
Survey on Keyword Search over XML Documents

Thuy Ngoc Le 1, Tok Wang Ling 2

National University of Singapore
1ltngoc@u.nus.edu, 2lingtw@comp.nus.edu.sg

ABSTRACT
Since XML has become a standard for information
exchange over the Internet, more and more data are
represented as XML. XML keyword search has been
attracted a lot of interests because it provides a simple
and user-friendly interface to query XML documents.
This paper provides a survey on keyword search over
XML document. We mainly focus on the topics of
defining semantics for XML keyword search and the
corresponding algorithms to find answers based on
these semantics. We classify existing works for XML
keyword search into three main types, which are
tree-based approaches, graph-based approaches and
semantics-based approaches. For each type of
approaches, we further classify works into sub-classes
and especially we summarize, make comparison and
point out the relationships among sub-classes. In
addition, for each type of approach, we point out the
common problems they suffer.

1. INTRODUCTION
Since XML has become a standard format for data

representation and data exchange over the Internet, it
has wide applications such as electronic business,
science, text databases, digital libraries, healthcare,
finance, and even in the cloud [3]. As a result, XML
has attracted a huge of interests in both research and
industry with a wide range of topics such as XML
storage, twig pattern query processing, query
optimization, XML view, and XML keyword search.
There have been several XML database systems such as
Timber [15], Oracle XML DB1, MarkLogic Server2,

1http://www.oracle.com/technetwork/database-
features/xmldb/overview/index.html
2http://www.marklogic.com/

and the Toronto XML Engine3.
As XML has become more and more popular and the

volume of XML data is increasing, keyword search in
XML data has attracted a lot of research interests.
Given a set of keywords in a keyword query, XML
keyword search aims to find the most relevant
information with the input keywords over the
corresponding XML document. Approaches for XML
keyword search can be classified into three types:
tree-based approaches for XML documents with no
IDREF (usually modeled as a tree), graph-based
approaches for XML documents with IDREFs (usually
modeled as a graph), and semantics-based approaches
for both XML document with and with no IDREF.

For tree-based approaches, the typical solution is
based on the LCA (Lowest Common Ancestor)
semantics, which was first introduced in [11].
LCA-based approaches search for the lowest common
ancestors of nodes matching keywords. Many
subsequent works either enhance the efficiency [40, 6]
or the effectiveness of the search by adding reasonable
constraints to the LCA definition to filter less
meaningful LCA results such as SLCA [36], ELCA
[41], VLCA [24] and MLCA [27]. In Section 2, we
will discuss in details these approaches. Moreover, we
will make comparison and show relationships among
these approaches. Additionally, we will point out
problems these approaches commonly suffer and
discuss the reasons behind.

For graph-based approaches, the search semantics
are mainly based on Steiner tree/subgraph and can be
classified into (1) directed tree, (2) bi-directed tree and
(3) subgraph. Directed and bi-directed Steiner tree
semantics are applied for directed graph [9, 12], while
subgraph semantics are applied for undirected

3http://www.cs.toronto.edu/tox/

graph [25, 17, 28, 8]. More details about these works
will be reviewed in Section 3. Similar to the tree-based
approaches, beside describing graph-based approaches,
we make comparison, show relationships, and point out
problems of these approaches.

For semantics-based approaches, researchers have
exploited the semantics of Objects, Relationships
among objects, Attributes of objects, and Attribute of
relationships (referred to as ORA-semantics) to
improve the effectiveness, the efficiency and the
expressiveness of XML keyword search. The
ORA-semantics is defined as the identifications of
nodes in XML data and schema. More information
about the semantics-based approaches will be studied
in Section 4. We will also discuss on how exploiting
semantics helps solve problems of the tree-based and
graph-based approaches.

Although several surveys [34, 31, 35, 38, 5] have
been done for XML keyword search, to the best of our
knowledge, no survey can clearly show the
relationships among existing approaches or discuss
problems of each type of approaches. In this survey, we
not only present existing works, but we also classify
them, make comparison, show their relationships, and
especially point out the problems they commonly
suffer.

2. TREE-BASED APPROACHES FOR
XML KEYWORD SEARCH

When XML documents do not contain IDREF, they
can be modeled as trees. Approaches to handle such
documents are called tree-based approaches because
they are based on tree model. Inspired by the
hierarchical structure of the tree model, most of
existing tree-based approaches are based on the LCA
(Lowest Common Ancestor) semantics, which returns
the lowest common ancestors of matching nodes to
keyword queries. There are many subsequent semantics
to filter less meaningful answers. Existing works either
improve the effectiveness by proposing a new
semantics or improve the efficiency by proposing a new
method for a certain semantics. The widely accepted
LCA-based semantics include LCA itself, SLCA,
VLCA, MLCA, ELCA, and etc, among which, SLCA
and ELCA are the most popular semantics. We classify
the existing research works into these semantics and the
result of our classification is shown in Figure 1. Some

research works study more than one semantics such as
XRANK [11], Set-intersection [40], and Top-K [4]. In
Section 2.7, we will summarize the discussed
semantics, show their relationships, and use the same
example to demonstrate them and their differences.

2.1 LCA Semantics
The LCA semantics for XML keyword search was

first proposed in XRANK [11]. By the LCA semantics,
for a set of matching nodes, each of which contains at
least one query keyword and each query keyword
matches at least one node in this set, the lowest
common ancestor (LCA) of this set is a returned node.
An answer is a subtree rooted as a returned node (i.e.,
an LCA node) or a path from a returned node to
matching nodes. XRANK is extended from Googles
Pagerank algorithm for ranking. It takes into account
the proximity of the keywords and the references
between attributes. XRANK implements a naive
approach, and three optimized approaches afterwards to
improve the search.

2.2 SLCA Semantics
The SLCA (Smallest LCA) semantics was first

proposed in XKSearch [36]. The SLCA semantics
defines an SLCA to be an LCA that does not have any
other LCAs as its descendants. There are many works
on finding the set of SLCAs for a keyword query.

XKSearch [36] proposes two efficient algorithms to
compute SLCAs, namely Indexed Lookup Eager and
Scan Eager. To find all SCLAs, there are two tasks,
namely finding all LCAs and remove all ancestors
among LCAs to get the SLCAs. It is costly to find all
LCAs. When the number of keywords and the number
of matching nodes for each keyword are increased, the
number of combinations is huge. XKSearch optimizes
as follows. Firstly, for each matching node u of the
keyword which has the least number of matching
nodes, XKSearch finds its left match and right match.
Therefore, given two keywords k1, k2 and a node u that
contains keyword k1, one needs not inspect the whole
node list of keyword k2 in order to discover potential
solutions. Instead, one only needs to find the left and
right match of u in the list of k2, where the left (right)
match is the node with the greatest (least) Dewey ID
(identifier) that is smaller (greater) than or equal to the
Dewey ID of u.

Set-intersection
ICDE 2011

LCA

XRANK
Sigmod 2003

Top-K
ICDE 2010

XKSearch
Sigmod 2005

MCT
TKDE 2006

SLCAELCA

Multiway-SLCA
WWW 2007

Set-intersection
ICDE 2011

VLCAMLCA
VLDB 2004 other

XSeek
Sigmod 2007

MaxMatch
VLDB 2008

Hash Count
EDBT 2010

XRANK
Sigmod 2003

Index Stack
EDBT 2008

XReal
ICDE 2009

RLCA
ADC 2010

XSEarch
VLDB 2003

VLCA
CIKM 2007

Top-K
ICDE 2010

LCAs ELCAs SLCAs
LCAs MLCAs VLCAs

RTF
EDBT 2009

Figure 1: Our classification for tree-based approaches based on the semantics used

Multiway-SLCA [6] further optimizes the
performance of XKSearch computation. The key
motivation behind this approach is to avoid redundant
steps of XKSearch where SLCAs are computed by
computing many intermediate SLCA. Multi-way
SLCAs approach computes each potential SLCA by
taking one data node from each keyword list in a single
step instead of breaking the SLCA computation into a
series of intermediate SLCA computations.

Top-k [4] studies how to support efficient top-k XML
keyword query processing based on the JDewey
labeling scheme, where each component of a JDewey
label is a unique identifier among all the nodes at the
same depth. According to this property, the proposed
Join-based algorithms perform set intersection
operation on all lists of each tree depth from the leaf to
the root.

Set-intersection [40] presents a novel method to find
SLCAs. The basic idea is that common ancestors
derived from any two keywords are the intersection of
the two sets of nodes matching those keywords. After
finding common ancestors, it creates a tree containing
all common ancestors. Leaves of this tree are SLCAs.

2.3 ELCA Semantics
The ELCA (Exclusive LCA) semantics is also widely

accepted. ELCAs is a superset of SLCAs, and it can find
some relevant information that SLCA cannot find. An
ELCA is an LCA with its own witnesses, i.e., matching
nodes. In other words, consider a node u, if u contains
matching nodes of all query keywords after removing
all subtrees rooted at its descendant ELCAs, then u is
an ELCA. This semantics is first introduced in XRANK
[11] with the DeweyInvertedList algorithm, which reads
match nodes in a preorder traversal, and uses a stack to
simulate the postorder traversal. Many other algorithms
are proposed to find ELCAs of a keyword query.

[37] proposes an Index Stack algorithm to find
ELCAs more efficiently. The algorithm to find all the
ELCAs can be decomposed into two steps: first find all
ELCA candidates, and then find ELCAs in those
candidates. The first step can be leveraged the
algorithm IndexedLookupEager in XKSearch [36].

[41] presents an efficient algorithm to find ELCAs
named HashCount. This algorithm can be divided into
two subtasks: firstly, it finds out ELCA candidates; and
then it verifies these candidates, discard the false
positives and obtain the real results. Note that this
framework is the same as the Indexed Stack algorithm
in [37], but techniques used are different.

Besides proposing algorithms for finding SLCAs,
Top-k [4] and Set-intersection [40] also presents
algorithms for finding ELCAs with the similar methods
with those of finding SLCAs.

2.4 VLCA Semantics
The VLCA (Valuable LCA) semantics is introduced

in [24]. According to the VLCA semantics, any two
matching nodes in an answer must be homogeneous,
that is there are no two nodes of the same elementary
type (i.e., label, tag) on the paths connecting the two
matching nodes, except themselves. Two algorithms,
the Brute-Force algorithm and the Stack-based
algorithms are proposed in [24] to finds VLCAs for a
keyword query. There are two variants of VLCA
semantics, namely XSEarch [7] and RLCA (Relevant
LCA) [32].

In XSEarch [7], the whole algorithm is based on a
property, called interconnection. The intuition of such a
property is that it differentiates the attributes that
belongs to different entities. XSEarch try to find sets of
match nodes, such that each set contains all keywords
and every two keywords in a set is interconnected.
XSEarch returns the path of each set as the search

result. However, the complexity is NP-complete. So
XSEarch only requires that each node in one set should
be interconnected with one node. This looser condition
is called star-interconnected and makes it possible to
find all the results in polynomial time.

RLCA [32] is similar to XSEarch. RLCA is different
from XSearch into two aspects: (1) it accepts that two
nodes with the same type can be meaningfully
connected in a subtree, due to the fact that a user may
be interested in finding more than one entity with the
same type. (2) For queries related to only single entity,
RLCA uses node types to detect the relevancy of
fragments rather than simply uses node labels. Hence,
it can detect that some nodes are still homogeneous
although there are some nodes of the same types on the
path connecting them, such as the two attributes of the
same object type.

2.5 MLCA Semantics
Meaningful LCA (MLCA) [27] introduces the

concept of meaningful relationship between two nodes.
According to the MLCA semantics, two nodes are
meaningfully related to each other if (1) they have the
hierarchical relationship (ancestor-descendant
relationship), or (2) the two nodes belong to the same
types, or (3) the LCA of matching nodes in the data tree
belongs to the LCA of their node types in the schema
tree. Otherwise, the two nodes are not meaningful. An
MLCA is an LCA in which any two matching nodes
have a meaningful relationship.

Although the MLCA semantics is similar to the
VLCA semantics, conditions of the MLCA semantics
is looser than that of the VLCA semantics. They have
two main differences. Firstly, for MLCA, two matching
nodes of the same types always provide a meaningful
answer, while for VLCA, the meaningful answer still
depends on whether any nodes between them are of the
same type. Secondly, for VLCA semantics, there must
be no two nodes on the paths connecting matching
nodes are of the same type, while for MLCA semantics,
the nodes on the paths connecting matching nodes
cannot be of the same type with matching nodes only.

2.6 Other Semantics
MCT [13] introduces MCT (minimum connecting

tree) of a set of nodes to be a minimum subtree that
connects all nodes of that set. The root of the subtree is

an LCA. The advantage of MCT is to exclude irrelevant
information which is not related to keywords.

XReal [1] applies idea from information retrieval. It
exploits the statistics of underlying XML database to
identify the search target nodes, keyword ambiguity
and relevance oriented ranking. Firstly, it finds the node
type which is most likely users is searching for. That
search for nodes should contain all the keywords in
subtrees and not to be deeply nested in the XML.
Secondly, it determines the node type which is most
likely to be the correspondent to each keyword. After
that, it computes the similarity between an XML node
and the query for ranking.

An answer of a keyword query has two parts: the
returned node (defined by the semantics) and output
presentation (which information should be returned
with the returned node). XSeek [29] focuses on the
second part. XSeek uses some heuristics to identify the
appropriate data nodes to be returned after the
connection between the matches is already established.

MAXMATCH [30] provides the first novel algorithm
that satisfies four properties of data monotonicity,
query monotonicity, and data consistency and query
consistency. For data Monotonicity, if we add a new
node to the data, then the data content becomes richer,
therefore the number of query results should be
(non-strictly) monotonically increasing. For query
Monotonicity, if we add a keyword to the query, then
the query becomes more restrictive, therefore the
number of query results should be (non-strictly)
monotonically decreasing. For data consistency, after a
data insertion, each additional subtree that becomes
(part of) a query result should contain the newly
inserted node. For query consistency, if we add a new
keyword to the query, then each additional subtree that
becomes (part of) a query result should contain at least
one match to this keyword.

RTF [19] introduces the concept of Relaxed Tightest
Fragment (RTF) as the basic result type. Then it
proposes a new filtering mechanism to overcome the
two problems in MAXMATCH, which are the false
positive problem (discarding interesting nodes) and the
redundancy problem (keeping uninteresting nodes).

2.7 Relationship and Comparison on the
LCA-based semantics

We classify the existing research works based on the

semantics they apply and the classification has been
shown in Figure 1. In addition, we find that for the
same query Q, the relationships among the set of
answers by the LCA-based semantics are follows:

LCA(Q) ⊇ ELCA(Q) ⊇ SLCA(Q) and
LCA(Q) ⊇MLCA(Q) ⊇ V LCA(Q)

As can be seen, for the same query Q, the LCA
semantics provides the most answers. However, many
of them are contained by the other and are not really
relevant. Therefore, the other semantics have
constraints to filter out such answers. However, they
may filter out meaningful answers as well. As a result,
no semantics is the best and can beat all the others.
Each has its own advantages and disadvantages. We
summarize these semantics and the relationships
among them in Table 1 and use the following example
for illustration.

EXAMPLE 1. Consider keyword query {Q =
Clinton, Kennedy} issued against the XML data tree in
Figure 2, in which we circle and label some nodes as
(&o1), (&o2), (&o3), (&o4) and (&o5) for discussion.
Two nodes (&o4) and (&o5) are LCAs, SLCAs, ELCAs,
MLCAs, and VLCAs. LCAs of the query are nodes
(&o1), (&o2), (&o3), (&o4) and (&o5). Among LCAs,
only the two nodes (&o4) and (&o5) are SLCA nodes
while the other do not because they are ancestors of
either node (&o4) or node (&o5). Nodes (&o2) and
(&o3) are not ELCA nodes either because they do not
have their own witnesses. Although, node (&o1) is not
an SLCA node, it is an ELCA node because after
removing the two nodes (&o4) and (&o5), it still has
Kennedy and Clinton as its descendants (under
node (&o2) and node (&o3)). In this example, all LCA
nodes are MLCA nodes. Among LCA nodes, node
(&o1) is not a VLCA node because there exists nodes of
the same types (student) on the path connecting
matching nodes. The remaining nodes are VLCAs. As
we can see, LCA(Q) ⊇ ELCA(Q) ⊇ SLCA(Q) and
LCA(Q) ⊇ MLCA(Q) ⊇ V LCA(Q). Returned
nodes of the semantics for query Q are also
summarized in Table 1.

2.8 Common Problems of the LCA-based
Semantics

Although different LCA-based semantics (e.g., LCA,
SLCA, ELCA, VLCA, etc) provide different answers,

Name

Student

Paper
1.1.1.1

Bill
Kennedy

Professor

Paper
1.1.1.2

PID

002

Title

Clinton &
Kennedy

Student

PID

001

Stu_No

12745

Title

keyword
search

Paper
1.1.2.1

PID

001

Title

Clinton &
Kennedy

Root
1

….

Name

John
Clinton

Stu_No

81433

Name

Stanley
Brown

StaffID

sbrown

LCA ELCA

SLCA
LCA ELCA

SLCA

LCA

ELCA

LCA LCA

Q = {Clinton, Kennedy}

VLCAVLCA

VLCAVLCA

MLCAMLCA

MLCA

MLCA MLCA

LCAs ELCAs SLCAs and LCAs MLCAs VLCAs

(&o4) (&o5)

(&o1)

(&o2) (&o3)

Figure 2: Returned nodes for {Clinton, Kennedy}

they all are based on the concept of LCA. Moreover,
they all ignore the semantics of object, relationship,
object attribute and relationship attribute (referred to as
ORA-semantics). Therefore, we find that they suffer
from several common problems. We will systematically
point out the common problems of all the LCA-based
semantics by comparing answers returned by the
LCA-based approaches and answers expected by users.
We use the XML data in Figure 3 for illustration. Note
that Course (11) and Course (35) refer to the
same object <Course:CS5201> despite of
appearing as different nodes.

Problem 1. Useless answer. Consider Q1 =

{Bill}. The LCA-based approaches return node
Bill (6). However, this is not useful since it does
not provide any additional information about Bill.
This happens when a returned node is a non-object
node, e.g., an attribute or a value. The reason is that the
LCA-based approaches do not have the concept of
object and attribute and thus cannot differentiate object
and non-object nodes. Returning object node is useful
whereas returning non-object node is not. The expected
answer should be forced up to Student (1), the
object w.r.t. to Bill (6) since it contain additional
information related to Bill such as major and
student No.

Problem 2. Missing Answer. Consider an XML
keyword query Q2 = {Bill, John} issued to the
XML data in Figure 3, in which the query keywords
match first name of two students. The LCA-based
approaches return the document root as an answer for

Table 1: Our summary on the LCA-based semantics

Semantics Definition Existing algorithms Returned nodes
in Example 1

LCA
An LCA is a lowest common ancestor of a combination of
matching nodes, i.e., each keyword corresponds to at
least one matching node in the combination

XRANK Sigmod 2003
{ &o1, &o2,
&o3, &o4,

&o5 }

ELCA
(Exclusive
LCA)

*An ELCA is an LCA of a combination of matching nodes
*An ELCA has its own witnesses, i.e., it does not share
its matching nodes with its descendant ELCA nodes

*Index Stack EDBT 2008
*Hash Count EDBT 2010
*Top-K ICDE 2010
*Set-intersection ICDE 2011

{ &o1,
&o4,
&o5 }

SLCA
(Smallest
LCA)

*An SLCA is an LCA of a combination of matching nodes
*There is no LCA node as its descendant

*XKSearch Sigmod 2005
*Multiway-SLCA WWW 2007
*Top-K ICDE 2010
*Set-intersection ICDE 2011

{ &o4,
&o5 }

VLCA
(Valuable
LCA)

*A VLCA is an LCA of a combination of matching nodes
*For each pair of matching nodes, all nodes in the path
connecting them are of different types.

*XSEarch VLDB 2003
*VLCA CIKM 2007
*RLCA ADC 2010

{ &o2, &o3,
&o4, &o5 }

MLCA
(Meaningful
LCA)

*An MLCA is an LCA of a combination of matching nodes
*The LCA of matching nodes in the data tree belongs to
the LCA of their node types in the schema tree

*MLCA VLDB 2004
{ &o1, &o2,
&o3, &o4,

&o5 }

SCHEMA:

Lecturer
(18)

Title
(14)

Department
(16)

Student
(1)

Major
(9)

Course
(11)

Student
(27)

Database
(15)

Computing
(10)

Grade
(20)

A
(21)

Root
(0)

Student_No
(28)

0801433
(29)

Kennedy
(19)

Computing
(17)

Name
(4)

First
(5)

Last
(7)

Bill
(6)

Kennedy
(8)

Name
(25)

DBMS
(26)

…

Course
(35)

……Textbook
(22)

Student_No
(2)

0012745
(3)

Code
(12)

CS5201
(13)

ISBN
(23)

105601
(24)

Code
(36)

CS5201
(37)

Grade
(40)

A
(41)

Name
(30)

First
(31)

Last
(33)

John
(32)

Clinton
(34)

Title
(38)

Database
(39)

Course
(42)

…… Code
(43)

CS301
(44)

Title
(45)

Logic
(46)

Course

Textbook

Student

Grade

Student_No

Code

ISBN

Figure 3: An XML data tree about student and course of a university

Q, which is intuitively meaningless for users because
returning the root means returning the whole XML
document. Note that two objects are the same if they
belong to the same object class and have the same OID
value. Then Course (11) and Course (35) refer
to the same object <Course:CS5201>4 because they
belong to the same object class Course and have the
same OID value CS5201. Therefore,
<Course:CS5201> is the common course taken by
both students Bill and John and should be an
answer. However, the LCA-based approaches miss this
answer because they are not aware of object, OID and
the duplication of the same object. Thus, the common
courses taken by both students are not found.

4<Course:CS5201> denotes an object which belongs to
object class Course and has OID value CS5201.

Problem 3. Duplicated answer. Consider Q3 =

{CS5201, Database}, Course (11) and
Course (35) are two duplicated answers because the
two nodes refer to the same object <Course

CS5201>. This problem is caused by the unawareness
of duplication of object having multiple occurrences.
Users expect that either of Course (11) or
Course (35) should be returned, but not both since
they are different occurrences of the same object
<Course CS5201>. In reality, if the course has 300
students enrolled, then such answers are duplicated 300
times. This really overwhelms and annoys users.

Problem 4. Incorrect answer. Consider Q4 =

{Database A}. The LCA-based approaches return
Course (11) and Course (35) as answers. These
answers are incorrect because ‘A’ grade is not an
attribute of a course, but it is grade of a student taking

Lecturer
(8)

Title
(4)

Department
(6)

Course
(1)

Major
(23)

Student
(15)

Database
(5)

Computing
(24)

Grade
(25)

A
(26)

Root
(0)

Student
(27)

Student_No
(28)

0801433
(29)

Kennedy
(9)

Computing
(7)

Name
(18)

First
(19)

Last
(21)

Bill
(20)

Kennedy
(22)

Name
(13)

DBMS
(14)

……..

Course
(37)

……

Textbook
(10)

Student_No
(16)

0012745
(17)

Code
(2)

CS5201
(3)

ISBN
(11)

105601
(12)

Grade
(35)

A
(36)

Name
(30)

First
(31)

Last
(33)

John
(32)

Clinton
(34)

Title
(40)

Logic
(41)

Code
(38)

CS301
(39)

…… Student
(42)

… Student_No
(43)

0801433
(44)

Course

TextbookStudent

Grade

Code

Student_No ISBN

SCHEMA:

Figure 4: Another design for the university XML data in Figure 3

the course instead. On the other hand, Grade is a
relationship attribute between Student and Course,
not an object attribute. This is because the LCA-based
approaches cannot distinguish between an object
attribute and a relationship attribute under an object
node. The proper answer should be all students taking
course Database and getting an ‘A’ grade. To do
that, the answer should be moved up to contain other
objects (e.g., students) participating in the relationship
that‘A’ grade belongs to.

Problem 5. Schema-dependent answer. There may
be several schema designs with different hierarchical
structures for the same data content. The XML data in
Figure 3 can also be represented by another design as in
Figure 4 with different hierarchical structure among
object classes, e.g., Course becomes the parent of
Student. Consider Q5 = {Bill, Database}.
With the design in Figure 3, the LCA-based approaches
return Student (1). With the design in Figure 4,
Course (1) is returned. As shown, answers for
different designs are different though these designs
refer to exactly the same information and we are
dealing with the same query. This is because answers
from the LCA-based semantics rely on the hierarchical
structure of XML data. Different hierarchical structures
may provide different answers for the same query.
Users issue a keyword query without knowledge about
the underlying structure of the data. Thus, their
expectation about the answers is independent to the
schema design. Therefore, the expected answers should
also be semantically the same with all designs of the
same data content.

Summary. The above problems and their reasons
behind are summarized in Table 2. The main reasons of
the above problems are the high dependence of answers

returned by the LCA-based approaches on the
hierarchical structure of XML data (e.g., Q5), and the
unawareness of ORA-semantics. Particularly,
unawareness of objects causes missing answers (e.g.,
Q2), and duplicated answer (e.g., Q3) because the
LCA-based approaches cannot discover the same
object. Unawareness of object and attribute causes
useless answer (e.g., Q1) because it cannot differentiate
XML elements (object vs. attribute). Unawareness of
relationship causes incorrect answers (e.g., Q4)
because of it is unable to know the degree of a
relationship type and not differentiate an object
attribute and a relationship attribute.

Table 2: Summary of the discussed queries
Query Keyword Problem Reason
Q1 Bill Useless answer unawareness object and attribute,

cannot differentiate XML elements
Q2 Bill,

John
Missing answer unawareness object, cannot

discover duplicated objects
Q3 CS5201,

Database
Duplicated
answer

unawareness object, cannot
discover duplicated objects

Q4 Database,
A

Incorrect
answer

unawareness relationship, cannot
distinguish relationship attribute
and object attribute

Q5 Bill,
Database

Schema-
dependent
answer

depend on the hierarchy

3. GRAPH-BASED APPROACHES FOR
XML KEYWORD SEARCH

ID/IDREF is an XML standard and is often used in
XML documents. With IDREF, XML is modeled as a
graph because it is no longer a tree. Existing graph
techniques can be applied for XML graph-structured
data such as [2, 8, 10, 12, 16, 33, 25, 17]. Semantics
applied in the existing graph-based approaches can be
classified into (1) subtree, (2) subgraph and (3)
bi-directed tree.

Course
2

Student
3

Lecturer
1

Student
4

SNo

S2

Course
5

SNo

S1

Code

CS1 Student
6

SNo

S2

Code

CS2

SName

Albert

StaffID

L1

Student
7

SNo

S3

Title

Cloud

Title

XML

Nam

An

SNo

S1

Code

CS1

StaffID

L1

Ti

Clo

Student
8

Student
9

SNo

S2

Name

Anna

SNo

S1

Name

Bill

Interst

Cloud

Interst

XML

Student
10

SNo

S3

Name

Tom

Interst

DB

Reference edge
Containment edge

Figure 5: XML data graph

Course
2

Lecturer
1

Course
5

Code

CS1

Code

CS2

SName

Albert

StaffID

L1

Title

Cloud

Title

XML

Course
2

Student
4

SNo

S2

Course
5

Code

CS1 Student
6

SNo

S2

Code

CS2

Title

Cloud

Title

XML

Student
9

SNo

S2

Name

Bill

Interst

XML

(a) Answer

Course
2

Lecturer
1

Course
5

Code

CS1

Code

CS2

SName

Albert

StaffID

L1

Title

Cloud

Title

XML

Course
2

Student
4

SNo

S2

Course
5

Code

CS1 Student
6

SNo

S2

Code

CS2

Title

Cloud

Title

XML

Student
9

SNo

S2

Name

Bill

Interst

XML

(b) Not answer

Figure 6: Illustration for query {CS1,CS2}

3.1 Subtree based Semantics for Directed
Graphs

It is natural to model an XML document as a
directed graph where forward edges (or edges in
unambiguous contexts) are parent-child relationships or
IDREFs (reference edges). Most approaches for this
kind of data model find a minimal rooted tree
containing all keywords, in which the path from the
root to each content node is directed. This kind of
semantics includes the minimal Steiner tree
semantics [9] and the distinct root semantics [12].
Intuitively, these semantics are similar to the LCA
semantics and they also suffer from the same problem
of missing answers as the LCA semantics does
(discussed in Section 2.8). Particularly, even with
IDREF, the common object appearing as the child (or
the descendant in general) of two nodes cannot be
found by these semantics. This is because the directed
tree based semantics only search backward (i.e., follow
the reversed direction of the directed edges), but never
search forward to find common information which
related to all matching nodes.

For example, consider query {CS1, CS2} against
the directed XML graph in Figure 5, where the
keywords match the two objects course 2 and
course 5. Note that in this example, we match
keywords with the whole object rather than a single
value node. Both pieces of information in Figure 6(a)

and in Figure 6(b) are meaningful to users. Intuitively,
the first one (in Figure 6(a)) means the two courses are
taught by Lecturer Albert, and the second one (in
Figure 6(b)) means the two courses are both taken by
Student named Bill. However, the directed tree based
semantics only return the first one in Figure 6(a), but
not able to return the other in Figure 6(b).

3.2 Subgraph based Semantics for
Undirected Graphs

An XML document can also be modeled as an
undirected graph by ignoring the direction of edges.
For undirected graph, an answer is commonly either a
subgraph such as the r-radius semantics [25] and the
r-clique semantics [17]; or minimum cost connected
tree [8]5. These semantics can provide more answers
than the directed tree based semantics do, including
common descendants because they search for all
directions, rather than just follow the reversed direction
of edges as the subtree based semantics do. However,
they may also provide answers which can be hardly
interpreted (or even meaningless) because many
answers contain matching nodes which are very far or
even not related at all.

For example, suppose the XML document in
Figure 5 is modeled as an undirected graph by ignoring
the direction of edges. Consider keyword query =
{S1,S3} where the keywords match two students. For
this query, a use want to know all relationships between
those two students, and their common information such
as common lecturers teaching them or common courses
taken by them. Figure 7 shows an answer6 under the
subgraph based semantics. This answer means the two

5It is actually acyclic subgraph.
6For ease of comprehension, we only show objects. Note
that both Student 4 and Student 6 refer to object
<Student:S2>.

students study two courses which are both taken by
another student. Intuitively, the relationship of the two
students is too weak and users do not expect such
answer. Although several recent works [25, 17, 28] take
the distance between each pair of (content) nodes into
account, these works still return such answer because
the relationship between the two nodes may still
meaningless even the distance between them is not far.

Student:S2

Course:CS1 Course:CS2

Student:S1 Student:S3

Textbook A

Course 1 Course 2

Student 1 Student 2

Figure 7: A meaningless answer of the subgraph
based semantics

3.3 Bi-directed Tree based Semantics for
Directed Graphs

Some works such as [2, 16] model data as directed
graph, but they create an backward edge corresponding
to each forward edge with the reversed direction
(probably with lower score for ranking in the backward
edge). Thereby, the answer they return can be a subtree
with forward edges, or a subtree with backward edges.
Some works such as [18] even return a subtree with a
mix of forward and backward edges. Such answer is
actually a subgraph. Thus it may be meaningless as
illustrated in Section 3.2. Edge direction for this work
is mainly served in improving efficiency of the search.

3.4 Other Methods based on Graph
XKeyword [14] views an XML document as a

directed graph of nodes. The result of a keyword query
is the minimal total target object networks which are
the minimal graphs involving all query keywords and in
which each node is a target object. Since the XML
document is stored in relational database, a target
object in this paper corresponds to a tuple in relational
database, which is not always correct as studied in [39].
This work exploits the properties of the schema of the
database to facilitate the result presentation, to find
target objects and to optimize the performance of the
search system, e.g., reducing search space. XKeyword
focuses on the presentation of the result and on
techniques to provide fast response time. However,
since the schema does not fully contain the
ORA-semantics, XKeyword does not discover real
relationships among objects, does not distinguish
relationship attributes and object attributes, and does
not always discover objects correctly.

3.5 Relationship and Comparison on
Graph-based Approaches

We summarize existing graph-based approaches,
their problems, and classify these approaches based on
the semantics they apply in Figure 8. Note that trees are
directed. However, some above works use the term
undirected trees with the meaning of acyclic graph.

In brief, for the efficiency, the subtree based
semantics over directed graph is generally faster than
the others because in the directed graph, the search
follows only one direction. For the effectiveness, the
subtree based semantics may miss a lot of answers
because they search for only one direction. The
subgraph based semantics can provide more answers,
including the missing answers of the subtree based
semantics. However, many of the answers provided by
the subgraph based semantics are meaningless because
the matching nodes are not closely related, or even not
related at all.

3.6 Common Problems of the
Graph-based Approaches

Besides the problems of each semantics discussed
above, in generally, all graph-based approaches suffer
from the same problems of the LCA-based approaches
(studied in Section 2.8) when not all objects in the
XML data are under IDREF mechanism. When all
objects are under IDREF mechanism, graph-based
approaches can handle some but not all problems of the
LCA-based approaches. Particularity, the incorrect
answer (when handling relationship attributes) and
useless answer (due to returning non-object nodes)
cannot be solved while missing answer, duplicated
answer and schema-dependent answer can be solved
partly.

We use the XML data in Figure 9 which contains
both objects with duplication and objects with IDREFs
to illustrate problems of the graph-based search. We
apply the widely accepted semantics minimum Steiner
tree [8, 10] for illustrating the problems. In the XML
data in Figure 9, Object <Employee:HT08> is
duplicated with two occurrences Employee (6) and
Employee (26). Ternary relationship type among
Supplier, Project and Part means suppliers
supply parts to projects. Quantity is an attribute of
this ternary relationship and represents the quantity of a
part supplied to a project by a supplier. Besides, binary

Graph-based
approaches

Directed
graph

Undirected
graph

Directed tree based
semantics

Undirected tree based
semantics

Undirected (or bi-directed)
tree based semantics

Subgraph based
semantics

Directed
minimum Steiner
tree semantics

r-radius
semantics

Distinct root
semantics

r-clique
semantics

Complex Graph
Sigmod 2008

BLINKS
Sigmod 2007

EASE
Sigmod 2008

R-clique
PVLDB 2011

minimum cost
connected tree

Top-k
ICDE 2007

Directed/
undirected/

strong fragments

Bi-direction
VLDB 2005

Proximity
PODS 2006

minimum Steiner
tree semantics

BANKS
ICDE 2002

Works

Semantics

Data
model

Group of
Semantics

Meaningless answersMissing answers
Limitations

Other

Minimal total
target object

network

XKeyword
ICDE 2003

Figure 8: Relationship of Graph-based approaches and the semantics used

relationship between Supplier and Part has an
attribute Price to represent the price of a part
supplied by a supplier.

3.6.1 Problems cannot be solved with IDREF

IDREF mechanism is aware of semantics of object
and object ID. However, the semantics of relationship
and attribute is still not recognized and utilized which
causes the problems of useless answer, and incorrect
answer.

Useless answer. Not differentiating object and
non-object nodes cause useless answer when the
returned node is a non-object node. For example, for
Q1 = {Amazon}, the answer is only Amazon (45)

without any other information.

Incorrect answers. Without semantics of relationship,
the graph-based search cannot distinguish object
attribute and relationship attribute, and cannot
recognize n-ary (n ≥ 3) relationship. These cause
problems related to relationship.

For example, for Q2 = {PARTA, 100}, the
subtree rooted at Part (46) is an answer. However,
this is not complete since price 100 is the price of a
part named PARTA supplied by Supplier (41). It
is not the price of Part (46). Thus, the answer
should be moved up to Supplier (41) to include
Supplier (41) as well.

3.6.2 Problems can be partly solved with IDREF

Recall that the problems of missing answer,
duplicated answer and schema-dependent answer are
caused by lack of semantics of object. Therefore, using
IDREF can avoid these problems because IDREF
mechanism is based on semantics of object and object
ID. However, if IDREF mechanism is not totally

applied for all objects, i.e., there exists some duplicated
objects, e.g., object <Employee:HT08> in Figure 9,
then the above problems are not totally solved.

For example, Q3 = {Bill, HT08} has two
duplicated answers, Employee (6) and
Employee (26). For Q4 = {Prj2012,
Prj2013}, only the subtree containing
Supplier (41) can be returned by the graph-based
approaches whereas the subtree containing
<Employee: HT08> is missed. If object class
Employee is designed as the parent of object class
Project, the missing answer of Q4 are found. It
shows that the graph-based search also depends on the
design of XML schema in this case.

Summary. The graph-based search can avoid missing
answer, duplicated answer and schema-dependent
answer only if the IDREF completely covers all
objects. Otherwise, the above limitations cannot avoid.
The other problems including useless answer and
incorrect answer are still unsolved no matter IDREFs
are used or not because IDREF mechanism only
considers semantics of object and OID but ignores
semantics of relationship and attribute.

4. SEMANTICS-BASED APPROACHES
FOR XML KEYWORD SEARCH

Recently, the semantics of Objects, Relationships
among objects, Attributes of objects, and Attribute of
relationships (referred to as ORA-semantics) has been
exploited to improve the effectiveness, the efficiency
and the expressiveness of XML keyword search. The
ORA-semantics is defined as the identifications of
nodes in XML data and schema. In XML schema, an
internal node can be classified as object class, explicit
relationship type, composite attribute and grouping

Project
(21)

Part
(51)

JName
(24)

Prj2013
(25)

Prj_No
(22)

Prj2
(23)

Part_No
(52)

P201
(53)

S143
(35)

PName
(54)

PARTA
(55)

Supplier
(33)

Employeer
(26)

EID
(27)

Supplier
(41)

SName
(44)

Part
(46)

P201
(48)

Root
(0)

Reference edge
Tree edge

Amaron
(45)

Supp_No
(42)

S143
(43)

Supp_No
(34)

Part_No
(47)

Name
(29)

Bill
(30)

HT08
(28)

Project
(1)

JName
(4)

Prj2012
(5)

Prj_No
(2)

Prj1
(3)

Employeer
(6)

EID
(7)

Name
(9)

Bill
(10)

HT08
(8)

Status
(31)

Part
time
(32)

Status
(11)

Full
time
(12)

Price
(49)

$100
(50)

P201
(38)

Part_No
(37)

Quantity
(39)

150
(40)

Part
(36)

S143
(15)

Supplier
(13)

Supp_No
(14)

P201
(18)

Part_No
(17)

Quantity
(19)

Part
(16)

30
(20)

Figure 9: An XML document with both IDREFs and duplicated objects

node; and a leaf node can be classified as object
identifier (OID), object attribute and relationship
attribute. In XML data, a node can be an object node or
a non-object node. More information about
ORA-semantics and how to discover it is given in [26].

The ORA-semantics is hidden in XML and in the
mind of database designers and users. For example,
under ID/IDREF mechanism of XML, database
designers must know object and object identifier (OID)
to create reference edges. Otherwise, they cannot
design an XML document with ID/IDREF. Based on
ID/IDREF in XML, users also know object and OID.

Approaches for XML keyword search without using
of the ORA-semantics return answers which may be
useless, duplicated, incorrect, missing and
schema-dependent answers as pointed out in Section 2
and Section 3. Recently based on the ORA-semantics,
several approaches proposed to not only address the
above problems but also to improve the usability of
XML keyword search. These works can be briefly
described as follows.

To solve the problems of the LCA-based approaches
discussed in Section 2.8, based on the ORA-semantics,
[22] introduces a novel search semantics, called
Nearest Common Object Node (NCON), which
includes not only common ancestors, but also common
descendants of matching nodes to answer a keyword
query. [22] also proposes an approach to find NCONs
for a keyword query over XML tree. The approach uses
the reversed data tree where the object paths from the
root to each leaf nodes are reversed with those of the
original data tree. Then, common descendants in the
original data tree correspond to common ancestors in
the reversed data tree. Therefore, the common
ancestors from both the original and reversed data tree
provide the set of NCONs for a keyword query.

Also based on the ORA-semantics, [23] models an
XML document with IDREF as a so-called XML
IDREF graph. [23] discovers that an XML IDREF
graph still has hierarchical structure where a reference
edge can be considered as a parent-child relationship,
in which the parent is the referring node and the child is
the referred node. This helps generalize efficient
techniques of the LCA-based approaches for keyword
search over XML IDREF graph. Thereby, it can
achieve an efficient algorithm to find NCONs over
XML IDREF graph.

Not only common ancestors and common
descendants of the matching nodes provide meaningful
answers to users, common relatives of the matching
nodes, which are common ancestors in XML
documents with some equivalent schemas, are also
meaningful to users. This is because if a database is
designed in the way that the mentioned common
relative becomes a common ancestor of matching
nodes in some equivalent schema, then that common
relative is returned as an LCA node. Therefore, based
on the ORA-semantics, [20] proposes the CR
(Common Relative) semantics to include all together
common ancestors, common descendants and common
relatives as answers. This leads to another important
advantage of the CR semantics is that it is independent
from schema designs [20]. In contrast, existing
approaches depend on schema designs because they
may return different query answers for different
hierarchical structures of the same data content. This
advantage is important because when users issue a
keyword query, they often have some intention in mind
about what they want to search for regardless of the
schema used. Hence, they expect the same answers
from different designs of the same data content.

In [21] supports expressive keyword queries with

group-by and aggregate functions including max, min,
sum, avg, count for XML keyword search. It faces with
several challenges. The first challenge is how to handle
ambiguity where a query has multiple interpretations in
order not to mix the results of group-by and aggregate
functions from different query interpretations together.
The second challenge is how to handle object
duplication and relationship duplication to calculate
group-by and aggregate functions correctly. To
overcome these challenges, the ORA-semantics is
exploited again to identify interpretations of a query
and to detect duplication.

5. CONCLUSION AND FUTURE
WORK

XML keyword search has gained a lot of interests
with many works done. This paper provides a survey
for XML keyword search. We classified existing works
into three types: tree-based approaches, graph-based
approaches and semantics-based approaches. For each
type of approaches, we summarized the main features,
showed the relationships among works and especially
pointed out the common problems that each type of
approaches suffer.

From these problems, more broadly, this paper
demonstrates the benefit of object orientation in XML.
Without even requiring full-blown object orientation,
merely by recognizing the concept of objects, object
identifiers, and relationships among objects,
researchers are able to add substantial semantics to
XML represented data and showed how this small
amount of additional annotation can greatly benefit
keyword search. Therefore, in the future, exploring
how other XML processing can similarly benefit is a
promising topic.

6. REFERENCES
[1] Z. Bao, T. W. Ling, B. Chen, and J. Lu. Efficient XML keyword search

with relevance oriented ranking. In ICDE, 2009.
[2] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan.

Keyword searching and browsing in databases using BANKS. In ICDE,
2002.

[3] J. Camacho-Rodriguez, D. Colazzo, and I. Manolescu. Building large
XML stores in the amazon cloud. In ICDEW, 2012.

[4] L. J. Chen and Y. Papakonstantinou. Supporting top-k keyword search in
XML databases. In ICDE, 2010.

[5] Y. Chen, W. Wang, Z. Liu, and X. Lin. Keyword search on structured and
semi-structured data. In SIGMOD, 2009.

[6] S. Chong, C.-Y. Chan, and G. A. K. Multiway SLCA-based keyword
search in XML data. In WWW, 2007.

[7] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: A semantic
search engine for XML. In VLDB, 2003.

[8] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin. Finding top-k
min-cost connected trees in database. In ICDE, 2007.

[9] K. Golenberg, B. Kimelfeld, and Y. Sagiv. Keyword proximity search in
complex data graphs. In SIGMOD, 2008.

[10] K. Golenberg, B. Kimelfeld, and Y. Sagiv. Keyword proximity search in
complex data graphs. In SIGMOD, 2008.

[11] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: Ranked
keyword search over XML documents. In SIGMOD, 2003.

[12] H. He, H. Wang, J. Yang, and P. S. Yu. BLINKS: ranked keyword
searches on graphs. In SIGMOD, 2007.

[13] V. Hristidis, N. Koudas, Y. Papakonstantinou, and D. Srivastava. Keyword
proximity search in XML trees. TKDE, 2006.

[14] V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword proximity
search on XML graphs. In ICDE, 2003.

[15] H. V. Jagadish and S. AL-Khalifa. Timber: A native XML database.
Technical report, University of Michigan, 2002.

[16] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, and R. D.
Hrishikesh Karambelkar. Bidirectional expansion for keyword search on
graph databases. In VLDB, 2005.

[17] M. Kargar and A. An. Keyword search in graphs: finding r-cliques.
PVLDB, 2011.

[18] B. Kimelfeld and Y. Sagiv. Finding and approximating top-k answers in
keyword proximity search. In In PODS, 2006.

[19] L. Kong, R. Gilleron, and A. L. Mostrare. Retrieving meaningful relaxed
tightest fragments for xml keyword search. In EDBT, 2009.

[20] T. N. Le, Z. Bao, and T. W. Ling. Schema-independent XML keyword
search. ER, 2014.

[21] T. N. Le, Z. Bao, T. W. Ling, and G. Dobbie. Group-by and aggregate
functions in XML keyword search. In DEXA, 2014.

[22] T. N. Le, T. W. Ling, H. V. Jagadish, and J. Lu. Object semantics for
XML keyword search. In DASFAA, 2014.

[23] T. N. Le, Z. Zeng, and T. W. Ling. Finding missing answers due to object
duplication in XML keyword search. In DEXA, 2014.

[24] G. Li, J. Feng, J. Wang, and L. Zhou. Effective keyword search for
valuable LCAs over XML documents. In CIKM, 2007.

[25] G. Li, B. C. Ooi, J. Feng, J. Wang, and L. Zhou. EASE: Efficient and
adaptive keyword search on unstructured, semi-structured and structured
data. In SIGMOD, 2008.

[26] L. Li, T. N. Le, H. Wu, T. W. Ling, and S. Bressan. Discovering
semantics from data-centric XML. In DEXA, 2013.

[27] Y. Li, C. Yu, and H. V. Jagadish. Schema-free XQuery. In VLDB, 2004.
[28] X. Liu, C. Wan, and L. Chen. Returning clustered results for keyword

search on XML documents. TKDE, 2011.
[29] Z. Liu and Y. Chen. Identifying meaningful return information for XML

keyword search. In SIGMOD, 2007.
[30] Z. Liu and Y. Chen. Reasoning and identifying relevant matches for XML

keyword search. In PVLDB, 2008.
[31] Z. Liu and Y. Chen. Processing keyword search on xml: A survey. World

Wide Web, 2011.
[32] K. Nguyen and J. Cao. Exploit keyword query semantics and structure of

data for effective xml keyword search. In ADC, 2010.
[33] L. Qin, J. X. Yu, L. Chang, and Y. Tao. Querying communities in

relational databases. In ICDE, 2009.
[34] Z. Tian, J. Lu, and D. Li. A survey on XML keyword search. In APWeb,

2011.
[35] H. Wang and C. C. Aggarwal. A survey of algorithms for keyword search

on graph data. In Managing and Mining Graph Data. 2010.
[36] Y. Xu and Y. Papakonstantinou. Efficient keyword search for smallest

LCAs in XML databases. In SIGMOD, 2005.
[37] Y. Xu and Y. Papakonstantinou. Efficient LCA based keyword search in

XML data. In EDBT, 2008.
[38] J. X. Yu, L. Qin, and L. Chang. Keyword Search in Databases. 2010.
[39] Z. Zeng, Z. Bao, M.-L. Lee, and T. W. Ling. A semantic approach to

keyword search over relational databases. In ER, 2013.
[40] J. Zhou, Z. Bao, W. Wang, T. W. Ling, Z. Chen, X. Lin, and J. Guo. Fast

SLCA and ELCA computation for XML keyword queries based on set
intersection. In ICDE, 2012.

[41] R. Zhou, C. Liu, and J. Li. Fast ELCA computation for keyword queries
on XML data. In EDBT, 2010.

