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1. INTRODUCTION 

Several years ago the relational model was introduced so that database design 
could be grounded in a well-established mathematical discipline. The basic notion 
of a relation was augmented by the concepts of functional dependencies and 
normal forms in an attempt to provide integrity by reducing undesirable updating 
anomalies [B]. A particularly undesirable form of redundancy is the presence in 
a relation of an attribute whose value can always be derived from other attributes 
(perhaps using other relations) and whose value is not needed to derive other 
attributes’ values. Such an attribute is called superfluous in that relation; a 
formal definition is given in Section 4. 

In this paper we give examples to show that some Codd third normal form 
relations and Boyce-Codd normal form relations [9] may contain some superflu- 
ous attributes because the definitions of transitive dependency and prime attri- 
bute are inadequate when applied to sets of relations. 

To correct this, we give new definitions to replace the notions of transitive 
dependency and prime attribute. A normal form for a set of relations is then 
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defined on the basis of these new definitions. Since the old definitions are 
inadequate, all existing normalization methods based on them must be reevalu- 
ated in the light of the new definitions. We present the Deletion Normalization 
Algorithm, which is more powerful than the decomposition method, and we show 
that the set of relations produced by this algorithm contains no superfluous 
attributes. 

2. THE RELATIONAL MODEL 

A relational database, consisting of several interrelated relations, was first in- 
troduced by Codd [7]. A relation is defined as follows: Given sets of atomic 
(nondecomposable) elements DOMI, DOM2, . . . , DOM, (not necessarily distinct), 
T is a first normal form relation (or simply relation) on these n sets if it is a set 
of ordered n-tuples (D1, DZ, . . . , D,) such that Di belongs to DOMi for 
i = 1, 2, . . . , n.ThusTCDOMlxDOMzx . . . x DOM,, where x denotes the 
Cartesian product. DOMr, DOM2,. . . , DOM, are called the domains of T. Rather 
than referencing each use of a domain by position number, each is assigned a 
unique role name, called an attribute of T. For any tuple in T, the value for the 
attribute named B is referred to as a B-value, and, for a set of attributes X = {B1, 
Bs, . . . , BP}, the tuple’s values for the attributes in X is referred to as an X-value; 
the values of the other attributes in that tuple are said to be associated with that 
X-value. A set of attributes Y of T is said to be functionally dependent on a set 
of attributes X of T if each X-value in T has associated with it exactly one 
Y-value in T (at any time). This is denoted by X + Y and is called a functional 
dependency of T; X and Y are termed the left and right sides of the dependency, 
respectively. 

The relational algebra originally proposed by Codd includes several operations 
for manipulating relations. Of particular interest here are the operations of 
projection and (natural) join, defined as follows. 

For a relation T defined on a set of attributes A, the projection of T on X, a 
subset of A, is the set of X-values in T. This projection is denoted by T[X]; the 
notation T[X] is also often used to denote the projection of a single tuple T on X. 
For two relations T1 and Tz defined on the sets of attributes A1 and At, 
respectively, the natural join of T1 and Tz is 

T, * T2 = {T” ] for some T in T1 and T’ in Tz, 

T[AI n AZ] = T’[Al fl AZ] and T” = T - T’[Az - Al]} 

where . denotes catenation (and possibly reordering of attributes). 
It is important to realize that as data occurrences are inserted, deleted, and 

modified in a database, the relations (i.e., the sets of tuples) in that database are 
altered. However, the relational algebra does not include facilities for altering a 
relation’s set of attributes or its set of functional dependencies. Thus these two 
sets are time-invariant properties associated with the relation scheme R which 
serves as a framework for a time-varying sequence of relations T. Henceforth, the 
notions of projection and join, when applied to relation schemes, refer to the 
operations on the corresponding relations; thus R[X] and RI * RZ will be used to 
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mean the projection of the relation corresponding to R on X and the join of the 
relations corresponding to R1 and Rz, respectively. 

Because they must be time-invariant, functional dependencies cannot be de- 
duced by examining instances of R. Therefore, in addition to providing A, the set 
of attributes of R, a designer must provide the set of functional dependencies 
before a database can be established. The total number of functional dependencies 
is typically very large. Thus a designer usually provides an explicit set of 
functional dependencies F whose closure F+ is the complete set of functional 
dependencies on A, defined as follows [2, 131. 

(1) FL F’. 
(2) Projectivity: For all subsets X and Y of A, if Y c X, then X + Y E F’. 
(3) Transitivity: For all subsets X, Y, and Z of A, if X + Y E F’ and Y + Z E 

F+, then X + Z E F+. 
(4) Union: For all subsets X, Y, and Z of A, if X --, Y E F’ and X + Z E F’, 

thenX+YUZEF+. 
(5) No other functional dependencies are in F+. 

Given a relation scheme R having a set of attributes A and given set of 
functional dependencies F, a functional dependency X + B E F+, where X C A 
and B E A, is said to be a full dependency of R (or B is fully dependent on X 
under F) if there exists no proper subset X’ C X such that X’ + B E F+. Two 
sets of attributes X & A and Y c A are said to be functionally equivalent (or 
simply equivalent) if X + Y E F+ and Y --+ X E F+. X and Y are said to 
be properly functionally equivalent (or simply properly equivalent) if X and Y 
are equivalent and there exist no proper subsets X’ C X and Y’ C Y such that 
X’ + Y E F+ or Y’ + X E F+. An attribute B is said to be transitively dependent 
onX~AifthereexistsYCAsuchthatBEA-Y,X--,YEF+,Y-,BEF+, 
and Y + X g F’. 

For a relation scheme R having a set of attributes A and a set of functional 
dependencies F, a set of attributes K C A is called a candidate key (or simply 
key) of R (or, colloquially, a key for A) if K + A E F+ and for all X c K, 
X += A E F’. It is easy to prove that every relation has at least one key and that 
some may have more than one key. An attribute in A is called a prime attribute 
of R if it is contained in some key of R. All other attributes in A are called 
nonprime attributes. 

Codd recognized immediately that certain relation schemes may contain some 
redundancy. Consider, for example, the relation in Figure la which represents 
stock information for some hypothetical manufacturer. For each stock item, the 
model number, serial number, list price, color, model name, and year of manufac- 
ture for an article are entered. The price and color are unique for a given model 
number and serial number. If it is further assumed that the model name can be 
determined from the model number, the year of manufacture can be determined 
from the serial number, and the price can be determined from the model name 
and the year, then the set of functional dependencies is 

{ {MODEL#, SERIAL#} + {PRICE, COLOR}, {MODEL#} + {NAME}, 
{SERIAL#} + (YEAR), {NAME, YEAR} + {PRICE} } . - 
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MODEL# 

1234 
1234 
1234 
1465 
1465 
1465 
1465 
1465 
1623 
1623 
1623 
1623 
1623 
1654 

c 

I 

SERIALi# 

342 
347 
410 
347 
390 
392 
401 
409 
311 
390 
410 
423 
428 
435 I 

PRICE 

13.25 
13.25 
14.23 
9.45 
9.82 
9.82 
9.82 
9.82 

22.34 
30.21 
28.55 
28.55 
28.55 
28.55 

(a) 

! 
NAME 

Pot 
Pot 
pan 
pan 
kettle 
kettle 
kettle 

COLOR NAME YEAR 

blue Pot 1974 
red Pot 1974 
red Pot 1975 
black pan 1974 
black pan 1976 
red pan 1976 
red pan 1976 
blue pan 1976 
blue kettle 1973 
blue kettle 1976 
black kettle 1975 
black kettle 1975 
blue kettle 1975 
red kettle 1975 

(b) 

Fig. 1. (a) Stock inventory universal relation. (b) Stock inventory 
price relation. 

If a new model for some year is announced but no items for that model and year 
are yet in stock (and therefore no model number and serial number are yet 
available), then the price information cannot be entered for that model (i.e., 
NAME) and year (the use of null or undefined values in other fields could cause 
problems [ 191). This is called the insertion anomaly. Now if the last item of stock 
for a particular model and year is sold and therefore a tuple with a {NAME, 
YEAR}-value that appeared in this tuple only is deleted, then the price infor- 
mation for this {NAME, YEAR} -value would be lost. This is called the deletion 
anomaly. If the PRICE-value for a {NAME, YEAR} -value were to be changed, 
then that attribute’s values for all tuples that have this given {NAME, YEAR} - 
value would also have to be changed to maintain the consistency of the database. 
This is called the rewriting anomaly. Now suppose that the database contains 
another relation containing all the model name, year, and price information as in 
Figure lb. In this case, the superfluous attribute PRICE could be removed from 
the universal stock relation scheme without losing any information from the 
database, whereas it would not be removable from the stock inventory price 
scheme without reintroducing anomolies. 
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MODEL+ I SERIAL# PRICE 

1234 342 13.25 
1234 347 13.25 
1234 410 14.23 
1465 347 9.45 
1465 390 9.82 
1465 392 9.82 
1465 401 9.82 
1465 409 9.82 
1623 311 22.34 
1623 390 30.21 
1623 410 28.55 
1623 423 28.55 
1623 428 28.55 
1654 435 28.55 

MODEL# NAME 

1234 Pot 

-I- 

1465 pan 
1623 kettle 
1654 kettle 

t 

COLOR SERIAL# YEAR 

blue 
red 
red 
black 
black 
red 
red 
blue 
blue 
blue 
black 
black 
blue 
red NAME 

Pot 
Pot 
pan 
pan 
kettle 
kettle 
kettle 

311 1973 
342 1974 
347 1974 
390 1976 
392 1976 
401 1976 
409 1976 
410 1975 
423 1975 
428 1975 
435 1975 

YEAR PRICE 

1974 
1975 
1974 
1976 
1973 
1975 
1976 

13.25 
14.23 
9.45 
9.82 

22.34 
28.55 
30.21 

Fig. 2. Stock inventory normalized relation s. 

One process that attempts to remove undesirable updating anomalies and 
redundant attributes from the relation schemes is called normalization, which 
was originally defined in two stages [8]. A (first normal form) relation scheme R 
is in second normal form if every nonprime attribute of R is fully dependent on 
each key of R. A relation scheme R is in Codd third normal form if it is in second 
normal form and each nonprime attribute of R is not transitively dependent on 
every key of R. For example, the set of relations in third normal form in Figure 
2 maintains the same data as the stock inventory depicted in Figure 1. 

TZIEOREM 1. A relation scheme R is in Codd third normal form if and only if 
each nonprime attribute is not transitively dependent on an arbitrarily chosen 
key of R. 

PROOF. The proof is based on the following two lemmas which show that a 
nonfull or transitive dependency of an attribute on any one key of R implies the 
transitive dependency of that attribute on all keys of R. El 

LEMMA 1.1. Let R be a relation scheme consisting of a set of attributes A and 
a set of functional dependencies F, and let I3 E A. If there exists a key K of R 
with B 6Z K and K + B is not a full dependency, then B is transitively dependent 
on all keys of R. 

PROOF. Since B P K and K + B is not a full dependency, therefore there exists 
a proper subset X C K such that B p X and X + B E F+. Since K is a key and 
XisapropersubsetofK,X-,K~F’.NowforanykeyK’ofR,K’-,XEF’, 
X -+ K’ e F’, X + B E F+, and B e X. Hence B is transitively dependent on K’, 
which proves the lemma. 0 
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LEMMA 1.2. Let R be a relation scheme consisting of a set of attributes A and 
a set of functional dependencies F, and let B E A. If there exists a key K of R 
such that B is transitively dependent on K, then B is also transitively dependent 
on all keys of R. 

PROOF. Let K’ be any other key of R. By definition, K’ + B E F+. Now if B 
is transitively dependent on K, then there exists a set of attributes X C A such 
thatK+XEF+,X+K!Z F’,X +BEF+,andBeX.HenceK’+XEF+, 
X + K’ P F’, X -+ B E F’, and B @ X. Thus B is transitively dependent on K’, 
which proves the lemma. Cl 

Closely related to closure is the notion of derivability [17], as follows: A set of 
attributes Y is derivable from a set of attributes X using the set of functional 
dependencies F if there exists a sequence of attribute sets (called a derivation of 
Y fromX) (X0, X1, XP, . . . , X,) for n 3 0 such that X = X0, Y c X,, and (unless 
n = 0) for i in the range 1 to n there exists a functional dependency V + W E F 
such that V c Xi-l, W c Xi-l, and Xi = Xi-1 U W. 

THEOREM 2. [4, 171. Given a set of attributes A, X c A and Y c A, and a set 
of functional dependencies F defined on subsets of A, Y is derivable from X 
using F if and only if X + Y E F’. Furthermore, since Bi-1 C Bi and Bi-1 # B,, 
derivability can be decided in O( 1 F 1 1 A I) time.’ 

Instead of considering the derivation of a particular set of attributes Y, it is 
sometimes convenient to find the set of all attributes derivable from X using F. 
A maximal derivation from a set of attributes X using a set of functional 
dependencies F is a sequence of attribute sets (X0, X1, . . . , X,) for n 3 0 such 
that X = X0, for i in the range 1 to n there exists a functional dependency 
V + W E F such that V c Xi-1 and W c Xi-1 and Xi = Xi-1 U W, and there is no 
functional dependency V’ + W’ E F such that V’ c X, and W’ c X,. Lucchesi 
and Osborn have shown that the terminal set in a maximal derivation from X 
using F is independent of the particular derivation; henceforth X, will be called 
the closure of X relative to F. 

3. THE PROBLEM OF SUPERFLUOUS ATTRIBUTES 

Given A, a set of attributes, and F, a set of functional dependencies among subsets 
of A, it is desirable to describe a set of relation schemes, henceforth called a 
relational schema, R = {RI, . . . , R,} such that the following three properties 
hold: 

(1) The relationships among the data values to be stored using R are equivalent 
to those that would be stored using a single relation scheme Ro involving all 
of A. That is, at all times, Ri = Ro[Ai] where Ai is the set of attributes in Ri, 
and RI *Rz * -.. * R,=Ro. 

(2) The verification that a set of relations described by R (i.e., relational instances 
forR1, . . . . R,) conforms to all functional dependencies in F requires only 
the examination of relations corresponding to RI, . . . , R, individually. Fur- 

’ For a set S, 1 S 1 denotes the cardinality of S, as opposed to the length of the description of S as 
in [4]. 
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thermore, the only functional dependencies that need be examined are ones 
for which the left side contains a key of some Ri. It is required that 
(U {X-,A~-XIX~A~~~~X-,A~EF+))+=F+. 

(3) Each relation scheme is free of redundant attributes, that is, those whose 
presence is not required for maintaining the other two properties. It should 
be noted here that the redundancy considered is with respect to given sets of 
attributes and functional dependencies only; the redundancy under consid- 
eration is thus not that which may arise from other time-invariant properties 
of the database (see, e.g., [ll]). 

These goals have been defended elsewhere (see, e.g., [3, 6, 211) and have been 
termed reconstructibility (or losslessness), covering, and normalization, respec- 
tively. 

Several characterizations for the elements of R have been given since the 
introduction of the relational model, but none have satisfactorily met the require- 
ment of normalization in that redundant attributes are sometimes permitted. For 
the remainder of this section, we will demonstrate in particular that Codd third 
normal form and Boyce-Codd normal form are inadequate normalization criteria. 

Example 1. Let A = ABCDEF’ and F = {AB + CD, A + E, B + F, EF + C} 
and consider the relational schema R = {Rr, Rz, Rs, Rd} where Rr has attributes 
ABCD and key AB, Rz has attributes AE and key A, RS has attributes BF and 
key B, and R4 has attributes EFC and key EF. This example models the relations 
depicted in Figure 2, where A is the model number, B the serial number, C the 
price, D the color, E the model name, and F is the year of manufacture. It can be 
shown that R has the properties of reconstructibility and covering and that each 
relation in R is in Codd third normal form. In particular, it must be noted that 
Codd third normal form considers only one relation scheme at a time. For 
example, considering R1, there exists no subset X of ABD such that X + C E F+ 
and X + AB g Ff; hence C is not transitively dependent on AB in RI, and, 
similarly, AB + D is also not a transitive dependency in RI. Thus RI is in Codd 
third normal form, as are Rz, Rs, and R4. Now consider an instance of R 
containing tuples (Ar, B1, C,, D1) for R1, (Ar, E1) for Rp, (B1, F1) for Rs, and (El, 
F1, CZ) for R4. Here the AB-value AIBl can derive the C-value Cp by using 
relations other than the one corresponding to R,. If C1 # Cz, then even if RI 
satisfies the functional dependency AB + C, the database will be inconsistent. 
Similarly, if the database is consistent, the C-value for some tuple for RI cannot 
be altered without checking in other relations that the database will not become 
inconsistent; that is, this normalization has not eliminated the potential for 
updating anomalies. It is easy to show that although AB + C is not a transitive 
dependency in R1, C is a superfluous attribute; that is, it can be deleted from the 
relation scheme R1 while still preserving the functional dependency AB --, C 
in R. 

Example 2. Let A = ABCDEF and F = {AD + B, B --, C, C += D, AB + E, 
AC + F} and consider the relational schema R = {RI, Rz, R3) where RI has 

2 Because single letters are used for attribute names, all sets (A, B, C, } can be denoted by 
ABC.. . without ambiguity. 
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attributes ABCDEF and keys AB, AC, and AD; Rz has attributes BC and key B; 
and RB has attributes CD and key C. Again R has the properties of reconstruc- 
tibility and covering, and each relation in R is in Codd third normal form. In this 
case, the attribute C is superfluous in RI, and, although it is a prime attribute and 
thus not even considered for transitive dependencies when constructing Codd 
third normal form, C can (and should) be dropped from RI while still preserving 
all functional dependencies in which it is involved. 

From these two examples it is clear that the definitions of transitive dependency 
and prime attribute as applied to defining Codd third normal form are inadequate 
for describing relations that are free of “superfluous” attributes. Since the 
definitions are inadequate, any normalization method based on them may also be 
inadequate. For example, Bernstein’s method [5] will, in fact, produce sets of 
relation schemes as in Example 2; that is, the method will not necessarily produce 
schemes that are free of “superfluous” attributes. 

Realizing that Codd third normal form did still permit some anomalies, Kent 
[ 151 and Boyce and Codd [9] later independently developed a revised definition: 
A relation scheme R is in Boyce-Codd normal form if (it is in first normal form 
and) for every attribute set X of R, an attribute of R not in X is functionally 
dependent on X only if X is a key of R. 

Unfortunately, this definition is again based on one relation scheme only. As a 
result, for example, each element in the relational schema given in Example 1 
above is in Boyce-Codd normal form as well as Codd third normal form, and yet 
the set suffers from unnecessary redundancy. 

A second drawback of the Boyce-Codd version of normalization is that, given 
a set of attributes A and a set of functional dependencies F, there may not exist 
a relational schema in Boyce-Codd normal form that covers F [20]. Thus the 
definition does not necessarily allow the simultaneous attainment of all three 
goals: reconstructibility, covering, and normalization. 

4. AN IMPROVED THIRD NORMAL FORM 

Because normalization should always be achieved in addition to covering and 
reconstructibility, the properties of a normal form will henceforth be discussed 
solely in the context of a relational schema that has the other two properties. 
Thus given A, a set of attributes, and F, a set of functional dependencies involving 
subsets of A, it is first desirable to obtain a relational schema that is satisfactory 
except for normalization. The following algorithm is based on Bernstein’s synthe- 
sis algorithm [5, p. 2931. 

PREPARATORY ALGORITHM 

Input. A, a set of attributes, and F, a set of functional dependencies on A. 
1. (Remove extraneous attributes and dependencies.) 

Eliminate from both sides of each functional dependency in Fall attributes whose 
elimination leaves a set of functional dependencies having a closure equal to F+. 
Next eliminate from that modified set all functional dependencies whose right 
side is the empty set of attributes. Let F, be the resulting set. 

2. (Partition the functional dependencies.) 
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Partition R into a set of classes C such that all the functional dependencies in 
each class have properly equivalent left sides; that is, VI + WI and VZ --, WO are 
in the same class if and only if V1 + VI E F+ and VP -+ VI E F+. 

3. (Construct relation schemes.) 
For each class in C, construct a relation scheme Ri consisting of all attributes A; 
appearing in that class. Let R be the set resulting from these constructions. 

4. (Augment the relational schema, if necessary.) 
If for each relation scheme in R, the set of attributes A, in that class is such that 
Ai + A P F’, then construct A’ to be a minimal set of attributes in A such that 
A’ 4 A E F’ and augment R by one relation scheme whose attribute set is A’. 

Output. R, the preparatory relational schema. 

It is simple to show that the set of attributes constituting the left side of a 
functional dependency in F, is a key of the relation scheme having that depend- 
ency and constructed in step 3; Bernstein has called each such set of attributes a 
synthesized Key. Furthermore, if an additional relation scheme is introduced into 
R in step 4, its synthesized key consists of all its attributes. To represent the 
dependencies contained in F, the set Ki of synthesized keys will be recorded as 
part of the relation schemes in R. In the rest of this paper, the phrase “let R be 
a preparatory relational schema . . . ” is shorthand for “given a set of attributes 
A and a set of functional dependencies F defined on subsets of A, let R be a 
preparatory relational schema consisting of relation schemes Ri, each having a 
set of attributes Ai and a set Ki of synthesized keys. . . “; the notation used in 
examples will be R = {RI(AI, Kl), . . . , R,(A,, Kn)}. 

Let Gi be the set of synthesized functional dependencies in the relation scheme 
Ri; that is, for each i 3 1, Gi = {K jAi-KIKEKi}.ForG=UGi,G+=F+ 
[5]; that is, G covers the given functional dependencies, as described in Section 
3. Osborn has proved that in the presence of covering, R has the desired property 
of reconstructibility if one of the relation schemes in R contains a key K such 
that K + A E F’ [6, 191; this is guaranteed in step 4. Thus Rissanen would 
classify the elements of R as independent components [21], and Beeri et al. would 
classify R as a “Rep4-representation” for A and F [3]. 

Beeri and Bernstein have shown that steps l-3 can be computed in time 
proportional to the square of the length of the input [4]. Since the last step is 
similar to repeating steps 1-3, it has the same time bound, thus the Preparatory 
Algorithmrunsin time O(IF1’1A1’). 

Normalization has been purposely omitted from this algorithm. In fact, the 
algorithm is very similar to Bernstein’s Algorithm I, for which it is shown that 
the relational schemes in R are not necessarily in third normal form [5]. Given 
the relational schema that is produced by the Preparatory Algorithm for given 
sets of attributes and functional dependencies, the normalization procedure 
proposed here will remove attributes from individual schemes and adjust the set 
of synthesized keys. For simplicity, any such derived relational schema will also 
be called a preparatory relational schema as long as it maintains the properties 
of covering and reconstructibility. 

The object of normalization is to remove unnecessary redundancy from a 
collection of relations. In particular, with respect to a relational schema R, an 
attribute B is superfluous in a relation scheme R, if its removal from R, does not 
affect covering or reconstructibility; that is, all data relationships stored in an 
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instance of R can be reconstructed without reference to the attribute B in Ri. A 
more precise definition is given below. 

Let R be a preparatory relational schema including Ri, and let B be an attribute 
in Ai. The functional dependencies that do not involve B in Ri may be defined as 
follows: 

Di(B)=,I;ri {X-A,-X 1 XGA~,X+A~EF+, 

and for no X’ C X, X’ + Aj E F+} 

U {X+Ai-X-B 1 Be X,XcAi,X+AiEF+, 

andfornoX’CX,X’+AiEF+}. 

It is important to realize that Di(B) is defined in terms of all keys for all relation 
schemes in R (denoted by the union of terms), not only keys synthesized by the 
Preparatory Algorithm. Thus B is superfluous in Ri if both of the following 
conditions hold. 

(1) (Covering condition): The set of dependencies excluding those involving B in 
Ri covers F; that is, Di(B)+ = F’. 

(2) (Reconstructibility condition): A key of Ro (see Section 3) is contained in 
some relation without involving B in Ri; that is, Ai + A E F+ for some j # i 
orA,-B+AEF+. 

Any algorithm that detects superfluous attributes by applying a straightforward 
implementation of these conditions requires the calculation of D;(B)+ for each 
possible value of i and B, which in turn requires that all keys of all relations be 
found. Because the number of keys can be exponential in 1 A 1 and ( F I [12,22], an 
algorithm used in practice must avoid calculating all keys. Thus rather than 
implementing the conditions as above, alternative definitions, less intuitive but 
more practical, will be given first. 

Since the Preparatory Algorithm synthesizes only a polynomial number of keys 
(in terms of (A I and 1 F I ), it would be convenient to be able to ignore all keys 
that are not synthesized. As a parallel to Di(B), let G:(B) be the set of all 
synthesized dependencies that do not involve B in Ri; that is, 

G:(B)= UGjU {K+Ai-K-B I Be KandKEKi}. 
j#i 

The following example will illustrate the difference between D;(B) and G:(B). 

Example 3. Let A = ABCDE and F = {A +B,B+A,AC+DE,BD-+ 
C}. For the preparatory relational schema R = {R,(AB, {A, B}), Rz{ ABCDE, 
{AC, BD})}, it can be seen that Dz(B) = {A +B,B+A,AC+DE,AD-+CE} 
and G;(B) = {A -+ B, B + A, AC + DE). Notice that BD + ABCDE is in 
&(B)+ but not in G;(B)‘; without the recognition of AD as a (nonsynthesized) 
key of Rz, B would not be seen to be superfluous in Rz. 

Let R be a preparatory relational schema including Ri, and let B be an attribute 
in Ai. The following definitions characterize an attribute that is potentially 
superfluous in R;. 
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(1) B is restorable in Ri if Ki # (Ai}, that is, Ai is not the only key of Ri, and for 
every key K E K, such that B e K, K -+ B E G:(B)+. 

(2) B is nonessential in Ri if for every key K E Ki such that B E K, there is a set 
K’ of attributes such that K’ c Ai - B, K + Ai E G’, and K + K’ E G:(B)‘; 
that is, the closure of K relative to G{(B) contains a (possibly nonsynthesized) 
key K’ for Ai such that B +Z K’. 

The first definition characterizes an attribute whose values are derivable from 
the rest of R. The second characterizes an attribute that is not required to derive 
the value of any other attribute of R. (An attribute that does not meet the 
conditions for the second definition is said to be essential.) Thus a nonprime 
attribute is obviously nonessential, and a transitive dependency will be shown to 
imply an attribute’s restorability; these facts will be used in the proof of Theorem 
4. Together, the definitions characterize a superfluous attribute, as follows. 

THEOREM 3. Let R be a preparatory relational schema including Ri, and let 
B be an attribute in Ai. The attribute B is superfluous in Ri if and only if it is 
restorable and nonessential in Ri. 

PROOF. Assume first that B is superfluous in Ri. If Ki = { Ai}, then the relation 
Ri was introduced in step 4 of the Preparatory Algorithm, and thus the recon- 
structibility condition for superfluous would be violated. Therefore, it must be 
true that Ki # (Ai). Consider any synthesized key K E K, such that B F! K. Since 
K + B E F’ and F’ = Di(B)+ by hypothesis, K + B E Di(B)+, and thus by 
Lemma 3.1, B is restorable in Ri. Now consider any synthesized key K E K, such 
that B E K. Since K + Ai E F+ and ‘F’ = Di (B)+ by hypothesis, K + Ai E 
Di(B)+, and thus by Lemma 3.2, B is nonessential in Ri. 

Next assume that B is restorable and nonessential in R,. Since D, (B)+ c F+ 
= G+, the proof of the covering condition for superfluous requires that 
G c Di (B)‘. Let g be an element of G, that is, g : K --) Aj - K for some j. 

Case 1. j # i: By the definition of D;(B), g E Di(B) and thus g E Di(B)+. 

Case 2. j = i and B E K: If K + Ai E G:(B)+, then g E Di (B)+. Otherwise, since 
B is nonessential in Ri, there is a K’ C_ Ai such that B @ K’, K + K’ E G:(B)‘, 
and K’ + Ai E F+. Thus K + K’ E Di(B)’ and K’ + Ai - B E D,(B)’ which 
implies that g E Di (B)+. 

Case 3. j = i and B E K: Since B is restorable in Ri, K + B E G:(B)+. Thus 
g E G:(B)’ and therefore g E D,(B)‘. 

It remains to be proved that a key of Ro is contained in some relation without 
involving B in Ri. If Aj + A e F’ for j # i, then Ai + A E F’ since R has the 
property of reconstructibility. In this case it must be shown that Ai - B + A E 
F’. If there is a key K E K, such that B 6!! K, then K -+ A E F’, and thus 
Ai - B + A E F+. Otherwise, since B is nonessential in Ri, there is a nonsyn- 
thesized key K’ for Ai such that B If K’; thus again Ai - B + A E F’. This 
completes the proof of the theoiem. 0 

LEMMA 3.1. Let R be a preparatory relational schema including Ri, and let 
B be an attribute in Ai. If Ki # {Ai} and for every K E Ki such that B P K, 
K + B E Di(B)‘, then B is restorable in Ri. 
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PROOF. Assume that for some K E K, such that B e K, K -+ B E Di(B)+ but 
K + B E G:(B)‘. Let (XO, X1, . . . , X,) be a maximal derivation from K using 
G:(B). By assumption, B e X,. However, Ai - B c X, since K + A, - K - B 
E G:(B). By hypothesis, there is a derivation (X,, Xn+l, Xn+2, . . . , X,) of B from 
X, using Di (B). Since A, p X, , m 3 n + 1 and thus there is a functional 
dependency f: V + W E D;(B) - G:(B), such that V c X,, and W c X,. Because 
f E D<(B), it follows that for some j, V c Aj, W c Aj - V, and V + Aj E F+; 
therefore, V + A;, E G’, where G is the set of all synthesized functional 
dependencies. Let (X4, X ;, . . . , Xi) be a derivation of W from V using G. Since 
G:(B) C G and V + W e G:(B), this derivation must use a functional dependency 
in G - G:(B); let V1 += WI be the first such dependency used in this derivation. 
From the definitions of G and G:(B), it follows that V1 is a synthesized key of Ri. 
Thus (X,, X1, . . . , X,) demonstrates that K + V E G:(B)+ c F+ and (X6, 
xi, . ..) Xi) demonstrates that V -+ VI E F+; therefore V, a key of Rj, is 
functionally equivalent to some key of Ri and as a result j = i. However 
Ai - B C X, , W c X,, and V + W E Di (B) imply that j # i. This contradiction 
requires abandonment of the hypothesis, and therefore B is restorable in Ri. 0 

LEMMA 3.2. Let R be a preparatory relational schema including Ri, and let 
B be an attribute in Ai. If for every hey K E Ki such that B E K, K + A, E 
Di(B)+, then B is nonessentiaz in R,. 

PROOF. Assume that for some K E K, such that B E K, K + Ai E Di(B)‘. Let 
(X0, x1, . . . , X,) be a maximal derivation from K using G:(B). If Ai c X,, then 
the following argument shows that there must be a key for Ai in X, - B. If all 
keys for Ai contain B, then, by definition, G:(B) = G - G;. Thus K + A, E 
(G - Gi)+, which can only result from a given functional dependency f: K + Z 
being redundant; that is, f~ (F - f)‘. However, each such functional dependency 
would have been removed in step 1 of the Preparatory Algorithm and Ri would 
not have been created, thus proving that if Ai c X,, then B is nonessential in R, . 

If Ai p X,, then let (X,, Xn+l, . . . , X,) be a derivation of Ai from X, using 
D,(B), and let V and W be as defined in the proof of Lemma 3.1. Since, by the 
same argument, j = i and thus V is a key of Ri and since V + W E Di (B) implies 
that B e V, the closure of K relative to G:(B) has been shown to contain a key 
for Ai which does not contain B, and thus B is nonessential in Ri. 0 

Finally, using the definitions of restorable and nonessential, a characterization 
for normalization can be defined in a manner similar to the statement of Theorem 
1 for Codd third normal form.: 

A relation scheme Ri in a preparatory relational schema R is in improved 
third normal form if each nonessential attribute is not restorable in Ri. 

Restorability in Ri indicates a form of “implicit” or “indirect” dependency on 
an arbitrarily chosen key that does not contain B (cf., [ 16,181); thus this definition 
is an exact analog for Theorem 1. 

In reexamining the examples given in Section 3, it can be seen that the 
definition of improved third normal form captures the desired notion of nonre- 
dundancy. 
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Example 1’. Let A = ABCDEF and F = {AB + CD, A + E, B + F, EF + C} . 
The Preparatory Algorithm will yield the relational schema R = {Ri(ABD, 
{AB) ), R2( AE, {A} ), R3( BF, {B} ), R4( EFC, {EF} )) , since C is an extraneous 
attribute in AB + CD. It can be seen that there are no attributes that are both 
nonessential and restorable in any of the relation schemes, which are therefore 
all in improved third normal form. 

Example 2’. Let A = ABCDEF and F = {AD + B, B + C, C + D, AB -+ E, 
AC + F}. For the relational schema R = {RI ( ABCDEF, {AB, AC, AD} ), Ra( BC, 
{B} ), R3( CD, {Cl )}, it can be seen that the attribute C is nonessential and 
restorable in R1: Using G;(C) = {B 4 C, C + D, AB + DEF, AD + BEF), 
ABCDEF is derivable from the only synthesized key involving C (i.e., AC) and C 
is derivable from AB, a key not containing C. Removing C from Ri leaves a 
relational schema each member of which is in improved third normal form. 

THEOREM 4. Let R be a preparatory relational schema including Ri. If Ri is 
in improved third normal form, then it is also in Codd third normal form. 

PROOF. The following lemma shows that transitive dependencies for nonprime 
attributes result in those attributes being restorable. Together with the observa- 
tion that all nonprime attributes are nonessential (since a nonprime attribute B 
is in no K E K,), the conditions for Theorem 1 necessarily occur in improved 
third normal form schemes, thus proving this theorem. •i 

LEMMA 4.1. Let R be a preparatory relational schema including Ri, and let 
B be a nonprime attribute in Ai. If B is transitively dependent on K, a key of Ri, 
it is restorable in R;. 

PROOF. If B is transitively dependent on K, then for some X contained in Ai, 
B @ X, K + X E F’, X + K $! F+, and X + B E F’. Since B is nonprime, 
B $6 K and therefore clearly Ki # {Ai}. Since B $ K U X, K + X E G/(B) and 
therefore K + X E Gi’ (B)+. Because X + K $Z F’ and X 4 B E F’, B is derivable 
from X using F, whereas K is not. Thus, because the left side of each functional 
dependency used in the derivation X + B cannot be properly equivalent to K, 
each such dependency is placed by the Preparatory Algorithm in some class 
distinct from the one resulting in the construction of Ri. Therefore, B is derivable 
from X using G - Gi c G:(B); that is, X + B E G,‘(B)+. Hence, by transitivity, 
K + B E Gi (B)+. For each key K’ in Ki such that B $ K’, K’ + K E Gi’ (B); thus 
K’ + B E Gil(B)‘. Therefore, B is restorable in Ri. 0 

It should be noted that Theorem 4 does not claim a necessary, but rather a 
sufficient, condition for Codd third normal form. Together with Theorems 3 and 
4, the examples show that improved third normal form is superior to Codd third 
normal form in removing superfluous attributes. 

An efficient Deletion Normalization Algorithm can be derived by starting with 
the preparatory relational schema and repeatedly removing superfluous attri- 
butes. Since the result of each removal is again a preparatory relational schema, 
eventually such a normalization algorithm will result in a preparatory set in 
which there are no superfluous attributes; that is, the result will be a relational 
schema in improved third normal form. 
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Before describing this algorithm formally, it is convenient to give a formal 
description of an algorithm that indicates whether or not a given attribute is 
superfluous in a relation scheme. The algorithm determines the restorability of 
an attribute by appealing to the following lemma. 

LEMMA, Let R be a preparatory relational schema including Ri, and let B be 
an attribute in Ai and K be a synthesized key with B $Z K. 1fK + B E G:(B)+, 
then for each key K’ in Ki such that B q K’, K’ + B E G:(B)+. 

PROOF. If K’ is a synthesized key and B e IS, then by definition K’ + Ai - K’ 
- B E G/(B). Thus, since B q K, K + K E G[ (B)+. It is given that K + B E 
Gi’ (B)‘, and therefore K’ -+ B E Gi’ (B)+. 0 

SUPERFLUOUS ATTRIBUTE DETECTION ALGORITHM 

Input. R, a preparatory relational schema; i, the index of some scheme in R; B an 
attribute in A;. 

1. IfKi= (A,) 
then mark B nonsuperfluous and return 
else mark B superfluous, 

1.1 construct K,’ = {K E K, 1 B $? K} ’ 
1.2 construct G/(B) by (temporarily) removing all dependencies involving B 

in Ri from G 
2. (Check restorability.) 

If K,’ is not empty 
then choose any key K from Ki 

2.1 If K+ B $Z G/(B)+ 
then mark B nonsuperfluous and return 

3. (Check nonessentiality.) 
For each key K in K, - K,' and while B is marked superfluous do 

3.1 If K --, A, @ Gi’(B)+ 
3.1.1 then let M denote the closure of K relative to G,’ (B) 
3.1.2 If(MnAi)-B+Ai@G+ 

then mark B nonsuperfluous 
3.1.2.1 else insert into K,’ any key of Ri contained in (M II Ai) - B 
output. K,’ if B is marked superfluous and 0 if B is marked nonsuperfluous. 

Each substep for step 3.1 runs in time 0( 1 G 1 1 Ai I) and is executed at most 
0 ( ) K, I ) times. Since step 2.1 runs in time of the same order and is executed at 
most once, steps 2 and 3 together require 0( I Ki ) ) F I 1 A I ) time (at most one 
dependency in G results from each given functional dependency). Because step 
1.1 takes time 0 ( 1 Ki I ) and step 1.2 takes time 0( I F I ), a single attribute can be 
checkedinO(IK~IIFIIAl)time. 

THEOREM 5. Let R be a preparatory relational schema including Ri, and let 
B be an attribute in Ai. If B is not superfluous in Ri, then it will not be 
superfluous in any relation scheme derived from Ri by the removal of superfluous 
attributes from a scheme in R. 

PROOF. The details of this proof are too lengthy to include here. The following 
statements highlight the arguments. 

(1) For two attributes Bi and Bz in R,, the part of Di (Bi) that does not involve Bz 
in Ri is identical to the part of Di(Bz) that does not involve Bi in Ri. 
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Furthermore, the closure of that part is contained in both D,(B1)+ and 
D, VW+. 

(2) Because of (l), an attribute that is not restorable in Ri cannot become 
restorable through the removal of other attributes in Ai. 

(3) Let B1 be an attribute that is essential in Ri and K,’ be that set of keys from 
which Ai cannot be derived using Di (Bl). If another attribute BP is in all keys 
in Ki’, then BS is also essential. 

(4) From (1) and (3), an attribute that is essential in Ri cannot become nones- 
sential through the removal of other nonessential attributes in Ai. 

(5) Removal of attributes from other schemes in R does not affect whether or 
not B is superfluous in Ri. 0 

The result of Theorem 5 is that each attribute in R must be tested once only. 
Once found to be nonsuperfluous it need not be reexamined after removing other 
attributes. Hence the complete normalization algorithm is as follows. 

DELETION NORMALIZATION ALGORITHM 

Input. A, a set of attributes; F, a set of functional dependencies on A. 
1. (Prepare a relational schema.) 

Use the Preparatory Algorithm for A and F to yield R. 
2. (Test each relation scheme for superfluous attributes.) 

Fori:=ltoJRIdo 
2.1 (Test each attribute in Ai.) 

For each B in Ai do 
If the Superfluous Attribute Detection Algorithm returns a nonempty set 
K,’ for R, i, and B then 

2.1.1 Construct R{ such that A/ = Ai - B and K[ is the returned set of keys 
2.1.2 Replace Ri by R/ in R. 
Output, R, a relational schema in improved.third normal form. 

Given a particular relation scheme Ri, because in step 2.1 the Superfluous 
Attribute Detection Algorithm is called for each attribute in Ai, the time for that 
step is bounded by O( 1 K 1 1 F I I Al 2). (In step 2.1.1, the size of Ki’ is always less 
than or equal to the size of Ki since the algorithm introduces at most one new key 
for each key removed by the elimination of B, as implied by the proof for 
Theorem 3.) Step 2.1, in turn, is repeated for each relation scheme in R, where 
each functional dependency results in the appearance of at most one key in some 
one scheme in R. Since the number of keys in total is therefore bounded by 
1 F 1 + 1 (the extra key resulting from step 4 of the Preparatory Algorithm where 
a relation scheme may be inserted into R for reconstructibility), step 2 takes time 
O( IF121A12). B ecause step 1 also requires time of the same order, that is the 
bound for the complete algorithm. 

5. CONCLUSIONS 

We have shown that some Codd third normal form relation schemes and even 
some Boyce-Codd normal form schemes still contain simply removable superflu- 
ous attributes because the definitions of transitive dependency and nonprime 
attribute are inadequate when applied to sets of schemes. We defined restorable 
and nonessential to replace those definitions and proved that in a preparatory 
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relational schema, a transitive dependency implies the presence of a restorable 
attribute and an attribute that is essential is always prime. We were then able to 
define an improved third normal form which is superior to Codd third normal 
form in removing superfluous attributes. Furthermore, we have proved that no 
superfluous attributes remain. We then presented the Deletion Normalization 
Algorithm which produces a relational schema in improved third normal form 
while guaranteeing covering and reconstructibility. The complexity of the algo- 
rithm is 0 ( 1 F 1’ 1 A 1’) which is the same as that of the best known algorithms for 
generating relation schemes in Codd third normal form. 

It should be noted that the removal of all superfluous attributes does not 
necessarily imply the absence of update anomalies. In particular, if an attribute 
B in R, satisfies the covering condition but not the reconstructibility condition, 
then although it is not superfluous, its updating may lead to anomalous behavior. 

It is interesting to contrast the deletion normalization method with the decom- 
position method for normalization [8, 10, 211. Decomposing a relation scheme R 
into two schemes R1 and Rz requires that R can be reconstructed from RI and 
Rz. Let Al, AZ, and A be the sets of attributes for RI, Rz, and R, respectively, and 
let F be the set of functional dependencies for R. The reconstructibility of R 
requires a lossless join of R1 and Ra, which has been shown to occur if and only 
if either A1 or A2 is functionally dependent on their intersection, that is, the 
intersection contains a key of R1 or of Rz [l, 211. Without loss of generality, 
assume that A1 II A2 + A2 E F+. Thus A1 -+ A1 U A2 or A1 -+ A E F+, which 
implies that each key of R1 is also a key of R. Since A1 fl A2 -P A2 - A1( = A - 
Al) E F’, X = A1 0 AZ is a set of attributes in R1 and Rz such that all those 
attributes which are in R (and R2) but not in R1 are functionally dependent on X 
in R. If RI and Ra are distinct relation schemes in a preparatory relational 
schema, then X + K @ F’ where K is a key of R1 (otherwise the relations must 
be combined). When R is (nontrivially) decomposed into R1 and Rz, there is at 
least one attribute B in AS - Al. In this case, K + X E F’, X + B E F+, and 
X + K $! F’, that is, K + B E Ff is a transitive dependency in R. Hence the 
decomposition method for normalizing a relation scheme is applicable if and only 
if there exists a transitive dependency within the relation scheme. Furthermore, 
if B is transitively dependent on some key in R, the result of applying the deletion 
normalization algorithm to B is the same as the result of applying decomposition. 
Thus the deletion normalization method is more powerful than the decomposition 
method for normalization. 

The definitions suggested here can easily be extended to give an improved 
version of Boyce-Codd normal form as follows: 

A relation scheme Ri in a relational schema R is in improved Boyce-Codd 
normal form if no attribute is restorable in R,. 

It can easily be shown that any relation scheme in improved Boyce-Codd normal 
form is also in both Boyce-Codd normal form and improved third normal form. 
It must be remembered, however, that for a given A and F, a covering Boyce- 
Codd normal form may not exist, and thus it is not necessarily possible to find a 
preparatory relational schema each element of which is in improved Boyce-Codd 
normal form. 
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Finally, throughout this paper the notion of dependency has been restricted to 
functional dependencies only. The presence of other forms of dependency, such 
as multivalued dependencies [ 141, first-order hierarchical decompositions [ 111, 
and other constraints among attribute values also give rise to potential redun- 
dancy among the relation schemes. Further research may be needed to establish 
adequate definitions and algorithms for the removal of those forms of redundancy 
as well. 
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