
Querying Semistructured Heterogeneous

Information
?

Dallan Quass1 Anand Rajaraman1 Yehoshua Sagiv2

Je�rey Ullman1 Jennifer Widom1

1 Stanford University
fquass,anand,ullman,widomg@cs.stanford.edu

2 Hebrew University
sagiv@cs.huji.ac.il

Abstract. Semistructured data has no absolute schema �xed in ad-
vance and its structure may be irregular or incomplete. Such data com-
monly arises in sources that do not impose a rigid structure (such as
the World-Wide Web) and when data is combined from several hetero-
geneous sources. Data models and query languages designed for well
structured data are inappropriate in such environments. Starting with a
\lightweight" object model adopted for the TSIMMIS project at Stan-
ford, in this paper we describe a query language and object repository de-
signed speci�cally for semistructured data. Our language provides mean-
ingful query results in cases where conventional models and languages do
not: when some data is absent, when data does not have regular struc-
ture, when similar concepts are represented using di�erent types, when
heterogeneous sets are present, and when object structure is not fully
known. This paper motivates the key concepts behind our approach, de-
scribes the language through a series of examples (a complete semantics is
available in an accompanying technical report [QRS+94]), and describes
the basic architecture and query processing strategy of the \lightweight"
object repository we have developed.

1 Introduction

An increasing amount of data is becoming available electronically to the casual
user, and the data is managed under an increasing diversity of data models and
access mechanisms. Much of this data is semistructured. By semistructured data
we mean data that has no absolute schema �xed in advance, and whose structure
may be irregular or incomplete. Two common examples in which semistructured
data arise are when data is stored in sources that do not impose a rigid struc-
ture (such as the World-Wide Web) and when data is combined from several
heterogeneous data sources (especially when new sources are frequently added).

This paper describes a query language and data repository we have developed
speci�cally for semistructured data. An important feature of our language is
that it exploits structure when it is present, but it does not require uniform
structure for meaningful answers. Our language supports objects and object

? This work was supported by ARPA Contract F33615-93-1-1339, by the Anderson
Faculty Scholar Fund, and by equipment grants from Digital Equipment Corporation
and IBM Corporation.

relationships. However, in contrast to most object-oriented query languages, we
use a very simple \lightweight" object model with only a few concepts, resulting
in a \lightweight" query language that we believe is comfortable for the casual
user. The following are highlights of our language.

{ Queries return meaningful results even when some data is absent (Sec-
tion 2.1).

{ Queries operate uniformlyover single- and set-valued attributes (Section 2.2).
{ Queries operate uniformly over data having di�erent types (Section 2.3).
{ Queries can return heterogeneous sets, i.e., where objects in the query result
have di�erent types and structures (Section 2.4).

{ Meaningful queries are possible even when the object structure is not fully
known (Section 2.5).

{ The query language syntax is similar in spirit to SQL. For example, our
treatment of range variables generalizes SQL's approach (Section 2.6).

Our language has been developed as the unifying query language for the
TSIMMIS3 project at Stanford [CGMH+94, PGMW95, PGMU95]. The goal
of the TSIMMIS project is to provide a framework and tools for integrating
and accessing data from multiple, heterogeneous data sources. We describe the
TSIMMIS data model brie
y, only to the extent it is necessary to understand
the query language. A complete description of the data model and its bene�ts
is given in [PGMW95]. The architecture of TSIMMIS and how it relates to the
work presented here is further discussed in Section 6.

In addition to our query language, this paper describes an object repository,
LORE (Lightweight Object REpository),4 that supports our data model and
query language. We have developed LORE not only as a proof-of-concept, but
also because there are some interesting aspects to the implementation of a repos-
itory for semistructured data. In addition, the repository is a useful tool: LORE
will be used in several ways within the TSIMMIS framework (see Section 6).
Because LORE implements our query language, we have named our language
LOREL, for LORE Language.

1.1 Outline of Paper

Section 2 highlights our reasons for developing a new query language, and specif-
ically compares LOREL to three conventional query languages: OQL [Cat94],
XSQL [KKS92], and SQL [MS93]. Other related work appears in Section 3. Sec-
tion 4 describes the data model upon which LOREL is based. An exposition of
the novel features of LOREL using a series of examples appears in Section 5.
Section 5 also includes an informal description of the semantics of LOREL. Sec-
tion 6 describes the LORE object repository and provides an overview of how
queries are executed. Conclusions and future work are given in Section 7. We

3 As an acronym, TSIMMIS stands for \The Stanford-IBM Manager of Multiple In-
formation Sources." In addition, Tsimmis is a Yiddish word for a stew with \hetero-
geneous" fruits and vegetables integrated into a surprisingly tasty whole.

4 Also Data's sinister elder brother, to Star Trek fans.

have written a complete denotational semantics [Sto77] for LOREL (which, in-
cidentally, was very helpful as it helped uncover anomalies that might otherwise
have gone unnoticed). Due to space limitations, we have not included the de-
notational semantics or the syntax in this paper; they are included in the full
version, which is available by anonymous ftp [QRS+94].

2 Motivation and Comparison

In this section we motivate the need for a new query language by presenting
several issues that must be addressed when querying semistructured data, and
by showing how existing query languages are inadequate to address these issues.
We describe our solutions to these issues brie
y here, with further details given
in Section 5.

We realize that (too) many query languages already exist. However, rather
than choose an existing language for our task, we have chosen to develop a new
one. The requirements for querying semistructured data are su�ciently di�erent
from traditional requirements that we feel a new language is justi�ed. Recall that
by semistructured, we mean that there is no schema �xed in advance, and the
structure may be irregular or incomplete. Hence, query languages over semistruc-
tured data must uniformly handle data that is absent, data that does not conform
to a regular structure, and data where the same concepts are represented using
di�erent types. Conventional query languages are designed primarily to access
well structured data whose schema is known. Furthermore, object-oriented query
languages focus especially on facilitating programmer access, supporting di�er-
ent kinds of built-in and extensible object structures and methods. We term such
languages (and their underlying models) heavyweight, in that they expect data
to conform to a regular structure, they enforce strong typing in queries, they
provide di�erent ways of dealing with sets, arrays, and record object structures,
and they include other features important for queries embedded in programs but
perhaps too strong for querying semistructured data.

In contrast, LOREL is a lightweight object query language aimed speci�cally
at querying semistructured data. We compare LOREL with OQL, XSQL, and
SQL (SQL2 speci�cally), which we feel are representative of the types of heavy-
weight query languages in existence. Several issues we use for comparison are
summarized in Table 1. Although our data model is described in more detail
in Section 6, we note here that all data, even scalar values, are represented as
objects. Each object has a unique identi�er, a (textual) label, and a value. The
value is either an element of a scalar type, or a set of subobjects.

2.1 Coping with the Absence of Data

When querying semistructured data, it is important to produce intuitive results
even when some of the data is absent. The reader may be aware of a bug/feature
in SQL regarding the way disjunction (OR) is handled in WHERE clauses. Suppose
we have three unary relations R, S, and T , and we wish to compute R\ (S[T).
If each of these relations has a single attribute A, we might expect the following
SQL query to do the trick.

LOREL OQL XSQL SQL

tuple/
object as-
signment

partial total total total (outerjoins
and null-valued
attributes
allowed)

treatment
of single-
versus
set-
valued
attributes

uniform
treatment
through implicit
existential
quanti�cation

di�erent syntax
(y.x versus v in

y.x)

single-valued and
set-valued path
expressions
treated
di�erently

N/A

type
checking

none strong several options
discussed

explicit casts
required in
several cases

type of
value
returned

heterogeneous set
of objects

an object or
literal, which
may be a
homogeneous set

homogeneous set
of objects, or a
relation

relation

wildcards over attribute
labels

none over attribute
labels

over attributes of
a single relation
in a select clause

range
variables

implicit explicit explicit implicit

Table 1. Di�erences between LOREL and other query languages

SELECT R.A

FROM R, S, T

WHERE R.A = S.A or R.A = T.A

Unfortunately, if T is empty, the result is empty, even if there are elements in
R\S. The reason is that SQL semantics is de�ned in terms of a cross product of
all the relation names and tuple variables that appear in the FROM clause, which
is equivalent to requiring a total assignment of tuples to the three relations R, S,
and T mentioned in the FROM clause. If T (or S) is empty, we cannot �nd a total
assignment (equivalently, the cross product is empty), and thus there is no way
to produce an answer. The problem of absent data is addressed in SQL through
the introduction of outerjoins and nulls. It is well accepted that outerjoins and
nulls are di�cult for the casual user to use correctly [MS93]: outerjoins are not
always associative, and nulls require a three-valued logic.

An alternative approach is to use a partial assignment of tuples. For example,
if T is empty, but R and S each contain the tuple (0), we can assign (0) to both
R and S, assign nothing to T , and �nd that the WHERE condition is satis�ed since
R:A = S:A.

Total assignments are required in SQL, XSQL, and OQL. Total assignments
are not generally a problem in conventional query languages because there is

unlikely to be an empty relation or object set in a conventional database. How-
ever, such a situation is more likely with semistructured data. For this reason,
and because outerjoins and nulls are problematic, LOREL adopts the partial
assignment approach (see Section 5.4 for details).

2.2 Queries Over Single- and Set-Valued Attributes

Suppose that in a library database, the authors of each book appear as a set-
valued attribute, and a name is associated with each author. The following OQL
query fetches the titles of all books written by Samuel Clemens.

SELECT b.Title

FROM b in Library,

a in b.Authors

WHERE a.Name = "Samuel Clemens"

This query works correctly as long as author objects in the database conform
to a regular structure. But now suppose that we add some books that associate
a set of names with each author, e.g., the author's pen names as well as his or
her real name.5 Accommodating these new books in an OQL environment would
require changing the overall schema, and the query above would no longer work
correctly.

Other conventional query languages also treat single- and set-valued at-
tributes di�erently. In SQL, all attributes must be single-valued. In XSQL, path
expressions resulting in set values require explicit quanti�ers when used in pred-
icates, and they cannot always appear in select clauses [KKS92].

LOREL treats single- and set-valued attributes uniformly. When attributes
in path expressions are found to be set-valued, an implicit existential quanti-
�er is assumed. For example, in LOREL the path expression in the predicate
Book.Author.Name = "Samuel Clemens"matches any path from a Book object
through an Author object to a Name object whose value is \Samuel Clemens"
(see Section 5.1 for details).6 If one wants to treat path expressions resulting
in set values as sets, e.g., for aggregation or universal quanti�cation, LOREL
provides additional constructs for this purpose (Section 5.5). By treating single-
and set-valued attributes in a compatible manner, data can have more varied
structure, and the client need not have detailed knowledge about the structure
in order to pose meaningful queries.

2.3 Queries Over Objects Having Di�erent Types

Di�erences between single- and set-valued attributes is just one way in which
structure may vary in semistructured data; another way is with regard to type.
Query languages over semistructured data must have very relaxed type check-
ing, if they perform type checking at all. Consider an OQL query to select all
publishers who have published Computer Science textbooks in 1995.

5 Samuel Clemens used the pen name Mark Twain.
6 In our data model, Book, Author, and Name are object labels, and dot notation
indicates subobject relationships. Details are in Section 5.2.

SELECT b.Publisher

FROM b in Library

WHERE b.Subject = "Computer Science" AND b.year-published = "1995"

In a semistructured environment, b.year-published may result in a string
value for some books, while it results in a numeric value for others. This sit-
uation is not allowed in OQL, since OQL requires strong type checking. SQL
does implicit casts between di�erent data types in some situations, but requires
explicit casts to convert strings to integers, and returns an error if a string does
not have the correct format for conversion. XSQL proposes several possible ap-
proaches to the issue of type checking. In LOREL, we always attempt to convert
the operands of a predicate to comparable types. If the operands cannot be con-
verted to comparable types, rather than return an error, the predicate simply
returns false (see Section 5.3). While this approach may allow \ill-conceived"
queries, we feel that it is a reasonable approach for handling data that does not
all conform to the same type. In the future we will investigate incorporating
limited type checking in cases where it would be helpful.

2.4 Returning Complex Objects and Heterogeneous Sets

Another case where query languages for semistructured data must allow for
objects with di�erent types is in query results. Consider the following OQL
query to �nd the publishers of all books written by Samuel Clemens.

SELECT b.Publisher

FROM b in Library,

a in b.Authors

WHERE a.Name = "Samuel Clemens"

If for some books the publisher is represented as a string but for others it is
represented as a complex object with individual attributes for name and address,
then this query would return a heterogeneous set. Neither OQL, XSQL, nor SQL
allow query results to be heterogeneous sets. In LOREL, all objects, including
query results, are modeled as heterogeneous sets (see Section 5.8). LOREL can
query over heterogeneous sets as well as return heterogeneous sets. Note that
heterogeneous sets are a powerful concept, since with them it is possible to model
both tuple structures and homogeneous sets.

2.5 Queries When Object Structure is Not Fully Known

With semistructured data, it is unlikely that the exact structure of the data
will be known by all clients who wish to query it. SQL partially addresses this
issue by allowing clients to query the system catalogs to learn about tables
and attributes, but clients can only discover limited structure since the system
catalogs do not contain information on how data in di�erent tables is related.
OQL does not provide a way to query object structure. XSQL addresses this
issue by allowing path expressions to contain wildcards and by allowing certain
query variables to range over attribute names.

LOREL is similar to XSQL and an extension to O2 [CACS94] in that we allow
path expressions to contain wildcards and we allow queries to return attribute
labels. Path expressions containing wildcards are useful when part, but not all,
of the structure of the data is known. For example, suppose one knows that a
Library object contains Book objects, but one is unsure of the structure within
book objects. In an attempt to �nd all books authored by \Samuel Clemens," a
LOREL query could contain the predicate Library.Book.* = "Samuel

Clemens", which matches any sequence of objects beginning with a Library

object, through a Book object, through zero or more other objects,7 and �nally
ending in an object whose value is \Samuel Clemens." Wildcards can also be
useful when the exact object structure is known, but it varies among the objects
in the database.

The above predicate might also match books not written by Samuel Clemens,
such as books whose title is \Samuel Clemens," but once the client becomes more
familiar with the structure, a more speci�c query can be written. To facilitate
exploring and posing queries about structure, LOREL provides the built-in func-
tions PATHOF(), LABELOF(), and TYPEOF(). These functions can be applied to
path expressions in queries to return a concatenation of the labels of all objects
in the sequence matching the path expression, the label of just the last object
in the sequence matching the path expression, and the type of the last object in
the sequence matching the path expression, respectively (see Section 5.7).

2.6 Absence of Range Variables

LOREL does not require the introduction of range variables for specifying that
di�erent path expressions in a query should match the same element of a set,
as used in OQL and XSQL. For example, in the OQL query of Section 2.3, the
variable b had to be introduced to specify that both predicates should be satis�ed
by the same book object. In LOREL, path expressions that begin with the same
sequence of labels by default match the same sequence of objects up to the point
where the label sequences diverge. We feel that this default provides the natural
behavior in most cases, and we provide an easy way for the client to override
the default when desired (see Section 5.6). The absence of range variables makes
LOREL similar in spirit to SQL.

3 Other Related Work

Several articles have pointed out the need for new data models and query lan-
guages to integrate heterogeneous data sources, e.g., [LMR90, Qia93]. However,
most of the research in heterogeneous database integration has focused on inte-
grating data in well structured databases. In particular, systems such as Pegasus
[RAK+92] and UniSQL/M [Kim94] are designed to integrate data in object-
oriented and relational databases. At the other end of the spectrum, systems
such as GAIA [RJR94], Willow [Fre94], and ACL/KIF [GF94] provide uniform
access to data with minimal structure.
7 To handle cyclic data, the length of object sequences matching a *" would in practice
be limited to a constant.

The goal of the TSIMMIS project is to uniformly handle unstructured, semi-
structured, and well structured data [PGMW95]. In this goal our e�ort is similar
to the work on integrating SGML [ISO86] documents with relational
databases [BCK+94] or integrating SGML documents with object-oriented data-
bases such as OpenODB [YA94] or O2 [CACS94]. These approaches tend to
extend existing data models and languages [BCD92, F+89]. The ideas behind
LOREL could instead have been used to extend an existing language. Our choice
to design a new language has its advantages and disadvantages, of course. A dis-
advantage is that we are unable to manage our objects using an existing DBMS.
An advantage is that we do not have to work around the limitations of a data
model and language designed originally for querying well structured data with
a �xed schema. Another language designed for the TSIMMIS project, described
in [PGMU95], is used for mediator speci�cation. In contrast, LOREL is intended
for inter-component communication in TSIMMIS and for the end user.

Environments such as CORBA [OMG92] and OLE2 [Mic94] operate at a dif-
ferent level from TSIMMIS and LOREL. These approaches provide a common
protocol for passing messages between objects in a distributed object environ-
ment. In contrast, TSIMMIS and LOREL provide a common data model and
query language. Our approach could easily be built on top of and take advantage
of environments such as CORBA and OLE2.

We have already shown how LOREL compares to OQL, XSQL, and SQL.
LOREL relates in similar ways to a number of other query languages for object-
oriented [BCD92, CDV88, Har94] and nested relational [DKA+86] systems. A
�nal important di�erence between LOREL and these query languages is that the
simplicity of our object model yields many fewer concepts in the query language,
resulting in a language that we believe is more appropriate for the casual user.

4 Data Model

In the TSIMMIS project we have developed a simple data model called OEM
(for Object Exchange Model) [PGMW95], based essentially on tagged values.
Every object in our model has an identi�er, a label, and a value. The identi�er

uniquely identi�es the object among all objects in the domain of interest. The
label is a string (the tag) presumably denoting the \meaning" of the object.
Labels may be used to group objects by assigning the same label to related
objects. The value can be of a scalar type, such as integer or string, or it can
be a set of (sub)objects. We de�ne atomic objects as objects with scalar values,
and complex objects as objects whose values are sets of subobjects. Note that
due to the simplicity of our model, even immutable values such as numbers are
represented as values of distinct objects.

An object is thus a 3-tuple:

hidenti�er; label; valuei

A database D = hO;N i is a set O of objects, a subset N of which are named (or
top-level) objects. The intuition is that named objects provide \entry points" into
the database from which subobjects can be requested and explored. To ensure
that named objects can be speci�ed uniquely when writing queries, we require

that the labels of named objects be unique within a given database. We shall
use label(o), value(o), and identi�er (o) to denote the label, value, and identi�er,
respectively, of an object o.

Figure 1 shows a segment of an entertainment database. This structure is typ-
ical of the semistructured data that is available on, e.g., the World-Wide Web.8

In the �gure, indentation is used to represent subobject relationships. Each ob-
ject appears on a separate line, with its identi�er inside brackets at the far left,
followed by its label, followed by its value if the value is a scalar. Complex values
are represented by indenting the subobject labels underneath the parent object.
Hence, this database contains a single top-level object labeled Frodos. Frodos
is a complex object with three subobjects, one having label Restaurant, and
two having label Group. Although a real-world entertainment database would
of course be much, much larger, this example concisely captures the sort of
structure (or lack thereof) needed to illustrate the features of our language. For
example, the performance dates and ticket prices for the Palo Alto Savoyards are
absent, the Savoyards perform only a single work per performance as opposed
to (possibly) multiple works performed by the Peninsula Philharmonic, prices
of restaurant entrees are of strings while prices of performing group tickets are
of integers, and the work listed for the second performance of the Peninsula
Philharmonic is a string rather than a complex object with title and composer
subobjects.

5 The Language

In this section we describe our language (LOREL), primarily through a series
of examples. In Section 5.1, we present a simple LOREL query and explain
intuitively what it does. Section 5.2 introduces the basic concepts needed to
understand the semantics of LOREL queries. Section 5.3 presents some further
LOREL examples. Section 5.4 explains the use of boolean connectives (AND and
OR) in queries. Sections 5.5 through 5.8 then discuss more advanced features
of LOREL, including subqueries and correlation, schema browsing, and complex
query results. The complete LOREL syntax and denotational semantics are given
in the extended version of this paper [QRS+94]. All of the example queries in
this section refer to the database (fragment) in Figure 1.

5.1 An Introductory Query

Suppose we wish to �nd the names of all opera groups. We issue the following
query:

SELECT Frodos.Group.Name

FROM Frodos

WHERE Frodos.Group.Category = "Opera" (1)

Recall that Frodos is the label of a unique named object in the database of
Figure 1. This query �nds all Group subobjects of the the Frodos object that

8 For example, the URL http://gsb.stanford.edu/goodlife presents a database of
semistructured restaurant information.

[1] Frodos
[2] Restaurant
[3] Name \Blues on the Bay"
[4] Category \Vegetarian"
[5] Entree
[6] Name \Black bean soup"
[7] Price \10.00"
[8] Entree
[9] Name \Asparagus Timbale"
[10] Price \22.50"
[11] Location
[12] Street \1890 Wharf Ave."
[13] City \San Francisco"
[14] Group
[15] Name \Peninsula Philharmonic"
[16] Category \Symphony"
[17] Performance
[18] Date \3/12/95"
[19] Date \3/19/95"
[20] Date \3/26/95"
[21] Work
[22] Title \Eine Kleine Nachtmusik"
[23] Composer \Mozart"
[24] Work
[25] Title \Toccata and Fugue in D minor"
[26] Composer \Bach"
[27] Performance
[28] Date \12/20/95"
[29] Work \Seasonal selections to be announced"
[30] TicketPrice
[31] AgeGroup \Adults"
[32] Price 15
[33] TicketPrice
[34] AgeGroup \Students"
[35] Price 8
[36] Location
[37] Street \100 Middle�eld Ave."
[38] City \Palo Alto"
[39] Phone \415-777-5678"
[40] Group
[41] Name \Palo Alto Savoyards"
[42] Category \Opera"
[43] Performance
[44] Work
[45] Title \The Yeoman of the Guard"
[46] Composer \Gilbert"
[47] Composer \Sullivan"
[48] Location
[49] Street \101 University Ave."
[50] City \Palo Alto"
[51] Phone \415-666-9876"

Fig. 1. Frodo's Guide to Good Living in the Bay Area

contain a Category subobject whose value is "Opera". The query returns a set
that contains copies of the Name subobjects of all such Group objects. The result
of Query (1) looks like this:

[60] Answer
[61] Name \Palo Alto Savoyards"

The result set is \packaged" inside a single complex object with the default
label Answer. (This default label can be overridden; see Section 5.8.) In this
case, the result set is a singleton set, but in general it can contain more than
one object. The Answer object becomes a new named object of the database.
Packaging the result set in a new object has the advantage that the result of a
query can be treated as new data, i.e., it can be browsed or queried using the
same mechanisms that are used on the database.

5.2 Semantics of Simple Queries

This section provides an informal overview of the semantic concepts underlying
LOREL, with just enough detail (we hope) for the reader to understand the
remainder of the paper. For a complete formal treatment of this material the
reader is referred to [QRS+94].

Path Expressions and Object Assignments Path expressions form the ba-
sis of LOREL queries. A path expression is a sequence of labels separated by
dots. Query (1) above contains two path expressions: one (Frodos.Group.Name)
in the SELECT clause, and one (Frodos.Group.Category) in the WHERE clause.
Path expressions describe paths through the object structure (called database

paths, or simply paths), by specifying the labels of the objects along the paths.
For example, the path expression Frodos.Group.Name\matches" every database
path consisting of a sequence of three objects, ho1; o2; o3i, such that

{ label(o1) = Frodos, label(o2) = Group, and label(o3) = Name; and
{ o1 and o2 are complex objects such that o2 2 value(o1) and o3 2 value(o2);
o3 can be either atomic or complex.

There are two paths in the database of Figure 1 that match Frodos.Group.Name:
h[1]; [14]; [15]i and h[1]; [40]; [41]i.

The result of a query is based on matching its path expressions with database
paths. When matching the two path expressions in Query (1), both database
paths in a match must contain the same Frodos and Group objects. (Intuitively,
commonpre�xes of path expressions mustmatch the same database paths, as dis-
cussed in Section 2.6.) For example, one of the two possible matches for Query 1
is:

Frodos.Group.Name ! h[1]; [14]; [15]i
Frodos.Group.Category ! h[1]; [14]; [16]i

The pair of matching paths above also corresponds to a mapping from all
the pre�xes of path expressions appearing in Query (1) to database objects:

Frodos ! [1]
Frodos.Group ! [14]
Frodos.Group.Name ! [15]
Frodos.Group.Category ! [16]

We call such a mapping from path expression pre�xes to objects an object as-

signment.

The FROM Clause The FROM clause contains a list of labels of named objects,
specifying that only database paths that begin with these objects should be
considered. In the absence of wildcards (Section 5.7), the FROM clause is optional
and redundant, because path expressions must each begin with one of the objects
mentioned in the FROM clause. We omit FROM in most of our example queries.

The WHERE Clause Given an object assignment that maps some path expres-
sion in the WHERE clause of a query to an object o,9 the value of the path expres-
sion is either

{ the value of o if o is an atomic object, or
{ the identi�er of o if o is a complex object.

Hence the language treats path expressions di�erently depending on whether an
object is atomic or complex. This approach is needed because, in our semistruc-
tured environment, data may contain both atomic and complex objects with the
same label.

Now, suppose we have an object assignment for some or all of the path
expressions that appear in the WHERE clause of a query. We evaluate the WHERE
condition in the conventional manner: replace each path expression by its value
and then evaluate the expression following the WHERE. It is important to note
that there are times when we do not need a total object assignment in order
to evaluate the WHERE clause. In particular, when the WHERE clause is the OR of
two expressions, it is not necessary to assign objects to path expressions on both
sides of the OR. As discussed in Section 2.1, this point distinguishes LOREL from
other languages, and is essential for querying in a semistructured environment.
We shall have more to say about partial object assignments in Section 5.4.

The SELECT Clause A partial object assignment for a query is successful if it
satis�es the WHERE clause as explained above. The result set of the query contains
copies of all the objects that are matched with the path expression in the SELECT
clause by a successful object assignment. All objects in the result set are made
subobjects of a new named object with the label Answer.

Notice that the result set can in general be a heterogeneous set, since neither
our data model nor our language requires that a path expression map to objects
of a single type. Heterogeneous result sets also arise when the SELECT clause
contains more than one path expression (Section 5.8).

9 Note that each path expression is also a path expression pre�x.

Relationship to SQL Semantics Although the semantics of SQL is usually
de�ned in terms of a cross product of the relations mentioned in the FROM clause,
it can easily (and equivalently) be de�ned in terms of mappings from the relation
names and tuple variables that appear in the FROM clause to actual database tu-
ples. When SQL semantics is de�ned in this way, there is a clear correspondence
between the LOREL concepts we have seen so far and SQL concepts, as shown
in Table 2.

SQL LOREL
Relation name or tuple variable Path expression pre�x

Database tuple Database object
(Total) tuple assignment (Partial) object assignment

Table 2. Relationship between SQL and LOREL concepts

5.3 Additional Simple Queries

The result of Query (1) is a set of atomic objects. The path expression in a
SELECT clause can also match complex objects, as in the following variant of
Query (1):

SELECT Frodos.Group

WHERE Frodos.Group.Category = "Opera" (2)

The result of this query on our example database is:

[62] Answer
[63] Group
[64] Name \Palo Alto Savoyards"
[65] Category \Opera"
[66] Performance
[67] Work
[68] Title \The Yeoman of the Guard"
[69] Composer \Gilbert"
[70] Composer \Sullivan"
[71] Location
[72] Street \101 University Ave."
[73] City \Palo Alto"
[74] Phone \415-666-9876"

Operators that can be used in the WHERE clause include the familiar =, <, >,
<=,>=, and ! =. Path expressions can be compared with other path expressions,
rather than constants, as the following example demonstrates.

SELECT Frodos.Group.Performance.Work.Title

WHERE Frodos.Group.Performance.Work.Title =

Frodos.Group.Performance.Work.Composer (3)

This query returns the titles of all performances where the title is the same as
one of the composers. The result set of Query (3) will contain titles more than
once if there are pieces that are performed several times. As in SQL, SELECT
DISTINCT eliminates duplicates.

Query (3) appears rather cumbersome, since the same path expression pre�x
is repeated three times. LOREL permits an abbreviation so that commonpre�xes
can be written only once. Query (3) is abbreviated to:

SELECT Frodos.Group.Performance.Work:W.Title

WHERE W.Title = W.Composer (4)

Every occurrence of W after the �rst expands to the path expression pre�x with
which W is associated.

It is not a type error in LOREL to compare objects of di�erent types, or to
use a comparison operator that is not de�ned for a given type; such comparisons
merely return false. Thus, if in the future we had computers authoring music,
some Work.Composer values might contain numbers (the Internet address of the
computer) while others contain strings (for human composers). There could also
be pieces without any composers. In all of these cases, Query (3) would still be
legal. This absence of typing in queries is a powerful and, we feel, a necessary
feature for querying semistructured data.

Path expressions can be used without any comparison operators to produce
\existential" queries. For example, suppose we are interested only in works per-
formed by groups whose ticket price is known in advance. We use the query:

SELECT Frodos.Group.Performance.Work

WHERE Frodos.Group.TicketPrice (5)

The result of Query (5) is a heterogeneous set, since it contains complex Work

objects (with Title and Composer attributes), as well as a Work object of type
string. The result of the query is:

[75] Answer
[76] Work
[77] Title \Eine Kleine Nachtmusik"
[78] Composer \Mozart"
[79] Work
[80] Title \Toccata and Fugue in D Minor"
[81] Composer \Bach"
[82] Work \Seasonal selections to be announced"

Path expressions can be arguments to external predicates as well. Suppose we
have a predicate isInCounty that accepts two strings|a city and a county|and
returns true if the city is in the given county. Then the query:

SELECT Frodos.Group.Name

WHERE isInCounty(Frodos.Group.Location.City, "Santa Clara") (6)

returns the names of all groups in Santa Clara County. LOREL supports external
functions as well as external predicates. External functions and predicates are
most useful when using LOREL in the TSIMMIS context, where the functions
and predicates would be supported by an underlying information source; see
Section 6.

5.4 Boolean Connectives

Conditions in the WHERE clause of a query can be combined using the connectives
AND and OR. Conjunctions (conditions involving AND) are handled in the usual
manner. Disjunctions (conditions involving OR) are more subtle. We might be
tempted to say that an object assignment succeeds for a condition with an OR if
at least one of the disjuncts is satis�ed. But consider the following query:

SELECT Frodos.Group.Name

WHERE Frodos.Group.Category = "Opera" OR

Frodos.Group.Performance.Date = "3/19/95" (7)

Presumably, the query is intended to �nd the names of all groups such that either
the group is an opera group or it performs on 3/19/95. Looking at Figure 1, we
would intuitively expect that since Palo Alto Savoyards is an opera group, their
name should be in the result of the query. However, no date is speci�ed for
any performance by the Savoyards. Thus, there is no total object assignment
that would put the Savoyards in the result set. As motivated earlier, LOREL
semantics is de�ned in terms of partial object assignments. When evaluating
the WHERE condition with partial object assignments, if some path expression
involved in an atomic condition (such as a comparison) is not mapped, then
the condition evaluates to false. As usual, a condition involving an OR evaluates
to true if at least one of the conditions connected by the OR evaluates to true.
Hence, the result of Query (7) will include the Palo Alto Savoyards.

5.5 Subqueries and Correlation

So far, conditions in the WHERE clause involving path expressions have used im-
plicit existential quanti�cation over sets. For example, in Query (5) the WHERE
clause is satis�ed if there exists a path with successive objects labeled Frodos,
Group and TicketPrice. Subqueries enable universal quanti�cation over all ob-
jects in a set. For example, the following query �nds the names of restaurants
whose entrees all cost less than $10.

SELECT Frodos.Restaurant.Name

WHERE Frodos.Restaurant SATISFIES

10 > ALL (SELECT Frodos.Restaurant.Entree.Price) (8)

We extend the semantics of simple queries given in Section 5.2 as follows. For
every (partial) object assignment to the the top-level query (but not the sub-
query), evaluate the subquery with the restriction that the path expression
Frodos.Restaurant (the path expression preceding the keyword SATISFIES)
already has its mappings �xed by the object assignment for the enclosing query.
The subquery returns a set of objects, whose values form the set for evaluating
the WHERE clause.

In Query (8) the subquery is evaluated for every restaurant in the database.
The subquery produces the set of entree prices for the restaurant. Only restau-
rants all of whose entrees cost less than $10 will satisfy the condition in the WHERE
clause and will therefore have their names in the result. Query (8) contains a
subquery with correlation: the path expression Frodos.Restaurant preceding
the keyword SATISFIES links together each evaluation of the subquery with the

rest of the path expressions in the enclosing query. Note that for e�ciency, the
subquery could be evaluated just once with the result set then grouped by the
object assignment for Frodos.Restaurant.

Any binary operator can be converted into an operator for comparing a single
value and a set by appending one of the modi�ers ALL or ANY, for example,
< ANY or 6= ALL. Two other mixed set/value operators are IN and NOT IN, which
are used to test for set membership.10 Two sets can be compared using the
CONTAINS and SETEQUAL operators. More than one path expression can precede
the keyword SATISFIES (for more than one correlation with the subquery), and
the condition following SATISFIES can be arbitrarily complex. The full version
of this paper [QRS+94] describes how the semantics described above generalizes
naturally in these cases.

Subqueries can also be used as operands to the aggregation operators COUNT,
SUM, AVG, MIN, and MAX. The following query �nds the names of restaurants that
o�er more than seven entrees priced $10 or less:

SELECT Frodos.Restaurant.Name

WHERE Frodos.Restaurant SATISFIES

7 < COUNT (SELECT Frodos.Restaurant.Entree

WHERE Frodos.Restaurant.Entree.Price <= 10) (9)

Aggregation operators can also appear in the SELECT clause; see [QRS+94].

5.6 Label Distinguishers

Sometimes it is necessary to distinguish among pre�xes in path expressions that
otherwise would be forced to match the same database paths. We do so by
appending to a label a colon and a label distinguisher. Label distinguishers make
it possible to express queries that could not otherwise be expressed in LOREL.
For example, the query

SELECT Frodos.Group.Performance.Work.Title

WHERE Frodos.Group.Performance.Work.Composer:A = "Gilbert" AND

Frodos.Group.Performance.Work.Composer:B = "Sullivan" (10)

selects the titles of all performances of the works of Gilbert and Sullivan.11

Label distinguishers were actually introduced in Section 5.3, where they were
used to avoid repeating path expression pre�xes in a query; that abbreviation is
an additional function of label distinguishers.

5.7 Wildcards and Schema Browsing

One of the most important requisites for querying in a semistructured environ-
ment is adequate capabilities for browsing and discovering object structure. Our
data model does not require that data be structured according to a schema
�xed in advance; however, in most cases we do expect some common structure

10 IN and NOT IN have exactly the same functionality as = ANY and 6= ALL, respectively.
All these constructs have a direct analogy in SQL.

11 We realize that Gilbert was a librettist, but we refer to him as a composer for
simplicity.

to the data (which we shall hereafter call \schema" for convenience). LOREL
provides mechanisms for schema discovery, as well as the ability to pose queries
with incomplete information, by the use of the wildcards \�" and \?" in path
expressions, and by providing convenient operators to summarize the results of
such queries.

The wildcards � and ? may be used anywhere in a path expression that a
label can appear. The � stands for any sequence of zero or more labels, while the
? stands for any single label. Occurrences of � (respectively, ?) in di�erent path
expressions where the �'s (?'s) are preceded by the same path expression pre�x
are assumed to stand for the same sequence of labels (single label), unless one
or both occurrences are modi�ed by a label distinguisher.

As an example, suppose we are interested in restaurants that are located in
the city of Palo Alto.We might reasonably assume that most Restaurant objects
will contain the city in which they are located, but we might not know at what
level of the object hierarchy the city would appear for di�erent restaurants. The
following query solves our problem:

SELECT Frodos.Restaurant.Name

WHERE Frodos.Restaurant.*.City = "Palo Alto" (11)

The wildcard feature is very useful for forming queries when one has in-
complete knowledge about the structure of the underlying data, as well as for
succinctly expressing queries when the structure of the underlying data is known
but is highly heterogeneous. Our absence of type checking allows queries contain-
ing wildcards that would not be considered legal in strongly typed languages.
Wildcards can occur in the SELECT clause as well as in the WHERE clause. Wild-
cards in the SELECT clause may result in heterogeneous result sets, but as we
have already seen, queries returning heterogeneous sets are legal in LOREL.

For querying object structure, the built-in operator PATHOF takes a path ex-
pression (which may contain wildcards) as its argument and produces a string
that describes a matching path in terms of its label structure (e.g.,
"Frodos.Restaurant.Name"). The operator LABELOF is similar, but produces a
string that corresponds only to the label of the last object in the path (e.g.,
"Name"). LABELOF and PATHOF can be used with the DISTINCT operator for
schema browsing and discovery. For example, the query:

SELECT DISTINCT PATHOF(Frodos.*) (12)

returns all possible sequences of labels in the Frodos database and can be used to
get a feel for the overall structure of the database. The TYPEOF operator returns
the type of the last object in a path (e.g., "Integer", "String", or "Complex").
In general, there could be more than one type that is associated with a path
expression, and in such cases the TYPEOF operator returns all of them. Finally,
the built-in predicates ISATOMIC and ISCOMPLEX test whether the last object in
a path is atomic or complex, respectively.

5.8 Creating Complex Object Structures

Until now, the SELECT clause in our queries has contained just one path ex-
pression. In general, a SELECT clause can contain a list of path expressions. For
example, in the query:

SELECT AS LocalGroups

Frodos.Group.Name, Frodos.Group.*.Phone

WHERE Frodos.Group.Location.City = "Palo Alto" (13)

the result set contains both Name and Phone objects for every group in Palo Alto.
Query (13) introduces another LOREL feature: the label of the query result
can be changed using the optional AS clause (recall that the default label was
Answer). In Query (13), the result is labeled LocalGroups instead of Answer.

The result of Query (13) actually may not be very useful if the result set
contains several names and phone numbers, because there is no way of telling
which phone number goes with which name.We can solve this problem by having
the result set contain, for every group, a complex object whose subobjects have
the name and the phone number(s) for that group. This result is achieved by
using subqueries with correlation in the SELECT clause. The following query is
issued:

SELECT AS LocalGroups

FOREACH Frodos.Group f
(SELECT Frodos.Group.Name),

(SELECT Frodos.Group.*.Phone)

g
WHERE Frodos.Group.Location.City = "Palo Alto" (14)

The result of this query applied to our Frodo's database is:

[83] LocalGroups
[84] Group
[85] Name \Peninsula Philharmonic"
[86] Phone \415-777-5678"
[87] Group
[88] Name \Palo Alto Savoyards"
[89] Phone \415-666-9876"

The semantics of Query (14) can be understood as follows. Take all success-
ful object assignments and group them according to the object to which they
map the path expression Frodos.Group (the path expression after the keyword
FOREACH). Select one such group of object assignments. For each object assign-
ment in the group, evaluate the two subqueries with the restriction that path
expression Frodos.Group has already been mapped by the object assignment
that was �xed. Collect together all the resulting objects into a set, and package
this set in a new complex object labeled Group (the last label in the FOREACH

path expression). Repeat the above process for each group of path expressions,
and collect together all the Group objects that result to form the result set of
the query.

Note that performing groups with no phone numbers will have no Phone

subobject in the result, and groups with more than one phone number will have
more than one Phone subobject. LOREL handles such cases more gracefully than
other query languages.

As a convenient abbreviation, a path expression by itself in a FOREACH block
stands for a subquery that selects that path expression. Thus, a shorter version
of Query (14) is:

[201] BBB
[202] Restaurant
[203] Name \Blues on the Bay"
[204] Rating 4
[205] Restaurant
[206] Name \The Greasy Spoon"
[207] Rating 1

Fig. 2. The BBB restaurant ratings

SELECT AS LocalGroups

FOREACH Frodos.Group f
Frodos.Group.Name,

Frodos.Group.*.Phone

g
WHERE Frodos.Group.Location.City = "Palo Alto" (15)

The labels of all objects in the result set, not only the top-level object,
can be changed from their defaults by using AS. In addition, the FROM clause
can contain more than one named object. Query (16) illustrates both relabeling
objects in the result and a FROM clause with multiple named objects. Assume
for this query that we have a BBB restaurant guide database, which provides
ratings for restaurants (see Figure 2). We have generally omitted the FROM clause
since, in the absence of wildcards, it can be deduced from the rest of the query,
but we include it in the following example for clarity.

SELECT FOREACH Frodos.Restaurant AS RatedRestaurant f
Frodos.Restaurant.Name,

Frodos.Restaurant.Category AS Type,

BBB.Restaurant.Rating AS BBB-Rating

g
FROM Frodos, BBB

WHERE BBB.Restaurant.Name = Frodos.Restaurant.Name (16)

The result of Query (16) is:

[90] Answer
[91] RatedRestaurant
[92] Name \Blues on the Bay"
[93] Type \Vegetarian"
[94] BBB-Rating 4

When subqueries with correlation appear in the SELECT clause, they are
a powerful tool for materializing complex result structures from a database.
We have not illustrated their full power here. For example, it is possible for a
FOREACH clause to contain more than one path expression, and FOREACH clauses
may be nested to any depth. Subqueries with correlation are an extension and
generalization of the OID functions available in XSQL [KKS92]; they are more
powerful than the construction expressions provided by OQL [Cat94] that apply
to sets and structures. For more details, the reader is referred to [QRS+94].

6 The Repository

We are currently building LORE, a \Lightweight Object REpository" based
upon our data model and query language. Recall that the goal of the TSIMMIS
project is to integrate data from heterogeneous information sources. Figure 3
illustrates the portion of the TSIMMIS framework relevant to query processing.
Queries are posed by the client using LOREL and are sent to mediators, whose
purpose is to provide a uniform view of data from one or more information
sources. (TSIMMIS mediator speci�cation is described in [PGMU95].) A media-
tor splits the incoming query into one or more single-source LOREL queries and
sends them to translators. (Queries may also be sent directly from the client to
translators, but this is not shown in the �gure.) A translator converts incoming
queries from LOREL to a source-speci�c query language and sends the source-
speci�c queries to the information source. When data is returned from the source,
the translator converts the data from the source-speci�c data format to our data
model. The mediator then processes and combines data from the translators to
construct an answer for the client. The entire TSIMMIS framework is explained
in [CGMH+94].

Even though the purpose of the TSIMMIS framework is to integrate data
from existing information sources, an object repository is useful in several places
within the framework. In the �gure we highlight four places where LORE is
useful:

{ Storing query results at a client.When a client wants to �nd informa-
tion, the search may involve issuing several queries, examining results from a
query before issuing the next, and perhaps combining query results. Storing
query results in LORE facilitates browsing large results and permits saving
results for later review and use. In addition, a client can use LORE to cre-
ate a \personal information workspace," enabling personal data to easily be
integrated with the rest of the TSIMMIS framework.

{ Executing multisource queries. Clients pose queries to mediators, which
merge data from multiple sources. In some cases the mediator may itself
need to do a signi�cant amount of processing over a large amount of data.
LORE can be used by a mediator to manage intermediate results during
query execution.

{ Translating local queries. Not every LOREL query can be translated to
a single query for every information source, especially if the source provides
only primitive query mechanisms. Like mediators, translators can use LORE
during query execution to manage temporary query results.

{ Importing data. Some data formats (such as structured �les) are not well
suited for querying. For these formats, it may be best to import the data
into a database, especially if the data changes infrequently [SLS+93]. Using
LORE is an easy way to make the data available for querying, and the data
can easily be integrated with the rest of TSIMMIS since there is no need for
a translator.

Hence, in TSIMMIS LORE manages primarily data that is either temporary
or is (relatively) easily recreated. In general there is no need for sharing data,
except for read-only data imported from external data sources. For these uses,

LORE

LORE

LORE

LORE

Source
3

Information

Source
1

Information

Mediator
1

Query

Client

Queries

Queries
Single-source

Queries
specific
Source-

2
Source

Mediator
2

Information

Multi-source

ImportQuery

Wrapper
1

Wrapper 2

Fig. 3. TSIMMIS framework. LORE is used in several places.

LORE need not be a full-feature DBMS. Therefore, LORE is not only a repos-
itory for lightweight objects, but also a lightweight repository for objects! In
particular, currently LORE does not support locking, logging, or transactions,
making the implementation e�ort much less complex. If the need for multiuser
access arises, we will add these features later.

6.1 Query Processing

Figure 4 illustrates the approach we are using for executing queries in LORE.
Note that the architecture is quite similar to that of a typical relational DBMS,
with parsing, query rewrite, query optimization, and query execution phases.
Also similar to relational implementations, we form query execution plans as
trees with operators at each node (outlined below). Objects are stored by an
object manager based on our data model. In addition to the identi�er, label, and
value properties, each object contains type and length information when stored
on disk.

Our query plan operators are similar to those used in relational and nested-
relational languages, except that ours typically act on sets of object assignments
(recall Section 5.2) rather than sets of tuples. Table 3 lists some of the opera-
tors. The operators for grouping and for returning complex objects in a query
result are more complicated and are not shown. In the table, S is the domain
of database states, AS is the domain of sets of object assignments, O is the do-
main of database objects, PS is the domain of sets of path expression pre�xes,
hpath expri is the domain of path expressions, hpredicatei is the domain of
predicates, and hlabeli is the domain of labels.

Operator Signature Short Description

Match hpath expri ! (S ! AS) Given a path expression, returns a func-
tion that maps a database state into a set
of object assignments, where each object
assignment is a mapping from the pre�xes
of the path expression to matching objects
in the database state.

Select hpredicatei ! (AS ! AS) Similar to relational select. Given a pred-
icate, returns a function that restricts the
object assignments in an assignment set to
those that satisfy the predicate.

Join AS �AS ! AS Similar to relational join. Takes the union
of related object assignments, where two
object assignments are related i� every
path expression pre�x common to both
is mapped to the same database object
(or database path, if *" wildcards are
involved).

Semijoin AS �AS ! AS Similar to relational semijoin. Restricts the
set of object assignments in the �rst ar-
gument to those that are related to some
object assignment in the second argument.

Project PS ! (AS ! AS) Similar to relational project. Given a set
of path expression pre�xes ps, returns a
function such that for each object as-
signment in the assignment set, the map-
pings between path expression pre�xes and
database objects (or paths) are restricted
to those for path expression pre�xes ap-
pearing in ps. Duplicates are removed.

Union AS �AS ! AS Similar to set union, except duplicates are
not removed.

Di�erence AS �AS ! AS Similar to set di�erence. Restricts the ob-
ject assignments in the �rst argument to
those that are not equivalent to some ob-
ject assignment in the second argument,
where two object assignments are equal i�
they map the same set of path expression
pre�xes to the same database objects.

CreateResult (hlabel1i � hlabel2i �
hpath expri)!

(AS ! O)

Given a label l1, a label l2, and a path ex-
pression p, returns a function that creates
an object labeled l1, with a subobject for
each object assignment in the assignment
set. Each subobject is labeled l2 but is oth-
erwise the same as the object to which the
corresponding object assignment maps p

(or, if p ends in a *" wildcard, the last
object in the path). Here, \the same as"
indicates structure and values, not neces-
sarily object identi�ers [PGMW95].

Table 3. Query plan operators

Query

Optimizer and Plan Generator

Execution Engine

Query Rewrite

Parser

Processor

Object

Manager

Query Result

Fig. 4. LORE architecture

We brie
y describe how queries are processed in LORE. First, the query is
parsed and an initial query plan is generated. This plan is then optimized in the
query rewrite and plan optimization modules, and �nally executed by the query
execution module. Figure 5 shows one plan for Query (1) of Section 5.1 using the
operators in Table 3. The arrows between operators are annotated with the sets
of object assignments resulting from each operator, with an object assignment
represented as a set of \path expression pre�x : [identi�er]" pairs. The path ex-
pression Frodos.Group.Category is matched in the database, resulting in a set
of object assignments, one for each matching database path. The set is then re-
stricted to those object assignments where the value of Frodos.Group.Category
is "Opera". Next, the path expression Frodos.Group.Name is matched in the
database and the result is semijoined with the �rst result, e�ectively restricting
the object assignments for Frodos.Group.Name to those where the group's cat-
egory is opera. Finally, this restricted assignment set is passed to CreateResult,
which generates an object labeled Answer with subobjects labeled Name. Each
Name subobject corresponds to an object mapped to by the path expression
Frodos.Group.Name under an object assignment in the set.

As in relational systems, there may be many plans for a given query. Cur-
rently we generate naive query plans for most queries. Obviously there is a great
deal of room for optimization, including both query rewrite strategies, more e�-
cient physical operators, and cost-based selection of a query plan using statistics;
we are beginning to investigate this area. We also are examining techniques to
e�ciently answer queries that involve the wildcards � and ?, together with the
operators PATHOF, TYPEOF, and LABELOF. Finally, we are designing appropri-
ate indexing mechanisms for LORE, along with techniques that can determine
automatically which indexes to build and destroy as the structure of the data
evolves.

[61] Answer
[62] Name "Palo Alto Savoyards"

Frodos

CreateResult
1 2

Semijoin

Select

Match

Match {<Frodos:[1], Frodos.Group:[14], Frodos.Group.Category:[16]>,
 <Frodos:[1], Frodos.Group:[41], Frodos.Group.Category:[43]>}

{<Frodos:[1], Frodos.Group:[41], Frodos.Group.Category:[43]>}{<Frodos:[1], Frodos.Group:[14],

<Frodos:[1], Frodos.Group:[41],

Frodos.Group.Category

Frodos.Group.Name

 label = "Answer", label = "Name",
path expr = Frodos.Group.Name

{<Frodos:[1], Frodos.Group:[41], Frodos.Group.Name:[42]>}

Frodos.Group.Name:[15]>,

Frodos.Group.Name:[42]>} Frodos.Group.Category = "Opera"

Fig. 5. Example query plan

7 Conclusion

We have presented the need for a new \lightweight" object query language for
semistructured data. We pointed out several key areas where conventional query
languages are inadequate for querying semistructured data, such as when data
is absent, when data does not have a regular structure, when similar concepts
are represented using di�erent types, and when heterogeneous sets are present.
We then introduced, through a series of examples, our LOREL query language,
which addresses these issues. We explained the uses of an object repository,
LORE, implementing our language, and we brie
y described query processing
in LORE.

We have learned a number of interesting things in our work so far. We are
convinced of the importance of formally specifying language semantics. De�ning
a denotational semantics for LOREL helped us discover and resolve a number
of discrepancies and omissions in our informal understanding. However, there
are still areas in the language that can be improved. For example, although
the language has powerful constructs for schema browsing, there is currently no
way to query which external predicates and functions are applicable to an object.
Instead, for now, in the TSIMMIS context we expect each translator or mediator
to supply a \help page" describing the external functions and predicates available
[PGMW95].

We are working towards the completion of the repository (Version 1.0), and
we plan to use it in several places within the TSIMMIS framework, as shown in

Figure 3. We also intend to add data modi�cation statements to the language,
and develop a set of equivalent query plan transformations for use in query
optimization. In the future we also intend to explore the speci�cation and ex-
ploitation of integrity constraints within our language and system, and to add
monitoring (active database) capabilities.

Acknowledgements

We are grateful to Hector Garcia-Molina, Yannis Papakonstantinou, and the
entire Stanford Database Group for numerous fruitful discussions.

References

[BCD92] F. Bancilhon, S. Cluet, and C. Delobel. A query language for O2. In
F. Bancilhon, C. Delobel, and P. Kanellakis, editors, Building an Object-

Oriented Database System { The Story of O2, pages 234{255. Morgan
Kau�mann, 1992.

[BCK+94] G. Blake, M. Consens, P. Kilpel�ainen, P. Larson, T. Snider, and F.
Tompa. Text / relational database management systems: Harmonizing
SQL and SGML. In W. Litwin and T. Risch, editors, Applications of
Databases: First International Conference, pages 267{280. Vadstena, Swe-
den, 1994.

[CACS94] V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From structured
documents to novel query facilties. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, pages 313{324, Min-
neapolis, MN, May 1994.

[Cat94] R. Cattel, editor. The Object Database Standard: ODMG-93. Morgan
Kaufmann, 1994.

[CDV88] M. Carey, D. DeWitt, and S. Vandenberg. A data model and query lan-
guage for Exodus. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, pages 413{423, Chicago, IL, June
1988.

[CGMH+94] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakon-
stantinou, J. Ullman, and J. Widom. The TSIMMIS project: Integration
of heterogeneous information sources. In Proceedings of the 100th IPSJ,
Tokyo, Japan, October 1994.

[DKA+86] P. Dadam, K. Kuespert, F. Andersen, H. Blanken, R. Erbe, J. Guenauer,
V. Lum, P. Pistor, and G. Walch. A DBMS prototype to support ex-
tended NF 2 relations: An integrated view on
at tables and hierarchies.
In Proceedings of the ACM SIGMOD International Conference on Man-

agement of Data, pages 356{367, 1986.
[F+89] D. Fishman et al. Overview of the Iris DBMS. In W. Kim and F.H. Lo-

chovsky, editors, Object-Oriented Concepts, Languages, and Applications,
pages 219{250. Addison-Wesley, 1989.

[Fre94] M. Freedman. WILLOW: Technical overview. Available by anonymous
ftp from ftp.cac.washington.edu as the �le willow/Tech-Report.ps,
September 1994.

[GF94] M. Genesereth and R. Fikes. Knowledge interchange format reference
manual (version 3.0). Available at the URL
http://logic.stanford.edu/sharing/papers/kif.ps, 1994.

[Har94] C. Harrison. An adaptive query language for object-oriented databases:
Automatic navigation through partially speci�ed data structures. Avail-
able by anonymous ftp from ftp.ccs.neu.edu as the �le
pub/people/lieber/adaptive-query-lang.ps, 1994.

[ISO86] ISO 8879. Information processing|text and o�ce systems|Standard
Generalized Markup Language (SGML), 1986.

[Kim94] W. Kim. On object oriented database technology. UniSQL product liter-
ature, 1994.

[KKS92] M. Kifer, W. Kim, and Y. Sagiv. Querying object-oriented databases. In
Proceedings of the ACM SIGMOD International Conference on Manage-

ment of Data, pages 393{402, 1992.
[LMR90] W. Litwin, L. Mark, and N. Roussopoulos. Interoperability of multiple

autonomous databases. ACM Computing Surveys, 22(3):267{293, 1990.
[Mic94] Microsoft Corporation. OLE2 Programmer's Reference. Microsoft Press,

Redmond, WA, 1994.
[MS93] J. Melton and A.R. Simon. Understanding the New SQL: A Complete

Guide. Morgan Kaufmann, San Mateo, California, 1993.
[OMG92] OMG ORBTF. Common Object Request Broker Architecture. Object

Management Group, Framingham, MA, 1992.
[PGMU95] Y. Papakonstantinou, H. Garcia-Molina, and J. Ullman. MedMaker: A

mediation system based on declarative speci�cations. Available by anony-
mous ftp from db.stanford.edu as the �le
pub/papakonstantinou/1995/medmaker.ps, 1995.

[PGMW95] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange
across heterogeneous information sources. In Proceedings of the Eleventh

International Conference on Data Engineering, pages 251{260, Taipei,
Taiwan, March 1995.

[Qia93] X. Qian. Semantic interoperation via intelligent mediation. In Proceed-

ings of the Third International Workshop on Research Issues in Data En-

gineering: Interoperability in Multidatabase Systems, pages 228{231. IEEE
Computer Society Press, April 1993.

[QRS+94] D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, and J. Widom. Querying
semistructured heterogeneous information. Available by anonymous ftp
from db.stanford.edu as the �le pub/quass/1994/querying-full.ps,
1994.

[RAK+92] A. Ra�i, R. Ahmed, M. Ketabchi, P. DeSmedt, and W. Du. Integration
strategies in Pegasus object oriented multidatabase system. In Proceed-

ings of the Twenty-Fifth Hawaii International Conference on System Sci-

ences, Volume II, pages 323{334, January 1992.
[RJR94] R. Rao, B. Janssen, and A. Rajaraman. GAIA technical overview. Tech-

nical Report, Xerox Palo Alto Research Center, 1994.
[SLS+93] K. Shoens, A. Luniewski, P. Schwarz, J. Stamos, and J. Thomas. The

RUFUS system: Information organization for semi-structured data. In
Proceedings of the Nineteenth International Conference on Very Large

Data Bases, pages 97{107, Dublin, Ireland, August 1993.
[Sto77] J.E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Pro-

gramming Language Theory. The MIT Press, Cambridge, Massachusetts,
1977.

[YA94] T. Yan and J. Annevelink. Integrating a structured-text retrieval system
with an object-oriented database system. In Proceedings of the Twenti-

eth International Conference on Very Large Data Bases, Santiago, Chile,
September 1994.

