
A New Normal Form for the Design
of Relational Database Schemata

CARLO ZANIOLO

Sperry Research Center

This paper addresses the problem of database schema design in the framework of the relational data
model and functional dependencies. It suggests that both Third Normal Form (3NF) and Boyce-
Codd Normal Form (BCNF) supply an inadequate basis for relational schema design. The main
problem with 3NF is that it is too forgiving and does not enforce the separation principle as strictly
as it should. On the other hand, BCNF is incompatible with the principle of representation and prone
to computational complexity. Thus a new normal form, which lies between these two and captures
the salient qualities of both is proposed. The new normal form is stricter than 3NF, but it is still
compatible with the representation principle. First a simpler definition of 3NF is derived, and the
analogy of this new definition to the definition of BCNF is noted. This analogy is used to derive the
new normal form. Finally, it is proved that Bernstein’s algorithm for schema design synthesizes
schemata that are already in the new normal form.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design--normal
forms

General Terms: Algorithms, Design, Theory

Additional Key Words and Phrases: Relational model, functional dependencies, database schema

1. INTRODUCTION

The concept of normal form has supplied the cornerstone for most of the formal
approaches to the design of relational schemata for database systems. Codd’s
original Third Normal Form (3NF) [9] was followed by a number of refinements.
These include Boyce-Codd Normal Form (BCNF) [lo], Fourth Normal Form
[121, and Fifth Normal Form [131. The referenced works have greatly contributed
to bettering our understanding of the properties of relational schemata and of
semantic constraints in database relations. However, the proposed normal forms
suffer from a number of drawbacks. In particular, they do not seem conducive to
efficient algorithms for schema design [3], and their main motivation is the
elimination of update anomalies, which constitutes an elusive [18] and possibly
unattainable [7] objective.

In contrast, other formal approaches [6,18] have proposed, as a formal objective
for schema design, the complete representation of semantic constraints. When

Author’s address: Bell Laboratories, Holmdel, NJ 07733.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1982 ACM 0362-5915/82/0900-0489 $00.75

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982, Pages 489-499.

490 l Carlo Zaniolo

dealing with formal constraints, such as functional or multivalued dependencies,
this objective can be formulated with mathematical rigor [4, 181. Moreover,
Bernstein [6] proposed an algorithm to design schemata consisting of 3NF
relations such that the set of functional dependencies of interest is completely
represented by the keys of the schema relations.

Unlike 3NF, BCNF (and therefore Fourth Normal Form and Fifth Normal
Form) is not well suited for designing schemata according to the representation
principle. Indeed, as we see later, there are cases in which a given set of FD’s
cannot be represented by the keys of a BCNF schema. Moreover, even when
such a BCNF schema exists, there are good reasons to believe that finding it is
computationally very hard [3]. Therefore, as noted in [3] and [4], the historical
transition from 3NF to BCNF cannot be simplistically labeled an improvement,
but must instead be regarded as a step which, along with some advantages, has
brought significant problems.

In this paper we introduce a simpler definition of 3NF, which clarifies the
relationships between 3NF and BCNF. Then we introduce a normal form which
is between 3NF and BCNF and possesses some of the better qualities of both. In
particular, this new normal form is well suited for designing schemata according
to the representation principle. We prove that Bernstein’s schema design algo-
rithm [6] produces schemata that satisfy this new definition.

The new normal form is developed in the framework of functional dependencies.
Its extension to the more general framework of multivalued dependencies [17,12]
and join dependencies [13, 15, 161 will be discussed in future reports.

2. RELATIONS AND FUNCTIONAL DEPENDENCIES

In the relational approach the database is viewed as a set of relations of time-
varying content [9, 111. A relation R with attribute set {AI, AS, . . . , A,} is
denoted R (AI, AZ, . . . , A,). To each attribute Ai there corresponds an underlying
domain denoted DOM(Ai). An instance of R, that is, its content at a certain
instant in time, is defined as a subset of the Cartesian product DOM(A1) x . . .
x DOM(A,). This instance can be represented as a table having the elements of
this subset as rows and the attributes of R as columns. If r is a row of this table
(i.e., an element in an instance of R), then r[A] denotes the value of this row in
the A-column; r[A] is called the A-value of r. Likewise, if X is a subset of the
attribute set of R, then the X-value of r is the subrow of r, of length] X 1, whose
R-value, for each B E X, is equal to r[B]. We use the letters A, B, and C to
denote single attributes and the letters X, Y, W, and Z to denote sets of attributes.

A schema consists of a set of relations, where each relation is defined by its
attribute sets and some semantic constraints. In this paper we restrict our
attention to constraints which can be expressed as functional dependencies
(FDs). Let R be a relation and let X and Y be nonempty subsets of its attributes.
An instance of R is said to obey the FD f: X + Y, when every two rows of this
instance that have identical X-values also have identical Y-values. The FD of R,
f: X + Y, is a statement which specifies that every instance of R must obey f If
fisnotanFDofR,wewriteX-P Y.

The existence of certain FDs in a relation implies the existence of others (i.e.,
no instance of R can exist which obeys the former FDs but not the others).

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982.

New Normal Form for Relational Database Schemata * 491

Inference rules are means to construct these implied dependencies. A system of
inference rules is said to be complete when every implied dependency can be
derived by (repeated) applications of these rules.

The following is a complete system of inference rules for functional dependen-
cies [2, 51:

F1 (Reflexivity): If Y C X, then X+ Y.
$2 (Augmentation): If 2 c Wand X + Y, then XIV+ YZ.
F3 (Transitivity): If X + Y and Y + 2, then X + 2.

Other useful rules can be derived from these. For instance,

F4 (Pseudotransitivity): If X + Y and YW + 2, then XW + 2.
F5 (Decomposition): If X + Y, then X + A for every A in Y.

Because of F5, we assume, without loss of generality [2], that all the FDs have
only one attribute at their right side. The FD X -+ A is called nontrivial when A
is not an element of X. Note that a trivial FD is obeyed by all instances.

Let F be a set of functional dependencies. The set of FDs which consists of the
FDs in F, plus those which are derivable from these by repeated applications of
the previous inference rules, is called the closure of F denoted F+. Thus, f is
implied by F if and only if it belongs to F+.

Following [3], we define a derivation of f from F to be a sequence of FDs
rfl,... , fn] such that fn = f and for each i, 1 I i 5 n, one of the following holds:

(1) f;: is in F, or
(2) fi is the result of invoking &‘I, or
(3) fi is the result of applying n to one of the fi , . . . , R-1, or
(4) fi is the result of applying F4 to two of the FDs fi, . . . , &I.

The occurrence of an FD, f, in the derivation of an FD, g, is said to be
redundant if it is possible to eliminate this occurrence of f (and possibly some
other FDs) from the derivation and obtain a derivation of the same FD, g. Since
Fl, J?2, and F4 constitute a complete set of inference rules it follows that f E F+
if and only if there exists some derivation of f from F. The following lemma,
proved in [6] and [2], is used later.

LEMMA 1. Let F be a set of FDs, and let f: X + Y be in F. If f is used
nonredundantly in some derivation from F of an FD g: Z + W in F+, then
Z + X is also in F+.

A cover of F is any set of FDs that has the same closure as F. An FD, f E F, is
redundant if it is implied by (F - {f}). A cover is redundant if and only if it
contains a redundant FD. Thus the algorithm for constructing a nonredundant
cover for F simply eliminates redundant FDs from F, until no more such FDs can
be found. The core of this algorithm is a test to decide whether a member f E F
is redundant, that is, to check whether f belongs to (F - {f})‘. A linear-time
algorithm to perform this test is given in [3]. Thus the previous algorithm for
finding a nonredundant cover is quadratic-time.

Let R be a relation with attribute set U. X c U is called a key for R when U is
functionally dependent on X but not on any subset of X. The importance of the

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982.

492 * Carlo Zaniolo

concept of key in the relational approach cannot be overemphasized. First of all,
keys serve as unique identifiers of rows in relations, thus ensuring content-
addressability of the database. This has a strong bearing on the relational data
manipulation languages and also on the storage structures used to support data
access at the implementation level. Finally, most data definition languages will
include constructs to allow explicit declaration of keys but not explicit declaration
of FDs. Thus, keys are means to define and represent to a user the presence of
FD constraints. If X is a key for a relation R, and A is an attribute of R not in X,
then X += A is said to be embodied in R. The set of FDs represented by a schema
is defined as the closure of the FDs embodied in schema relations. An attribute
participating in some key will be called a key attribute.’ Normal form definitions
are based on the concept of keys. Following [6], we refer to any superset, proper
or otherwise, of a key of R as a superkey of R.

3. NORMAL FORMS

Let R be a relation with attribute set U, let X c ZJ, and let A E U. A is transitively
dependent on X if there exists a Y c U such that X + Y, Y 74 X, Y + A, and A
6 Y. The definition of Third Normal Form can be stated as follows [6]:

Definition 1. A relation is 3NF if every attribute transitively dependent on a
key is a key attribute.

Note that inherent in the definition of 3NF is a distinction between key
attributes and nonkey attributes. This distinction was removed with the definition
of Boyce-Codd Normal Form [lo].

Definition 2. A relation R is BCNF if for every nontrivial FD of R, X + A, X
is a superkey for R.

Every relation which is BCNF is also 3NF, but not vice versa. To illustrate the
difference between these two definitions, we next consider two simple examples
taken from [171.

The first example concerns departments (denoted by their number D#), their
managers (denoted by their badge ID, MGID), and accounts (denoted by their
number ACC#). We assume that there is a one-to-one correspondence between
MGID and D# (one distinct manager per department). Moreover, there is a
many-to-many correspondence between ACC# and D# (or MGID), as a depart-
ment will have many accounts, some shared among departments (e.g., those
relating to overhead costs). Then, we have a relation, let us call it DA, with
attributes D#, MGID, and ACC#, having the following FDs:

fl: D# + MGID
f2: MGID + D#.

For this example, one might choose the following schema (the key attributes
are underlined and different styles of underlining denote distinct keys):

DA (D# MGID, ACC#) -’ __-- ----- (3.1)

’ Key attributes are often called prime attributes.

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982.

New Normal Form for Relational Database Schemata * 493

Thus, DA has two keys: one is (D#, ACC#), the other is (MGID, ACC#). Since
every attribute is a key attribute, DA is 3NF. Nevertheless, it presents some
obvious problems. First of all, (3.1) does not represent fl and f2. This schema
only embodies the weaker constraints (D#, ACC#) + MGID and (MGID,
ACC#) + D#. Therefore, the constraints which follow from the one-to-one
correspondence between D# and MGID are not represented by this schema.
Moreover, those readers who like to work in terms of update anomalies [9] will
find quite a few of them here (e.g., if keys cannot be assigned null values, then
information on departments and their managers cannot be stored before these
me assigned some accounts). Most remarkably, these problems disappear once
(3.1) is replaced by (3.2) and (3.3) below:

DA1 (D#, M-GID) (3.2)

DA2 (D#, ACC#) (3.3)

Note that this new schema represents fl and f2 and all the relationships of
interest. If BCNF is used, then the designer would have to replace (3.1), which is
not BCNF, by the pair (3.2), (3.3). This is a much better schema, separately
representing the one-to-one relationship between D# and MGID and the many-
to-many relationship between D# and ACC# by two independent relations.
Thus, this example typifies the case in which BCNF performs better than 3NF
because it implements the principle of separation to a stricter degree than 3NF
does [4].

Our second example consists of a regional list of telephone numbers. We have
a relation TEL with attributes AREA, NUMBER, and PLACE, where AREA
and NUMBER denote, respectively, the area code and the telephone number,
and PLACE denotes the location (e.g., the town) of this telephone. Obviously,
the area code and number identify the location, but also the location identifies
the area code. Thus, we have the following FDs:

f3: (AREA, NUMBER) + PLACE
f4: PLACE + AREA.

The following 3NF schema could be used for this example:

TEL (PLACE, AREA, NUMBER). (3.4)

This schema is not satisfactory since it represents f3 but not f4. If BCNF
schemata are used, then (3.4), which is not BCNF, will have to be replaced by the
pair

TEL1 (PLACE, AREA) (3.5)

TEL2 (PLACE, NUMBER). (3.6)

This second schema is not acceptable either, since while it represents f4 it does
not represent f3. Thus, neither a schema consisting of (3.4) nor one consisting of
(3.5) and (3.6) is satisfactory according to the representation principle. A solution
compatible with the representation principle was proposed in [6]. This includes
both (3.4) and (3.5) in the schema, thus embodying both f3 and f4.

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982.

494 * Carlo Zaniolo

The previous discussion illustrates that BCNF, unlike 3NF, is incompatible
with the representation principle. 3NF is also superior to BCNF with respect to
algorithmic design of relational schemata. While an efficient algorithm to design
a 3NF schema which represents a given set of FDs is available [6], no efficient
algorithm is known for finding a BCNF schema which represents these FDs (even
when such a schema exists). Moreover, there are strong indications that the
problem is computationally difficult [3]. Therefore, it has been suggested in [3]
that 3NF, and not BCNF, should be used in the design of relational schemata.
However, as the first example shows, 3NF is often too forgiving and will pass bad
relations which, instead, should be further decomposed. In this paper we propose
a new normal form which is stricter than 3NF but preserves its qualities with
respect to the representation principle and computational simplicity.

4. A NEW NORMAL FORM

Say that G denotes a set of FDs and that f: X + A is an element of G. Then f will
be said to be elementary with respect to G, when A is not in X and G+ does not
contain an FD, X’ + A, with X’ C X. An elementary FD for a relation R is one
which is elementary with respect to the FDs of R. Elementary FDs have a simple
structure and a number of formal properties useful in schema design [l&l]. The
definition of BCNF can be reformulated in terms of elementary FDs.

LEMMA 2. A relation R is BCNF iff for every elementary FD of R, say, X-, A,
X is a key of R.

PROOF. Easy.

We now have the following two equivalent formulations of 3NF.

LEMMA 3. A relation R is 3NF iff for every nontrivial FD of R, X + A,

(a) X is a superkey for R, or
(b) A is a key attribute for R.

PROOF. Let X + A be a nontrivial FD and let A be a nonkey attribute. Also let
Y be a key of R. Then, Y + X. Therefore, A is not transitively dependent on Y
iff X -+ Y, that is, iff X is a superkey of R. Q.E.D.

LEMMA 4. A relation R is 3NF iff for every elementary FD of R, say, X + A,

(a) XisakeyforR,or
(b) A is a key attribute for R.

PROOF. Easy.

The preceding lemmas provide new and simpler definitions of 3NF. Most
important, they reveal an analogy between the definitions of 3NF and BCNF
which was not previously known: the two definitions are identical except for (b),
which waives condition (a) for key attributes. Thus, if we keep condition (a)
unchanged but relax (b), we obtain a normal form definition which is stricter
than 3NF but weaker than BCNF.

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982.

New Normal Form for Relational Database Schemata * 495

Observe now schema (3.4) with keys (AREA, NUMBER) and (PLACE, NUM-
BER). While the first key defines the elementary FD, (AREA, NUMBER) --)
PLACE, the second does not define any elementary FD. The only nontrivial FD
represented by this key is (PLACE, NUMBER) + AREA, which is not elemen-
tary. This key does not contribute much to definitions of the semantic constraints
of this relation since it does not represent the elementary FD, PLACE -+ AREA.
This elementary FD must be represented separately by including (3.5) in the
schema. Once this is done, the key (PLACE, NUMBER) becomes expendible in
terms of data definition, since every FD represented in the schema can be derived
without it. Therefore, let us define the concept of elementary key. A key X of a
relation R is said to be elementary if, for some attribute A in U, X + A is an
elementary FD of R. An attribute which belongs to some elementary key is called
an elementary key attribute. We can now define our new normal form by making
a distinction between elementary keys and nonelementary keys (which, as shown
above, are expendable in terms of data definition.)

Definition 3. A relation R is Elementary Key Normal Form (EKNF) if for
every elementary FD of R, say, X + A,

(a) X is a key for R, or
(b) A is an elementary key attribute for R.

This definition illustrates the importance of elementary FDs and elementary keys
for normal forms. Note that if X + A is elementary and condition (a) above is
satisfied, then X is an elementary key. Similar considerations can be made
regarding 3NF (Lemma 4) and BCNF (Lemma 2). It is also easy to define EKNF
using the concept of superkey:

Lemma 5. A relation R is EKNF iff for every nontrivial FD in R, X + A,

(a) X is a superkey of R, or
(b) A is an elementary key attribute for R.

Clearly, every relation which is BCNF is EKNF, and every relation which is
EKNF is 3NF. The previous examples illustrate the differences between these
normal forms more concretely. Take, for instance, our relation DA (3.1). This
relation has no elementary key and, therefore, no elementary key attribute. Now,
if we consider the elementary FD: D# + MGID, we find that D# is not a key,
nor is MGID an elementary key attribute. Thus (3.1) is not EKNF. Therefore, if
EKNF is used in schema design, (3.1) will be replaced by the pair (3.2) and (3.3),
which is a much better schema. In relation TEL, instead, we find the elementary
FDs, f3: (AREA, NUMBER) + PLACE and f4: PLACE + AREA, and the
elementary key (AREA, NUMBER). Thus, the left side of f3 is an (elementary)
key for TEL. Moreover, the right side of f4 is an elementary key attribute. Thus
(3.4) is EKNF and so is the combined schema (3.4), (3.5). As we know, relation
(3.4) is not BCNF.

In conclusion, we see that the new normal form is stricter than 3NF and
implements the principle of separation [4] much better than does 3NF. At the
same time, EKNF is, unlike BCNF, compatible with the representation principle;

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982.

496 . Carlo Zaniolo

in the next section, we prove that Bernstein’s algorithm [6], which is known to
produce 3NF schemata, does actually produce EKNF schemata.

5. SCHEMA DESIGN

Bernstein proposed an algorithm where, given a set of FDs, G, a relational schema
S is produced having the following properties [6]:

(1) Complete Representation. The schema S represents all the FDs in G.
(2) Minimality. No schema with fewer relations represents G.
(3) 3NFproperty. Every relation in S is 3NF.

This algorithm, given in Figure 1, executes in a time bound of O(n2), where n
denotes the length of the string used to represent G. As previously stated, we
assume that all the FDs in G have only one attribute at the right side (using the
decomposition property of FDs, it is easy to reduce any set of FDs to this form).
Then we prove that the algorithm does actually produce EKNF relations. Observe
first that we have the following property:

LEMMA 6. Every FD in the minimal cover H,produced by Step 1 of Bernstein’s
algorithm, is elementary with respect to G+.

PROOF. Easy.

We can now prove the following:

THEOREM 1. Every key synthesized by Bernstein’s algorithm is elementary.

PROOF. If X is a synthesized key for a relation R, then H must contain some
elementary FD with left side X, say, fi X+ A. There are two possibilities:

1. f E (H’ + J)‘. Then A is in R and, by definition, X is an elementary key.
2. f P (H’ + J)‘. In this case, f must have been deleted from H at Step 4 since

f E (W’ + J) - {fl)‘. (5.1)

The cover His a minimal. Thus, every nonredundant derivation off: X + A from
(H’ + J)- { f) uses some g: Y + B, where g E J, and g is not derivable from H
- { f). But if g is not derivable from H - { f), then each derivation of g from H
must use f Thus, Lemma 1 yields X H Y. Therefore, X and Y are both synthesized
keys for R which then contains attribute B. We now complete the proof by
showing that h: X + B is elementary. For this purpose, observe that, since g is
not implied by H - { f>, neither is h: X + B (otherwise, one could use it in place
of Y+ B to derive ffrom H- {f>.) Thus,

he (H- {f-l)‘. (5.2)

We prove that h is elementary by contradiction: say that h’ E H+, where h’: X’
+ B with X’ properly contained in X. Now, since h’ E H’+ and h’ is derivable
from H without the use of f (otherwise X’ + X by Lemma 1, contradicting the
fact that f is elementary), then h’ is implied by (H - { f)). Since this contradicts
(5.2), our proof is complete. Q.E.D.
ACM Transactions on Database Systems, Vol. 7, No. 3, September 1992.

New Normal Form for Relational Database Schemata 497

Synthesizing a Relational Schema from a Set of FDs

Step 1: (Eliminate extraneous attributes and find nonredundant cover.) For each
fiX-,AEGandeachBEXdo,ifp:(X-(B))+Athenreplacefby
p in G. Then find a nonredundant cover H for G.

Step 2: (Partition.) Partition H into groups such that all the FDs in each group
have identical left sides.

Step 3: (Merge Equivalent Keys.) Set J equal to the empty set. For each pair of
groups, say, Hl and H2 with left sides X and Y, respectively, merge Hl
and H2 together if there is a bijection X c1 Yin H’. For each A E Y, add
fl: X -+ A to J, and if fl is in H delete it from H. Likewise, for each
BEX,addf2:Y-,BtoJ,andiff2isinHdeleteitfromH.

Step 4: Find H’ G H such that (H’ + J)+ = (H + J)’ and no proper subset of H
has this property. Add each FD of J into the corresponding group of If’.

Step 5: (Construct Relations.) For each group, construct a relation consisting of
the attributes appearing in that group. Each set of attributes that appears
on the left side of any FD in the group is a key of the relation (each key
so constructed is called synthesized). The set of constructed relations
constitutes a schema for the given set of FDs, G.

Fig. 1. Bernstein’s algorithm.

THEOREM 2. Every relation produced by Bernstein’s algorithm is EKNF.

PROOF. Indeed, if a relation R produced by the algorithm were to contain an
elementary FD, say, X + A, where X were not a key, nor A belonged to any
synthesized key, then A would be transitively dependent on the synthesized keys
of R. And this would contradict the main result of [6]. Q.E.D.

The principles of representation, minimal redundancy, and separation were
proposed in [4] as a general basis for schema design and as a yardstick for
evaluating schema design algorithms. Since they satisfy properties (1) and (2),
the schemata produced by Bernstein’s algorithm satisfy the principles of repre-
sentation and minimal redundancy. Moreover, we now find that these schemata
satisfy the principle of separation to an extent which was not previously known.
Indeed, they satisfy the EKNF definition, which is significantly stricter than
3NF. This indicates that the algorithm supplies a sound basis for schema design.
This conclusion is corroborated by recent results which extend and improve the
original algorithm. For instance, it has been shown in [18] that the algorithm can
often be used, following a decomposition driven by both functional and multival-
ued dependencies, to ensure a better modeling of nonfunctional relationships.
Moreover, with the addition presented in [S], the algorithm produces schemata
that, along with the properties previously discussed (including the EKNF prop-
erty), also have the lossless join property [l]. Moreover, the algorithms proposed
in [14] can be used to improve these schemata further, by removing from each
relation every attribute that can be eliminated without compromising represen-
tation, thus enforcing a stronger notion of minimal redundancy. These results
seem to confirm the basic soundness and robustness of Bernstein’s algorithm and
stress the importance of EKNF which, more accurately, identifies the class of
schemata produced by this algorithm.

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982.

498 l Carlo Zaniolo

6. CONCLUSION

In this paper we have improved the current understanding of the properties of
normal forms and their design algorithms. We have also proposed a new normal
form which, according to the principles of representation and separation, supplies
a better basis for schema design than do 3NF or BCNF.

We began by deriving a (surprisingly) simpler definition of 3NF. Then we noted
the analogy between this new definition and the definition of BCNF. A new
normal form was then proposed which combines the salient qualities of both
BCNF and 3NF. Finally, we proved that the algorithm proposed in [6] for the
design of 3NF schemata does in fact produce EKNF schemata.

ACKNOWLEDGMENTS

I am grateful to Phil Bernstein and Stott Parker for their valuable suggestions for
improvements. I would also like to thank Dan Connelly, Murray Edelberg, Ken
Lin, and the referees for their comments.

REFERENCES

1. AHO, A.V., BEERI, C., AND ULLMAN, J.D. The theory of joins in relational databases. ACM
Trans. Database Syst. 4,3 (Sept. 1979), 297-314.

2. ARMSTRONG, W.W. Dependency structures of database relationships. In Proc. IFIP 74, North-
Hohand, Amsterdam, 1974, pp. 580-583.

3. BEERI, C., AND BERNSTEIN, P.A. Computational problems related to the design of normal form
relational schemata. ACM Trans. Database Syst. 4, 1 (March 1979), 30-59.

4. BEERI, C., BERNSTEIN, P.A., AND GOODMAN, N. A sophisticate’s introduction to data base
normalization theory. In Proc. 4th Conf. Very Large Data Bases (West Berlin, Germany, Sept.
1978), 113-124.

5. BEERI, C., FAGIN, R., AND HOWARD, J.H. A complete axiomatization for functional and multi-
valued dependencies. In Proc. ACM SIGMOD Conf. (Toronto, Canada, Aug. 3-5), ACM, New
York, 1977, pp. 47-61.

6. BERNSTEIN, P.A. Synthesizing Third Normal Form relations from functional dependencies.
ACM Trans. Database Syst. 1,4 (Dec. 1976) 277-298.

7. BERNSTEIN, P.A., AND GOODMAN, N. What does Boyce-Codd Normal Form do? In Proc. 6th
Conf. Very Large Data Bases (Montreal, Canada, Oct. l-3 1980).

8. BISKUP, J., DAYAL, U., AND BERNSTEIN, P.A. Synthesizing independent database schemata. In
Proc. ACM SIGMOD Conf. (Boston, Mass., May 30-June l), ACM, New York, 1979, pp. 143-151.

9. CODD, E.F. Further normalization of the data base relational model. In Data Base Systems,
Courant Institute Computer Science Symposia Series, vol. 6, R. Rustin, Ed., Prentice-Hall,
Englewood Cliffs, N.J., 1972.

10. CODD, E.F. Recent investigations in relational database systems. In Proc. IFIP 74, North-
Holland, Amsterdam, 1974, pp. 33-36.

11. DATE, C.J. An Introduction to Database Systems, 2nd ed. Addison-Wesley, Reading, Mass.,
1977.

12. FAGIN, R. Multivalued dependencies and a new formal form for relational databases. ACM
Trans. Database Syst. 2,3 (Sept. 1977), 262-278.

13. FAGIN, R. Normal forms and relational database operators. In Proc. 1979 ACM SZGMOD Conf.
(Boston, Mass., May 30-June l), ACM, New York, 1979, pp. 153-160.

14. LING, T.W., TOMPA, F.W., AND KAMEDA, T. An improved Third Normal Form for relational
databases. ACM Trans. Database Syst. 62 (June 1981), 329-346.

15. MAIER, D., MENDELZON, A.O. AND SAGIV, Y. ‘Testing implications of data dependencies. ACM
Trans. Database Syst. 4,4 (Dec. 1979), 455-469.

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982.

New Normal Form for Relational Database Schemata 499

16. RISSANEN, J. Theory of relational databases-A tutorial survey. In Proc. 7th Symp. Math.,
Found. Comp. Sci. Lecture notes in Computer Science 64, Springer-Verlag, pp. 537-551.

17. ZANIOLO, C. Analysis and design of relational schemata for database systems. Ph.D. dissertation,
Tech. Rep. UCLA-Eng-7769, Dep. Computer Science, Univ. California at Los Angeles, July 1976.

18. ZANIOLO, C., AND MELKANOFF, M.A. On the design of relational database schemata. ACM
Trans. Database Syst. 6, 1 (March 1981), l-47.

Received November 1979; revised January 1981; accepted February 1981

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982.

