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XML is emerging as a de facto standard for information exchange over the
Web, while businesses and enterprises generate and exchange large amounts

of XML data daily. One of the major challenges is how to query this data

efficiently. Queries typically can be represented as twig patterns. Some re-
searchers have developed algorithms that reduce the intermediate results that

are generated during query processing, while others have introduced labeling

schemes that encode the position of elements, enabling queries to be answered
by accessing the labels without traversing the original XML documents. In this

paper we outline optimizations that are based on semantics of the data being

queried, and introduce efficient algorithms for content and keyword searches in
XML databases. If the semantics are known we can further optimize the query

processing, but if the semantics are unknown we revert to the traditional query
processing approaches.
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1. Introduction

Semistructured data has become more prevalent with the increasing num-
ber of advanced applications on the Web. Many of these applications, such
as electronic market places, produce and consume large volumes of data.
XML (eXtended Markup Language) is emerging as the de facto standard
for semistructured data on the Web. Although XML documents could have
rather complex internal structures, they can generally be modeled as or-
dered trees.

In most XML query languages, the structures of XML queries are ex-
pressed as twig (i.e. a small tree) patterns, while the values of XML el-
ements are used as part of the selection predicates. Efficiently matching
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all twig patterns in an XML database is a major concern in XML query
processing. Among them, holistic twig join approaches have been accepted
as an efficient way to match twig patterns, reducing the size of the in-
termediate result.1 Recently many algorithms have been proposed includ-
ing TwigStack,2 TJFast,3 TwigStackList,4 Tag+level,5 prefix path stream
(PPS),6 OrderedTJ.7 They are based on a form of labeling scheme that
encodes each element in an XML database using its positional information.
In order to answer a query twig pattern, these algorithms access the labels
alone without traversing the original XML documents.

In this paper we outline an innovative way to process XML queries that
takes into account the semantics of the data, and introduce an efficient
algorithm for keyword searches in XML databases. The essence of the ap-
proach is that semantics of the data can be used in query optimization if the
semantics of the data are known, otherwise a more traditional approach to
query processing will be adopted. Some of the semantics can be represented
in schema languages such as DTD8 and XMLSchema9 but there is other in-
formation that can be used in query processing that cannot be represented
in these schema definition languages.

Typically, XML data is simply modeled as a tree structure without
the important concepts object class, attribute of object class, relationship
type defined among object classes, and attribute of relationship type. We
have defined a data model called ORA-SS - Object-Relationship-Attribute
Model for Semistructured Data, which includes the concepts in the Entity-
Relationship data model together with constructs to capture the hierarchi-
cal structure of XML data. With the ORA-SS data model, many semantics
of the XML database can be explicitly represented. Semantics that can be
represented in the ORA-SS data model but cannot be specified by DTD
and XMLSchema include:

(1) Attribute vs. object class. Data can be represented in XML documents
either as attributes or element. So, it is difficult to tell from the XML
document whether a child element is in fact an attribute of its parent
element or an object. DTD and XMLSchema cannot specify that a child
element is an attribute of its parent element.

(2) Multivalued attribute vs. object class. In XML document, multivalued
attributes of an object class have to be represented as child elements.
DTD and XMLSchema cannot specify that a child element is a multi-
valued attribute of its parent element.

(3) Identifier (ID). DTD and XMLSchema cannot specify the identifier of
an object class which appears as a child element and has a many to
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many relationship with its parent element. ID and key of DTD and
XMLSchema respectively, are not powerful enough to represent the
identifier of such object classes.

(4) IDREF or Foreign Key. As DTD and XMLSchema cannot represent
identifiers of some object classes, so foreign key or ID reference of such
object classes cannot be specified.

(5) N-ary relationship type. DTD and XMLSchema can only specify child
elements of a parent element, such a relationship is the parent-child
relationship and it is a binary relationship type. Ternary relationship
types and N-ary relationship types among object classes cannot be
specified by DTD and XMLSchema.

(6) Attribute of object class vs. attribute of relationship type. As DTD and
XMLSchema do not have the concept of object classes and relationship
types (they only represent the hierarchical structure of elements and
attributes), there is no way to specify whether an attribute of a element
is an attribute of the element (object class) or an attribute of some
relationship type involving the element (object class) and its ancestors
(object classes).

(7) View of XML document. Since DTD and XMLSchema cannot specify
identifiers and attributes of object classes and relationship types, DTD
and XMLSchema do not contain semantics to define views of XML doc-
ument which change the hierarchical order of object classes (elements)
in the original XML document.

The above semantics (1 to 6) can be captured in the ORA-SS schema
diagram, and because of these semantics, we can define a valid XML view
which changes the hierarchical order of object classes using a swap opera-
tor.10 With the semantics captured in the ORA-SS schema diagram of an
XML database, twig pattern queries on the XML database can be optimized
significantly. Using the work we have done with views, we can guarantee
that if a query changes the hierarchical order of nodes, the semantics of
the output is consistent with the semantics of the XML document. DTD
and XMLSchema cannot be used to interpret the output part when the
hierarchical ordering of nodes in the output is different than in the query
part. With the semantics captured by the ORA-SS data model, we will be
able to interpret XML queries correctly and improve the query evaluation
performance using these semantics.

In the rest of the paper, we briefly review related work in XML query
processing in Section 2, and use an example to introduce the key concepts
of the ORA-SS data model in Section 3. In Section 4 we outline how the
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semantics represented in the ORA-SS data model can improve the speed
of query processing. In section 6 we introduce an efficient algorithm for
keyword searches in XML databases and we conclude in Section 7.

2. Related Work

XPath11 is a language for finding information in an XML document by nav-
igating through elements and attributes in an XML document. Its syntax
is similar to directories in UNIX file systems. For example, find the names
of the students taking the course “cs4221” can be expressed by the XPath
expression:

/department/course[code=“cs4221”]/student/stuName
An XPath query can be expressed graphically by a small tree called a twig
pattern. The above XPath query is represented as the twig pattern query
shown in Figure 1.

department

course

studentcode

stuName"cs4221"

Fig. 1. Example Twig Pattern Query

department

course

studentcode title

stuNo stuName address hobby

name

?

? ?*

dc,2,1:n,1:1

cs,2,0:n,1:n

cs

mark

Fig. 2. ORA-SS Schema Diagram

Twig join processing is central to XML query evaluation. Extensive re-
search efforts have been put into efficient twig pattern query processing with
label based structural joins. Zhang et al.12 first proposed multi-predicate
merge join (MPMGJN) based on containment labeling of XML documents.
The later work by Al-Khalifa et al.13 proposed an improved stack-based
structural join algorithm, called Stack-Tree-Desc/Anc. Both of these are
binary structural joins and may produce large amounts of useless interme-
diate results. Bruno et al.2 then proposed a holistic twig join algorithm,
called TwigStack, to address and solve the problem of useless intermedi-
ate results. However, TwigStack is only optimal in terms of intermediate
results for twig queries with only ancestor-descendent relationships. It has
been proven that optimal evaluation of twig patterns with arbitrarily mixed
ancestor-descendent and parent-child relationships is not feasible.14 There
are many subsequent works that optimize TwigStack in terms of I/O, or
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extend TwigStack for different problems.4,5,7,15–17 In particular, a list struc-
ture is introduced in TwigStackList18 for a wider range of optimizations,
and TSGeneric1 is based on indexing each stream and skipping labels within
one stream. These approaches describe how to execute a query more effi-
ciently but do not address how the semantics of the data can be used in
query optimization.

Chippimolchai et al.19 developed a semantic query optimization frame-
work in a deductive database setting. They outline an algorithm that trans-
forms a query to an equivalent reduced form with the introduction of in-
tegrity constraints. Queries and integrity constraints are represented as
clauses and the integrity constraints are derived from the real world. They
cannot be derived from XMLSchema or DTDs.

3. The ORA-SS Data Model

The Object, Relationship, Attribute data model for Semistructured Data
(ORA-SS)20 has four basic concepts: object classes, relationship types, at-
tributes and references, and consists of four diagrams: schema diagram, in-
stance diagram, functional dependency diagram and inheritance diagram.
In this paper we are concerned with the ORA-SS schema diagram.

An ORA-SS schema diagram represents an object class as a labeled rec-
tangle. A relationship type between object classes is described by a label
“name (object class list), n, p, c”, where name denotes the name of the
relationship type, object class list is the list of objects participating in the
relationship type, n is an integer indicating the degree of the relationship
type, p and c are the participation constraints of the object classes in the
relationship type, defined using the standard min:max notation. The edge
between two object classes can have more than one such relationship type
label to indicate the different relationship types the object classes partic-
ipate in. Attributes of object classes or relationship types are denoted by
labeled circles. Identifiers of object classes are denoted as filled circles. All
attributes are assumed to be mandatory and single-valued, unless the circle
contains a “?” indicating that it is single-valued and optional, or a “+”
indicating that it is multivalued and required, or an “*” indicating that
it is optional and multivalued. Attributes of an object class can be distin-
guished from attributes of a relationship type. The former has no label on
its incoming edge while the latter has the name of the relationship type to
which it belongs on its incoming edge.

Figure 2 shows an ORA-SS schema diagram. The rectangles labeled
department, course, and student are the object classes. Attributes name,
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code and stuNo are the identifiers of the object class department, course

and student respectively. Each student has a unique stuNo. The attributes
title, mark, address and hobby are optional. Attribute hobby is multivalued,
while stuName is required. There are two relationship types, called dc

and cs. The former is a binary relationship type between object classes
department and course, while the latter a binary relationship type between
course and student. A department can have one or more (1:n) courses, and
a course belongs to one and only one (1:1) department. A course can have
zero or more (0:n) students, and a student can take 1 or more courses.
The label cs on the edge between student and mark indicates that mark is
a single valued attribute of the relationship type cs. That is, the attribute
mark is an attribute of a student in a course. From these constraints, we
can derive that {course, student} → mark.

4. Using Semantics in Query Processing

Here we outline how the semantics captured by ORA-SS schema can be
used to optimize twig pattern query evaluation with three twig pattern
queries. The queries refer to the schema shown in Figure 2.

Query 1: Find the stuName values of student elements having stuNo value
equals to “s123”. The XPath expression is:

//student[@stuNo=“s123”]/stuName

Using the ORA-SS schema in Figure 2, we know that stuName is a sin-
gle valued attribute of the student object class and stuNo is the identifier
of the student, so stuNo → stuName. To prcess the query, we only need to
find the first student element in the XML document with attribute stuNo
equal to“s123”, and then find the value of its subelement stuName. How-
ever, if we use a DTD or XMLSchema of the XML data, we would not
know that stuNo is the identifier of student or that stuName is a single
valued attribute of student, so we would need to traverse the whole XML
document.

Additionally Wu et al.21 have proposed an algorithm that concentrates
on searching for content or values with semantic information as compared
to structure-focused query processing. We will discuss content search in
more details in Section 5.



March 31, 2007 16:13 WSPC - Proceedings Trim Size: 9in x 6in swiis

7

Query 2: Find the average marks of all the students.
To answer this query the processor needs to know that stuNo is the

identifier of object class student, and mark is a single valued attribute of
the relationship type between course and student. In fact, any person that
writes this query in XQuery needs to use the same semantics to express the
query:

for $sNo in distinct values(//student/@stuNo)
let $mark set := //course/student[@stuNo = $sNo]/mark
return

<student stuNo = $sNo >

<averagemark>{ avg($mark set) }</averagemark>

</student>

However, a DTD cannot express the semantics that stuNo is the iden-
tifier of student object, and also cannot express that mark is a single
valued attribute of the relationship between student and course, that is
{course, student} → mark. Without this information, there is no way to
know whether the XQuery query with an aggregation function (or twig pat-
tern query) is written correctly or not.

Query 3: For each student, find all courses taken by the student with the
marks the student achieved in the course. Consider for example the query

OUTPUTQUERY

stuNo

codemark

student

course

mark

course

student

Fig. 3. Example Query Format

shown in Figure 3, where a rectangle represents an object class and a circle
represents an attribute. On the left hand side the query is specified, and on
the right hand side the output format is given. The lines between the query
part and the output part show the correspondences between the objects in
the query and those in the output. The query is asking for the marks of
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students in courses and in the output courses must be nested within student
rather than students within courses. This query can be written in XQuery
as:

for $sNo in distinct values(//student/@stuNo)
let $c := //course[student/@stuNo=$sNo]
return

<student stuNo = $sNo >

<course code = $c/@code >

$c/student[@stuNo=$sNo]/mark
</course>

</student>

In order to write the query above correctly, users have to know that stuNo
is the identifier of student, code is the identifier of course, mark is a sin-
gle valued attribute of the relationship type between course and student,
each course is offered by only one department, and each course only ap-
pears once in the XML document. This information can be captured in the
ORA-SS schema diagram, while DTDs and XMLSchema cannot capture all
the necessary semantics.

With the semantics captured by the ORA-SS data model, we will be
able to interpret whether XML queries are correct and improve the query
evaluation performance using these semantics. The graphical query lan-
guage GLASS22,23 can automatically generate the XQuery for the query
represented in Figure 3 using the semantics stored in the ORA-SS schema
diagram in Figure 2. There is no need for a user to write XQuery queries if
the semantics of the data are stored in an ORA-SS schema diagram.

5. Content Search in XML

Processing a twig pattern query in XML document includes structural
search and content search. Most existing algorithms do not differentiate
content search from structural search. They treat content nodes the same
as element nodes during query processing with structural joins. Due to the
high variety of contents, to mix content search and structure search suf-
fers from management problem of contents and low performance. Another
disadvantage is to find the actual values asked by a query, they have to
rely on the original document. Therefore, we propose a novel algorithm
V alue Extraction with Relational Table (V ERT ) to overcome these lim-
itations.21 The main technique of V ERT is introducing relational tables
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to store document contents instead of treating them as nodes and labeling
them. Tables in our algorithm are created based on semantic information
of documents. As more semantics captured, we can further optimize tables
and queries to significantly enhance efficiency.

For example, consider the example XML tree with containment labels
in Figure 4. Instead of storing the label streams for each XML tag and value
contents, we can store the value contents together with the labels of their
parent tags in relational tables as shown in Figure 5. With these relational
tables, when a user issues a twig query as shown in Figure 6(a), the sys-
tem can automatically rewrite it to the query shown in Figure 6(b), where
the node price, the value node with value greater than 15, and their PC
relationship are replaced by a node called price′>15. Then, we can execute
SQL in table Rprice to get all labels of price elements with value greater
than 15 to form the label stream for price′>15; and perform structural join
based on label streams of book, ISBN and price′>15. In this way, we save
both the stream merge cost of all content values greater than 15 and the
structural join between the merged label streams for content values and
price element.

book_store

book

ISBN title author price    quantity

0-07-123057-2

Database Management Systems

Ramakrishnan

author

Gehrke

33

20

book

ISBN title author price    quantity

0-07-124650-9

Introduction to Database Systems

Bressan

author

Catani

17

12

(1:1000,1)

(2:15,2) (16:29,2)

(3:4,3) (5:6,3) (7:8,3) (9:10,3)(11:12,3)(13:14,3)(17:18,3)(19:20,3)(21:22,3)(23:24,3)(25:26,3) (27:28,3)

…

…

…

Fig. 4. Example labeled XML tree

Label

(3:4,3)

(17:18,3)

...

Content

0-07-123057-2

0-07-124650-9

...

Label

(11:12,3)

(25:26,3)

...

Content

33

17

...

Label

(5:6,3)

(19:20,3)

...

Content

Database Management Systems

Introduction to Database Systems

...

RISBN Rtitle Rprice

Fig. 5. Some example tables to store contents with their parent labels



March 31, 2007 16:13 WSPC - Proceedings Trim Size: 9in x 6in swiis

10

book

ISBN

price

>15

book

ISBN price’>15

(a) Example twig query (b) Rewritten query of (a)

Fig. 6. Example twig patten queries and its rewritten query

Moreover, if we know that price is a property of book object class by
exploiting the schema information, we can directly put the value contents of
price with labels of book object class, instead of the labels of price element,
as shown in Figure 7(a). In this way, when processing the twig query in
Figure 6, we can also save the structural join between book object and its
price property. Note that we can also store the labels of book objects with
the contents of other properties, such as title, author, etc, which are not
shown due to limited space.

Label

(11:12,3)

(25:26,3)

...

Content

33

17

...

Rbook/price

Label

(11:12,3)

(25:26,3)

...

price

33

17

...

Rbook

ISBN

0-07-123057-2

0-07-124650-9

...

title

Database ...

Introduction ...

...

quantity

20

12

...

(a) Table of price contents (b) Table of labels and pre-merged single-
and book object labels valued property contents of book object

Fig. 7. Example table to store contents with labels of object classes

Finally, if we further know that ISBN , title, price, etc are single-valued
properties of book object class according to semantics captured by ORA-
SS, we can pre-merge the content values of these properties into a single
relational table with the labels of book objects as shown in Figure 7(b).
With the pre-merged table, to answer the twig query in Figure 6, we can
simply perform an efficient selection on the pre-merged table without time
consuming structural joins. Note that we should not merge multi-valued
properties (e.g author) into the table to avoid duplicate information.

Experimental evaluation shows that besides solving different content
problems, V ERT also has superiority in performance of twig pattern query
processing comparing with existing algorithms.
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6. Keyword Search with Semantics in XML

Keyword proximity search is a user-friendly way to query XML databases.
Most previous efforts in this area focus on keyword proximity search in XML
based on either a tree data model or a graph (or digraph) data model. Tree
data models for XML are generally simple and efficient. However, they
do not capture connections such as ID references in XML databases. In
contrast, techniques based on a graph (or digraph) model capture connec-
tions, but are generally inefficient to compute. Moreover, most of the exist-
ing techniques do not exploit schema information which is usually present
in XML databases. Without schema information, keyword proximity tech-
niques may have difficulty in presenting results, and more importantly, they
return many irrelevant results. For example, the LCA (Lowest Common An-
cestor) semantics for keyword proximity search based on tree model may
return the overwhelmingly large root of the whole XML database.

Therefore, we propose an interconnected object model to fully exploit
the property of XML and the underlining schema information when the
schema is present.24 In our model, database administrators identify inter-
ested object classes for result display and the conceptual connections be-
tween interested objects. For example, the interested object trees in DBLP
can be publications; and the conceptual connection between publications
can be reference and citation relationships.

With interested object classes, the most intuitive result of keyword prox-
imity search is a list of interested objects containing all keywords. We call
these interested objects as ICA (Interested Common Ancestor) in contrast
to the well-known LCA (Lowest Common Ancestor) semantics. Also, and
more importantly, we propose IRA (Interested Related Ancestors) seman-
tics to capture conceptual connections between interested objects and in-
clude more relevant results that do not contain all keywords. An IRA result
is a pair of objects that together contain all keywords and are connected
by conceptual connections. An object is an IRA object if it belongs to
some IRA pair. For example, for query “XML query processing”, the pa-
per with title “query processing” and citing or cited by “XML” papers
are considered as IRA objects. Further, we propose RelevanceRank to rank
IRA objects according to their relevance scores to the query. RelevanceR-
ank is application dependent. For an intuitive example, in DBLP, for query
“XML query processing”, a “query processing” paper that cites or is cited
by many “XML” papers is ranked higher than another “query processing”
paper that cites or is cited by only one “XML” papers. Other ranking met-
rics can also be incorporated with RelevanceRank. For example, for query
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“John Smith”, we can use proximity rank to rank papers with author “John
Smith” higher than papers with co-author “John” and “Smith”.

Experimental evaluation shows our approach is superior to most exist-
ing academic systems in terms of execution time and result quality. Our
approach is also superior or comparable to commercial systems such as
Google Scholar and Microsoft Libra in term of result quality.

7. Conclusion

One of the important areas in the management of semistructured data is
providing algorithms that enable efficient querying of the data. Many re-
searchers have investigated matching twig patterns, using clever matching
algorithms and included labeling schemes which enable smart ways of de-
termining the relationships between nodes in a tree, without traversing the
tree.

In this paper, we outline some optimizations that can be introduced
when semantics of the data are known. We introduce a data model, ORA-
SS in which the necessary semantics can be represented, and describe the
kinds of optimizations that can be done. We demonstrate how twig pat-
terns can be optimized when semantics are included, how to process values
in holistic twig join algorithms, and how conceptual connections between
object classes can be used in keyword proximity searches.

In the future we will study how to use other semantics captured in ORA-
SS schema diagrams to further optimize the evaluation of twig pattern
queries, provide guidelines of where these optimizations are worthwhile,
and show the improvement in processing speed through experimentation.
The particular areas we will look at include how specific information in
twig queries interact with optimization such as parent-child and ancestor-
descendant relationships, negation, ordering of nodes, constant values, and
output nodes.22
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