208709 0.820438 7.9E-05
5 1.628549 0.239532 1.024073 7.9E-05
6 1 9634 0 267772 1 233723 7 9E 052.5

3

3.5

lli
on

)

6 1.9634 0.267772 1.233723 7.9E-05
7 2.294327 0.291727 1.440674 7.9E-05
8 2.61591 0.311866 1.643495 7.9E-05
9 2.943522 0.332839 1.849449 7.9E-05

10 3.221925 0.353476 2.048193 7.9E-05

1

1.5

2

2.5

3

3.5

ed
 n

od
es

 (M
ill

io
n)

Q1 year Q2 name Q3 year Q3 month Q3 day Q4
wigStack 71.58 874.656 71.58 29.436 29.436 85
ERT 60.876 17.22 60.732 2.148 14.196

0

0.5

1

1.5

2

2.5

3

3.5

11 3 22 8 34 45 3 56 2 68 2 79 7 90 7 102 111

N
o.

 o
f l

ab
el

ed
 n

od
es

 (M
ill

io
n)

0

0.5

1

1.5

2

2.5

3

3.5

11.3 22.8 34 45.3 56.2 68.2 79.7 90.7 102 111

N
o.

 o
f l

ab
el

ed
 n

od
es

 (M
ill

io
n)

File size (MB)
TwigStack TwigTable

0

0.5

1

1.5

2

2.5

3

3.5

11.3 22.8 34 45.3 56.2 68.2 79.7 90.7 102 111

N
o.

 o
f l

ab
el

ed
 n

od
es

 (M
ill

io
n)

File size (MB)
TwigStack TwigTable

0

0.5

1

1.5

2

2.5

3

3.5

11.3 22.8 34 45.3 56.2 68.2 79.7 90.7 102 111

N
o.

 o
f l

ab
el

ed
 n

od
es

 (M
ill

io
n)

File size (MB)
TwigStack TwigTable

(a) Number of labeled nodes

1 0.324273 0.072371 0.20613 7.9E-05
2 0.650335 0.124502 0.413111 7.9E-05
3 0.969617 0.164237 0.616229 7.9E-05
4 1.305245 0.208709 0.820438 7.9E-05
5 1.628549 0.239532 1.024073 7.9E-05
6 1 9634 0 267772 1 233723 7 9E 05

0.3

0.35

0.4

ill
io
n)

6 1.9634 0.267772 1.233723 7.9E-05
7 2.294327 0.291727 1.440674 7.9E-05
8 2.61591 0.311866 1.643495 7.9E-05
9 2.943522 0.332839 1.849449 7.9E-05

10 3.221925 0.353476 2.048193 7.9E-05
0.15

0.2

0.25

0.3

0.35

0.4

ve
rt
ed

lis
ts

(M
ill
io
n)

Q1 year Q2 name Q3 year Q3 month Q3 day Q4
wigStack 71.58 874.656 71.58 29.436 29.436 85
ERT 60.876 17.22 60.732 2.148 14.196

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

11 3 22 8 34 45 3 56 2 68 2 79 7 90 7 102 111

N
o.

of
in
ve
rt
ed

lis
ts

(M
ill
io
n)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

11.3 22.8 34 45.3 56.2 68.2 79.7 90.7 102 111

N
o.

of
in
ve
rt
ed

lis
ts

(M
ill
io
n)

File size (MB)
TwigStack TwigTable

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

11.3 22.8 34 45.3 56.2 68.2 79.7 90.7 102 111

N
o.

of
in
ve
rt
ed

lis
ts

(M
ill
io
n)

File size (MB)
TwigStack TwigTable

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

11.3 22.8 34 45.3 56.2 68.2 79.7 90.7 102 111

N
o.

of
in
ve
rt
ed

lis
ts

(M
ill
io
n)

File size (MB)
TwigStack TwigTable

(b) Number of inverted lists

Fig. 17. Space management comparisons

Data TwigStack

Inverted Lists Tables Total

462 0 462

1290 0 1290

1040 0 1040

NASA

DBLP

XMark

Total size for indexes (MB)

Inverted Lists Tables Total

9 31 40

30 119 149

17 47 64

TwigTable

Fig. 18. Index sizes in TwigStack and TwigTable

We further analyze the total space usage to store indexes of the two ap-
proaches, as shown in Fig. 18. We simply use a separate file to represent each
inverted list on disk, for both approaches. The inverted lists are further indexed
by a B+ tree automatically by the file system, so that during query processing
the relevant inverted lists can be quickly addressed. From the result, we can see
that TwigStack needs a large size of space to manage inverted lists. We further
investigate it and find that actually the total size of inverted lists is not very
large, which is similar to the total size used by TwigTable. However, because
of the tremendous number of inverted lists, the extra structures, e.g., the B+

tree, built by the file system to index these inverted lists are quite large in size.

In contrast, although TwigTable maintains table indexes in addition to inverted
lists, the total size is still much smaller.

Query performance We used the NASA, the DBLP and a 110MB XMark
data set for query performance comparison. We compare TwigStack with our
original TwigTable algorithm, as well as Optimization 1 and Optimization 2. As
mentioned earlier, we can infer the object information in an XML document.
Although the inference may not be semantically correct, it will not affect the
correctness of the result. In the two optimizations, we use such inference to build
object/property tables and object tables. We do not test Optimization 3.

The inverted lists and relational tables are stored on disk and loaded into
memory as needed during query processing. As mentioned above, inverted lists
are stored as separate files and indexed by a B+ tree to ensure the high perfor-
mance in inverted list access. TwigTable actually adopts TwigStack (with the
same implementation) to perform structural search, after content search with
table selection. The execution time of TwigTable and its optimizations include
the I/O and CPU costs to access relational tables to perform content search and
the cost on structural search. The comparison result is shown in Fig. 19.

NASA
relational twigstack vert opt1

NQ1 //dataset//source/ 35495 640 485 4
NQ2 //dataset/tableHea 3813 812 641 3
NQ3 //dataset//history/ 2578 609 422 3
DQ1 /dblp/article[/auth 62 2922 2453 14
DQ2 /dblp/proceedings 46 15547 3454 26
DQ3 /dblp/inproceeding 78 4132 3546 16
XQ1 //regions/africa/ite 7421 789 713 64
XQ2 //person[//profile/ 11730 1000 869 8
XQ3 //open_auction[//b 8500 1716 1293 6

0

200

400

600

800

1000

NQ1 NQ2 NQ3

Ex
ec
ut
io
n
ti
m
e
(m

s)

Query

TwigStack TwigTable

TwigTable Optimization 1 TwigTable Optimization 2

0

200

400

600

800

1000

NQ1 NQ2 NQ3

Ex
ec
ut
io
n
ti
m
e
(m

s)

Query

TwigStack TwigTable

TwigTable Optimization 1 TwigTable Optimization 2

(a) NASA

NASA
relational twigstack vert opt1

NQ1 //dataset//source/ 35495 640 485 4
NQ2 //dataset/tableHea 3813 812 641 3
NQ3 //dataset//history/ 2578 609 422 3
DQ1 /dblp/article[/auth 62 2922 2453 14
DQ2 /dblp/proceedings 46 15547 3454 26
DQ3 /dblp/inproceeding 78 4132 3546 16
XQ1 //regions/africa/ite 7421 789 713 64
XQ2 //person[//profile/ 11730 1000 869 8
XQ3 //open_auction[//b 8500 1716 1293 6

0

3000

6000

9000

12000

15000

18000

DQ1 DQ2 DQ3

Ex
ec
ut
io
n
ti
m
e
(m

s)

Query

TwigStack TwigTable

TwigTable Optimization 1 TwigTable Optimization 2

0

3000

6000

9000

12000

15000

18000

DQ1 DQ2 DQ3

Ex
ec
ut
io
n
ti
m
e
(m

s)

Query

TwigStack TwigTable

TwigTable Optimization 1 TwigTable Optimization 2

(b) DBLP

NASA
relational twigstack vert opt1

NQ1 //dataset//source/ 35495 640 485 4
NQ2 //dataset/tableHea 3813 812 641 3
NQ3 //dataset//history/ 2578 609 422 3
DQ1 /dblp/article[/auth 62 2922 2453 14
DQ2 /dblp/proceedings 46 15547 3454 26
DQ3 /dblp/inproceeding 78 4132 3546 16
XQ1 //regions/africa/ite 7421 789 713 64
XQ2 //person[//profile/ 11730 1000 869 8
XQ3 //open_auction[//b 8500 1716 1293 6

0

400

800

1200

1600

2000

XQ1 XQ2 XQ3

Ex
ec
ut
io
n
ti
m
e
(m

s)

Query

TwigStack TwigTable

TwigTable Optimization 1 TwigTable Optimization 2

0

400

800

1200

1600

2000

XQ1 XQ2 XQ3

Ex
ec
ut
io
n
ti
m
e
(m

s)

Query

TwigStack TwigTable

TwigTable Optimization 1 TwigTable Optimization 2

(c) XMark

Fig. 19. Execution time by TwigStack and TwigTable without optimizations, with
Optimization 1 and with Optimization 2 in the three XML documents

From the result we can see that for all queries, TwigTable outperforms
TwigStack. The reason is that TwigTable performs content search first to sim-
plify the query pattern before structural joins, thus gaining better overall per-

formance. The result also proves that the overhead on table selection will not
affect the benefit gained from twig pattern simplification. TwigStack performs
very badly on DQ2. In the DBLP data, there are a lot of numeric values. To
process DQ2, TwigStack has to combine the labels in all the inverted lists with
a number name greater than 1979, based on document order. To load and merge
these inverted lists is costly. However, in TwigTable this step is replaced by table
selection, thus it is more efficient. We can see, though for small document (e.g.,
NASA), TwigStack is not very slow to perform range search, when the amount
of labels in numeric inverted lists is large, TwigStack will be inefficient to load
and merge the labels.

For all the queries, Optimization 1 works better than TwigTable. The reason
is that Optimization 1 reduces one more level up to the original twig pattern
query. Similarly, the query processing performance is further improved.

Comparing Optimization 1 with Optimization 2, we can see that for single-
predicated queries there is no obvious difference. For some queries, Optimization
2 is even slightly worse than Optimization 1. The reason is that the combined
object table is larger than object/property table, and then there may be more
I/Os to load tuples for object table. However, for multi-predicated queries, e.g.,
the queries Q3, Q6 and Q9, Optimization 2 has better performance, because
Optimization 2 performs content search for all the value comparisons on the
same object at the same time. This again proves our analysis in Section 4.4.

7 Conclusion

In this paper, we propose a semantic approach TwigTable to solve different
kinds of content problems raised in existing approaches for twig pattern query
processing. Unlike TwigStack and its subsequent algorithms, our approach uses
semantic tables to store values in XML document and avoids the management
of a tremendous number of inverted lists for different values. During query pro-
cessing, we perform content search first to reduce the size of relevant inverted
lists, and rewrite the query to reduce the number of structural nodes and the
number of structural joins in it. Then, we match the simplified pattern with
size reduced inverted lists to the document. We also show that the attempt of
using hybrid indexes (inverted list and relational table) can easily and efficiently
process queries across multiple twig patterns.

Our approach is a semantic approach because the relational tables are ini-
tially built based on the semantics of property. With more semantics on ob-
jects and relationships, we propose three optimization techniques to further im-
prove the tables and enhance efficiency of query processing. In particular, (1) if
each property’s associated object is known, we can change property table to ob-
ject/property table in Optimization 1; (2) if we know certain properties belong
to the same object, we can combine the object/property tables to be object table
in Optimization 2; (3) if the relationship between objects is known, we can in-
troduce relationship tables to precisely store the property values of relationships
in Optimization 3. To summarize, as more semantic information is known, we

can further optimize tables and get better performance. Furthermore, when an
output node of a query corresponds to a property type, after finding an occur-
rence of a twig pattern in the document, our algorithm can easily extract actual
value to answer the query from relational tables, whereas existing approaches
need more work to convert labels into values by accessing documents again.

Our work brings a new perspective to incorporate relational approach into
native approach to manage and query XML data. Processing queries involving
ID references [31] or queries across multiple documents becomes possible in our
approach, as our approach takes value-based join to link different twig patterns
involved in a complex query. We will further investigate how to generate optimal
query plans for queries involving both structural joins and table joins.

References

1. http://www.cs.washington.edu/research/xmldatasets/data/nasa/nasa.xml

2. http://www.sybase.com/products/databasemanagement/sqlanywhere

3. S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu, N. Koudas, and D. Srivastava.
Structural joins: A primitive for efficient XML query pattern matching. In Proc.
of ICDE, 2002, pp. 141-154.

4. A. Berglund, D. Chamberlin, M. F. Fernandez, M. Kay, J. Robie, and J. Simeon.
XML Path Language (XPath) 2.0. W3C Working Draft (2003)

5. S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie, and J. Simeon.
XQuery 1.0: An XML Query. W3C Working Draft (2003)

6. P. Bohannon, J. Freire, P. Roy, and J. Simeon. From XML schema to relations: a
cost-based approach to XML storage. In Proc. of ICDE, 2002, pp. 64-75.

7. N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: Optimal XML pattern
matching. In Proc. of SIGMOD, 2002, pp. 310-321.

8. T. Chen, J. Lu, and T. W. Ling. On boosting holism in XML twig pattern matching
using structural indexing techniques. In Proc. of SIGMOD, 2005, pp. 455-466.

9. Y. Chen, S. B. Davidson, C. S. Hara, and Y. Zheng. RRXS: redundancy reducing
XML storage in relations. In Proc. of VLDB, 2003, pp. 189-200.

10. A. Doan, R. Ramakrishnan, F. Chen, P. DeRose, Y. Lee, R. McCann, M. Sayya-
dian, and W. Shen. Community information management. In IEEE Data Eng.
Bull., vol. 29, no. 1, 2006, pp. 64-72.

11. D. Florescu and D. Kossmann. Storing and querying XML data using an RDMBS.
In IEEE Data Eng. Bull., vol. 22, no. 3, 1999, pp. 27-34.

12. G. Gou, and R. Chirkova. Efficienty querying large XML data repositories: a survey.
In IEEE Transactions on Knowledge and Data Engineering, vol. 19, no. 10, 2007,
pp. 1381-1403.

13. T. Grust. Accelerating XPath location steps. In Proc. of SIGMOD, 2002, pp. 109-
120.

14. H. Jiang, H. Lu, and W. Wang. Efficient processing of XML twig queries with
OR-predicates. In Proc. of SIGMOD, 2004, pp. 59-70.

15. H. Jiang, W. Wang, H. Lu, and J. Yu. Holistic twig joins on indexed XML docu-
ments. In Proc. of VLDB, 2003, pp. 273-284.

16. C. Li, and T. W. Ling. QED: a novel quaternary encoding to completely avoid
re-labeling in XML updates. In Proc. of CIKM, 2005, pp. 501-508.

17. T. W. Ling, M. L. Lee, and G. Dobbie. Semistructured database design (web
information systems engineering and Internet technologies series). Springer-Verlag,
2004.

18. Z. Liu, and Y. Chen. Identifying meaningful return information for XML keyword
search. In Proc. of SIGMOD, 2007, pp. 329-340.

19. J. Lu, T. Chen, and T. W. Ling. Efficient processing of XML twig patterns with
parent child edges: a look-ahead approach. In Proc. of CIKM, 2004, pp. 533-542.

20. J. Lu, T. W. Ling, C. Chan, and T. Chen. From region encoding to extended
dewey: On efficient processing of XML twig pattern matching. In Proc. of VLDB,
2005, pp. 193-204.

21. S. Navathe, S. Ceri, G. Wiederhold and J. Dou: Vertical partitioning algorithms for
database design. In ACM Transactions on Database Systems, vol. 9, no. 4, 1984,
pp. 680-710.

22. S. Pal, I. Cseri, O. Seeliger, G. Schaller, L. Giakoumakis, and V. Zolotov. Indexing
XML data stored in a relational database. In Proc. of VLDB, 2004, pp. 1146-1157.

23. P. R. Rao and B. Moon. PRIX: Indexing and Querying XML Using Prufer Se-
quences. In Proc. of ICDE, 2004, pp. 288.

24. J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J. F.
Naughton. Relational databases for querying XML documents: limitations and
opportunities. In Proc. of VLDB, 1999, pp. 302-314.

25. A. Spink. A user-centered approach to evaluating human interaction with web
search engines: an exploratory study. In Information Processing & Management,
vol. 38, no. 3, 2002, pp. 401-426.

26. I. Tatarinov, S. Viglas, K. S. Beyer, J. Shanmugasundaram, E. J. Shekita, and C.
Zhang. Storing and Querying Ordered XML Using a Relational Database System.
In Proc. of SIGMOD, 2002, pp. 204-215.

27. F. Tian, D. J. DeWitt, J. Chen, and C. Zhang. The design and performance eval-
uation of alternative XML storage strategies. In SIGMOD Record, vol. 31, no. 1,
2002, pp.5-10.

28. TreeBank. Retrieved from University of Washington Database Group. 2002.
29. H. Wang, S. Park, W. Fan, and P. S. Yu. ViST: A Dynamic index method for

querying XML data by tree structures. In Proc. of SIGMOD, 2003, pp. 110-121.
30. H. Wu, T. W. Ling, and B. Chen. VERT: a semantic approach for content search

and content extraction in XML query processing. In Proc. of ER, 2007, pp. 534-549.
31. H. Wu, T. W. Ling, G. Dobbie, Z. Bao, and L. Xu. Reducing graph matching to

tree matching for XML queries with ID references. In Proc. of DEXA, 2010.
32. XMark. An xml benchmark project. http://www.xml-benchmark.org.
33. L. Xu, T. W. Ling, H. Wu, and Z. Bao. DDE: From Dewey to a Fully Dynamic

XML Labeling Scheme. In Proc. of SIGMOD, 2009, pp. 719-730.
34. M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. XRel: a path-based ap-

proach to storage and retrieval of XML documents using relational databases. In
ACM Trans. Internet Techn., vol. 1, no. 1, 2001, pp. 110-141.

35. C. Yu, and H. V. Jagadish. Efficient discovery of XML data redundancies. In proc.
of VLDB, 2006, pp. 103-114.

36. T. Yu, T. W. Ling, and J. Lu. Twigstacklistnot: A holistic twig join algorithm for
twig query with NOT-predicates on XML data. In Proc. of DASFAA, 2006, pp.
249-263.

37. C. Zhang, J. Naughton, D. Dewitt, Q. Luo, and G. Lohman. On supporting con-
tainment queries in relational database management systems. In Proc. of SIGMOD,
2001, pp. 425-436.

