
A Model for Evaluating Materialized View Maintenance Algorithms

Tok Wang Ling and Eng Koon Sze
School of Computing

National University of Singapore
S16, 3 Science Drive 2, Singapore 117543

flingtw,szeekg@comp.nus.edu.sg

Abstract

Many algorithms have been proposed in the area of ma-
terialized view maintenance. They provide different capa-
bilities and features, and have different complexity in their
implementation. Each of these algorithms is suited for some
types of applications. In this paper, we propose a model for
evaluating the merit of these algorithms. This model would
allow a user to choose an appropriate maintenance algo-
rithm according to his application’s needs. It can also be
used as a benchmark where new maintenance algorithms
can be evaluated.

1. Introduction

The rapid growth of internet technology, increase in pro-
cessor speed, and drop in prices of storage devices in the
recent years have propelled many new development and re-
search areas in the database community. One of these is the
integration of data from multiple data sources. With this
integrated data, many useful information can be derived to
allow the users to make better decisions. In this age where
information is key to the survival of businesses, a lot of re-
searches has been focused on the works of this data integra-
tion.

Unlike the case of a view in a single database, this in-
tegrated data reads in information from data sources which
potentially could be far away from one another, since it is
not uncommon for businesses to have operations at different
parts of the world. On top of that, the base data is usually
in the range of gigabytes or terabytes. Hence, using the tra-
ditional approach of a virtual view, where integrated data is
produced on-demand, would not be appropriate in this as-
pect. Instead, the in-advance method, where base data is
integrated and stored or materialized well before the users
access it, is adopted.

As information stored at the data sources is not static
and users require updated data to make better decisions,

this integrated data must also be kept or maintained up-to-
date. Recomputing the materialized view, or physical inte-
grated data, provides an easy solution at the expense of ef-
ficiency. Understanding the fact that typically only a small
percentage of the overall data changes, and coupled with the
knowledge of the schema information of the integrated data
called for an incremental approach to refresh this material-
ized view.

Numerous algorithms have been proposed to solve the
materialized view maintenance problems. In this paper, we
propose a model for evaluating the merits of each of these
algorithms. This model also serves as a benchmark where
new maintenance algorithms can be weighed upon.

In Section 2, we explain the general method of main-
taining a materialized view. All incremental maintenance
algorithms are based on this method, the main differences
being in the execution of the incremental computation and
the deployment of compensation algorithm. This compen-
sation algorithm is necessary due to the autonomous nature
of the data sources, resulting in view maintenance anoma-
lies which we describe in Section 3. In Section 4, we give
the model for evaluating the various algorithms. We con-
clude our work in Section 5.

2. View Maintenance

We first look at the general architecture of a data ware-
house, before explaining the concept of incremental compu-
tation in maintaining the materialized view. We also explain
two levels of consistency which are relevant to our discus-
sion in Section 4.

2.1. Data Warehouse Model

Figure 1 shows the general architecture of a data ware-
house. There are m data sources and a separate site for stor-
ing the materialized view. We consider the case of relational
database where each data source can house one or more
base relations, and select-project-join view V defined as in



Integrator

Materialized

Client Applications

User Queries

Data
Warehouse

View

Update / Query ProcessorUpdate / Query Processor

Base
Relations

Data Source 1 Data Source m

Figure 1. General architecture of a data ware-
house

Equation 1 for n number of base relations. Each of these n
base relations is found in only one of the data sources, but
a data source can have more than one base relations. Thus,
we have n � m. For the incremental view maintenance
to work correctly, V also stores a count attribute that keep
track of the number of duplicate tuples for the case where
none of the keys of R� �� ��� �� Rn is found in V , i.e., they
are completely or partially projected out.

V � �sel cond
Y

proj attr

R� �� ��� �� Rn (1)

Each update transaction at the data sources is communi-
cated to the view site by sending an update notification mes-
sage. The view site refresh its view accordingly by first issu-
ing view maintenance queries to the various data sources to
derive the affected view tuples, before using these queries’
results to incrementally update the view.

We do not assume the data sources know the existence
of other data sources, and transactions do not span across
multiple data sources. Also data sources are autonomous
in that the view site does not control the transactions at the
data sources. As in any network communication, messages
sent could be lost or arrive in a different order from that sent
out. Messages here include update transaction notifications,
view maintenance queries and their results.

2.2. Incremental Computation

Using the view definition given in Equation 1, let �Ri,
where � � i � n, be a set of updates on a base relation of a
transaction. The transaction can involve more than one base
relation, of which the incremental computation will handle
each separately. The purpose of incremental computation
is to compute �sel condR� �� ��� �� �Ri �� ��� �� Rn (to

simplify the discussion, we assume that projection is car-
ried out only during updating of the view). How the view
maintenance queries are issued to handle this incremental
computation is dependent on the compensation algorithms
and we will discuss this when we look at the various works
in Section 4.

For the case where one of the keys of R� �� ��� �� Rn

is retained in V , (1) insertion update �Ri corresponds to
adding Ans �

Q
proj attr �sel condR� �� ��� �� �Ri ��

��� �� Rn to V , (2) deletion update �Ri requires the drop-
ping of the tuples in Ans from V , and (3) modification up-
date �Ri means updating the old values of the tuples in
Ans to their respective modified values in Ans (assuming
Ans stores both the before and after images of the modifi-
cation).

If none of the keys of R� �� ��� �� Rn is found in V ,
then the above actions are similarly carried out, but with
the corresponding updating of the count attribute due to the
different ways the same view tuple can be derived from the
base relations.

2.3. Levels of Consistency

We are interested in two of the levels of consistency of
the view with respect to the updates at the data sources de-
fined in [7].

The view is in complete consistency with respect to a
data source if each update transaction at the data source is
incorporated into the view in the same order as they have
occurred. The order of update transactions from different
data sources are not relevant since we do not consider the
case of transactions involving multiple data sources.

If some of the consecutive update transactions of a data
source are incorporated into the view in a single combined
step, with the different steps still preserving the order of
data source actions, then the view is in strong consistency
with respect to the data source.

3. View Maintenance Anomalies and Compen-
sation

The incremental view maintenance approach outlined in
the previous section overcomes the need to recompute the
view whenever any of the base relations changes. However,
the fact that multiple, autonomous data sources are involved
means that this approach will not work correctly all the time
due to the interfering effect of other concurrent updates.

3.1. Interfering Updates

Example Consider two base relations R��A�B� and
R��B�C�, with view V �

Q
BC R� �� R�. Initially, both

relations are empty.



R��A�B� R��B�C� V �B�C� count�

A transaction update involving the insertion of tuple
�a�� b�� into R� occurs, and a notification message is sent
to the view site. At about the same time, another transac-
tion update involving the insertion of tuple �b�� c�� into R�

occurs. The view site first handles the incremental computa-
tion of the tuple (a1,b1), and the query of f�a�� b��g �� R�

will return the result f�a�� b�� c��g. The view is refreshed
to give f�b�� c�� ��g, where 1 is the value of the count at-
tribute.

R��A�B� R��B�C� V �B�C� count�
a�� b� b�� c� b�� c�� �

Next the view site proceeds to handle the incremental
computation of �b�� c��. The view maintenance query of
R� �� f�b�� c��gwill give the result f�a�� b�� c��g. Another
tuple of �b�� c�� will be added to the view relation to give
f�b�� c�� ��g.

R��A�B� R��B�C� V �B�C� count�
a�� b� b�� c� b�� c�� �

The view is now not consistent with the two base rela-
tions. �

The insertion update on R� is an interfering update on
the incremental computation of insertion update on R�,
causing the above view maintenance anomalies.

3.2. Misordering of Messages

The process of removing the effect of interfering updates
from the results of view maintenance queries is called com-
pensation. Before the effect of these interfering updates can
be resolved, their presence has to be detected first. One
of the approaches to identify these interfering updates is to
consider the order of the arrival of messages at the view
site. In the scenario depicted in the previous subsection,
since the update notification message of insertion on R� ar-
rives at the view site in between the arrival of the update
notification message of insertion R� and its result of view
maintenance query, it is identified as the interfering update
on this query result. Compensation handles this by undo-
ing the effect caused by the insertion of the tuple �b�� c��.
Hence, it is deduced that f�a�� b�� c��g should not be found
in the view maintenance query result of the insertion update
on R�. Thus, there is no change to the view relation with
respect to this update on R�. Only the insertion update on
R� affects the view relation to give f�b�� c�� ��g.

The above compensation process works well as long as
messages are delivered in the same order as they have sent

out. However, in the internet environment where conges-
tion is frequent and multiple routes exist, such assump-
tion does not hold and thus either the presence of interfer-
ing updates are not detected or non-interfering updates are
wrongly identified as interfering updates. [3] shows that 1
percent of all messages are delivered and received in differ-
ent orders when a local area network is heavily loaded.

3.3. Loss of Messages

The third problem is the loss of the messages sent be-
tween the data sources and the view site. Although the
loss of network packets within a network connection can be
handled and resolved at the network layer, this loss cannot
be recovered between different connections. This happens
when a connection is broken and another new connection
has to be re-established. This is not an uncommon problem
in the internet environment due to network congestion or
hardware failure. The loss of messages will similarly cause
the view to be inconsistent with the base relations when the
effect of the updates are not incorporated into the view, or
when compensation is not carried out because the view site
is not aware of the existence of those updates.

4. Model for Materialized View Maintenance
Algorithms

We have looked at the incremental computation ap-
proach in maintaining the materialized view and its associ-
ated problems. In this section, we propose a model for eval-
uating the merits of the existing works in this area based on
a set of criteria. These works include ECA and ECAK [6],
the Strobe and C-Strobe Algorithm [7], the work of [2],
SWEEP and Nested SWEEP Algorithm [1], the work of [3],
the work of [4], and the work of [5]. We group the various
criteria under four categories of environment, correctness,
efficiency and application requirements. In the following
subsections, we will discuss each of these in detail.

4.1. Environment

We define two criteria for evaluating the view mainte-
nance algorithms under the environment category. They are
(1) the number of data sources and (2) the handling of the
compensation process.

Env(1). Number of data sources Some maintenance
algorithms are meant for a single data source environment,
while others are designed for a multiple data sources sce-
nario. View maintenance algorithms in an environment of
multiple data sources need to split the view maintenance
query into multiple sub-queries for the various data sources.
As such, such algorithms must be able to handle the pres-
ence of interfering updates in the intermediate results of



Criteria Cases Ideal Case

Number of Single Multiple
data sources Multiple
Compensation Compensation queries Local
approaches Local compensation compensation

Table 1. Environment

these sub-queries, whereas those algorithms meant for a sin-
gle data source environment need only take care of the ef-
fect of interfering updates in the overall result. Thus, main-
tenance algorithms designed for multiple data sources can
also be used in a single source environment but not vice
versa.

ECA and ECAK [6] are designed for single data source
environment. The algorithm of [2] is limited to an environ-
ment of two base relations because it is designed mainly for
a view that involves outerjoin. The other algorithms cater to
multiple data sources.

Env(2). Compensation approaches The compensa-
tion of the results of view maintenance queries to remove
the effect of interfering updates can be carried out in two
ways. (1) First, it can be resolved by sending extra com-
pensating queries on top of the view maintenance queries,
and the view is refreshed by considering the results of both
view maintenance and compensation queries. (2) The sec-
ond method involves the resolving of the effect of the inter-
fering updates locally at the view site by undoing the action
caused by these updates. The second method is preferred
over the first for the following reasons. The need for com-
pensating queries means that more traffic has to be added
to the netork, and since these compensating queries are also
subjected to other interfering updates as well, more com-
pensating queries have to be generated.

Example ECA issues compensating queries to resolve
the view maintenance anomalies. Consider the scenario de-
scribed in Section 3.1. When the view site receives the up-
date notification message of the insertion update on R�, it
generates the view maintenance query R� �� f�b�� c��g.
At this moment, since the previous maintenance query of
f�a�� b��g �� R� is still outstanding, the view site gener-
ates a corresponding compensating queries of f�a�� b��g ��
f�b�� c��g. Thus, the overall effect of the second query is
given by �R� �� f�b�� c��g� � �f�a�� b��g �� f�b�� c��g�.
This gives fg and thus the view will not be changed with
respect to this update. Only the view maintenance query
result of insert R��a�� b�� is applied to the view relation.

R��A�B� R��B�C� V �B�C� count�
a�� b� b�� c� b�� c�� �

The view is consistent with the base relations. �

In C-Strobe algorithm, compensation queries is required
if the interfering update is a deletion update. Consider the
view defined in Equation 1. If deletion update �Rj occurs
during the incremental computation of update �Ri, then
compensating query �sel condR� �� ��� �� �Ri �� ��� ��

�Rj �� ��� �� Rn will be sent out, and its result added to
that of the view maintenance query of �Ri to compensate
those tuples that are missing due to the absence of �Rj in
Rj .

The other algorithms handle the compensation process
locally at the view site. ECAK and Strobe (also C-Strobe)
require that the key of each base relations be retained in the
view, thus interfering insertion updates is resolved through
duplicate tuples removal. Deletion can be handled without
the need to issue any view maintenance queries. The rest
of the algorithms handle the compensation by undoing di-
rectly the effect of the interfering updates. The next exam-
ple shows how this is generally carried out.

Example Using the scenario of Section 3.1, the re-
sult f�a�� b�� c��g returned by the query f�a�� b��g �� R�

should have the effect of the inserted tuple �b�� c�� re-
moved, giving fg. Thus the view is not affected by insert
R��a�� b��.

R��A�B� R��B�C� V �B�C� count�
a�� b� b�� c�

The view maintenance query result of insert R��b�� c��
gives f�a�� b�� c��g and the tuple �b�� c�� �� is added to the
view.

R��A�B� R��B�C� V �B�C� count�
a�� b� b�� c� b�� c�� �

Similarly, in this example, the view is consistent with the
base relations. �

Table 1 summarizes the criteria under the environment
category.

4.2. Correctness

Next we look the two criteria which we define under the
correctness category. (1) First, the precise detection of the
presence of interfering updates can affect the correctness
of the maintenance algorithm. (2) The second criteria ex-
amines the correct working of the maintenance algorithms
when messages are misordered or lost during transmission
over the network.

Cor(1). Precise detection of interfering updates Be-
fore the compensation of the effect of the interfering up-
dates on the results of view maintenance queries can be car-
ried out, the presence of interfering updates have to be iden-
tified. Incorrect detection of these interfering updates can



Criteria Cases Ideal Case

Precise detection Yes Yes
of interfering No
updates
Network Assume No assumption
communication first-sent-
assumption first-received

and non-loss
No assumption

Table 2. Correctness

lead to the problem of view maintenance anomalies even if
the compensation is done correctly.

The workings of ECA, ECAK and Strobe Algorithms
do not require the identification of interfering updates. As
shown in the previous subsection, ECA compensates the
result of the incremental computation of insertion update
on R� although it is the query result of update on R� that
has the view maintenance anomaly. Thus, refreshing of
the view with respect to the query result of insertion on
R� gives an inconsistent state. It is only after the next re-
fresh that the view gives a consistent state, and the users are
only presented with this state but not the earlier inconsis-
tent state. Hence, such algorithms provide a weaker level
of consistency for the view. It is possible for the C-Strobe
Algorithm to identify non-interfering deletion updates as in-
terfering updates. Nevertheless, the view can still be main-
tained correctly through duplicate tuples removal since the
key of each base relation is retained in the view, but at the
expense of sending unnecessary compensating queries for
this non-interfering deletion update.

The rest of the algorithms correctly identify the presence
of interfering updates. Given that update �Rj occurs after
update �Ri (how the updates are ordered is dependent on
the algorithms used), where i �� j, �Rj is an interfering
update on the result of incremental computation of �Ri

if �Rj occurs before the view maintenance sub-query of
�Ri is processed by Rj .

Cor(2). Network communication assumption The
workings of ECA, ECAK , Strobe, C-Strobe, [2], SWEEP,
and Nested SWEEP assume that messages sent through the
network are delivered in the same order to the destination
as they are sent out, and that these messages are never lost.
These maintenance algorithms will not refresh the view cor-
rectly when these assumptions are violated. [3] is able to
maintain the view correctly when messages are misordered
as they are delivered through the network. [4] and [5] work
correctly when either messages are misordered or lost dur-
ing tranmission through the network. They achieve this by
using version numbers to order the transactions, instead of
depending it on the order of arrival of messages at the view

site.
Table 2 summarizes the criteria under the correctness

category.

4.3. Efficiency

We identify 5 criteria under the efficiency category. They
are (1) the number of base relations accessed per view main-
tenance sub-query, (2) sequential or parallel processing of
the incremental computation of an update, (3) sequential
or parallel processing of incremental computation between
different updates, (4) the use of partial self-maintenance,
and (5) the handling of modification update.

Criteria Cases Ideal Cases

Number of One Multiple
base relations Multiple
accessed per
sub-query
Incremental Sequential Parallel
computation Parallel
of an update
Incremental Sequential Parallel
computation Parallel
between updates
Use of partial Yes Yes
self-maintenance No
Handling of Deletion and Consider as
modification insertion one type of

Consider as update
one type of
update

Table 3. Efficiency

Eff(1). Number of base relations accessed per sub-
query For a data source with multiple base relations
involved in the view definition, it is not efficient to query
one base relation at a time for the incremental computation.
More network traffic has to be generated if the maintenance
sub-query only accesses one base relation at a time. The
extra round-trip time incurred will make the overall delay
time for the incremental computation of an update longer,
and this translates to higher number of interfering updates
for this incremental computation, resulting in more process-
ing for the compensation stage. A better approach would be
to query multiple base relations residing at the same data
source together.

Eff(2). Handling of incremental computation of an
update The view maintenance and compensation queries
of ECA and ECAK are issued to all the base relations since
only one data source is involved and compensation is not



processed locally at the view site (although the compensa-
tion queries are issued by the view site). The maintenance
processing of Strobe, C-Strobe, SWEEP, Nested SWEEP,
[3], and [4] query one base relation at a time. Since [2]
deals only with two base relations, its view maintenance
query needs only be applied to one base relation. [5] is able
to access multiple base relations from the same data source
within a single view maintenance sub-query. This is pos-
sible because of two reasons. Firstly, version numbers are
used to determine the actual sequence of actions at the data
sources instead of the order of delivery. And secondly, by
defining a compensation algorithm that does not require the
immediate resolving of interfering updates.

Example Consider a view defined by V �
Q

D R� ��

R� �� R�, where R��A�B�, R��B�C� and R��C�D�.
Given that R� resides in data source 1, and R� and R� re-
side in data source 2. Initially, R� has one tuple �a�� b��,
R� has one tuple �b�� c��, R� has one tuple �c�� d��, and
thus the view has one tuple �d�� �� with 1 as the value of
the count attribute.

R��A�B� R��B�C� R��C�D�
a�� b� b�� c� c�� d�

V �D�Count�
d1,1

The view site receives the notification update of delete
R��a�� b��, followed by R��b�� c��. The view maintenance
query for delete R��a�� b�� is f�a�� b��g �� R� �� R�.
Those algorithms that access one base relation at a time
will first send the query f�a�� b��g �� R� to data source
2 first (for simplicity, we use natural join in the discussion,
but note that semijoin could be employed to cut down the
size of the messages). An empty intermediate result is re-
turned. Compensation acts on this empty result to give the
tuple f�a�� b�� c��g. Next, f�b�� c��g �� R� is sent to data
source 2 again, and the intermediate result f�b�� c�� d��g is
returned. This gives the overall result of f�a�� b�� c�� d��g.
Thus, the tuple �d�� �� is removed from V .

R��A�B� R��B�C� R��C�D�
c�� d�

V �D�Count�

The query result of delete R��b�� c�� gives fg ��

f�b�� c��g �� f�c�� d��g and thus there is no change to
the view. In the case of [5], only one query f�a�� b��g ��

R� �� R� is needed to be sent to data source 2 for delete
R��a�� b��. Again, an empty result is returned to the view
site. The algorithm of [5] is able to detect the presence of in-
terfering deletion update R��b�� c�� in this result by check-
ing its expected version numbers and the actual version

numbers. It is also able to compensate this result to give
f�a�� b�� c�� d��g, by combining f�a�� b��g �� fg �� fg
with fg �� f�b�� c��g �� f�c�� d��g, the view maintenance
query result of delete R��b�� c��. �

As multiple base relations and data sources are involved,
the single view maintenance query for the incremental com-
putation of one update has to be broken down into many
sub-queries. This sub-queries can be issued one at a time,
i.e., sequentially. Alternatively, parallelism could be em-
ployed by accessing multiple base relations or data sources
concurrently. Although the sequential approach is easy to
implement, it takes longer time to process than the parallel
counterpart.

As ECA and ECAK deal with only one data source, and
[2] is limited to two base relations, this criteria is not appli-
cable in such algorithms. Strobe and C-Strobe access one
base relation at a time, while the parallelism approach of
SWEEP, Nested SWEEP, [3] and [4] are limited to a left
scan and a right scan. [5] uses the join graph to determine
the order of querying the base relations. Multiple path could
be exploited in accessing the base relations, instead of lim-
iting it to two, and cartesian product is avoided which oth-
erwise can be disastrous.

Eff(3). Handling of incremental computation be-
tween updates The incremental computation between
different updates can also be handled sequentially or in a
parallel manner. Handling the incremental computation in
a parallel manner requires a more sophiscated algorithm for
the proper detection of interfering updates, but is more ef-
ficient when the transmission time of messages between a
data source and the view site is much longer than local pro-
cessing time. Less delay will be incurred before the view
can be refreshed.

ECA, ECAK and Strobe handle the incremental compu-
tation of multiple updates in parallel. However, the work-
ings of these algorithms do not require the detection of indi-
vidual interfering updates. Results of the incremental com-
putation of the different updates that are processed in par-
allel are combined to give a weaker consistent state for the
view. C-Strobe, [2], the SWEEP Algorithm and [3] handle
the incremental computation of each update sequentially for
ease of keeping track of the interfering updates. In Nested
SWEEP, incremental computation of different updates are
handled in parallel by recognizing that interfering updates
share some intermediate results. However, a weaker level
of consistency can only be achieved by this algorithm. [4]
and [5] process the incremental computation of different up-
dates in parallel. This is achieved by implementing version
number counters at the data sources, and by tagging infor-
mation of expected and actual version numbers with the
view maintenance query results. This does not add much
burden to the materialized view relation as the query results



will be discarded once the view has been refreshed.
Eff(4). Use of partial self-maintenance Partial self-

maintenance is the maintenance of the view through using
a combination of the updates, the base relations, as well
as the view relation since the view contains information of
the base relations. On the other hand, full self-maintenance
is the maintenance of the view through using the updates
and the view relation, and possibly some auxiliary views,
without the need to query the base relations. While self-
maintenance is an intentional view design consideration to
do away with the need to depend on the data sources, par-
tial self-maintenance is employed to minimize this querying
whenever possible, through making use of the existing in-
formation provided by the view. Thus, the use of partial
self-maintenance can cut down the number or size of mes-
sages sent through the network and can be especially useful
when communication cost is high.

ECA, SWEEP, Nested SWEEP, [3] and [4] do not con-
sider partial self-maintenance issues. ECAK , Strobe and
C-Strobe can maintain the view without the need to issue
any view maintenance query for deletion updates because
of the retainment of the key of each base relations in the
view relation. [2] is able to identify certain updates that
will not affect the view, and thus no incremental computa-
tion is required for such updates, through the keeping of a
system catalog that records the number of tuples in each of
the base relations with each of the join attribute value. [5]
provides more opportunities for partial self-maintenance by
taking key constraints and functional dependencies of the
view attributes into consideration.

Eff(5). Handling of modification Treating modifica-
tion as a deletion followed by an insertion update simplifies
the view maintenance process at the expense of a less effi-
cient algorithm. It is possible for a modification of a single
tuple from a base relation to be translated into multiple tu-
ples for the joined relation, and unnecessary work might
also need to be carried out in rebuilding the view indexes
although the modification might not be on the attributes in-
volved in the indexes.

Except for [4] and [5] that consider modification as one
type of update other than deletion and insertion, the rest of
the algorithms simply treat it as a deletion and an insertion
updates.

Table 3 summarizes the criteria under the efficiency cat-
egory.

4.4. Application Requirements

In the application requirements category, the criteria we
are looking at are (1) the flexibility of the view definition,
(2) the level of consistency achieved by the maintenance
algorithms, and (3) the need for quiescent state.

App(1). Flexibility of view definition A flexible

Criteria Cases Ideal Case

Flexibility Flexible Flexible
of view Not flexible
definition
Consistency Complete Complete
level Strong
Quiescence Yes No
requirement No

Table 4. Application Requirements

view definition would provide more freedom in designing
the view, while a more restrictive one might need further
processing during querying to give what the users require.
ECAK , Strobe and C-Strobe require that the key of each
base relation be retained in the view. Since [2] is intended
for an outerjoin view, the number of base relations is limited
to two. The other algorithms do not impose any restriction
on the view definition.

App(2). Consistency level A view maintenance al-
gorithm that gives complete consistency can be used for
an application that only requires strong consistency but not
vice versa. ECA, ECAK , Strobe and Nested SWEEP Al-
gorithms achieve strong consistency while the rest provide
complete consistency.

App(3). Quiescence requirement If a view mainte-
nance algorithm needs a quiescent state in the system before
the view can be refreshed, then a continuous stream of up-
date notifications arriving at the view site will cause delay in
the refreshing of the view. ECA, ECAK , Strobe and Nested
SWEEP Algorithms require a quiescent state in the system
before the view can be updated, while the other algorithms
do not.

Table 4 summarizes the criteria under the application re-
quirements category.

5. Conclusion

In this paper, we proposed a model for evaluating ma-
terialized view maintenance algorithms. Various criteria
are used in our model to weigh the merits of these algo-
rithms, and they are grouped under four main categories.
(I) Under the environment category, we look at (Env(1))
the number of data sources handled by the algorithms, and
whether (Env(2)) the compensation process is handled lo-
cally at the view site or requires the sending of compensat-
ing queries. (II) For the correctness category, we are in-
terested in whether (Cor(1)) the detection of the interfering
updates is precise, and (Cor(2)) the correctness of the al-
gorithms when messages transmitted through the network
are misordered or lost. (III) The efficiency category exam-



ines (Eff(1)) the number of base relations accessed per view
maintenance sub-query, the sequential or parallel handling
of incremental computation within (Eff(2)) the same update
and (Eff(3)) between different updates, (Eff(4)) the use of
partial self-maintenance, as well as (Eff(5)) the handling
of modification updates. (IV) In the application require-
ments category, (App(1)) the flexibility of the view defini-
tion, (App(2)) levels of consistency provided and (App(3))
the need for quiescent state are evaluated.

To summarize, the ideal algorithms should be able to
handle multiple data sources, resolve compensation locally
at the view site, identify accurately the presence of in-
terfering updates, do not assume that messages are never
misordered or lost, access multiple base relations within
the same data source together for a view maintenance
sub-query, parallel processing of incremental computation
within the same update and between updates, use of partial
self-maintenance, treat modification update as one type of
update, flexibility of view definition, achieve complete con-
sistency and no quiescence requirement.

References

[1] D. Agrawal, A. E. Abbadi, A. Singh, and T. Yurek. Efficient
view maintenance at data warehouses. In Proceedings of the
ACM SIGMOD International Conference on Management of
Data, pages 417–427, May 1997.

[2] R. Chen and W. Meng. Efficient view maintenance in a mul-
tidatabase environment. In Proceedings of the Fifth Interna-
tional Conference on Database Systems for Advanced Appli-
cations, pages 391–400, April 1997.

[3] R. Chen and W. Meng. Precise detection and proper handling
of view maintenance anomalies in a multidatabase environ-
ment. In Proceedings of the Second International Conference
on Cooperative Information Systems, June 1997.

[4] T. W. Ling and E. K. Sze. Materialized view maintenance
using version numbers. In Proceedings of the Sixth Interna-
tional Conference on Database Systems for Advanced Appli-
cations, pages 263–270, April 1999.

[5] E. K. Sze and T. W. Ling. Efficient view maintenance us-
ing version numbers. Technical report, TRA2/00, School of
Computing, National University of Singapore, 2000.

[6] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View
maintenance in a warehousing environment. In Proceedings
of the ACM SIGMOD International Conference on Manage-
ment of Data, pages 316–327, May 1995.

[7] Y. Zhuge, H. Garcia-Molina, and J. L. Wiener. The strobe
algorithms for multi-source warehouse consistency. In Pro-
ceedings of the Conference on Parallel and Distributed Infor-
mation Systems, December 1996.


