
Action Selection in Continuous State and Action Spaces by
Cooperation and Competition of Extended Kohonen Maps

Kian Hsiang Low
Inst. Engineering Science

National University of Singapore
7 Engineering Drive 1

Singapore 119260, Singapore

ieslkh@nus.edu.sg

Wee Kheng Leow
Dept. Computer Science

National University of Singapore
3 Science Drive 2

Singapore 117543, Singapore

leowwk@comp.nus.edu.sg

Marcelo H. Ang Jr.
Dept. Mechanical Engineering

National University of Singapore
10 Kent Ridge Crescent

Singapore 119260, Singapore

mpeangh@nus.edu.sg

ABSTRACT

This paper presents an action selection framework based
on an assemblage of self-organizing neural networks called
Cooperative Extended Kohonen Maps. This framework en-
capsulates two features that significantly enhance a robot’s
action selection capability: self-organization in the contin-
uous state and action spaces to provide smooth, efficient
and fine motion control; action selection via the coopera-
tion and competition of Extended Kohonen Maps to achieve
more complex motion tasks. Qualitative tests demonstrate
the capability of our action selection method for both single-
and multi-robot motion tasks.

Categories and Subject Descriptors

I.2 [Computing Methodologies]: Artificial Intelligence;
I.2.6 [Artificial Intelligence]: Learning—connectionism

and neural nets; I.2.9 [Artificial Intelligence]: Robotics

General Terms

Algorithms, Design, Experimentation, Performance
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1. INTRODUCTION
A central issue in the design of behavior-based control

architectures for autonomous agents is the formulation of
effective action selection mechanisms (ASMs) to coordinate
the behaviors. This paper describes a neural network-based
ASM for autonomous non-holonomic mobile robots. Our
motivation is to develop a motion control strategy that can
perform distributed multi-robot surveillance in unknown,
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dynamic, and unpredictable environments. By implement-
ing the ASM using an assemblage of self-organizing neural
networks, it induces the following key features that signifi-
cantly enhance the agent’s action selection capability: self-

organization of continuous state and action spaces to pro-
vide smooth, efficient and fine motion control, and action

selection via the cooperation and competition of Extended

Kohonen Maps to achieve more complex motion tasks.

2. ACTION SELECTION FRAMEWORK
Our proposed ASM, termed Cooperative Extended Koho-

nen Maps (EKMs), is implemented by connecting an ensem-
ble of EKMs. An EKM extends the Kohonen Self-Organizing
Map [1]. Besides encoding a set of input weights that self-
organize in the sensory input space, the neurons also pro-
duce outputs that vary with the incoming sensed inputs.
Our implementation extends the work of [2] by connecting
several EKMs to form cooperative EKMs. These neural net-
works cooperate and compete to produce an appropriate
motor action for the robot to approach targets, negotiate
unforeseen, possibly concave, obstacles, and keep away from
robot kins when it is tracking moving targets (Fig. 1).

Our ASM framework consists of four types of EKMs: tar-
get localization, obstacle localization, robot kin localization,
and motor control EKMs. In the presence of a target, the
neurons in the target localization EKM, which encodes tar-
get location in the local sensory input space U

′, are activated
(Fig. 1a). A target field with the shape of an elongated Gaus-
sian is produced (Fig. 1b) such that the neurons at and near
the target location have the strongest activities. The elon-
gated target field is crucial to the robot’s avoidance of small
concave obstacles.

Similarly, the presence of an obstacle activates neurons
in the obstacle localization EKMs. The neurons in these
EKMs at and near the obstacle locations will be activated
to produce obstacle fields (Fig. 1c). These obstacle fields
are stretched along the obstacle directions such that neurons
beyond the obstacle locations are also inhibited to indicate
inaccessibility. Robot kin fields are activated in a similar
way in the robot EKMs in the presense of robot kins.

In activating the motor control EKM, the obstacle fields
are subtracted from the target field (Fig. 1d). If the target
lies within the obstacle fields, the activation of the motor
control EKM neurons close to the target location will be
suppressed. Consequently, another neuron at a location that
is not inhibited by the obstacle fields becomes most highly
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Figure 1: Cooperative EKMs. (a) In response to the target ⊕, the nearest neuron (black dot) in the target
localization EKM (ellipse) of the robot (gray circle) is activated. (b) The activated neuron produces a target
field (dotted ellipse) in the motor control EKM. (c) Three of the robot’s sensors detect obstacles and activate
three neurons (crosses) in the obstacle localization EKMs, which produce the obstacle fields (dashed ellipses).
(d) Subtraction of the obstacle fields from the target field results in the neuron at 4 to become the winner
in the motor control EKM, which moves the robot away from the obstacle.
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Figure 2: (a–d) Motion of robot (gray) in an environment with two unforeseen obstacles (black) moving
in anticlockwise circular paths. The robot successfully negotiated past the extended walls and the moving
obstacles to reach the goal (small black dot). (e) Motion of robot (dark gray) in an environment with
unforeseen static obstacles (light gray). The robot successfully navigated through the checkpoints (small
black dots) located at the doorways to reach the goal.

activated (Fig. 1d). This neuron produces a control parame-
ter that moves the robot away from the obstacle. While the
robot moves around the obstacle, the target and obstacle lo-
calization EKMs are continuously updated with the current
locations and directions of the target and obstacles. Their
interactions with the motor control EKM produce fine and
smooth motion control of the robot to negotiate the obstacle
and reach the target. In the case of multi-robot tracking of
multiple targets, multiple target fields and robot kins fields
are activated. The robots act like highly repulsive obstacles
to other robots, thus separating them from each other.

3. EXPERIMENTS AND DISCUSSIONS
Three qualitative tests were conducted to demonstrate the

capabilities of cooperative EKMs in performing complex mo-
tion tasks. The experiments were performed using Webots,
an embodied simulator for Khepera mobile robots, which
incorporated 10% noise in its sensors and actuators.

The environment for the first test consisted of three rooms
connected by two doorways (Fig. 2(a)–(d)). The middle
room contained two obstacles moving in anticlockwise cir-
cular paths. The robot began in the left-most room and was
tasked to move to the right-most room. Test results show
that the robot was able to negotiate past the extended walls
and the dynamic obstacles to reach the goal.

The environment for the second test consisted of three
rooms connected by two doorways with unforeseen static
obstacles (Fig. 2(e)). The robot began in the top corner of
the left-most room and was tasked to move into the narrow
corner of the right-most room via checkpoints plotted by a
planner. The robot was able to move through the check-
points to the goal by traversing between narrowly spaced
unforeseen convex obstacles in the first and the last room,
and overcoming an unforeseen concave obstacle in the mid-
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Figure 3: Cooperative tracking of moving targets.
When the targets were moving out of the robots’
sensory range, the robot below decided to track the
targets moving to the bottom left while the robot
above responded by tracking the targets moving to
the top right. In this way, all targets could still be
observed by the robots.

dle room. This result further confirms the effectiveness of
cooperative EKMs in handling complex, unpredictable en-
vironments.

The third test (Fig. 3) illustrates how two robots endowed
with cooperative EKMs cooperate to track four moving tar-
gets. When the targets were moving out of the robots’ sen-
sory range, the robot below chose to track the two targets
moving to the bottom left while the robot above responded
by tracking the two targets moving to the top right. In this
manner, all targets could be observed by the robots. This
test shows that the two robots can cooperate to track multi-
ple moving targets without communicating with each other.
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