
Continuous-Spaced Action Selection for Single- and Multi-Robot Tasks Using
Cooperative Extended Kohonen Maps

Kian Hsiang Low†, Wee Kheng Leow†, and Marcelo H. Ang, Jr.‡
†Dept. of Computer Science, National University of Singapore

3 Science Drive 2, Singapore 117543, Singapore

‡Dept. of Mechanical Engineering, National University of Singapore

10 Kent Ridge Crescent, Singapore 119260, Singapore

†lowkh, leowwk@comp.nus.edu.sg, ‡mpeangh@nus.edu.sg

Abstract - Action selection is a central issue in the de-
sign of behavior-based control architectures for autonomous
mobile robots. This paper presents an action selection frame-
work based on an assemblage of self-organizing neural net-
works called Cooperative Extended Kohonen Maps. This
framework encapsulates two features that significantly en-
hance a robot’s action selection capability: self-organization
in the continuous state and action spaces to provide smooth,
efficient and fine motion control; action selection via the co-
operation and competition of Extended Kohonen Maps so
that more complex motion tasks can be achieved. Qualita-
tive and quantitative comparisons for both single- and multi-
robot motion tasks show that our framework can provide bet-
ter action selection than do action superposition methods.

1 Introduction

A central issue in the design of behavior-based control archi-
tectures for autonomous agents is the formulation of effective
mechanisms to coordinate the behaviors. These mechanisms
determine the policy of conflict resolution between behav-
iors, which involves behavioral cooperation and competition
to select the most appropriate action. Developing such an
action selection mechanism (ASM) is non-trivial due to re-
alistic constraints such as environmental complexity and un-
predictability, and resource limitations, which include com-
putational and cognitive capabilities of the agent, incomplete
knowledge of the environment, and time constraints.

This paper describes a neural network-based ASM for au-
tonomous non-holonomic mobile robots. Our motivation is
to develop a motion control strategy that can perform dis-
tributed multi-robot surveillance in unknown, dynamic, and
unpredictable environments. By implementing the ASM us-
ing an assemblage of self-organizing neural networks, it in-
duces the following key features that significantly enhance
the agent’s action selection capability:

Self-organization of continuous state and action spaces

As emphasized in recent autonomous agent research utilizing
dynamical systems theory [2, 11] and reinforcement learning
[7, 15], an agent’s ASM should operate in continuous state
and action spaces so that its interaction with the complex,
unpredictable environment can be versatile and robust. In
particular, a high degree of smoothness, flexibility and pre-
cision in motion control is essential for efficiently executing

sophisticated tasks and interacting with humans. This char-
acteristic can only be achieved with continuous response en-
coding (i.e., infinite set of responses) of very low-level ve-
locity/torque control of motor/joint actuators. Our proposed
ASM uses self-organizing neural networks to map continu-
ous state space to continuous motor control space, so as to
produce fine, smooth and efficient motion control.

In contrast, ASMs that employ discrete response encod-
ing (i.e., finite, enumerated set of responses) [4, 14] produce
high-level motion commands (e.g., forward, left, right) that
are usually too coarse for fine, smooth robot control. Conse-
quently, the robot may fail to negotiate unforeseen complex
obstacles.

Action selection by cooperation and competition of
self-organizing neural networks

There are four general classes of ASMs: behavior arbitration
[4,9], action voting [13,14], action superposition [1,3,6], and
sensor fusion [5, 8]. Our method is similar to sensor fusion.
However, instead of fusing sensory inputs, each sensory in-
put activates a separate self-organizing neural network, and
the neural networks cooperate and compete to produce a final
action. The versatility of our method will be shown in Section
3.

In contrast, the other three classes of ASMs tend to under-
utilize the sensory inputs that can potentially yield useful in-
formation for selecting rational actions. For example, a robot
that uses action superposition ASM cannot pass through a
narrow doorway because the forward action induced by the
goal is cancelled by the backward action to avoid obstacles.

2 Action Selection Framework

2.1 Overview

Our proposed ASM is implemented by connecting an ensem-
ble of Extended Kohonen Maps (EKMs), which are exten-
sions of the Kohonen Self-Organizing Map. In addition to
encoding a set of input weights that self-organize the sensory
input space, the EKM neurons also produce outputs that vary
with the incoming sensed inputs.

Our ASM framework consists of four modules (Fig. 1).
The target localization EKMs in the target reaching module
are activated by the presence of targets within the robot’s tar-
get sensing range. Each EKM receives a sensed target loca-
tion and outputs corresponding excitatory signals to the motor
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Figure 1: An action selection framework that is implemented
by an ensemble of EKMs.

control EKM in the neural integration module at and around
the locations of the sensed targets.

The obstacle localization EKMs in the obstacle avoid-
ance module are activated by the presence of obstacles within
the robot’s obstacle sensing range. Each EKM receives a
sensed obstacle location and outputs corresponding inhibitory
signals to the motor control EKM in the neural integration
module at and around the locations of the sensed obstacles.
The robot localization EKMs in the robot separation module
work in a similar fashion as the obstacle localization EKMs
except that they process the sensed robot locations.

The motor control EKM in the neural integration module
serves as the sensorimotor interface, which integrates the ac-
tivity signals from the EKMs for cooperation and competition
to produce an appropriate motor signal to the actuators.

All the modules operate asynchronously at different rates.
The neural integration module is activated as and when neural
activities are received. One noteworthy aspect of our frame-
work is that no communication between robots is needed for
the robots to cooperate in the tracking of multiple moving tar-
gets. In this paper, we demonstrate that robots, which are able
to discriminate between targets, obstacles and robot kins, are
adequate for achieving the cooperative task.

2.2 Target Reaching

The target reaching module adopts an egocentric representa-
tion of the sensory input vector up = (α, d)T where α and d
are the direction and distance of a target relative to the robot’s
current location and heading. It uses the target localization
EKM to self-organize the sensory input space U . Each neu-
ron i in the EKM has a sensory weight vector wi = (αi, di)

T

that encodes a region in U centered at wi. Each target that
appears within the robot’s sensory range activates a differ-
ent target localization EKM. The same target can activate a
different EKM at a different time. Based on each incoming
sensory input up of the target location, the target localization
EKM outputs excitatory signals to the motor control EKM in
the neural integration module (Section 2.4).

Target Localization

For each sensory input up, p = 1, . . . , n,

1. Determine the winning neuron s in the pth target local-
ization EKM. Each winning neuron s is the one whose
sensory weight vector ws = (αs, ds)

T is nearest to the
input up = (α, d)T :

D(up,ws) = min
i∈A(α)

D(up,wi). (1)

The difference D(up,wi) is a weighted difference be-
tween up and wi:

D(up,wi) = βα(α − αi)
2 + βd(d − di)

2 (2)

where βα and βd are constant parameters. The minimum
in Eq. 1 is taken over the set A(α) of neurons encoding
very similar angles as α:

|α − αi| ≤ |α − αj |,

for each pair i ∈ A(α), j /∈ A(α) .
(3)

In other words, direction has priority over distance in
the competition between EKM neurons. This method
allows the robot to quickly orientate itself to face the
target while moving towards it. In the EKM, each neu-
ron encodes a location wi in the sensory input space U .
The region of U that encloses all the neurons is called
the local workspace U ′. Even if the target falls outside
U ′, the nearest neuron can still be activated (Fig. 2a).

2. Compute output activity ai of neuron i in the p-th target
localization EKM.

ai = Ga(ws,wi) (4)

The function Ga is an elongated Gaussian:

Ga(ws,wi) = exp

[

−

(

αs − αi

σaα

)2

−

(

ds − di

σad

)2
]

.

(5)
Parameter σad is much smaller than σaα, making
the Gaussian distance-sensitive and angle-insensitive.
These parameter values elongate the Gaussian along
the direction perpendicular to the target direction αs

(Fig. 2b). This elongated Gaussian is the target field,
which plays an important role in avoiding local minima
during obstacle avoidance.

2.3 Obstacle Avoidance and Robot Separation

The obstacle avoidance module uses the obstacle localization
EKMs that are self-organized in the same way as the target
localization EKMs (Section 2.5). Each neuron i in the obsta-
cle localization EKM has the same input weight vector wi

as the neuron i in the target localization EKM. The robot
has h directed distance sensors around its body for detect-
ing obstacles. Hence, each activated sensor encodes a fixed
direction αj and a variable distance dj of the obstacle rela-
tive to the robot’s heading and location. Each sensed input
uj = (αj , dj)

T induces an obstacle localization EKM to out-
put inhibitory signals to the motor control EKM in the neural
integration module (Section 2.4).

Obstacle Localization

For each sensory input uj , j = 1, . . . , h,
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Figure 2: Cooperative EKMs. (a) In response to the target ⊕, the nearest neuron (black dot) in the target localization EKM
(ellipse) of the robot (gray circle) is activated. (b) The activated neuron produces a target field (dotted ellipse) in the motor
control EKM. (c) Three of the robot’s sensors detect obstacles and activate three neurons (crosses) in the obstacle localization
EKMs, which produce the obstacle fields (dashed ellipses). (d) Subtraction of the obstacle fields from the target field results in
the neuron at 4 to become the winner in the motor control EKM, which moves the robot away from the obstacle.

1. Determine the winning neuron s in the j-th obstacle lo-
calization EKM. The obstacle localization EKM is acti-
vated in the same manner as Step 1 of Target Localiza-
tion (Section 2.2).

2. Compute output activity bi of neuron i in the j-th obsta-
cle localization EKM:

bi = Gb(ws,wi) (6)

where

Gb(ws,wi) = exp

[

−

(

αs − αi

σbα

)2

−

(

ds − di

σbd(ds, di)

)2
]

σbd(ds, di) =

{

3.5 if di ≥ ds

0.035 otherwise.
(7)

The function Gb is a Gaussian stretched along the ob-
stacle direction αs so that motor control EKM neurons
beyond the obstacle locations are also inhibited to indi-
cate inaccessibility (Fig. 2c). If no obstacle is detected,
Gb = 0. In the presence of an obstacle, the neurons
in the obstacle localization EKMs at and near the obsta-
cle locations will be activated to produce obstacle fields
(Eq. 6). The neurons nearest to the obstacle locations
have the strongest activities.

The separation between a robot and its other kins is
achieved with robot localization EKMs. These EKMs work in
the same way as obstacle localization EKMs, except that they
produce wider robot kin fields. This has the effect of keeping
a robot away from targets that are close to other robot kins.
As a result, the overlap in the coverage of targets between
robots is minimized.

2.4 Neural Integration

The neural integration module uses a motor control EKM to
integrate the activities from the neurons in the target, obstacle
and robot localization EKMs. It is trained to partition the sen-
sory input space U into locally linear regions. Each neuron i
in the motor control EKM is self-organized in the same way
as the localization EKMs by encoding the same input weight
vector wi as the neuron i in those EKMs. It also has a set
of output weights which encode the outputs produced by the

neuron. However, unlike existing direct-mapping methods
[12, 16] that perform discrete response encoding (Section 1),
the output weights Mi of neuron i of the motor control EKM
represents control parameters in the parameter space M in-
stead of the actual motor control vector. The control param-
eter matrix Mi is mapped to the actual motor control vector
c by a linear model (Eq. 10). Compared to direct-mapping
EKM, indirect-mapping EKM can provide finer and smoother
robot motion control (Section 2.5). With indirect-mapping
EKM, motor control is performed as follows:

Motor Control

1. Compute activity ei of neuron i in the motor control
EKM.

ei =

n
∑

p=1

api −
h

∑

j=1

bji −
m

∑

q=1

rqi (8)

where api is the excitatory input from neuron i of the
p-th target localization EKM (Section 2.2), bji is the in-
hibitory input from neuron i of the j-th obstacle local-
ization EKM and rqi is the inhibitory input from neuron
i of the q-th robot localization EKM (Section 2.3).

2. Determine the winning neuron k in the motor control
EKM. Neuron k is the one with the largest activity:

ek = max
i

ei . (9)

3. Compute motor control vector c:

c = Mkzk (10)

where

zk =

∑

i∈N (k)

G(|ei − ek|)wi

∑

i∈N (k)

G(|ei − ek|)
(11)

G(|ei − ek|) is a Gaussian with its peak located at neu-
ron k and N (k) defines a small set of neurons in the
neighborhood of neuron k. At the goal state at time T ,
zk(T ) = (α, 0)T for any α.

In activating the motor control EKM (Fig. 2d), the obstacle
fields are subtracted from the target field (Eq. 8). If the tar-
get lies within the obstacle fields, the activation of the mo-
tor control EKM neurons close to the target location will be



suppressed. Consequently, another neuron at a location that
is not inhibited by the obstacle fields becomes most highly
activated (Fig. 2d). This neuron produces a control parame-
ter that moves the robot away from the obstacle. While the
robot moves around the obstacle, the target and obstacle lo-
calization EKMs are continuously updated with the current
locations and directions of the target and obstacles. Their in-
teractions with the motor control EKM produce fine, smooth,
and accurate motion control of the robot to negotiate the ob-
stacle and move towards the target until it reaches the goal
state zk(T ) at time step T . In the case of multi-robot tracking
task, the robots act like obstacles to other robots, thus sepa-
rating them from each other.

2.5 Self-Organization of EKMs

In contrast to most existing methods, online training is
adopted for the EKMs. Initially, the EKMs have not been
trained and the motor control vectors c generated are inaccu-
rate. Nevertheless, the EKMs self-organize, using these con-
trol vectors c and the corresponding robot displacements v

produced by c, to map v to c indirectly. As the robot moves
around and learns the correct mapping, its sensorimotor con-
trol becomes more accurate. At this stage, the same online
training mainly fine tunes the indirect mapping. The self-
organized training algorithm (in obstacle-free environment)
is as follows:

Self-Organized Training

Repeat

1. Get sensory input up.

2. Execute target reaching procedure and move robot.

3. Get new sensory input u′
p and compute actual displace-

ment v as a difference between u
′
p and up.

4. Use v as the training input to determine the winning neu-
ron k (same as Step 1 of Target Reaching).

5. Adjust the weights wi of neurons i in the neighborhood
Nk of the winning neuron k towards v:

∆wi = η G(k, i)(v − wi) (12)

where G(k, i) is a Gaussian function of the distance be-
tween the positions of neurons k and i in the EKM, and
η is a constant learning rate.

6. Update the weights Mi of neurons i in the neighborhood
Nk to minimize the error e:

e =
1

2
G(k, i)‖c − Miv‖

2 . (13)

That is, apply gradient descent to obtain

∆Mi = −η
∂e

∂Mi

= η G(k, i)(c − Miv)vT . (14)

The target, obstacle and robot localization EKMs self-
organize in the same manner as the motor control EKM ex-
cept that Step 6 is omitted. At each training cycle, the weights
of the winning neuron k and its neighboring neurons i are
modified. The amount of modification is proportional to the
distance G(k, i) between the neurons in the EKM. The input

weights wi are updated towards the actual displacement v

and the control parameters Mi are updated so that they map
the displacement v to the corresponding motor control c. Af-
ter self-organization has converged, the neurons will stabilize
in a state such that v = wi and c = Miv = Miwi. For
any winning neuron k, given that zk = wk, the neuron will
produce a motor control output c = Mkwk which yields a
desired displacement of v = wk. If zk 6= wk but close to
wk, the motor output c = Mkzk produced by neuron k will
still yield the correct displacement if linearity holds within
the input region that activates neuron k. Thus, given enough
neurons to produce an approximate linearization of the sen-
sory input space U , indirect-mapping EKM can produce finer
and smoother motion control than direct-mapping EKM.

3 Experiments and Discussions

3.1 Robot Motion in Complex, Unpredictable
Environments

This section presents a qualitative evaluation of the action
selection capabilities of a non-holonomic mobile robot en-
dowed with cooperative EKMs for goal-directed, collision-
free motion in complex, unpredictable environments. The ex-
periments were performed using Webots, an embodied sim-
ulator for Khepera mobile robots, which incorporated 10%
noise in its sensors and actuators. 12 directed long-range sen-
sors were also modelled around its body of radius 2.5 cm.
Each sensor had a range of 17.5 cm, enabling the detection
of obstacles at 20 cm or nearer from the robot’s center, and a
resolution of 0.5 cm to simulate noise.

Two tests were conducted to demonstrate the capabilities
of cooperative EKMs in performing complex motion tasks.
The environment for the first test consisted of three rooms
connected by two doorways (Fig. 3(a)–(d)). The middle
room contained two obstacles moving in anticlockwise cir-
cular paths. The robot began in the left-most room and was
tasked to move to the right-most room. Test results show that
the robot was able to negotiate past the extended walls and
the dynamic obstacles to reach the goal.

The environment for the second test consisted of three
rooms connected by two doorways and an unforeseen static
obstacle (Fig. 3(e)). The robot began in the top corner of the
left-most room and was tasked to move into the narrow corner
of the right-most room via checkpoints plotted by a planner.
The robot was able to move through the checkpoints to the
goal by traversing between narrowly spaced convex obstacles
in the first and the last room, and overcoming an unforeseen
concave obstacle in the middle room. This result further con-
firms the effectiveness of cooperative EKMs in handling com-
plex, unpredictable environments.

Similar tests have also been performed on robots that use
action superposition method. In those tests, the robots were
trapped by the narrow doorways between closely spaced ob-
tacles, and were unable to go through the doorways.

3.2 Cooperative Multi-Robot Observation of
Multiple Moving Targets

This section presents qualitative and quantitative tests of the
action selection capabilities of a team of robots, each fitted
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Figure 3: (a–d) Motion of robot (gray) in an environment with two unforeseen obstacles (black) moving in anticlockwise
circular paths. The robot successfully negotiated past the extended walls and the dynamic obstacles to reach the goal (small
black dot). (e) Motion of robot (dark gray) in an environment with an unforeseen static obstacle (light gray). The robot
successfully navigated through the checkpoints (small black dots) located at the doorways to reach the goal.
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Figure 4: (Top row) Robot (gray) using action superposition
ASM got stuck at the stationary target. Eventually, the three
mobile targets moved out of the robot’s sensing range (circle).
(Bottom row) Robot using cooperative EKMs could negotiate
past the stationary target to track all the targets.

with cooperative EKMs, in cooperative tracking of multiple
mobile targets. The motivation of this inherently cooperative
task relates to that of security, surveillance, and reconnais-
sance such that the number of sensors and sensor positionings
cannot be predetermined due to the following constraints: lit-
tle information is known about the exact locations of the tar-
gets; the available sensor range is limited; the area to be ob-
served is so large that it requires placing a lot of static sensors,
which is not economical; the area is physically inaccessible
before the actual deployment. All these conditions may cause
the robots’ sensors to be unable to cover the entire region
of interest. The robots must therefore move dynamically in
response to the targets’ motion to maintain observation and
maximize coverage.

Four tests were conducted using Webots simulator with set-
tings similar to those in Section 3.1. The first test (Fig. 4) was
performed to highlight the advantages of cooperative EKMs
over an action superposition ASM known as potential fields
[6] utilized by [10] for the same task. The robot utilizing po-
tential fields got trapped by the static target while attempting
to track all four targets. Eventually, the three mobile targets
moved out of the robot’s sensing range, causing the robot to
observe only one out of four targets. In contrast, the robot
fitted with cooperative EKMs was able to negotiate past the
stationary target to track the three moving targets as well.
All four targets were thus observed by the robot. The re-
sults of this test demonstrated that local minima situations
could greatly decrease the coverage of targets by robots using
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Figure 5: Cooperative tracking of moving targets. When the
targets were moving out of the robots’ sensory range, the two
robots moved in opposite directions to track the targets. In
this way, all targets could still be observed by the robots.
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potential fields. However, robots endowed with cooperative
EKMs can still provide maximum coverage under these situ-
ations.

The next test (Fig. 5) illustrates how two robots endowed
with cooperative EKMs cooperate to track four moving tar-
gets. When the targets were moving out of the robots’ sensory
range, the robot below chose to track the two targets moving
to the bottom left while the robot above responded by track-
ing the two targets moving to the top right. In this manner, all
targets could be observed by the robots. This test shows that
the two robots can cooperate to track multiple moving targets
without communicating with each other.

Two quantitative tests were conducted to determine the
overall tracking performance of the robot team based on the
following performance index [10]:

observation coverage =

T
∑

t=1

100
n(t)

NT
(15)

where N is the total number of targets, n is the number of
targets being tracked at time t, and the experiment lasts T
amount of time. For both tests, N and T were fixed respec-
tively as 10 targets and 1000 time steps at intervals of 128 ms.



The first test compared the mean observation coverage
of robots adopting four different tracking strategies: Coop-
erative EKMs, potential fields method, fixed deployment,
and random deployment. The environment or arena was
an enclosed, octagonal, obstacle-free region that varied in
size. The mobile targets were forward-moving Braitenberg
obstacle-avoidance vehicles [3] that changed their direction
and speed with 5% probability. Five robots, each with target
and robot sensing radius of 0.3 m, were deployed in this task.
The fixed deployment approach distributed stationary robots
uniformly over the arena. The random deployment approach
allowed the robots to move randomly in a manner similar to
the moving targets. Test results in Fig. 6(a) reveal that, in very
large arenas, tracking strategies that respond dynamically to
the targets’ motion (cooperative EKMs and potential fields)
are significantly better than those that do not (fixed and ran-
dom). In particular, cooperative EKMs offered the highest
observation coverage.

The second test compared the mean observation coverage
of the cooperative-EKM robots with different sensing ranges
and number of robots. The size of the arena was 6.4 m2,
which corresponded to the largest arena used for the first test.
Test results in Fig. 6(b) show that observation coverage in-
creases with increasing number of robots and sensing range.

4 Conclusion

This paper describes an action selection framework based on
an assemblage of cooperative and competitive EKMs. It can
significantly enhance a robot’s action selection capability by
employing self-organization in continuous state and action
spaces to provide smooth, efficient and fine motion control,
and action selection at the neuronal level via the cooperation
and competition of EKMs to yield more flexible and varied
motor patterns for achieving complex motion tasks. Qual-
itative and quantitative comparisons of cooperative EKMs
with action superposition ASMs have shown that cooperative
EKMs can provide better action selection capability in both
the single- and multi-robot motion tasks, even though action
superposition ASMs also operate in continuous state and ac-
tion spaces. Thus, robots that adopt our framework can per-
form better in multi-robot surveillance in unknown, dynamic,
and unpredictable environments.
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