
From Region Encoding To Extended Dewey: On Efficient
Processing of XML Twig Pattern Matching

Jiaheng Lu Tok Wang Ling Chee-Yong Chan Ting Chen

Department of Computer Science
National University of Singapore

{lujiahen,lingtw,chancy,chent}@comp.nus.edu.sg

Abstract

Finding all the occurrences of a twig pattern
in an XML database is a core operation for ef-
ficient evaluation of XML queries. A number
of algorithms have been proposed to process
a twig query based on region encoding label-
ing scheme. While region encoding supports
efficient determination of structural relation-
ship between two elements, we observe that
the information within a single label is very
limited. In this paper, we propose a new label-
ing scheme, called extended Dewey. This is a
powerful labeling scheme, since from the label
of an element alone, we can derive all the ele-
ments names along the path from the root to
the element. Based on extended Dewey, we de-
sign a novel holistic twig join algorithm, called
TJFast. Unlike all previous algorithms based
on region encoding, to answer a twig query,
TJFast only needs to access the labels of the
leaf query nodes. Through this, not only do
we reduce disk access, but we also support the
efficient evaluation of queries with wildcards
in branching nodes, which is very difficult to
be answered by algorithms based on region en-
coding. Finally, we report our experimental
results to show that our algorithms are su-
perior to previous approaches in terms of the
number of elements scanned, the size of inter-
mediate results and query performance.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

1 Introduction

With the increasing popularity of XML for data rep-
resentation, there is a lot of interest in query process-
ing over data that conforms to a tree-structured data
model. Queries on XML data are commonly ex-
pressed in the form of tree patterns (or twig patterns),
which represent a very useful subset of XPath and
XQuery. Efficiently finding all twig pattern matches
in an XML database is a major concern of XML query
processing. In the past few years, many algorithms
([3],[6],[11],[10]) have been proposed to match such
twig patterns. These approaches (i) first develop a
labeling scheme to capture the structural information
of XML documents, and then (ii) perform twig pattern
matching based on the labels alone without traversing
the original XML documents.

For the first sub-problem of designing a proper la-
beling scheme, various methods have been proposed
that are based on tree-traversal order(e.g. extended
preorder [12]), textual positions of the start and end
tags (e.g. region encoding [3]), path expressions(e.g.
Dewey ID [22], PID [2]) or prime numbers (e.g. [25]).
By applying these labeling schemes, one can deter-
mine the relationship (e.g. ancestor-descendant) be-
tween two elements in XML documents from their la-
bels alone. Although existing labeling schemes pre-
serve the positional information within the hierarchy
of an XML document, we observe that the informa-
tion contained by a single label is very limited. As
an illustration, let us consider the most popular re-
gion encoding scheme, where each label consists of a
3-tuple (start, end, level). Given the labels of two ele-
ments, one can determine how the elements are struc-
turally related (i.e. ancestor-descendant, parent-child
relationships). However, the information derived from
a single label is very limited. For instance, the label
does not provide any information about the name(i.e.
type) of any element.

In this paper, motivated by the existing Dewey ID
[22], we propose a new powerful labeling scheme, called

extended Dewey ID (for short, extended Dewey). The
unique feature of this scheme is that, from the label
of an element alone, we can derive the names of all
elements in the path from the root to this element. For
example, Figure 1 shows an XML document with ex-
tended Dewey labels. Given the label “0.5.1.1” of el-
ement text alone, we can derive that the path from
the root to text is “/bib/book/chapter/section/text”.
An immediate benefit of this feature is that, to eval-
uate a twig pattern, we only need to access the la-
bels of elements that satisfy the leaf node predicates
in the query. Further, this feature enables us to eas-
ily match a path pattern by string matching. Take
element “0.5.1.1” as an example again. Since we see
that its path is “/bib/book/chapter/section/text”, it is
quite straightforward to determine whether this path
matches a path query (e.g. “//section/text”). As a
result, the extended Dewey labeling scheme provides
us an extraordinary chance to develop a new efficient
algorithm to match twig patterns.

For the second sub-problem of performing struc-
tural joins efficiently, several algorithms have been de-
veloped to process twig queries. In particular, Bruno
et al. [3] proposed the holistic twig matching algo-
rithms PathStack/TwigStack. For evaluating queries
with only ancestor -descendant(A-D) edges, TwigStack
guarantees that each intermediate path solution con-
tributes to final answers. Lu et al.([13]) proposed
TwigStackList to efficiently handle twig queries with
parent-child(P-C) relationships.

Wildcard steps in XPath are commonly used when
element names are unknown or do not matter([5]).
Previous holistic twig matching algorithms are inef-
ficient for queries with wildcards in branching nodes.
For example, consider the XPath query: //a/*[b]/c.
By knowing only the region encodings of a, b and c,
we cannot answer this query.1 How can we answer
such queries efficiently?

In this paper, we propose a novel holistic twig join
algorithm, called TJFast(i.e. a Fast Twig Join algo-
rithm) based on extended Dewey labeling scheme. To
match a twig pattern, our algorithm only scans ele-
ments for query leaf nodes. This feature brings us two
immediate benefits:(i) TJFast typically access much
fewer elements than algorithms based on region en-
coding; and (ii) TJFast can efficiently process queries
with wildcards in internal nodes. Our contributions in
this paper can be summarized as follows:

• We propose an enhanced Dewey ID labeling
scheme by incorporating element-name (i.e. node-
type) information. Our approach is based on
using modulo function and a finite state trans-
ducer(FST) to derive the element names along a
path.

1Note that even if b and c are descendants of a and their
level difference with a is 2, b and c may not be query answers,
as they do not share the common parent.

level

author author title

book

chapter

"Suciu" "Chen" title section

"XML" texttitle

0

0.0 0.3 0.4 0.5

0.0.−1 0.3.−1 0.5.0 0.5.1

0.5.0.−1 0.5.1.0 0.5.1.1

keyword
0.5.1.1.1

book

bib
ε

chapterauthor

sectiontitle"..."

sectiontitle

title text

1

1.0 1.2

1.0.−1 1.2.11.2.0

1.2.1.0 1.2.1.1

1.2.1.1.11.2.1.1.0

1.1

title

3

4

5

0

1

2

Figure 1: An XML tree with extended Dewey labels

• We develop a novel holistic twig join algorithm,
called TJFast. When there are only A-D relation-
ships between branching nodes and their children,
TJFast is I/O optimal among all sequential algo-
rithms that read the entire input. In other words,
the optimality of TJFast allows the existence of P-
C relationships between non-branching nodes and
the children.

• We perform a comprehensive experiment to
demonstrate the benefits of our algorithms over
previous approaches.

Organization The rest of the paper proceeds as fol-
lows. We first discuss preliminaries in Section 2. The
extended Dewey labeling scheme is presented in Sec-
tion 3. We present TJFast algorithm in Section 4. Sec-
tion 5 is dedicated to the related work. We present the
experimental results in Section 6 and conclude this pa-
per in Section 7.

2 Preliminaries

2.1 Data model and XML twig pattern

We model XML documents as ordered trees. Queries
in XML query languages make use of twig patterns
to match relevant portions of data in an XML data-
base. The twig pattern node may be an element tag, a
text value or a wildcard “*”. The query twig pattern
edges are either parent-child or ancestor-descendant
edges. For convenience, we distinguish between query
and data nodes by using the term “node” to refer to a
query node and the term “element” to refer to a data
element in a document.

Given a query twig pattern Q and an XML docu-
ment D, a match of Q in D is identified by a mapping
from the nodes in Q to the elements in D, such that:
(i) the query node predicates are satisfied by the cor-
responding database elements, wherein wildcard “*”
can match any single tag; and (ii) the parent-child
and ancestor-descendant relationships between query
nodes are satisfied by the corresponding database el-
ements. The answer to query Q with n nodes can be

represented as a list of n-ary tuples, where each tu-
ple (q1, · · · , qn) consists of the database elements that
identify a distinct match of Q in D.

2.2 Dewey ID labeling scheme

Tatarinov et al.[22] propose Dewey ID labeling scheme
to present the position of an element occurrence in
an XML document. In Dewey ID, each element is
presented by a vector: (i) the root is labeled by a
empty string ε; (ii) for a non-root element u, label(u)=
label(s).x, where u is the x-th child of s. Dewey ID
supports efficient evaluation of structural relationships
between elements. That is, element u is an ancestor of
element s if and only if label(u) is a prefix of label(s).

Dewey ID has a nice property: one can derive the
ancestors of an element from its label alone. For ex-
ample, suppose element u is labeled “1.2.3.4”, then the
parent of u is “1.2.3” and the grandparent is “1.2” and
so on. With the knowledge of this property, we fur-
ther consider that if the names of all ancestors of u can
be derived from label(u) alone, then XML path pat-
tern matching can be directly reduced to string match-
ing. For example, if we know that the label “1.2.3.4”
presents the path “a/b/c/d”, then it is quite straight-
forward to identify whether the element matches a
path pattern (e.g. “//c/d”). Inspired by this ob-
servation, we develop an extended Dewey ID labeling
scheme which provides an extraordinary chance for us
to design a new algorithm to match XML path (and
twig) pattern.

3 Extended Dewey and FST

In this section, we aim at extending Dewey ID label-
ing scheme to incorporate the element-name informa-
tion. A straightforward way is to use some bits to
present the element-name sequence with number pre-
sentation, followed by the original Dewey label. The
advantage of this approach is simple and easy to im-
plement. However, as shown in our experiments in
Section 6, this method faces the problem of the large
label size. In the following, we will propose a more
concise scheme to solve this problem. In particular,
we first encode the names of elements along a path
into a single Dewey label. Then we present a Finite
State Transducer(FST) to decode element names from
this label. For simplicity, we focus the discussion on
a single document. The labeling scheme can be easily
extended to multiple documents by introducing docu-
ment ID information.

3.1 Extended Dewey

The intuition of our method is to use modulo function
to create a mapping from an integer to an element
name, such that given a sequence of integers, we can
convert it into the sequence of element names.

<!ELEMENT emph (#PCDATA | bold | keyword | emph) *>

<!ELEMENT bib (book*)>

<!ELEMENT book (author+, title, chapter*) >

<!ELEMENT author (#PCDATA)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT chapter (title, section*)>

<!ELEMENT section (title, (text | section)*)>

<!ELEMENT text (#PCDATA | bold | keyword | emph) *>

<!ELEMENT bold (#PCDATA | bold | keyword | emph)*>

<!ELEMENT keyword (#PCDATA | bold | keyword | emph)*>

Figure 2: DTD for XML document in Fig 1

In the extended Dewey, we need to know a little
additional schema information, which we call a child
names clue. In particular, given any tag t in a docu-
ment, the child names clue is all (distinct) names of
children of t. This clue is easily derived from DTD,
XML schema or other schema constraint. For exam-
ple, consider the DTD in Figure 2; the tag of all chil-
dren of bib is only book and the tags of all children of
book are author, title and chapter. Note that even in
the case when DTD and XML schema are unavailable,
our method is still effective, but we need to scan the
document once to get the necessary child names clue
before labeling the XML document.

Let us use CT (t) = {t0, t1, · · · , tn−1} to denote the
child names clue of tag t. Suppose there is an order-
ing for tags in CT (t), where the particular ordering
is not important. For example,in Fig 3, CT (book) =
{author, title, chapter}. Using child names clues, we
may easily create a mapping from an integer to an el-
ement name. Suppose CT (t) = {t0, t1, · · · , tn−1} , for
any element ei with name ti, we assign an integer xi

to ei such that xi mod n = i. Thus, according to the
value of xi, it is easy to derive its element name. For
example, CT (book) = {author, title, chapter}. Sup-
pose ei is a child element of book and xi = 8, then
we see that the name of ei is chapter, because xi mod
3 = 2. In the following, we extend this intuition and
describe the construction of extended Dewey labels.

The extended Dewey label of each element can be
efficiently generated by a depth-first traversal of the
XML tree. Each extended Dewey label is presented as
a vector of integers. We use label(u) to denote the ex-
tended Dewey label of element u. For each u, label(u)
is defined as label(s).x, where s is the parent of u. The
computation method of integer x in extended Dewey is
a little more involved than that in the original Dewey.
In particular, for any element u with parent s in an
XML tree,

(1) if u is a text value , then x = −1;
(2) otherwise, assume that the element name of

u is the k-th tag in CT (ts) (k=0,1,...,n-1), where ts
denotes the tag of element s.

(2.1) if u is the first child of s, then x = k;
(2.2) otherwise assume that the last component

of the label of the left sibling of u is y (at this point,
the left sibling of u has been labeled), then

x =

⌊
y
n

⌋ · n + k if (y mod n) < k;

⌈
y
n

⌉ · n + k otherwise.
where n denotes the size of CT (ts).

Example 3.1 Figure 1 shows an XML document
tree that conforms to the DTD in Figure 2. For in-
stance, the label of chapter under book(“0”) is com-
puted as follows. Here k = 2 (for chapter is the third
tag in its child names clue, starting from 0), y = 4 (for
the last component of “0.4” is 4), and n=3, so y mod
3 = 1 < k. Then x = b4/3c ∗ 3 + 2 = 5. So chapter is
assigned the label “0.5”. ¤

We show the space complexity of extended Dewey
using the following theorem.

Theorem 3.1 The extended Dewey does not alter the
asymptotic space complexity of the original one.

Proof[Sketch]: According to the formula in (2.2),it
is not hard to prove that given any element s, the gap
between the last components of the labels for every two
neighboring elements under s is no more than |CT (ts)|.
Hence, with the binary representation of integers, the
length of each component i of extended Dewey label
is at most log2|CT (tsi)| more than that of the origi-
nal Dewey. Therefore, the length difference between
an extended Dewey label with m components and an
original one is at most

∑m
i=1 log2|CT (tsi)|. Since m

and |CT (tsi)| are small, it is reasonable to consider this
difference is a small constant. As a result, the extended
Dewey does not alter asymptotic space complexity of
the original Dewey.

3.2 Finite state transducer

Given the extended Dewey label of any element, we
can use a finite state transducer (FST) to convert this
label into the sequence of element names which reveals
the whole path from the root to this element. We begin
this section by presenting a function F (t, x) which will
be used to define FST.

Definition 1. Let Z denotes the non-negative in-
teger set and Σ denotes the alphabet of all distinct tag
names in an XML document T . Given an tag t in T ,
suppose CT (t) = {t0, t1, · · · , tn−1}, a function F (t, x):
Σ× Z → Σ can be defined by F (t, x) = tk, where k=
x mod n.

Definition 2. (Finite State Transducer) Given
child names clues and an extended Dewey label, we
can use a deterministic finite state transducer (FST)
to translate the label into a sequence of element names.
FST is a 5-tuple (I, S, i, δ, o), where (i) the input set I
= Z ∪ {−1}; (ii) the set of states S = Σ∪{PCDATA},
where PCDATA is a state to denote text value of an
element; (iii) the initial state i is the tag of the root
in the document; (iv) the state transition function δ
is defined as follows. For ∀t ∈ Σ, if x = −1, δ(t, x)

mod 3=1
bib book

author

section emph

keywordtitle

chapter

bold

text
mod 1=0

mod 3=0

mod 3=1

mod 3=2

mod 2=1

mod 3=1

mod 3=2

mod 2=0
mod 3=0

mod 3=1
mod 3=2

mod 3=2

mod 3=2

mod 3=0 m
od 3=

2 m
od

 3
=

0

mod 3 =1

mod 3=0

mod 3=1

mod 3=0

Figure 3: A sample FST for DTD in Fig 2

= PCDATA, otherwise δ(t, x) = F (t, x). No other
transition is accepted. (v) the output value o is the
current state name. ¤

Example 3.2 Figure 3 shows the FST for DTD in
Fig 2. For clarity, we do not explicitly show the state
for PCDATA here. An input of -1 from any state will
transit to the terminating state PCDATA. This FST
can convert any extended Dewey label to an element
path. For instance, given an extended Dewey label
“0.5.1.1”, using the above FST, we derive that its path
is “bib/book/chapter/section/text”. ¤

As a final remark, it is worth to note three points:(i)
in the worst case, the memory size of the above FST
is quadratic to the number of distinct element names
in XML documents, as the number of transition in
FST is quadratic ; and (ii) we allow recursive element
names in a document path, which is demonstrated as
a loop in FST; and (iii) the time complexity of FST
is linear in the length of an extended Dewey label, but
independent of the complexity of schema definition.

3.3 Properties of extended Dewey

In this section, we summarize the following five prop-
erties of extended Dewey labeling scheme.

1. [Ancestor Name Vision] Given any extended
Dewey label of an element, we can know all its ances-
tors’ names (through FST).

2. [Ancestor Label Vision] Given any extended
Dewey label of an element, we can know all its ances-
tors’ label.

3. [Prefix relationship] Two elements have an-
cestor -descendant relationships if and only if their ex-
tended Dewey labels have a prefix relationship.

4. [Tight Prefix relationship] Two elements a
and b have parent-child relationships if and only if
their extended Dewey labels label(a),label(b) have a
tight prefix relationship. That is: (i) label(a) is a prefix
of label(b); and (ii) label(b).length-label(a).length=1.

5. [Order relationship] Element a follows (or pre-
cedes) element b if and only if label(a) is greater (or
smaller) than label(b) with lexicographeical order.

Region encoding also can be used for determining
ancestor-descendant, parent-child and order relation-
ships between two elements. But it cannot see the an-

cestors of an element and therefore has not Properties
1 and 2. The original Dewey labeling scheme has Prop-
erties 2 to 5, but not Property 1. The first property
is unique for extended Dewey. Note that Property 1
and 2 are of paramount importance, since they provide
us an extraordinary chance to efficiently process XML
path (and twig) queries. For example, given a path
query a/b/c/d, according to the Ancestor Name
and Label Vision Properties, we only need to read
the labels of d to answer this query, which will signif-
icantly reduce I/O cost of previous algorithms based
on region encoding. In the next section, we will use
extended Dewey labels to design a novel and efficient
holistic twig join algorithm, which utilizes the above
five properties.

4 Twig Pattern Matching

4.1 Path matching algorithm

It is quite straightforward to evaluate a query path
pattern in our approach. According to the Ancestor
Name Vision and Label Properties, we only need to
scan the elements whose tags appear in leaf node of
query. For each visited element, we first use FST to
reveal the element names along the whole path, and
then perform string matching against it. As a result,
we evaluate the path pattern efficiently by scanning
the input list once and ensure that each output solu-
tion is our desired final answer.

When path queries contain only parent-child re-
lationships within the path, the string-matching can
be processed very efficiently by simply comparing el-
ement names. When path queries contain ancestor-
descendant relationships or wildcards “*” , the queries
can be processed by string-matching with don’t care
symbols. There are a rich set of algorithms on effi-
cient string processing with don’t care symbols. (e.g.
[18] and [9]).

It is worth noting that the I/O cost of our approach
is typically much smaller than that of previous algo-
rithms for path pattern matching (e.g. PathStack [3]),
for we only scan labels for the query leaf node, while
they need to scan elements for all query nodes.

4.2 Twig matching algorithm

This section presents a holistic twig pattern join al-
gorithm, called TJFast. We will first introduce some
data structures and notations.

4.2.1 Data Structures and Notations

Let q denote a twig pattern and pn denote a path pat-
tern from the root to the node n∈q. In our algorithms,
we make use of the following query node operations:
isleaf: Node→ Bool; isBranching: Node→ Bool; leafN-
odes: Node → {Node}; directBranchingOrLeafNodes:
Node → {Node}. leafNodes(n) returns the set of leaf

nodes in the twig rooted with n. directBranchingOr-
LeafNodes(n)(for short, dbl(n)) returns the set of all
branching nodes b and leaf nodes f in the twig rooted
with n such that in the path from n to b or f(excluding
n,b or f) there is no branching nodes. For example, in
the query Q1 of Fig 4, dbl(a)={b,c} and dbl(c)={f,g}.

Associated with each leaf node f in a query twig
pattern there is a stream Tf . The stream contains
extended Dewey labels of elements that match the
node type f . The elements in the stream are sorted
by the ascending lexicographical order. For exam-
ple, “1.2” precedes “1.3” and “1.3” precedes “1.3.1”.
The operations over a stream Tf include current(Tf),
advance(Tf) and eof(Tf). The function current(Tf)
returns the extended Dewey label of the current el-
ement in the stream Tf . The function advance(Tf)
updates the current element of the stream Tf to be its
next element. The function eof(Tf) tests whether we
are in the end of the stream Tf . We make use of two
self-explanatory operations over elements in the docu-
ment: ancestors(e) and descendants(e), which return
the ancestors and descendants of e, respectively (both
including e).

Algorithm TJFast keeps a data structure during ex-
ecution: a set Sb for each branching node b. Each two
elements in set Sb have an ancestor -descendant or par-
ent-child relationship. So the maximal size of Sb is no
more than the length of the longest path in the docu-
ment. Each element cached in sets likely participates
in query answers. Set Sb is initially empty.

4.2.2 TJFast

Algorithm TJFast, which computes answers to a query
twig pattern q, is presented in Algorithm 1. TJFast
operates in two phases. In the first phase (line 1-9),
some solutions to individual root-leaf path patterns
are computed. In the second phase (line 10), these
solutions are merge-joined to compute the answers to
the query twig pattern.

Given the extended Dewey label of an element, ac-
cording to the Ancestor Name Vision property, it
is easy to check whether its path matches the indi-
vidual root-leaf path pattern. Thus, the key issue of
TJFast is to determine whether a path solution can
contribute to the solutions for the whole twig. In the
optimal case, we only output the path solution that is
merge-joinable to at least one solution of other root-
leaf paths. Intuitively, if two path solutions can be
merged, the necessary condition is that they have the
common element to match the branching query node.
For example, consider a simple query a[./b]/c and two
path solution (a1, b1) and (a2, c1). Observe that two
solutions can be merged only if a1 = a2. Therefore, in
TJFast, in order to determine whether a path solution
contributes to final answers, we try to find the most
likely elements that match branching nodes b and store
them in the corresponding set Sb.

Algorithm 1 TJFast
1: for each f ∈ leafNodes(root)
2: locateMatchedLabel(f)
3: endfor
4: while (¬end(root)) do
5: fact = getNext(topBranchingNode)
6: outputSolutions(fact)
7: advance(Tfact

)
8: locateMatchedLabel(fact)
9: end while

10: mergeAllPathSolutions()

Procedure locateMatchedLabel(f)
/* Assume that the path from the root to element
get(Tf) is n1/n2/ · · · /nk and pf denotes the path pat-
tern from the root to leaf node f */
1: while ¬((n1/n2/ · · · /nk matches pattern pf)∧(nk

matches f)) do
2: advance(Tf)
3: end while

Function end(n)
1: Return ∀f ∈ leafNodes(n) → eof(Tf)

Procedure outputSolutions(f)
1: Output path solutions of current(Tf) to pattern

pf such that in each solution s, ∀e ∈ s:(element e
matches a branching node b → e ∈ Sb)

It is not difficult to understand the main proce-
dure of TJFast(see Algorithm 1). In line 1-3, for each
stream, we use Procedure locateMatchedLabel to lo-
cate the first element whose path matches the indi-
vidual root-leaf path pattern. In line 5, we identify
the next stream Tfact to be processed by using get-
Next(topBranchingNode) algorithm, where topBranch-
ingNode is defined as the branching node that is an
ancestor of all other branching nodes(if any). In line
6, we output some path matching solutions in which
each element that match any branching node b can be
found in the corresponding set Sb. We advance Tfact

in line 7 and locate the next matching element in line
8.2

Algorithm getNext(see Algorithm 2) is the core
function called in TJFast, in which we accomplish two
tasks. The first is to identify the next stream to
process; and the second is to update the sets Sb as-
sociated with branching nodes b, discussed as follows.

For the first task to identify the next processed
stream, Algorithm getNext(n) returns a query leaf
node f according to the following recursive criteria
(i) if n is a leaf node, return n(line 2); else (ii) n is
a branching node, then for each node ni∈ dbl(n), (1)

2Note that the second condition “nk matches f” in line 1
of locateMatchedLabel is necessary, which avoids outputting du-
plicate solutions. For example, consider the element e (with
tag name b) with the path “a1/b1/c1/b2” and the path query
“a/b”. “a1/b1/c1/b2” can matches “a/b”, but this solution has
been output by another element ends with b1.

Algorithm 2 getNext(n)
1: if (isLeaf(n)) then
2: return n
3: else
4: for each ni ∈ dbl(n) do
5: fi = getNext(ni)
6: if (isBranching(ni)

∧
empty(Sni))

7: return fi

8: ei = max{p|p ∈ MB(ni, n)}
9: end for

10: max = maxargi{ei}
11: min = minargi{ei}
12: for each ni ∈ dbl(n) do
13: if (∀e ∈ MB(ni, n) : e/∈ ancestors(emax))
14: return fi;
15: endif
16: end for
17: for each e ∈ MB(nmin, n)
18: if (e∈ ancestors(emax)) updateSet(Sn, e)
19: end for
20: return fmin

21: end if

Function MB(n, b)
1: if (isBranching(n)) then
2: Let e be the maximal element in set Sn

3: else
4: Let e = current(Tn)
5: end if
6: Return a set of element a that is an ancestor of e

such that a can match node b in the path solution
of e to path pattern pn

Procedure clearSet(S, e)
1: Delete any element a in the set S such that a /∈

ancestors(e) and a /∈ descendants(e)

Procedure updateSet(S, e)
1: clearSet(S,e)
2: Add e to set S

if the current elements cannot form a match for the
subtree rooted with ni, we immediately return fi(line
7); (2) if the current element from stream Tfi does not
participate in the solution involving in the future ele-
ments in other streams, we return fi(line 14); (3) oth-
erwise we return fmin such that the current element
emin has the minimal label in all ei by lexicographical
order(line 20).

For the second task, we update set eb. This op-
eration is important, since the elements in eb decides
which path solution can be output in Procedure out-
putSolutions. In line 18 of Algorithm 2, before an el-
ement eb is inserted to the set Sb, we ensure that eb

is an ancestor of (or equals) each other element ebi to
match node b in the corresponding path solutions.

Example 4.1 Consider Q1 and Doc1 in Fig 4(a-b).
A subscript is added to each element in the order of

g

cb

ed

a

f

1

2d1

e1f1

g1

a2

a1

b1

c

c

3

1

f1

g1

a2

e1

a1

b1

c1

a

d

(a)Q1 (b) Doc1 (c) Doc2

Figure 4: Example twig query and documents

pre-order traversal for easy reference. There are three
input streams Tb, Tf and Tg. Initially, getNext(a)
recursively calls getNext(b) and getNext(c) (for
b, c ∈ dbl(a) in Q1). Since b is a leaf node in
Q1, getNext(b)=b. Observe that MB(f,c)={c1} and
MB(g,c)={c1,c2}, So emax = g and emin = f in line
10 and 11 of Algorithm 2. In line 18, c1 is inserted
to set Sc. Then, getNext(c)=f . Subsequently, a1 is
inserted to Sa and getNext(a)=b. Finally path solu-
tions (a1, b1),(a1, c1, d1, f1) and (a1, c1, e1, g1) are out-
put and merged. Note that although (a1, c2, e1, g1)
matches the individual path pattern a//c//e/g, it is
not output for c2 6∈ Sc. ¤

Note that the second phase(line 10 of Algorithm 1)
of TJFast can be performed efficiently, only when the
intermediate path solutions are output in sorted order.
To achieve this purpose, we would need to “block”
some answers. The details of how to achieve this nat-
urally in the scenario of TJFast can be found in [15]
and are omitted here for reason of space.

4.3 Analysis of TJFast

Next, we first show the correctness of TJFast and then
analyze its complexity.

Lemma 1. In Procedure clearSet of Algorithm TJ-
Fast, any element e that is deleted from set Sb does
not participate in any new solution.

Lemma 2. In line 18 of Function getNext, if element
e /∈ ancestors(emax) and e /∈ Sn , then e is guaranteed
to not involve in any final solution.

Lemma 1 shows that any element deleted from sets
does not participate in new solutions, so the deletion
is safe. Lemma 2 shows that for any element e that
matches a branching node, if e participates in any fi-
nal answer, then e occurs in the corresponding set.
Thus the insertion is complete. The two lemmas are
important to establish the correctness of the following
theorem.

Theorem 1. Given a twig query Q and an XML data-
base D, Algorithm TJFast correctly returns all the an-
swers for Q on D.

While the correctness holds for any given query, the
I/O optimality holds only for the case where there
are only ancestor -descendant relationships between
branching nodes and their children.
Theorem 2. Consider an XML database D and a
twig query Q with only ancestor-descendant relation-
ships between branching nodes and their children. The
worst case I/O complexity of TJFast is linear in the
sum of the sizes of input and output lists. The worst-
case space complexity is O(d2 ∗ |b|+ d ∗ |f |), where |f |
is the number of leaf nodes in q, |b| is the number of
branching nodes in q and d is the length of the longest
label in the input lists.

Proof:[sketch] We first prove the I/O optimality.
The following observation is important to prove the
optimality of TJFast: if all branching edges are only
ancestor -descendant relationships, then in line 18 of
getNext, since e ∈ ancestors(emax), e ∈ MB(ni, n) for
each ni ∈ dbl(n). That is, e is guaranteed to be a
common element in each current path solution. Note
that we only output path solutions, in which elements
that match branching nodes occur in the correspond-
ing set(line 6 of Algorithm 1). Therefore, each interme-
diate path solution output in TJFast is guaranteed to
contribute to final results when the query contains only
ancestor -descendant relationships in branching edges.

As for space complexity, our result is based on the
observation that in the worst case, the number of ele-
ments in branching node set Sb is at most d, where d is
the length of the longest label in the input lists. Con-
sidering each extended Dewey label repeats its prefix,
the total space complexity of Sb is O(d2). ¤

Theorem 2 holds only for query with ancestor -
descendant relationships to connect branching nodes.
Unfortunately, in the case where the query contains
parent-child relationships between branching nodes
and their children, Algorithm TJFast is no longer guar-
anteed to be I/O optimal. For example, consider a
query a[./b]/c and a data tree consisting of a1, with
children(in order) b1, a2, c2, such that a2 has chil-
dren b2, c1. There are two streams Tb, Tc in TJFast
and their first elements are b1 and c1 respectively. In
this case, b1 and c1 are “locked” simultaneously, be-
cause we cannot advance any stream before knowing if
it participates in a solution. Thus, optimality can no
longer be guaranteed.

4.4 Comparison among TJFast, TwigStack
and TwigStackList

In this section, we use the following example to il-
lustrate the advantages of TJFast over TwigStack and
TwigStackList.

Example 4.2 Consider the query and data tree
Doc2 in Fig 4(a) and (c). There are three input
streams Tb,Tf and Tg in TJFast. Initially, the cur-
rent elements are b1,f1 and g1. TJFast does not insert

c1 to set Sc, since by reading the label of g1 alone, we
immediately identify that g1 does not contribute to
query answers(for a1/a2/c1/e1/a3/g1 does not match
a//c//e/g). In contrast, TwigStack pushes c1 to stack
Sc and outputs two “useless” intermediate path solu-
tion <a1, b1> and <a1, c1, d1, f1>. The behavior of
TwigStack is also reasonable because based on region
coding of g1, one cannot decide whether g1 has the par-
ent tagged with e. But based on extended Dewey, one
can easily identify that the parent of g1 is tagged with
a rather than e. This example shows the benefit of ex-
tended Dewey labeling scheme on efficient processing
of XML twig pattern matching.

Compared to TwigStack, TwigStackList looks more
“clever”. In the above example, TwigStackList does
not hastily push c1 to stack , but first checks the
parent-child relationship between e1 and g1. Then
they find that e1 is not the parent of g1. Then
TwigStackList caches e1 in a list and reads more ele-
ments in Te. In this simple case, e1 is the only element
in stream Te. So unlike TwigStack, TwigStackList does
not output any useless intermediate results. Compared
to TJFast, TwigStackList is also I/O optimal in this ex-
ample, but TwigStackList needs to read more elements
from all non-leaf node streams and its processing will
be very complicated when g1 has more than one ances-
tor tagged with e. (More examples about TwigStack-
List can be found in [13]) ¤

5 Related work

Labeling schemes Dewey ID labeling scheme
comes from the work of Tatarinov et al.[22] to rep-
resent XML order in the relational data model, and
to show how this labeling scheme can be used to pre-
serve document order during XML query processing.
O’Neil et al.[17] introduced a variation of prefix la-
beling scheme called ORDPATH. Unlike our extended
Dewey, the main goal of ORDPATH is to gracefully
handle insertion of XML nodes in the database.

The region encoding is considered as the work of
Consens and Milo[8], who discuss a fragment of PAT
text searching operators for indexing text database.
Then Zhang et al.[27] introduced it to XML query
processing using inverted list. Recently, many re-
searchers ([4],[21],[25]) have begun to design dynamic
XML labeling schemes to handle data updates.
Twig join algorithms Al-Khalifa et al.[1]
started the stack-based algorithms for XML structural
joins. N. Bruno et al. [3] proposed a holistic twig
join algorithm, namely TwigStack. Lu et al.[13] pro-
posed TwigStackList, which identifies a larger optimal
query class than TwigStack. Lu et al.[14] also re-
searched how to answer an ordered twig pattern based
on region encoding. Chen et al.[6] proposed an algo-
rithm iTwigJoin, which is still based on region encod-
ing, but work with different data partition strategies
(e.g. Tag+Level and Prefix Path Streaming).

Jiang et al. [11] proposed a general algorithm called
TSGeneric+ based on indexes built on element labels.
Their method can skip elements and achieve sub-linear
performance for selective queries. But for evaluating
queries with parent-child relationships, TSGeneric+
may still output many “useless” intermediate results
like TwigStack. Jiang et al.[10] also studied the prob-
lem of processing queries with OR predicates. BLAS
by Chen et al. [7] proposed a bi-labelling scheme: D-
Label and P-Label for accelerating parent-child rela-
tionship processing. Their method decomposes a twig
pattern into several parent-child path queries and then
merges the results.

Yang et al. [26] proposed the idea of combining
path index table and Dewey labels.3 Similar to our
TJFast, to answer a twig query, their method also can
reduce I/O cost by accessing only the labels of leaf
query nodes. But unlike TJFast, their algorithm did
not fully exploit the nice properties of Dewey labels
and only modified one procedure in TSGeneric+. So
similar to TSGeneric+, their algorithm is still not effi-
cient for processing queries with parent-child relation-
ships.

ViST and PRIX ([24],[19]) transform both XML
data and queries into sequences and answer XML
queries through subsequence matching. While their
methods avoid join operations in query processing, to
eliminate false alarm and false dismissal, they resort to
post-processing(for false alarm) and multiple isomor-
phism queries processing(for false dismissal[23]), both
of which are time consuming.

6 Experimental study

6.1 Experimental setup

We implemented four XML twig join algorithms: TJ-
Fast, TwigStack, TwigStackList and iTwigJoin in JDK
1.4 using the file system for storage. Only TJFast is
based on extended Dewey labeling scheme, and the
other three use region encoding.

The reason that we chose these three algorithms
is that they are efficient for different applications.
TwigStack[3] is very efficient when query contains
only ancestor-descendant relationships. TwigStack-
List[13] is efficient on answering queries with parent-
child relationships. Finally, unlike the above two algo-
rithms, which partition elements based on their tags,
iTwigJoin[6] is a general twig join algorithm, which can
be used on different data partitioning approaches. [6]
researched two new data partitions: tag+level and pre-
fix path streaming (PPS). Such refined data partition-
ing strategies enable iTwigJoin to reduce I/O cost by
pruning irrelevant data streams.

All experiments were run on a 1.7G Pentium IV
processor running Windows XP with 768MB of main

3Note that our work was developed independently of and
differs considerably from [26].

Table 1: XML Data Sets (XM: XMark,TB:TreeBank)
XM Random DBLP TB

Data size(MB) 582 90 130 82

Nodes(million) 8 5.1 3.3 2.4

Max/Avg depth 12/5 10/5.1 6/2.9 36/7.8

Table 2: Labels size (XM: XMark,TB:TreeBank)

XM Random DBLP TB

Original Dewey(MB) 56.2 36.1 18.1 22.8

Region coding(MB) 71.9 45.2 21.6 23.3

Naive extension(MB) 92.9 55.8 27.7 41.9

Extended Dewey(MB) 72.6 43.3 19.5 28.7

memory and 2GB of disk space. We used four dif-
ferent datasets, including two synthetic and two real
datasets. The first synthetic dataset is the well-known
XMark benchmark data (with factor 5). The second
is a random data set with ten distinct labels(namely
A1,A2,...,A10). The node labels in the tree were uni-
formly distributed. The two real datasets are DBLP
and TreeBank[16]4. We chose these two datasets since
they have different characteristics: DBLP is a shal-
low and wide document, but TreeBank has very deep
recursive structure. Table 1 summarizes the charac-
teristics of the four datasets.

In our experiments, the extended Dewey labels are
not stored by the dotted-decimal strings displayed (e.g.
“1.2.3.4”), but rather a compressed binary representa-
tion. In particular, we used UTF-8 encoding as an
efficient way to present the integer value, which was
proposed by Tatarinov et al. [22]. Our experimental
results show that compared to the naive implementa-
tion, where each integer value is presented as a fixed
number of bytes, the UTF-8 encoding can save about
50% space cost.

6.2 Experimental results

6.2.1 Labels size

We compared the labels sizes of four labeling schemes
in Table 2. Our first conclusion is that the size of the
naive extension, which directly presents the element-
name sequence in number presentation ahead of the
original Dewey labels, is generally larger than that
of our extended Dewey labeling scheme. Our second
conclusion is that when the document tree is shallow
and wide (i.e. DBLP), the size of extended Dewey is
smaller than that of region encoding. But when the
document tree is deep(i.e. TreeBank), the size of re-
gion encoding is smaller. This is because extended
Dewey is a variation of prefix labeling scheme, whose

4Since there is no DTD available for TreeBank and random
data, we first scan this document once to get the child names
clue of each tag.

size is closely related to the average depth of docu-
ments. Our third conclusion is that the size of ex-
tended Dewey is about 10%-30% more than that of
original Dewey. As we will show in our experiments,
it is worth using this additional space-overhead, since
it significantly improves the performance of XML twig
pattern matching.

6.2.2 Path Queries

We next compare our algorithm TJFast with the pre-
vious PathStack[3] to match path queries without
branching nodes. For this purpose we used XMark
benchmark data and four path queries5 shown in Table
3. Figure 5 compares two algorithms in terms of the
number of elements read, the size of disk files scanned
and execution time.

An immediate observation from the figures is that
TJFast is more efficient than PathStack. In particular,
PathStack could perform 400% more disk I/Os than
those required by TJFast (e.g. PQ2).

In order to research the effect of query path length
on TJFast and PathStack, we then used the random
data set consisting of ten distinct labels A1,A2,...,A10,
and issue path queries of different lengths such as
A1/A2/.../A10. Figure 6 shows the execution times
of both techniques, as well as the number of elements
read and the size of disk files. Clearly, TJFast results in
considerably better performance than PathStack. The
performance of PathStack degrades significantly with
the increase of the path length, but that of TJFast is
almost not affected at all, as TJFast only scan data
associated with the leaf node.

Table 3: Path Queries on XMark data
Path Queries

PQ1 /site/closed auctions/closed auction/price
PQ2 /site/regions//item /location
PQ3 /site/people/person/gender
PQ4 /site/open auctions/open auction/reserve

6.2.3 Twig Queries

Table 4: Twig Queries on DBLP and TreeBank(TB)

Data Type Twig Queries
TQ1 DBLP 1 //inproceedings//title[.//i]//sup

TQ2 DBLP 1 //article[.//sup]//title//sub

TQ3 TB 2 /S[.//VP/IN]//NP

TQ4 TB 3 /S/VP/PP[IN]/NP/VBN

TQ5 TB 4 //VP[DT]//PRP DOLLAR

We now focus on twig queries, and compare four
holistic twig join algorithms TwigStack, TwigStack-

5We chose these queries according to XMark benchmark
queries in [20].

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

PQ4PQ3PQ2PQ1

N
um

be
r

of
 e

le
m

en
ts

 r
ea

d
(t

ho
us

an
d)

Query

PathStack
TJFast

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

PQ4PQ3PQ2PQ1

D
is

k
fil

e
si

ze
 (

M
 b

yt
es

)

Query

PathStack
TJFast

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6

PQ4PQ3PQ2PQ1

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Query

PathStack
TJFast

(a)Number of elements read (b) Size of disk files scanned (c) Execution time

Figure 5: PathStack versus TJFast using XMark data

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

1098765432

N
um

be
r

of
 e

le
m

en
ts

 r
ea

d
(m

ill
io

n)

Query path length

PathStack
TJFast

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1098765432
D

is
k

fil
e

si
ze

 (
M

 b
yt

es
)

Query path length

PathStack
TJFast

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1098765432

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Query path length

PathStack
TJFast

(a)Number of elements read (b) Size of disk files scanned (c) Execution time

Figure 6: PathStack versus TJFast using random data

List, iTwigJoin and TJFast, We tested several XML
queries on DBLP and TreeBank data(see Table 4)6.
These queries have different twig structures and com-
binations of parent-child and ancestor-descendant re-
lationships. In particular, queries TQ1 and TQ2
contain only ancestor-descendant relationships, while
TQ4 contains only parent-child relationships. TQ3
contains only ancestor-descendant relationships be-
tween the branching node and its children, while TQ5
contains a branching node with both parent-child and
ancestor-descendant relationships.
TJFast vs. TwigStack We first compare the per-
formance between TJFast and TwigStack. From Figure
7 and 8, we see that TJFast outperforms TwigStack for
all queries. We now analyze the query performance un-
der two scenarios namely the cost of disk access and
the size of intermediate results.
Cost of disk access Figures 7(a) and 8(a) show
that TJFast read far fewer elements than TwigStack.
For example, for TQ1, TwigStack read 442167 ele-
ments, but TJFast read only 2380 elements (over two
orders of magnitude). This huge gap results from
the fact that TwigStack scans the elements for all the
queries nodes, but TJFast scans only elements for leaf
nodes.
Size of intermediate results Table 5 shows the num-
ber of intermediate path solutions output by different
algorithms. The last column is the number of inter-
mediate solutions that contribute to the final answers.
An immediate observation is that TwigStack outputs
many “useless” path solutions to queries with parent-
child edges. For example, for TQ3, TwigStack pro-
duced 702391 intermediate paths, of which only 22565

6We tried twig queries on XMark data. Those results are
omitted due to space limitation and can be found in [15].

are useful. More than 95% intermediate solutions out-
put by TwigStack are “useless” to the final answers.
In contrast, TJFast is optimal for query TQ3 since the
number of paths produced by TJFast is equal to the
number of useful solutions.

Table 5: Number of intermediate path solutions

Query TwigStack TwigStackList TJFast Useful

TQ3 702391 22565 22565 22565

TQ4 2237 388 388 302

TQ5 10663 9 9 5

TJFast vs. TwigStackList From Fig. 7 and 8,
TJFast also outperforms TwigStackList for all queries.
This can be explained by the fact that TJFast reduces
the I/O cost of TwigStackList by reading labels of only
the leaf nodes.

When queries contain parent-child relationships be-
tween the branching node and its children (i.e. queries
TQ4,TQ5), both TwigStackList and TJFast are sub-
optimal. Their sub-optimality is evident from the ob-
servation that the number of intermediate path solu-
tions by TwigStackList and TJFast is slightly larger
than the number of useful solutions.

TJFast vs. iTwigJoin We now compare the
performance between TJFast and iTwigJoin. iTwigJoin
is based on region encoding, but it can be applied
with different data partitioning strategies. Since [6]
proposed two new data partitioning strategies (i.e.
Tag+Level and PPS), we compare both variants with
TJFast (labeled as iTwigJoin-TL and iTwigJoin-PPS,
respectively).

Figure 9 and 10 compare the performance of

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

TQ2TQ1

N
um

be
r

of
 e

le
m

en
ts

 r
ea

d
(m

ill
io

n)

Query

TwigStack
TwigStackList

TJFast

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6

TQ2TQ1

D
is

k
fil

e
si

ze
 (

M
 b

yt
es

)

Query

TwigStack
TwigStackList

TJFast

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

TQ2TQ1

E
xe

cu
tio

n
tim

e
(s

ec
on

d)

Query

TwigStack
TwigStackList

TJFast

(a)Number of elements read (b) Size of disk files scanned (c) Execution time

Figure 7: TwigStack,TwigStackList versus TJFast on DBLP

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

TQ5TQ4TQ3

N
um

be
r

of
 e

le
m

en
ts

 r
ea

d
(M

ill
io

n)

Query

TwigStack
TwigStackList

TJFast

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

TQ5TQ4TQ3
D

is
k

fil
e

si
ze

 (
M

 B
yt

es
)

Query

TwigStack
TwigStackList

TJFast

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

TQ5TQ4TQ3

E
xe

cu
tio

n
tim

e
(s

ec
on

d)

Query

TwigStack
TwigStackList

TJFast

(a)Number of elements read (b) Size of disk files scanned (c) Execution time

Figure 8: TwigStack,TwigStackList, TJFast on TreeBank

iTwigJoin-TL , iTwigJoin-PPS and TJFast on DBLP
and TreeBank datasets. Since [6] has shown that
PPS is not applicable to deep recursive data, for Tree-
Bank, we only compared iTwigJoin-TL with TJFast.
As shown from these results, we can see TJFast is
again more efficient than iTwigJoin-TL and iTwigJoin-
PPS for all queries. Although iTwigJoin uses the re-
fined data partitioning strategies and scan less ele-
ments than TwigStack and TwigStackList, the number
of elements processed by iTwigJoin is still more than
that by TJFast.

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0.6
 0.65

TQ2TQ1

N
um

be
r

of
 e

le
m

en
ts

 r
ea

d
(m

ill
io

n)

Query

iTwigJoin-TL
iTwigJoin-PPS

TJFast

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

TQ2TQ1

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Query

iTwigJoin-TL
iTwigJoin-PPS

TJFast

(a) # of elements read (b) Execution time

Figure 9: iTwigJoin,TJFast on DBLP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

TQ5TQ4TQ3

N
um

be
r

of
 e

le
m

en
ts

 r
ea

d
(m

ill
io

n)

Query

iTwigJoin-TL
TJFast

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17

T Q5TQ4TQ3

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Query

iTwigJoin-TL
TJFast

(a) # of elements read (b) Execution time

Figure 10: iTwigJoin,TJFast on TreeBank

6.2.4 Wildcard Queries

Finally, we tested two wildcard queries
Q1://NP[.//CD]/*/V and Q2://VP/*[PP-8]/PP-
7 on TreeBank dataset. Q1 is a twig query consisting
of a wildcard in a non-branching node, but Q2 is
a branching wildcard twig query. For Q1, all four
algorithms can be applied. But the performance of
TJFast is much better than the best algorithm based
on region encoding7(0.9s vs. 7.2s). For Q2, the algo-
rithms using region encoding are significantly affected
by wildcards in branching nodes, as they do not know
which elements can be used to match this wildcard.
Since there is no DTD available for TreeBank data, a
brute-force solution is to access all elements to answer
this query. Clearly, this method is unacceptably slow.
In contrast, the existence of wildcard in branching
nodes does not affect TJFast, which takes only 0.3s to
answer Q2. This shows that TJFast supports efficient
processing of both non-branching as well as branching
wildcard queries.

Summary TJFast significantly outperforms
TwigStack, TwigStackList and iTwigJoin under all set-
tings (including shallow and deep documents, path and
twig queries, branching and non-branching wildcards
queries). The improvement is due to the facts that
TJFast only scans labels for query leaf nodes. Algo-
rithms based on region encoding are comparable to
TJFast only when the number of elements associated
with all internal query nodes is very small.

7In this case the best algorithm on region encoding is
iTwigJoin-TL.

7 Conclusions and Future Work

XML twig pattern matching is a key issue for XML
query processing. In this paper, we have proposed TJ-
Fast as an efficient algorithm to address this problem
using a novel labeling scheme called extended Dewey.
Although the idea of original Dewey is not new, ex-
tending it to efficiently process XML twig pattern
matching is nontrivial. This is because based on the
original Dewey, we cannot know the element names
along a path. To answer a twig query, we need to
access the labels of all query nodes. Considering the
fact that prefix comparison is less efficient than inte-
ger comparison, the performance of algorithm with the
original Dewey is usually worse than that with region
encoding. However, owing to our extension, extended
Dewey has the important property: Ancestor Name
Vision. So TJFast only needs to access labels of leaf
nodes to answer queries and significantly reduce I/O
cost. Further, TJFast can efficiently evaluate queries
with wildcards steps , which cannot be handled by
algorithms with region encoding. As part of future
work, we would like to improve extended Dewey to be-
come an insert-friendly labeling scheme in the context
of dynamic XML trees.

8 Acknowledgment

We would like to thank the anonymous reviewers of
VLDB for their constructive and valuable comments.
Furthermore, we thank Beverly Yang for bringing our
attention to a related paper [26].

References

[1] S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu,
N. Koudas, and D. Srivastava. Structural joins: A
primitive for efficient XML query pattern matching.
In Proc. of ICDE Conference, pages 141–152, 2002.

[2] J.-M. Bremer and M. Gertz. An efficient XML node
identification and indexing scheme. Technical Report
CSE-2003-04, University of California at Davis, 2003.

[3] N. Bruno, D. Srivastava, and N. Koudas. Holistic twig
joins: optimal XML pattern matching. In SIGMOD
Conference, pages 310–321, 2002.

[4] B. Catania, B. C. Ooi, W. Wang, and X. Wang. Lazy
xml updates: Laziness as a virtue of update and struc-
tural join efficiency. In SIGMOD, To appear 2005.

[5] C. Y. Chan, W. Fan, and Y. Zeng. Taming XPath
queries by minimizing wildcard steps. In Proceeding
of VLDB, pages 156–167, 2004.

[6] T. Chen, J. Lu, and T. Ling. On boosting holism in
XML twig pattern matching using structural indexing
techniques. In SIGMOD To appear, 2005.

[7] Y. Chen, S. B. Davidson, and Y. Zheng. BLAS: An
efficient XPath processing system. In Proc. of SIG-
MOD, pages 47–58, 2004.

[8] M. P. Consens and T. Milo. Optimizing queries on
files. In SIGMOD, pages 301–312, 1994.

[9] G. H. Gonnet. The PAT text searching sytem. Tech-
nical report, University of Waterloo, 1987.

[10] H. Jiang, H. Lu, and W. Wang. Efficient processing
of XML twig queries with OR-predicates. In Proc. of
SIGMOD Conference, pages 274–285, 2004.

[11] H. Jiang, W. Wang, and H. Lu. Holistic twig joins on
indexed XML documents. In Proc. of VLDB, pages
273–284, 2003.

[12] Q. Li and B. Moon. Indexing and querying XML data
for regular path expressions. In Proc. of VLDB, pages
361–370, 2001.

[13] J. Lu, T. Chen, and T. W. Ling. Efficient processing
of XML twig patterns with parent child edges: a look-
ahead approach. In CIKM, pages 533–542, 2004.

[14] J. Lu, T. Ling, T. Yu, C. Li, and W. Ni. Efficient
processing of ordered XML twig pattern matching. In
DEXA To appear, 2005.

[15] J. Lu, T. W. Ling, C. Y. Chan, and T. Chen.
From region encoding to extended dewey: On effi-
cient processing of xml twig pattern matching. Tech-
nical report, TRA6/05 National university of Singa-
pore, 2005.

[16] U. of Washington XML Repository.
http://www.cs.washington.edu/research/xmldatasets/.

[17] P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, and
N. Westbury. ORDPATHs: Insert-friendly XML node
labels. In SIGMOD, pages 903–908, 2004.

[18] R. Y. Pinter. Efficient string matching with don’t care
patterns. In Combinatorial ALgorithms on Words,
NATO ASI Series, volume 12, pages 11–29, 1985.

[19] P. Rao and B. Moon. PRIX: Indexing and querying
XML using prufer sequences. In ICDE, pages 288–300,
2004.

[20] A. R. Schmidt et al. XMark an XML benchmark
project. http://monetdb.cwi.nl/xml/index.html.

[21] A. Silberstein, H. He, K. Yi, and J. Yang. Boxes: Effi-
cient maintenance of order-based labeling for dynamic
XML data. In Proc. of ICDE., pages 285–296, 2005.

[22] I. Tatarinov, S. Viglas, K. S. Beyer, J. Shanmugasun-
daram, E. J. Shekita, and C. Zhang:. Storing and
querying ordered XML using a relational database
system. In Proc. of SIGMOD, pages 204–215, 2002.

[23] H. Wang and X. Meng. On the sequencing of tree
structures for XML indexing. In ICDE, pages 372–
383, 2005.

[24] H. Wang, S. Park, W. Fan, and P. S. Yu. ViST: A
dynamic index method for querying XML data by tree
structures. In SIGMOD, pages 110–121, 2003.

[25] X. Wu, M. Lee, and W. Hsu. A prime number labeling
scheme for dynamic ordered XML trees. In Proc. of
ICDE, pages 66–78, 2004.

[26] B. Yang, M. Fontoura, E. J. Shekita, S. Rajagopalan,
and K. S. Beyer. Virtual cursors for XML joins. In
CIKM, pages 523–532, 2004.

[27] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and
G. M. Lohman. On supporting containment queries
in relational database management systems. In Proc.
of SIGMOD Conference, pages 425–436, 2001.

