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Abstract

This paper presents a task allocation scheme via self-
organizing swarm coalitions for distributed mobile sen-
sor network coverage. Our approach uses the concepts
of ant behavior to self-regulate the regional distributions
of sensors in proportion to that of the moving targets to
be tracked in a non-stationary environment. As a re-
sult, the adverse effects of task interference between
robots are minimized and sensor network coverage is
improved. Quantitative comparisons with other track-
ing strategies such as static sensor placement, potential
fields, and auction-based negotiation show that our ap-
proach can provide better coverage and greater flexibil-
ity to respond to environmental changes.

Introduction

Sensor network has recently received significant attention
in the areas of networking, embedded and multi-agent sys-
tems (Lesser, Ortiz Jr., & Tambe 2003) due to its wide array
of real-world applications (e.g., disaster relief, environment
monitoring). In these applications, the distributed sensing
task is achieved by the collaboration of a large number of
static sensors, each of which has limited sensing, computa-
tional, and communication capabilities.

One of the fundamental issues that arises in a sensor net-
work is coverage. Traditionally, network coverage is max-
imized by determining the optimal placement of static sen-
sors in a centralized manner, which can be related to the
class of art gallery problems (O’Rourke 1987). However,
recent investigations in sensor network mobility reveal that
mobile sensors can self-organize to provide better coverage
than static placement (Yadgar, Kraus, & Ortiz Jr. 2003). Ex-
isting applications have only utilized uninformed mobility
(i.e., random motion or patrol) (Lesser, Ortiz Jr., & Tambe
2003). In contrast, our work here focuses on informed, in-
telligent mobility to further improve coverage.

Our network coverage problem is motivated by the fol-
lowing constraints that discourage static sensor placement or
uninformed mobility: a) no prior information about the exact
target locations, population densities or motion pattern, b)
limited sensory range, and c) very large area to be observed.
All these conditions may cause the sensors to be unable to
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cover the entire region of interest. Hence, fixed sensor loca-
tions or uninformed mobility will not be adequate in general.
Rather, the sensors have to move dynamically in response to
the motion and distribution of targets and other sensors to
maximize coverage. Inspired by robotics, the above problem
may be regarded as that of low-level motion control to coor-
dinate the sensors’ target tracking movements in the contin-
uous workspace. Alternatively, it can be cast as a high-level
task allocation problem by segmenting the workspace into
discrete regions (Fig. 1a) such that each region is assigned a
group or coalition of sensors to track the targets within. We
will now refer to mobile sensors as robots since they are the
same in this paper’s context.

This paper presents a two-level integrated approach
(Fig. 1b) to distributed mobile sensor network coverage in
complex, dynamic environments. At the lower level, each
robot uses a reactive motion control strategy proposed by
Low, Leow, & Ang, Jr. (2003) known as Cooperative Ex-
tended Kohonen Maps (EKMs) to coordinate their target
tracking within a region without the need of communica-
tion. This strategy is also responsible for obstacle avoidance,
robot separation to minimize task interference, and naviga-
tion between regions via beacons or checkpoints plotted by
a motion planner. Low, Leow, & Ang, Jr. (2003) showed that
cooperative EKMs perform more efficient target tracking
than the well-known potential fields method (Parker 2002)
in complex, unpredictable environments.

At the higher level, the robots use a dynamic ant-based
task allocation scheme to cooperatively self-organize their
coalitions in a decentralized manner according to the target
distributions across the regions. This is the focus of the pa-
per. It contrasts with the other works of biologically-inspired
robot swarms (Balch & Arkin 1998; Matarić 1997) that em-
phasize control- rather than task-level cooperation. Our ant-
based scheme addresses the following issues, which distin-
guish it from the other task allocation mechanisms:

Task Allocation for Multi-Robot Tasks Existing Multi-
Robot Task Allocation (MRTA) algorithms (i.e., auction-
and utility-based) (Gerkey & Matarić 2002; Parker 1998)
generally assume that a multi-robot task can be partitioned
into several single-robot tasks. But this may not be always
possible or the multi-robot task can be more efficiently per-
formed by coalitions of robots. Furthermore, the partitioned
single-robot tasks are sometimes assumed to be indepen-
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Figure 1: (a) A 4 m× 3 m environment that is divided into 6 regions. The circle at the bottom right represents the robot’s
sensing radius of 0.3 m (drawn to scale). The environment is 42.44 times as large as the robot’s sensing area. (b) Two-level
integrated framework for multi-robot cooperation (MRTA = Multi-Robot Task Allocation, EKM = Extended Kohonen Map).

dent, i.e., no interference would result. However, the robots
are bound to interfere with each other’s ongoing activity ei-
ther physically (e.g., space competition) or non-physically
(e.g, shared radio bandwidth, conflicting goals). In the ex-
treme case, when too many robots are involved, little or no
work gets done as they totally restrict each other’s move-
ment. Hence, task interference has an adverse effect on
the overall system performance (Goldberg & Matarić 1997).
Knowing that physical interference can be implied from
robot density (Goldberg & Matarić 1997), our decentral-
ized task allocation scheme dynamically distributes robots
in real-time by estimating robot densities in different re-
gions to minimize interference. Bucket brigade algorithm
(Schneider-Fontań & Matarić 1998) can also eliminate in-
terference by assigning the robots to separate regions. How-
ever, it cannot respond in real-time to changes in regional
distributions of targets due to target motion.

Coalition Formation for Minimalist Robots Existing
multi-agent coalition formation schemes (Sandholm et al.
1999; Shehory & Kraus 1998) require complex planning,
explicit negotiation, and precise estimation of coalitional
cost. Hence, they may not be able to operate in real-time
in a large-scale sensor network. Our task allocation method
via self-organizing swarm coalitions is reactive, dynamic,
and can operate with uncertain coalitional cost and resource-
limited robots.

Cooperation of Resource-Limited Robots Robots with
limited communication and sensing capabilities can only ex-
tract local, uncertain information of the environment. As
such, distributed methodologies are required to process and
integrate the noisy, heterogeneous information to improve
its quality so that it can be effectively utilized to boost the
task performance. Furthermore, if the robots have limited
computational power, their cooperative strategies cannot in-
volve complex planning or negotiations. Existing task al-
location mechanisms have either assumed perfect commu-
nications, high computational power, centralized coordina-
tion or global knowledge of the task and agents (Gerkey &
Matarić 2002; Krieger, Billeter, & Keller 2000; Parker 1998;
Simmons et al. 2000). For example, recent coverage appli-
cations (Yadgar, Kraus, & Ortiz Jr. 2003) employ coalition
leaders, one in each region, to negotiate with each other.

This negotiation is conducted iteratively using an auction-
based mechanism and attempts to balance the proportion of
robots to that of the targets across all regions. To do so, each
coalition leader must be able to obtain the exact number of
robots and targets in its region as well as the task perfor-
mance of these robots. Furthermore, it has to synchronize
its negotiation with the coalition leaders in other regions via
long-range communication. Note that this negotiation can
be conducted entirely by a central coordinator but it requires
even more resources. In contrast, our proposed method
does not require such expensive resources, thus catering to
resource-limited robots. The robots endowed with our ant-
based scheme require only local sensing information and
short-range communication. The robot coalitions can also
be self-organized asynchronously without negotiation.

Ant-Based Multi-Robot Task Allocation

Many multi-robot tasks, e.g., foraging, transportation, ma-
nipulation, sensing and exploration, have been inspired by
social insects (Bonabeau, Dorigo, & Théraulaz 1999), in
particular, ants. Our MRTA scheme encapsulates three con-
cepts of ant behavior to self-organize the robot coalitions
according to the target distributions across regions: (a) en-
counter pattern based on waiting time, (b) self-organization
of social dominance, and (c) dynamic task allocation.

Encounter Pattern Based on Waiting Time

Encounter patterns provide a simple, local cue for ants with
sensory and cognitive limitations to assess regional densities
of ants and objects of interest, which are crucial to regulating
the division of labor (Gordon 1999). Instead of relying on
global communication to relay target positions and density
estimation (Jung & Sukhatme 2002), our scheme uses en-
counter patterns to predict target density via local sensing.
Regional robot density is captured in a similar way using
local communication.

An encounter pattern can be derived from a series of wait-
ing time or interval between successive encounters. This
simple form of information processing has accounted for the
complex adaptive process of task allocation in ant colonies
(Hirsh & Gordon 2001). In our coverage task, the waiting
time of a robot is defined in terms of its encounters with
the other robots and targets. A robot encounter is defined



as a reception of a message from another robot in the same
region. A target encounter is defined as an increase in the
number of targets tracked between the previous and the cur-
rent time steps. For a robot i in region r, the waiting time
for other robots wir(k) and targets w′

ir(k) is the time inter-
val between the (k − 1)th and kth encounters. Note that
each waiting time is subject to stochastic variation. Hence,
multiple samplings of waiting time have to be integrated to
produce an accurate estimation of the regional density. The
average waiting time Wir(k) between the (k − 1)th and kth
robot encounters for a robot i in region r is computed as:

Wir(k) =
1

n
wir(k) +

n − 1

n
Wir(k − 1)

n = min(k, nmax)

(1)

where nmax is the maximum number of encounters that is
monitored. This limit allows the robot to forget the early
samplings of waiting time, which have become obsolete.
The average target waiting time W ′

ir(k) is updated in the
same manner. Both waiting times are updated according to
the changing environment, and are inversely proportional to
the robot and target densities in region r. The target density
directly reflects the task demand of the region. The robot
density reflects the amount of physical interference in the
region, which is inversely proportional to the task demand.
Therefore, the task demand Sir(k) of a region r can be de-
termined by robot i as the ratio of the waiting times:

Sir(k) =
Wir(k)

W ′

ir(k)
. (2)

The task demand Sir(k) will be used in the self-organization
of social dominance as well as in dynamic task allocation.

Self-Organization of Social Dominance

The division of labor in an ant colony is strongly influenced
by its social dominance order (Camazine et al. 2001), which
self-organizes to match the task demands of the colony and
the changing environment. Our scheme is inspired by this
concept to move robots out of a region that has a lower
target-to-robot density ratio than the other regions. Instead
of fixing the dominance order (Goldberg & Matarić 1997),
the social dominance of the robots in each coalition is self-
organized according to their individual task performance.
Robots in the same coalition engage in dominance contests
at a regular interval τ if they are within communication
range. The winner increases its tendency to stay in the cur-
rent region while the loser increases its tendency to leave the
current region and join another coalition in other regions.
When robot i encounters robot j in region r, the probability
of robot i winning a contest against robot j is defined as:

P (robot i winning) =
n2

i S
2

ir

n2

i S
2

ir + n2

jS
2

jr

(3)

where Sir and Sjr are respectively the task demand of region
r determined by robot i and robot j, and ni and nj are the
number of targets currently under observation by robot i and
robot j respectively. Equation 3 implies that robot i would

most likely win the contest if it observes more targets than
robot j. However, if both are tracking the same number of
targets, then their individual evaluation of the task demand
can be used to differentiate them. This will distinguish a
robot that has been observing the targets for a long time from
another that just encounters the same number of targets.

To inject the influence of social dominance on the self-
organization of robot coalitions, each time a robot i wins a
contest (Eq. 3), it increases its tendency of staying in the cur-
rent region, which is represented by the response threshold
θi(t) to be used for dynamic task allocation:

θi(t) = θi(t − 1) + δ (4)

where δ is small constant. Conversely, each time the robot
loses, it decreases its tendency of staying in the region:

θi(t) = θi(t − 1) − δ . (5)

θi varies in the range [0,1] to prevent robots from being
overly submissive or dominating.

Dynamic Task Allocation

The distributed task allocation algorithm in ants can effi-
ciently arrange the ants in proportion to the amount of work
in the changing environment (Tofts 1993). In a similar man-
ner, our scheme aims to self-organize the robot coalitions
according to the target distributions across the regions.

Our dynamic task allocation scheme is based on the no-
tion of response thresholds (Bonabeau, Dorigo, & Théraulaz
1999). In a threshold model, robots with low response
thresholds respond more readily to lower levels of task de-
mand than do robots with high response thresholds. Per-
forming the task reduces the demand of the task. If robots
with low thresholds perform the required tasks, the task de-
mand will never reach the thresholds of the high-threshold
robots. However, if the task demand increases, high-
threshold robots will engage in performing the task.

MRTA strategies that utilize fixed response thresholds
(Jung & Sukhatme 2002; Krieger, Billeter, & Keller 2000)
are incapable of responding effectively to dynamic environ-
ments (Bonabeau, Dorigo, & Théraulaz 1999). In contrast,
the thresholds in our scheme are continuously updated by
the self-organizing process of social dominance.

To be effective in task allocation, a robot must at least
have some knowledge of the task demands in its neighbor-
ing regions in order to make rational task decisions. To do
so, robot i maintains a memory of the task demand Sir of
each region r (initialized to 0) and the amount of time Tir

that it previously spent in region r. Tir can be used as a cer-
tainty measure of Sir. In addition to computing Sir using
Equation 2, Sir can also be updated when robot i receives a
message from a neighboring robot j with Sjr less than Sir.
Then Sir and Tir are updated to take the values Sjr and Tjr

respectively. In this manner, the task demands of the regions
are kept in memory. Robot i can then predict which region
has the greatest task demand and join that region. At every
time interval of τ , if Sir receives no update, the certainty
value Tir is decreased by τ while the task demand Sir is in-
creased by a small amount, such that its magnitude reflects
the robot’s motivation to explore.



Our distributed MRTA scheme uses a stochastic problem
solving methodology. It is performed at intervals of τ to
allow for multiple samplings of waiting time during each
interval. The probability of a robot i to stay in its current
region c is defined as:

P (stay) =
S2

ic

S2

ic + (1 − θi)2 + T−2

ic

. (6)

On the other hand, the probability of a robot i to leave region
c to go to region r is defined as:

P (leave) =
S2

ir

S2

ir + θ2

i + T−2

ir + d2
cr

(7)

where dcr is the pre-computed collision-free distance be-
tween region c and region r, which can be viewed as the
cost of task switching. Note that a robot that loses in the
dominance contest in a coalition does not always leave the
region. If it experiences a higher task demand in its region
than in other regions, it will have a high tendency of remain-
ing in its coalition.

From Equations 6 and 7, if the robot does not respond to
any regions, it will not switch task and will remain in the
current coalition. The robot may also respond to more than
one region. This conflict is resolved with a method that is
similar to Equation 3. The probability of a robot i choosing
a region r that it has responded to is:

P (choose) =
(SirlnTir)

2

∑

r

(SirlnTir)
2

. (8)

If the robot i chooses region r that is not the current region
c, then it will employ the reactive motion control strategy
to move through the checkpoints plotted by the planner to
region r. The generation of checkpoints is performed by
the approximate cell decomposition method for motion plan-
ning (Low, Leow, & Ang, Jr. 2002).

Experiments and Discussion

This section presents quantitative evaluations of the ant-
based MRTA scheme for distributed mobile sensor network
coverage in a complex, unpredictable environment. The ex-
periments were performed using Webots, a Khepera mobile
robot simulator, which incorporated 10% white noise in its
sensors and actuators. 12 directed distance sensors were
modelled around its body of radius 3 cm. Each sensor had a
range of 17 cm, enabling the detection of obstacles at 20 cm
or nearer from the robot’s center, and a resolution of 0.5 cm
to simulate noise. Each robot could also sense targets and
kin robots at 0.3 m or nearer from its center and send mes-
sages to other robots that were less than 1 m away via short-
range communication. A 4 m×3 m environment (Fig. 1a)
was used to house the Khepera robots and targets, which
were randomly scattered initially. The number of robots var-
ied from 5, 10 to 15, which corresponded to total robot sens-
ing area of 11.8%, 23.6%, and 35.3% of the environment
size. The mobile targets were forward-moving Braitenberg
obstacle avoidance vehicles (Braitenberg 1984) that changed
their direction and speed with 5% probability.

Sensor Network Coverage

The first performance index determines the overall sensor
network coverage of the robots (Parker 2002):

sensor network coverage =

T
∑

t=1

100
n(t)

NT
(9)

where N is the total number of targets, n is the number of
targets being tracked by the robots at time t, and the experi-
ment lasts T amount of time. N and T are fixed respectively
as 30 targets and 10000 time steps at intervals of 128 ms.

Using this index, a quantitative test was conducted to
compare the network coverage of the robots adopting five
distributed tracking strategies: (1) potential fields, (2) co-
operative EKMs, (3) static placement, (4) auction-based ne-
gotiation, and (5) ant-based MRTA. Unlike the latter three
strategies, potential fields and cooperative EKMs are reac-
tive motion control techniques that do not involve explicit
task allocation. With static placement, static sensors are
placed at least 0.6 m apart to ensure no overlap in cover-
age. With auction-based negotiation and ant-based MRTA,
the robots are fitted with cooperative EKMs to coordinate
their target tracking within a region, avoid obstacles, and
navigate between regions.

Test results (Fig. 2a) show that ant-based MRTA provides
better coverage than the other strategies. The differences in
coverage between any two strategies have been verified us-
ing t-tests (α = 0.1) to be statistically significant. Notice
that 5 mobile robots endowed with our method can track
better than 10 static sensors. Although auction-based ne-
gotiation uses complex negotiation, longer communication
range, and more information about the robots and targets,
it does not perform better than our ant-based scheme. This
will be explained in the section of degree of specialization.

Total Coalitional Cost

The second performance index determines the total coali-
tional cost (Shehory & Kraus 1998) of the robots. Given a
set of connected regions where coverage tasks are to be per-
formed, and a set A of M robots, the task allocation algo-
rithm assigns a robot coalition Cr ⊆ A to the coverage task
in region r such that (a)

⋃

r Cr = A, (b) ∀r 6= s, Cr

⋂

Cs =
∅, and (c) each Cr has a positive cost |(nr/N) − (mr/M)|
where mr and nr are the number of robots and targets in re-
gion r respectively and N is the total number of targets. The
objective is to minimize the total coalitional cost (Shehory
& Kraus 1998):

total coalitional cost =
∑

r

∣

∣

∣

nr

N
−

mr

M

∣

∣

∣

. (10)

This index varies within the range [0,2]. A coalitional cost
of 0 implies that the robot distribution over all regions is ex-
actly proportional to the target distribution. In this manner,
interference between robots is at its minimum, which will
improve overall coverage. High costs imply the opposite.

Test results (Fig. 2b) show that auction-based negotia-
tion and ant-based MRTA have the lowest coalitional costs.
Hence, we can conclude from Figures 2a and 2b that, with
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Figure 2: Comparison of performance using different motion control and task allocation strategies: (a) Sensor network cover-
age, (b) total coalitional cost, and (c) mean degree of specialization.

a lower cost, a higher coverage can be achieved. Although
auction-based negotiation achieves slightly lower coalitional
cost than ant-based MRTA, its coverage is lower. This will
be explicated in the next section. Coalitional cost has been
validated using t-tests (α = 0.1) to be significantly different
for various strategies except those without explicit task al-
location (i.e., potential fields and cooperative EKMs). This
is expected since they do not perform coalition formation,
which account for their higher costs.

Coalitional cost is higher with fewer robots because with
less robots, it is more difficult to achieve the same proportion
of robots to that of the targets over all regions.

Degree of Specialization

To achieve low coalitional cost, the robot coalitions must
be highly responsive, i.e., they can self-organize rapidly ac-
cording to the changing distributions of targets across re-
gions. In a temporally varying environment, an ant colony
has to increase its responsiveness to cope with frequent
changes in task demands by employing more generalist ants,
which perform a range of tasks (Wilson & Yoshimura 1994).
Similarly, we will like to examine the effect of our non-
stationary task environment, induced by moving robots and
targets, on the degree of specialization in the robots. Based
on Shannon-Wiener information variable H (Lehner 1979),
the third performance index quantifies the degree to which a
robot specializes in a region:

degree of specialization = 1 − H

H = −
∑

r

pr logR pr
(11)

where pr is the proportion of time a robot stays in region r
for the task duration of T , and R is the total number of re-
gions. This index varies within the range [0,1]. A degree of
1 implies the robot specializes in tracking only one region
whereas a degree of 0 means the robot spends equal propor-
tion of time tracking in all R regions.

Figure 2c shows the mean degree of specialization of all
the robots, which is lower for auction-based negotiation and
ant-based MRTA. Hence, we can conclude from Figures 2b
and 2c that a larger number of generalist robots leads to a
lower coalitional cost. Although auction-based negotiation
achieves lower degree of specialization and coalitional cost
than ant-based MRTA, its coverage is lower. This is because
reducing the degree of specialization will incur more time in
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task switching and consequently decrease the time for per-
forming the task (Spencer, Couzin, & Franks 1998). In our
test, this means that a robot will switch between several re-
gions, thus incurring longer time in travelling between re-
gions and target searching, and spending less time in tar-
get tracking. This accounts for poorer coverage of auction-
based negotiation.

For ant-based MRTA, the mean degree of specialization is
slightly higher with a smaller number of robots because each
robot receives fewer messages from the other robots. As a
result, the robots are less certain about the task demands in
other regions. This causes the robots to be more specialized
and less inclined to explore other regions. With coopera-
tive EKMs or potential fields, fewer robots result in higher
mean degree of specialization because the robots interfere
less with each other and stay longer in a particular region.

Figure 3 shows the proportions of robots within different
ranges of degrees of specialization for the case of 10 robots.
Using ant-based MRTA and auction-based negotiation for
explicit task allocation, most of the robots have degrees of
specialization < 0.6. The other two methods without explicit
task allocation have comparatively larger number of robots
with degrees of specialization ≥ 0.6. Hence, the methods
with explicit task allocation are less rigid to changes in re-
gional task demands and incur lower coalitional cost.

Summary of Test Results

Compared to the other schemes, ant-based MRTA and
auction-based negotiation have lower degree of specializa-
tion, coalitional cost, and higher coverage. But the degree of
specialization cannot be too low as the cost of generalization
would then exceed its benefits. This explains the higher cov-
erage of ant-based MRTA over auction-based negotiation.
Also, strategies without explicit task allocation can perform



better than static placement by utilizing robot mobility to
track the targets.

Our approach has also been tested on the coverage of eva-
sive targets that avoid the tracking robots. In this test of 15
robots, the coverage of the static sensors has dropped to 10%
but our ant-based scheme can still maintain a 53% coverage.
The coverage of the other schemes have dropped slightly.

Our scheme is robust to robot failures, which is crucial for
operating in dynamic, uncertain environments. For example,
in the event that 5 robots fail, our scheme can still outper-
form a fully operational static sensor network (Fig. 2a).

We have also implemented a deterministic version of ant-
based MRTA but it performs slightly worse than the stochas-
tic version. This is because robots endowed with the deter-
ministic scheme will move to a region only if information
about the region flows out from it. If this region does not
contain any robot, no information about this region can be
transmitted to robots in other regions. Thus, no robot will
move into this region even if it contains many targets to be
tracked. Our stochastic scheme resolves this problem.

Conclusion

This paper describes a task allocation scheme via self-
organizing swarm coalitions for distributed mobile sensor
network coverage. It uses concepts of ant behavior to self-
regulate the division of labor in proportion to the regional
task demands in the changing environment. Hence, the
sensor network functions like an adaptive multiagent sys-
tem. Quantitative comparisons with auction-based negotia-
tion, potential fields and static deployment have shown that
our approach can provide better coverage. Our work also
demonstrates that in a temporally varying task environment,
the self-organization of coalitions enables the robots to re-
spond rapidly to frequent changes in regional task demands.
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