

Designing Semistructured Databases Using ORA-SS Model

Xiaoying Wu1 Tok Wang Ling1 Mong Li Lee1 Gillian Dobbie2

 1 School of Computing, National University of Singapore, Singapore
{wuxiaoy1, lingtw, leeml }@comp.nus.edu.sg

 2 Dept of Computer Science, University of Auckland, New Zealand
 gill@cs.auckland.ac.nz

Abstract

Semistructured data has become prevalent with the
growth of the Internet. The development of new web
applications that require efficient design and maintenance
of large amounts of data makes it increasingly important
to design “good” semistructured databases to prevent
data redundancy and updating anomalies. However, it is
not easy, even impossible, for current semistructured data
models to capture the semantics traditionally needed for
designing databases. In this paper, we show how an
Object-Relationship-Attribute model for SemStructured
data (ORA-SS) can facilitate the design of “good”
semistructured databases. This is accomplished via the
normalization of ORA-SS. An XML DTD or Schema
generated from a normal form ORA-SS schema diagram
has no undesirable redundancy, and thus no updating
anomalies for the complying semistructured databases.
The general design methodology and detailed steps for
converting an ORA-SS schema diagram into a normal
form ORA-SS schema diagram are presented. These steps
can also be used as guidelines for designing
semistructured databases using the ORA-SS model.

1. Introduction
Semistructured data plays a crucial role in the new
Internet applications ranging from electronic commerce to
web site management to digital government. The
emergence of XML (eXtended Markup Language) [3] as
the likely standard for representing and exchanging data
on the web has confirmed the central role of
semistructured data. At the same time, XML has also
redefined some of the ground rules. Perhaps the most
important is that XML marks the “return of the schema”,
in the form of Data Type Definition (DTD) and recently,
XML-Schema [19], both of which are used to constrain
valid XML documents. Many information providers have
published their databases on the web as semistructured
data, and others are developing repositories for new
applications. This makes it important to have a guide for
designing “good” semistructured databases. As with
traditional databases, data redundancy and inconsistency

may occur in a semistructured database if its schema is not
designed properly and thus will lead to undesirable
anomalies.

It is a well known fact that data modeling is an
inherent part of database design, dealing with the structure,
organization and effective use of the information they
represent [18]. However, current data models for
semistructured data [1, 3, 4, 8, 14, 16] is inadequate in
providing the semantics traditionally needed to fulfill the
data modeling tasks. Although the Entity-Relationship
data model is widely used in structured database design, it
is not directly applicable to semistructured data.

This has motivated us to propose ORA-SS, an Object-
Relationship-Attribute model for SemiStructured data [6].
ORA-SS is a semantically rich data model for
semistructured data and comprises of four basic concepts:
object classes, relationship types, attributes and references.
It consists of four diagrams: the schema diagram, the
instance diagram, the functional dependency diagram and
the inheritance diagram. However, as traditional databases,
ORA-SS schema diagrams may contain redundancies and
suffer from undesirable updating anomalies. In relational
databases, a series of database normal forms such as 3NF,
4NF and 5NF, has been proposed to determine whether a
set of relations is a good design for a given database. For
nested relations, normal forms like NNF (Nested Normal
Form) [15] and NF-NR (Normal Form for Nested Relation)
[11, 12] have been proposed to guarantee some good
properties for the underlying databases. In [10], a normal
form for Entity-Relationship diagram is proposed. One of
the objectives of defining such normal form is to ensure
that all the relations translated from ER diagram are in
good normal form, either in 3NF or 5NF.

In this paper, we will define a normal form ORA-SS
schema diagram. A normal form ORA-SS schema
diagram ensures that the semistructured databases
generated from the schema will have no undesirable
redundancy and thus no updating anomalies. We will give
a design methodology and present a comprehensive
algorithm for normalizing an ORA-SS schema diagram
into its normal form. The steps given in the algorithms can
also be used as guidelines for designing semistructured
databases using ORA-SS model.

The rest of the paper is organized as follows. Section 2
gives motivating examples. Section 3 briefly describes the
ORA-SS model. An algorithm for mapping an ORA-SS
schema diagram into XML DTD is also given. Section 3
defines the normal form ORA-SS schema diagram.
Section 4 presents an algorithm for converting an ORA-
SS schema diagram into a normal form. Section 5
discusses some related works and we conclude in Section
6 with directions for future work.

2. Motivation
Example 2.1 Consider the XML data in Figure 2.1(a).
The details of a course are repeated for each professor that
teaches the course. Figure 2.1(b) and (c) shows the
corresponding ORA-SS instance and schema diagrams.
There is a one-to-many binary relationship between
department and professor, and a many-to-many binary
relationship between professor and course. Note that the
database instance in Figure 2.1(c) is not well designed
because it contains redundancy: the same course
information is repeated for each professor that teaches the
course.

Similar to traditional databases, we can identify three
kinds of update anomalies in a badly designed
semistructured database: insertion anomaly, rewriting
anomaly and deletion anomaly (see [17] for more details).
The redundancy shown above can be avoided if course is
referenced by a reference object class course1 rather than
nested within professor, as shown in Figure 2.2(a). When
the semistructured database is based on this ORA-SS
schema, the redundancy is eliminated (see Figure 2.2(b)).

In addition, there are more complex situations where
the redundancy is harder, or even impossible, to recognize
without knowing the semantics of data. Such situations
occur in the presence of relationship attributes or n-ary
relationship in semistructured data. Unfortunately, all the
other data models proposed for XML, like DataGuide [8],
ERX [16], ORM [1] and Xgrammar[14], stop short of
dealing with these situations which are common in
practice. The ORA-SS model is able to handle these, as
we will illustrate in the following example.

Example 2.2 Consider the ORA-SS schema diagram in
Figure 2.3(a). It contains a ternary relationship type mp
between project, member and publication, and a binary
relationship type jm between project and member. Figure
2.3(b) models an instance of this schema, showing the
relationship between papers written by a particular
member while working on a project will be nested within
that member and project. From this diagram, we can
deduce that publications pub1 and pub2 are associated
with member m1 and project j1. A DataGuide[8] for this
schema is shown in Figure 2.3(c). However, if the
relationship type mp is a binary relationship type between
member and publication, which is represented by an
ORA-SS schema diagram shown in Figure 2.3(d), then

there contains redundancy: all the publications for each
member will be repeated for every project the member
works on. Note that a DataGuide for the second schema
will remain the same although the constraints on the
relationship types are quite different. This distinction
between binary and ternary relationship type cannot be
expressed in other semistructured data models.

3. Background
In this section, we will give a brief description of ORA-SS
schema diagram (see [6] for more details). We will also
give an algorithm for mapping an ORA-SS schema
diagram into XML DTD.

3.1 ORA-SS Model
Figure 3.1(a) shows an ORA-SS schema diagram. An
object class is represented as a labeled rectangle. A
relationship type between related object classes in an
ORA-SS schema diagram can be described by name, n, p,
c, where name (it is optional) denotes the name of the
relationship type, n is an integer indicating the degree of
the relationship type (n=2 indicates binary, n=3 indicates
ternary, etc.), p is the participation constraint of the parent
object class in the relationship type, and c is the
participation constraint of the child object class. The
participation constraints are defined using the min: max
notation. Hence, 0:1, 0:n, 1:n represents ?,*,+ respectively.
The edge between two object classes can have more than
one such relationship type label to indicate the different
relationship types they participate in. Disjunctive
relationship type in ORA-SS is represented by a
relationship type diamond labeled with symbol “|”.

Attributes of object class or relationship type are
denoted by labeled circles. Keys are filled circles. An
attribute can be single-valued or multivalued. A
multivalued attribute is represented using an * or + inside
the attribute circle. Attributes of an object class can be
distinguished from attributes of a relationship type. The
former has no label on its incoming edge while the latter
has the name of the relationship type to which it belongs
on its incoming edge. Note that an instance of that object
class or relationship type would have a subset of the
attributes shown.

An object class can reference another object class via a
labeled and dashed edge. Such references are useful in
modeling recursive and symmetric relationships.

3.2 Mapping ORA-SS Schema Diagram to XML
DTD
Given an ORA-SS schema diagram, we can generate an
XML DTD using the following algorithm.

Algorithm 1: Map ORA-SS Schema to XML DTD
Input: ORA-SS schema diagram SD;

Output: XML DTD
For each object class O in SD do:
 Step 1. Generating definitions for object class
 Generate element type definition

<!ELEMENT O (subelementsList)>.
Its sub-object classes (if any) become O’s sub-elements,
whose names are contained in the O’s subelementsList. Sub-
elements in subelementsList are separated by “|” if their
corresponding object classes have disjunctive relationship
with O as indicated by the diagram or by “,” otherwise. No
symbol is needed if there is only one sub-object class). We
associate those sub-elements with frequency indicator such
as ?, + or * , according to p of relationship type label name, n,
p, c indicated by the diagram. In the case that O has no sub-
object classes multivalued attributes and attached relationship
attributes, then O’s subelementsList is #EMPTY.

 Step 2. Generating definitions for attributes.
2.1 Generating definitions for single-valued simple attribute.
 For each single-valued simple attribute a of O do

Generate attributes definition list <!ATTLIST O
attributeName type > for O’s single-valued simple
attributes.
The type for an attribute a is ID if a is O’s primary key;
otherwise, its type is CDATA. If O is a reference
object class 1 , then define an attribute b with type
IDREF and add it to O’s attributes definition list.

2.2 Generating definitions for single-valued composite
attribute.

 For each single-valued composite attribute a of O do
Replace a with its components and add those
components to O’s attributes definition list

2.3 Generating definitions for multivalued simple attribute.
 For each multivalued simple attribute a of O do

Generate an element type definition <!ELEMENT a
(#PCDATA)>, and add the element name a to O’s
subelementsList.

2.4 Generating definitions for multivalued composite
attribute.

 For each multivalued composite attribute a of O do
Generate an element type definition <!ELEMENT a
(#EMPTY)>, and add the element name a to O’s
subelementsList. For the components of a, generate
attributes definition list <!ATTLIST a
componentName type > .

Step 3. Generating definitions for relationship type attributes.
 For each relationship type attribute A under O, add A to

subelementsList in <!ELEMENT O (subelementsList)>.
 Case (1) A is a simple attribute, generate an element

type definition <!ELEMENTA (#PCDATA)>.

 Case (2) A is a composite attribute, generate an
element type definition <!ELEMENTA
(#EMPTY)>. For the components of A,
generate attributes definition list <!ATTLIST
A componentName type > .

1 A reference object class in an ORA-SS schema diagram is an

object class which has no properties of its own and has to references
properties of another object class. The reference semantics is represented
as a dashed edge between the two object classes in the schema diagram.

Example 3.1 An XML DTD for the ORA-SS schema
diagram in Figure 3.1(a) is shown in Figure 3.1(b).

3.3 XML’s Inadequacies
The popularity of using XML to model semistructured,

hierarchical data on the web encourages the view of XML
as a data model [4]. However, the mapping process given
in Algorithm 1 reveals that, from the database aspects of
view, XML has very restrictive definitions and has several
drawbacks. First, although attributes of IDREFS type can
be viewed as multivalued attributes, other kinds of
multivalued attributes are not allowed in XML’s structure.
They have to be converted to sub-elements. Hence, when
we translate an ORA-SS schema diagram to XML DTD,
the semantics of the real world is lost and ambiguity is
generated. Second, the concept of composite attributes is
not included in XML. They either have to be replaced by
their components or be converted to sub-elements. Hence,
XML has imprecise definitions and cannot handle the
consequent ambiguities as well. Note that these are
inherent shortcomings of XML that limit the data
description capabilities of its schema definition languages,
including DTD or XML Schema. So we argue that using
XML is awkward to represent all the necessary semantics
for modeling real world data, unless it can incorporate the
concepts of multivalued attribute and composite attribute
to its structure. In contrast, by allowing the existence of
multivalued attributes and composite attributes, ORA-SS
removes the aforementioned drawbacks. Additionally, the
ability of ORA-SS to express the degree of n-ary
relationship types, and distinguish between attributes of
object classes and attributes of relationship types helps us
to recognize redundancy, design more efficient storage
and access to data and define meaningful views [11].

4. Normal Form (NF) for ORA-SS Schema
Diagram

ORA-SS is similar to nested relations in that both have
tree-like structure and allow repeating groups or multiple
occurrences of objects. Hence, starting from the top of a
given ORA-SS schema diagram D, we can easily
construct a nested relation R, which has the single valued
attributes of D’s root object class as its atomic attributes,
and the multivalued attributes as well as the sub-object
classes of D’s root object class as its repeating groups. As
an illustration, the corresponding nested relation for the
ORA-SS schema diagram in Figure 2.1 is Department (d-
name, course (code, title, student (number, s-name,
grade)*)*). We can construct a set of nested relations for
an ORA-SS schema diagram that consists of several
separated tree-structured components (each starts from
different roots and perhaps related to others through
reference semantics).

OEM[8] is a popular data model for representing
semistructured data. We have seen an example of its

schema DataGuide. OEM is a simple model, with every
entry as object identified by a 3-tuple: <object-identifier
(OID), label, value>. Like ORA-SS, a database is
represented as a tree-structured graph.

While the three data models can represent hierarchical
data in a direct and natural way, they have problems when
representing situations with nonhierarchical relationships.
Duplication of data is necessary when we try to represent
many-to-many relationships or relationships involving
more than two participating entity types or object classes.
The situation may be even worse for OEM in the
following reasons: First, except the nested structure of the
data, other semantic information cannot be modeled using
a Dataguide; second, the use of OID in OEM incurs
problems as those in object-oriented model. As in
traditional databases, redundancy leads to possible update
anomalies in semistructured data. Until a normalization
theory is defined for semistructured data, the best way to
identify and eliminate redundancy is to use heuristics.

The correspondences between ORA-SS schema
diagrams and nested relations suggest that we can define
an ORA-SS schema diagram in normal form if its
corresponding set of nested relations is in normal form for
set of nested relations, which has been defined in [11, 12].
This in turn ensures that semistructured databases, which
conform to an XML DTD generated from a normal form
ORA-SS schema diagram, can have no redundancy and no
undesirable updating anomalies.

The concept of a normal form (NF) ORA-SS schema
diagram depends on the twin concepts of an object class
normal form (O-NF) and a relationship type normal form
(R-NF). [10] defines entity and relationship normal forms
for an Entity-Relationship diagram. The results there can
be applied here with some modification to account for
ORA-SS’s tree-like structure.

Definition 4.1 An object class O of an ORA-SS schema
diagram is said to be in object class normal form (O-NF),
if the nested relation constructed by O’s single valued
attributes as its atomic attributes, O’s multivalued
attributes as its repeating groups, is in normal form NF-
NR.

Definition 4.2 A relationship type R of an ORA-SS
schema diagram D is said to be in relationship type
normal form (R-NF), if the nested relation constructed by
the keys of the participating object classes, and R’s atomic
attributes as its atomic attributes, R’s multivalued
attributes as its repeating groups, is in normal form NF-
NR.

The reasons for the conditions of Definition 3.1 as
well as Definition 3.2 have been well explained in [10, 11,
12].

Definition 4.3 An ORA-SS schema diagram D is in
normal form (NF) iff it satisfies the following conditions:

1. Every object class in D is in O-NF.

2. For every relationship type R in D
(a)R is in R-NF.
(b)Case (1) If R is binary relationship type from

object class A to object class B, then all the B’s
attributes can stay with B only if R is a one-to-
many or one-to-one binary relationship type from A
to B. All the attributes of R (if any) should be
attached to B.

 Case (2) If R is n-ary relationship type with n (n>2)
participating object classes O1,O2,…,On, and the
path going downward from the top of D linking
those object classes is /O1 /O2 /…/On, then for each
object class Oi (2≤i≤n),
 (i) Oi should have an i-ary relationship Ri with its
ancestors O1,O2,…,Oi-1.
(ii) The attributes of Oi can stay with Oi only if
functional dependency Oi → O1,O2,…,Oi-1 can be
derived from the functional dependency diagram
for D. The attributes of Ri (if any) should be
attached to Oi.

3.There is no relationship type nested under another
many-to-many or many-to-one binary or n-ary (n>2)
relationship type.

4.Every relationship type cannot be derived from other
relationship types in D.

In Definition 4.3, Case (1) and item (ii) of Case (2) in
condition 2(b) ensure that there will be no potential
redundancies due to many-to-many and n-ary relationship
representation; Item (i) of Case (2) in Condition 2(b) helps
to remove over-nesting. Intuitively, components should be
kept as close to the owner object class as possible.
Condition 3 helps to reduce data redundancy as well as
ensure no unnecessary hierarchies in a schema diagram.
Condition 4 removes global redundancies among a set of
components in a NF schema diagram. Note that other
normal forms proposed for semistructured data, like S3-
NF [9] and XNF [7] do not provide similar definitions.

 If an ORA-SS schema diagram is in normal form,
then the anomalies in semistructured databases mentioned
in Example 2.1 are removed and any redundancy due to
many-to-many relationships and n-ary relationships are
controlled.

Example 4.1 Consider the staff object class given in
Figure 4.1(a). Assume we have following functional
dependencies: {S# →dept, dept→faculty}, then obviously,
the relation staff (S#, dept, faculty) is not in 3NF, so is not
in NF-NR [11,12]. Hence the condition of O-NF
definition is violated, and staff is not in O-NF.

Example 4.2 Consider the ORA-SS schema diagram
given in Figure 4.1(b). The schema attempts to show that
the lecturer can teach can all the courses using all the
textbooks as described on the curriculum, and is designed
as a ternary relationship among course, text and lecture.
However, it is a wrong design, since by the condition, a
course taught by a teacher is independent of the textbook

used, i.e., a MVD constraints: course-code→→isbn |
staff# should be satisfied by the schema. Hence, while the
nested relation ctl (course-code, isbn, staff#) for the
relationship type ctl is in 3NF, it is not in 4NF, so as not in
NF-NR; the condition of R-NF definition is violated, and
ctl is not in R-NF.

Example 4.3 Consider the ORA-SS schema diagram
given in Figure 4.2(a). If examined individually, the
schema diagrams for both faculty and employee are all in
NF. However, suppose that a faculty is also an employee,
the schema for the database is not in normal form since
the qualification of faculty can be derived from that of
employee. As a consequence, qualification information for
a faculty will be repeated in the underlying databases. A
better design is to remove the qualification from faculty,
and make ssn of faculty as a foreign key that references
employee, as shown in Figure 4.2(b).

5. Converting ORA-SS Schema Diagrams
into Normal Form

There are two approaches for designing semistructured
databases. The first approach is based on the users’
requirements, first we come out an initial ORA-SS schema
diagram; After that, we normalize the schema diagram to
its normal form; Finally, we map the normalized schema
to an XML DTD using Algorithm 1. The second approach
is, given a semistructured data instance, like an XML
document, we can design it using the following steps:
 (1) Extract schema from the instances using the schema

extracting techniques, like what is given in [2];
 (2) Translate the schema into ORA-SS schema diagram.

Here we need semantic enrichment, since not all
semantics needed are available from the extracted
schema.

 (3) We convert the ORA-SS schema diagram into its
normal form.

 (4) We translate the NF ORA-SS schema diagram back
to XML DTD or XML Schema.

 (5) Restructuring the initial instance to conform to the
generated XML DTD or XML Schema.

In this paper, we focus on the first design approach.
The following conversion algorithm takes as input an

ORA-SS schema diagram and functional dependency
diagram2, and returns as output an NF ORA-SS schema
diagram. The design steps are given to achieve the
definitions of NF ORA-SS schema diagram

Algorithm 2: Converting an ORA-SS schema diagram
into NF ORA-SS schema diagram.
Input: an ORA-SS schema diagram SD, and its functional
dependency diagram.
Output: a NF ORA-SS schema diagram.

2 In the interest of space, we don’t provide functional dependency
diagram in this paper.

Step 1. For each non O-NF object class O in SD, convert O
into O-NF, using the guidelines and steps given in [10].

 Step 2. Make each relationship type R in R-NF, using the
guidelines and steps given in [10].

 Step 3. This step involves two sub-steps.
3.1 Construct diagrams for each object class with its attributes
 in SD.
3.2 For each relationship type R in SD do

Case 1: R is a binary relationship type from object class
OA to OB. Assume R is described by a relationship type
label L with contents name, 2, p, c in SD. Basing on OA

3,
we represent R as follows:
If R is an one-to-many (OB→OA) or one-to-one
relationship type, then

 (a) Nest OB along with its attributes under OA, and tag the
edge between them with L;

 (b) Attach all the attributes of R to OB, and tag the edges
between attributes and OB with the name R; OB→OA

Else /* R is many-to-one (OA →OB) or many- to-many
relationship type*/

(a) Construct a reference object class O’
B

4 referencing OB,
and nest O’

B under OA. Tag the edge between OA and O’
B

with L.
 (b) Attach all the attributes of R to O’

B, and tag the edges
between attributes and O’

B with the name R;
 Case 2: R is an n-ary relationship type where n>2 with

participating object classes O1,O2,…,On. Let the path
that links those object classes by going down the SD be
/O1/O2/…/On. Let Ri (2≤i≤n) represents the relationship
from Ri-1 to Oi, (if i = 2, then Ri-1 is O1), then R can be
represented by a sequence of relationships <R1,R2,…,Rn>.
Assume each Ri is described by a relationship type label Li
with contents name, i, p, c in SD. We represent each Ri
based on Ri-1 (3≤i≤n5) as follows:
If Oi → O1,O2,…,Oi-1 can be derived from the specified
dependency constraints for SD, then

 (a) Nest Oi along with its attributes under Ri-1, and tag the
edge between them with Li;

 (b) Attach all the attributes of Ri to Oi, and tag the edges
between attributes and Oi with the name Ri;

 Else /* Oi O1,O2,…,Oi-1 */
 (a) Construct a reference object class O’

i referencing Oi,
and nest O’

i under Ri-1. Tag the edge between Ri-1 and O’
i

with Li.
 (b) Attach all the attributes of Ri to O’

i, and tag the edges
between attributes and O’

i with the name Ri;
Step 4. If a relationship type R is redundant, then the
information provided by R can be derived from other
relationship type, such that data will be redundant in the
underlying databases. To detect the redundant relationship
type, we require more information about the semantic

3 In the algorithm, we let the object class name denote its corresponding
diagram constructed in Step 3(a).
4 It is generally preferable to have designers/users specify alternate
names for referencing object class, which indicate the role played by the
object class in the context of the application. Here for simplicity, we
assume the name of referencing object class is that of referenced object
class append with subscript number like 1, 2 etc.
5 We start i with 3, since the relationship type R2 has been represented by
case 1.

meaning of the relationship types, which can be provided by
the database designer or database owner.

Theorem 1 Let S be an ORA-SS schema diagram
generated by Algorithm 2, then it is a normal form ORA-
SS schema diagram.
Proof: Omitted. Details can be found in [20].

Example 5.1 Consider the ORA-SS schema diagram D
represented in Figure 5.1(a). There is a many-to-many
binary relationship pc between professor and course, and
a many-to-many binary relationship ct between course and
textbook. Applying Algorithm 2 to this ORA-SS schema
diagram, we observe that the three object classes course,
student and tutor are all in O-NF; the two binary
relationship type cs and cst are both in R-NF; hence step 1
and 2 are passed. Starting from step 3, we first generate
three diagrams for the object classes with attributes as
shown in Figure 5.1(b). Next, we represent the binary
relationship pc. Since pc is a many-to-many relationship
type from professor to course, we create a reference
object class course1 referencing course and nest course1
under professor, as shown in Figure 5.1(c). After that, we
represent the binary relationship ct. Since ct is a many-to-
many relationship type from course to textbook, we create
a reference object class textbook1 referencing textbook and
nest textbook1 under course, as shown in Figure 5.1(d).
Since there is no redundant relationship type, the schema
diagram in Figure 5.1(d) is in normal form.

Example 5.2 Consider the ORA-SS schema diagram D in
Figure 5.2(a), assume the specified functional dependency
is {student, course→tutor}. There is a binary relationship
cs between course and student and a ternary relationship
cst between course, student and tutor. The grade is an
attribute of the binary relationship cs, and feedback is an
attribute of the ternary relationship cst. Applying
Algorithm 2 to D, we observe that the three object classes
professor, course and textbook are all in O-NF; the two
binary relationship type pc and ct are both in R-NF; hence
step 1 and 2 are passed. Starting from step 3, we first get
three diagrams for object classes course, student and tutor,
as shown in Figure 5.2(b). Next, we represent the binary
relationship cs. Since cs is a many-to-many relationship
type from course to student, we create a reference object
class student1 referencing student and nest student1 under
course. Relationship attribute grade is attached to
student1. The result is shown in Figure 5.2(c). After that,
based on the relationship cs, we represent the relationship
cst according to case 2 of step 3. Since tutor→student,
course cannot be derived from the given functional
dependency, we create a reference object class tutor1
referencing tutor, and nest tutor1 under student1.
Relationship attribute feedback is attached to tutor1, as
shown in Figure 5.2(d). Since there is no redundant
relationship type, the diagram shown in Figure 5.2(d) is
now in normal form.

6. Related Work
To our knowledge, two normal forms for semistructured
data have been proposed: S3-NF in [9], and most recently
XNF in [7].

S3-NF is a normal form for S3-Graph (or
SemiStructured Schema Graph), which is basically a
labeled graph in which vertices correspond to objects and
edges represent the object-subobject relationship. Unlike
ORA-SS schema diagram, the S3-Graph is not able to
model the semantics traditionally needed for recognizing
redundancy in databases. For example, it cannot show the
degree of a n-ary relationship type, neither can it
distinguish between attributes of object classes and
attributes of relationships types. To identify redundancy in
S3-Graph, [9] defines a dependency constraint called SS-
Dependency. An S3-Graph is in S3-NF if there is no
transitive SS-dependency. Hence, only that kind of
redundancy can be recognized by S3-NF. [9] presents two
approaches to design S3-NF databases. One is a
decomposition method, which can transform the schema
to reduce redundancy result from SS-dependency, while
may not always remove all transitive dependencies and
achieve normal form. The other method is to transform a
normal form ER diagram [10] into an S3-Graph. Although
the result obtained is in S3-NF, it is not unique but is
dependent on the path constructed. Therefore, the result
may not satisfy the application requirements and comply
with the user’s viewpoints.

XNF is defined to be a normal form for XML
documents [7]. The whole process of generating an XNF-
compliant DTD follows: it first takes a conceptual model -
based methodology, using CM hypergraphs (conceptual-
model hypergraphs), to model an application. Then it
translates the CM hypergraph M to a scheme-tree forest F.
F is in XNF if each scheme tree in F has no potential
redundancy with respect to a specified set of (functional
and multivalued) constraints C, and F has as few, or fewer,
scheme trees as any other schemes-tree forest
corresponding to M in which each scheme tree has no
potential redundancy with respect to C. Finally, it
generates a DTD from the scheme-tree. Like S3-Graph,
CM hypergraph has no concept of attributes; consequently,
there are too many objects in a schema; in addition, CM
hypergraph has no hierarchical structure. The algorithms
for translating a CM hypergraph M to a scheme-tree forest
are non-deterministic, and suffer from inefficiency.
Additionally, adding new required information requires
redesign the whole schema. Further, the algorithms
generate a large number of solutions rather than verifying
whether a semistructured schema is in normal form or not.
While ISA relationship can be represented in CM
hypergraphs, it is from CM hypergraph before input to the
algorithm.

The normal form ORA-SS schema diagram presented
in this paper has two advantages over both S3-NF and
XNF. Firstly, ORA-SS facilitates the 2-level design

technique: First, designer identifies or figures out object
classes and relationship types from user’s specifications;
then the designer add attributes for object classes and
relationship types. The 2-level design technique is
consistent with the iterative nature of ER designing
methodology, giving more control to the designer and
allows him/her to evaluate each successive refinement of
the schema. Secondly, ORA-SS designing approach is
able to preserve a schema’s hierarchical structure
satisfying the user’s requirements.

5. Conclusion
In this paper, we have demonstrated that the ORA-SS data
model beats all the existing semistructured data models
for its ability to design databases, and thus makes itself an
attractive candidate for logical semistructured database
design. We have identified various anomalies, including
rewriting anomaly, insertion anomaly and deletion
anomaly, which may arise if a semistructured database is
not designed properly and contains redundancies. We
have defined a normal form ORA-SS schema diagram.
The definitions of a normal form ORA-SS schema
diagram give the necessary and sufficient conditions for
ensuring the corresponding set of nested relations in
normal form for set of nested relations [11,12]. This in
turn ensures that semistructured databases conforming to
an XML DTD, which is generated from a normal form
ORA-SS schema diagram, can have no unnecessary
redundancy and thus no undesirable updating anomalies.
We have presented a general designing methodology and
developed an algorithm for converting a given ORA-SS
schema diagram into its norm form. The steps presented
can also be used as guidelines for designing
semistructured databases using the ORA-SS model. For
future work, we would like to implement a case tool based
on the ORA-SS model for designing semistructured
databases.

Reference

[1] L. Bird, A. Goodchild, and T.Halpin. Object Role

Modeling and XML-Schema. In Int’l Conf. on
Conceptual Modeling (ER), Salt Lake City, UT, Oct.2000

[2] B. Ludaescher, Y. Papakonstantinou, P. Velikhov, and
V.Vianu. View definition and dtd inference for xml. In
Workshop on semistructured Data and Nonstandard Data
Formats, January 1999.

[3] T. Bray, J. Paoli, and C. M. Sperberg-McQueen.
Extensible Markup Language (XML) 1.0. 2nd Edition, Oct.
2000. http://www.w3.org/TR/REC-xml.

[4] P. Buneman, S. B. Davidson, M. F. Fernandez and D.
Suciu: Adding Structure to Unstructured Data. ICDT
1997: 336-350.

[5] S. Ceri, P. Fraternal, and S. Paraboschi. XML: Current
Developments and Future Challenges for the Database
Community. EDBT 2000, LNCS 1777, pp.3-17, 2000.

[6] G.Dobbie, X.Y.Wu, T.W.Ling and M.L.Lee. ORA-SS:
An Object-Relationship-Attribute Model for
Semistructured Data. Technical Report TR21/00, School
of Computing, National University of Singapore, 2000.

[7] D.W.Embley and W.Y.Mok. Developing XML
Documents with Guaranteed “Good” Properties. ER 2001.

[8] R. Goldman and J. Widom. DataGuides: Enabling Query
Formulation and Optimization in Semistructured
Databases. Proceedings of the Twenty-Third International
Conference on Very Large Data Bases, pages 436-445,
Athens, Greece, August 1997.

[9] S. Y. Lee, M. L. Lee, T. W. Ling and L. A.. Kalinichenko.
Designing Good Semi-structured Databases. ER 1999:
131-145

[10] T.W. Ling. A Normal Form for Entity-Relationship
Diagrams. Proc. 4th International Conference on Entity-
Relationship Approach (1985)

[11] T. W. Ling. A normal form for sets of not-necessarily
normalized relations. In Proceedings of the 22nd Hawaii
International Conference on System Sciences, pp. 578-
586. United States: IEEE Computer Society Press, 1989.

[12] T. W. Ling and L. L. Yan. NF-NR: A Practical Normal
Form for Nested Relations. Journal of Systems
Integration. Vol4, 1994, pp309-340

[13] T. W. Ling, M. L. Lee and G.Dobbie. Applications of
ORA-SS: An Object-Relationship-Attribute data model
for Semistructured data. In Third International
Conference on Information Integration and Web-based
Applications and Serives (IIWAS2001).

[14] Murali Mani, Dongwon Lee and Richard R. Muntz
Semantic Data Modeling using XML Schemas
 Proc. 20th Int'l Conf. on Conceptual Modeling (ER),
Yokohama, Japan, November, 2001.

[15] Z. M. Ozsoyoglu and L. Y. Yuan. A New Normal Form
for Nested Relations. ACM Transaction on Database
Systems. 12(1), (1987).

[16] G. Psaila. ERX: A data model for collections of XML
documents. In ACM Symp. On Applied Computing (SAC),
Villa Olmo, Italy, Mar. 2000

[17] R. Ramakrishman and J.Gehrke. Database Management
Systems. McGraw-Hill Higher Education, 2000.

[18] D. T. Chritzis and F. H. Lochovsky. Data Models.
Prentice-hall, 1982

[19] H. S. Thompson, D. Beech, M. Maloney and N.
Mendelsohn. XML Schema Part 1: Structures. Oct. 2000
http://www.w3.org/TR/xmlschema-1/.

[20] X. Wu. The Design of Semistructured Schemata into
Good Normal Form. Master Thesis, School of Computing,
National University of Singapore, 2001.

 department

name:
cs

Staff
number:
12

name:
Smith

course

course
code: 230

course

 title: Database

name:
Jones

Staff
number:22

professor

course
code: 230

 title:
Database

(b) ORA-SS instance diagram

professor

<department>
 <name>cs</name>
 <professor>

<staffnumber>12</staffnumber>
<name>Sm ith</name>
<course>
 <coursecode>230</coursecode>
 <title>Database</title>

 </course>
 </professor>
 <professor>

<staffnumber>22</staffnumber>
<name>Jones</name>
<course>
 <coursecode>230</coursecode>
 <title> Database</title>
</course>

</professor>
</department>

(a) Example of XM L data

department

name professor

2, 1:n, 1:1

course
nam e

title course
code

Staff
number

2, 1:n, 1:n

(c) Nested object class in an
 ORA-SS schema diagram

Figure 2.1: Redundancy in Semistructured data

 departm ent

nam e professor

2 , 1:n, 1:1

course1 nam e
Staff

number

2, 1:n, 1:n

course

title course
code

departm ent

nam e:
C .S.

Staff
number:
12

nam e:
Sm ith course1

nam e:
Jones

Staff
number:22

professor

course

course code:
230

 title:
database

professor

course1

(a) R eferenced object class in OR A-SS
 schem a diagram

(b) The OR A-SS instance diagram

C ourse-R ef

C ourse-R ef

C ourse-R ef

Figure 2.2: Referenced object classes in ORA-SS schema diagram
 and instance diagram

p ro j e c t

id m e m b e r

jm
2 , + ,+

p u b lic a tio n

p o s i tio n

t i t le n u m b e r

n a m e

m p
3 , 0 :n , 1 :m

n a m e

j1
j2
j3

m 1

m 2

p u b 1
P u b 2
P u b 3

 (a) O R A -S S S c h e m a D ia g ra m
 (m p i s a t e rn a ry r e la t io n s h ip ty p e)

(b)A d a ta in s ta n c e o f (a)

p ro j e c t m e m b e r p u b l ic a tio n

p ro j e c t

id m e m b e r

jm
2 , + ,+

p u b l ic a tio n

p o s i ti o n

t i t le n u m b e r

n a m e

m p
2 , * , +

n a m e

 (d) O R A -S S S c h e m a D ia g ra m
 (m p i s a b in a ry r e la t i o n s h ip ty p e)

n a m e
id
p ro je c t

p o s i tio n
n a m e

m e m b e r

t i t le

n u m b e r
p u b l ic a tio n

(c) D a ta G u id e

Figure 2.3: Representing ternary relationship in an ORA-SS Schema Diagram

 department

d-name course

2, 1:n, 1:1

student
title

s-name gradenumber

code

cs,
2, 1:n, 1:n

cs

<!ELEMENT department (course+)>
 <!ATTLIST department d-name ID #REQUIRED>
<!ELEMENT course (student+)>
 <!ATTLIST course code ID #REQUIRED
 title CDATA>
<!ELEMENT student (grade)>
 <!ATTLIST student number ID #REQUIRED
 s-name CDATA>
<!ELEMENT grade (#PCDATA) >

(a) ORA-SS schema diagram

(b) The corresponding XML DTD

Figure 3.1: ORA-SS schema diagram and its XML DTD specification

 staff

dept faculty S#

(a)ORA-SS schema diagram
showing an object class that is
not in O-NF (Example 4.1)

text

ct
2, 1:n, 1:n

lecturer
title

name office staff#

isbn

ctl,
3, 1:n, 1:n

(b) ORA-SS schema diagram not in NF (Example 4.2)

course

title course
code

course

title code

text

title isbn

ct
2, 1:n, 1:n

lecturer

name officestaff#

cl
2, 1:n, 1:n

(c) A better design for (b):
 No “over-nesting”
 No unnecessary redundancy

Figure 4.1: ORA-SS schema diagrams

 faculty

staff#
 2, *, 1:1

qualification

degree

ssn

(a) Un-normalized ORA-SS schema diagram:
Since a faculty is also an employee, thus the qualification of faculty can

 be derived from that of employee

(b) Normalized ORA-SS schema diagram for (a)

year

employee

ssn
 2, *, 1:1

qualification.

degree

name

year

job-history

company j-date

 2, *, 1:1
*

research
interests

* grad
student

faculty

staff#

employee

ssn
 2, *, 1:1

qualification.

degree

name

year

job-history

company j-date

 2, *, 1:1

*
research
interests

*
grad

student
ssn

Figure 4.2: ORA-SS schema diagrams for example 4.3

 professor

staff# course

pc, 2, *, *

textbook
title

author ISBN

code

ct, 2, *,*

title
+

name

professor

staff# course1

pc, 2, *, *

name

course

textbook1
title code

 textbook

author title
+

ISBN

(a) Initial ORA-SS schema diagram

(d) Final ORA-SS schema diagram that in NF

professor

name

course

title code staff#

textbook

author title
+

ISBN

(b) Fragment diagrams for object classes

professor

staff# Course1

pc, 2, *, *

name

course

title code

textbook

author title
+

ISBN

(c) Diagrams after representing relationship pc

ct, 2, *,*

c-ref

c-ref
t-ref

Figure 5.1: Figures for the example 5.1 illustrating Algorithm 2

interest

interest interest

interest

 course

cid title

cs,2,m,n

student

sid
name

cst,3,m,n
age
?

?

grade

cs
?

tutor

tid feedback

cst

*
name

course

cid title
?

student

sid name age
?

tutor

tid *
name

course

cid title

cs,
2,,m,n

student1

?

grade

cs
?

course

cid title

cs,2,m,n

student1

cst,3,m,n

?

grade
cs
?

tutor1

cst

feedback

(a) Initial ORA-SS schema diagram
(c) Diagram representing binary relationship cs

(d) Final ORA-SS schema diagram that in NF

student

sid name age
?

student

sid name age
?

tutor

tid
*

name

(b) Fragment diagrams for object classes

tutor

tid *
name

s-ref

s-ref

t-ref

 Figure 5.2: Figures for the example 5.2 illustrating Algorithm 2

	1. Introduction
	Motivation
	Background
	3.1 ORA-SS Model
	3.2 Mapping ORA-SS Schema Diagram to XML DTD
	3.3 XML’s Inadequacies

	Normal Form (NF) for ORA-SS Schema Diagram
	5. Converting ORA-SS Schema Diagrams into Normal Form
	Related Work
	Conclusion
	Reference

