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Abstract— Despite the many significant advances made in
robotics research, few works have focused on the tight integration
of task planning and motion control. Most integration works
involve the task planner providing discrete commands to the
low-level controller, which performs kinematics and control
computations to command the motor and joint actuators. This
paper presents a framework of the integrated planning and
control for mobile robot navigation. Unlike existing integrated
approaches, it produces a sequence of checkpoints instead of
a complete path at the planning level. At the motion control
level, a neural network is trained to perform motor control that
moves the robot from one checkpoint to the next. This method
allows for a tight integration between high-level planning and

low-level control, which permits real-time performance and easy
modification of motion path while the robot is enroute to the
goal position.

I. INTRODUCTION

There have been many advances in robotics over the past

two decades, yet it is not pervasive in our daily lives. This

is mainly due to the difficulties of achieving real-time perfor-

mance and precise, smooth control while executing a complex

task in our unstructured world. Nevertheless, a fair amount of

robotics research has proceeded along two separate directions:

high-level task planning and low-level motion control. Devel-

opments in high-level planning have largely ignored the details

of low-level control. This perpetual gap impedes progress in

achieving our ultimate goal.

To illustrate the point, consider the problem of executing

a collision-free motion to an arbitrary goal in a complex

environment, which can be solved by two contrasting ap-

proaches. Using a world model, high-level motion planning

can determine a feasible sequence of collision-free motion

that achieves a specified goal even in the presence of complex

obstacles. However, it runs into difficulties when unforeseen

or moving obstacles obstruct the generated path because

real-time replanning that reacts to these situations can be

too computationally expensive. On the other extreme of the

motion control spectrum, low-level reactive control relies on

the direct coupling of current sensor data to an appropriate

motion. Thus, it is extremely robust in reacting to uncertainties

and unexpected obstacles but may fail to achieve a globally

specified goal. We can observe that both approaches have

limitations, which are rather complementary. A union of the

two can potentially mitigate their respective drawbacks and

yield the best of both worlds.

The work presented in this paper is a step towards the full

integration of task planning and motion control, motivated

by Khatib’s seminal work [1] on robot planning and control.

This work and a few other integrated architectures ([2], [3])

have utilized methods based on potential fields [4] in their

reactive control algorithms, while their planning and interface

techniques differ. Potential field methods are implementations

of continuous response encoding [5] (infinite set of responses),

which makes low-level control possible. Our architecture

adopts another form of continuous response encoding that can

produce very low-level velocity or torque control of motor

and joint actuators to perform fine, smooth motion control.

This is in contrast to behavior-based architectures ([6]–[8])

and hybrid deliberative/reactive architectures ([5], [9], [10])

that employ discrete response encoding (finite, enumerated set

of responses) and, thus, do not emphasize the significance of

low-level control.

Our framework differs from existing architectures in two

important ways: (1) The planning module produces a sequence

of checkpoints instead of a conventional complete path, thus

the constraint of adhering strictly to a generated path no longer

exists. (2) A neural network is trained to perform fine, smooth

motor control that moves the robot through the checkpoints.

These two aspects facilitate a tight integration between high-

level planning and low-level control, which permits real-time

performance and easy path modification while the robot is

enroute to the goal position.

II. INTEGRATED FRAMEWORK

A. Overview

Our integrated framework consists of 4 levels (Fig. 1). At

the highest level, the planning module produces a sequence of

checkpoints from the start point to the goal using a variation of

the cell decomposition method in [11]. The main difference is

that our algorithm operates in the robot’s workspace instead of

the configuration space. This is unlike conventional planning

algorithms ([12], [13]) which plot the detailed path.

The motion path between checkpoints is determined by the

target reaching module. It senses the checkpoint state relative

to the current state and outputs appropriate motor control
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Fig. 1. A framework for integrated planning and control that combines a
deliberative planning model and a behavioral-based reactive model.

signals. For mobile robot navigation, this module contains a

neural network which is trained to produce a sequence of low-

level (motor velocity) control commands to move the robot

from one checkpoint to the next.

The next lower-level module, obstacle avoidance, senses the

presence of local unforeseen or moving obstacles and produces

additional motor control commands to repel the robot away

from obstacles.

The lowest-level homeostatic control module senses the

internal states of the robot to maintain internal stability by

coordinated responses that automatically compensate for envi-

ronmental changes [5]. This module is not strictly required for

mobile robot navigation, but is crucial for mobile manipulation

tasks [14] where the robot is manipulating an object or the

environment while its base is in motion.

The three lower-level modules constitute a reactive model

of motion control. The command fusion module combines the

control commands from the reactive components into a final

command that is sent to the actuators.

All the modules operate asynchronously at different rates.

The planning module typically operates at the time scale of

several seconds or minutes depending on task complexity. The

target reaching module operates at about 1 second between

servo ticks while the obstacle avoidance module operates at

intervals of 100 ms. The homeostatic control module operates

at 1 ms interval. The command fusion module is activated as

and when control commands are generated (see Section II-E

for details). The asynchronous execution of modules is the key

to preserving reactive capabilities while allowing improvement

of performance by the deliberative planner.

The integrated framework is applicable to both mobile

robot and robot manipulator. This paper focuses on the two

lower-level modules (target reaching and obstacle avoidance)

and their integration with the planning module, with specific

application to target reaching by a nonholonomic mobile robot.

This task is performed by an extended Kohonen map (EKM)

which is trained to produce a sequence of motor velocity

commands. The next section describes the control method,

which is achieved through indirect mapping of sensory input

to motor control. The advantages of indirect-mapping EKM

over direct-mapping EKM ([15], [16]) will be discussed in

the following sections.
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Fig. 2. Target reaching module. EKM neurons map the sensory input space
U indirectly to the motor control space C through the control parameter space
M.

B. Indirect Mapping

Our indirect-mapping EKM adopts an egocentric represen-

tation of the sensory input vector up = (α, d)T where α and

d are the direction and the distance of a checkpoint relative to

the robot’s current location and heading. At the goal state at

time T , up(T ) = (α, 0)T for any α.

If sensorimotor coordination is a linear problem, then the

motor control vector cp would be related to the sensory input

vector up by the linear equation

cp = Mup (1)

where M is a matrix of motor control parameters. The control

problem would be reduced to one of determining M from

training samples.

In practice, however, sensorimotor coordination is a non-

linear problem. To solve the nonlinear problem, the EKM is

trained to partition the sensory input space U into locally linear

regions. Each neuron i in the EKM has a sensory weight vector

wi that encodes the region in U centered at wi. It also has

a set of output weights which encode the outputs produced

by the neuron. However, unlike existing methods (e.g., [15],

[16]), the output weights Mi of neuron i represents control

parameters in the parameter space M instead of the motor

control vector (Fig. 2). The control parameter matrix Mi is

mapped to the actual motor control vector cp by the linear

model of Eq. 1. With indirect-mapping EKM, motor control

is performed as follows:

Motor Control

Given a sensory input vector up,

1) Determine the winning neuron k.

The winning neuron k is the neuron whose sensory

weight vector wk = (αk, dk)T is nearest to the input

up = (α, d)T :

D(up,wk) = min
i∈A(α)

D(up,wi) . (2)

The difference D(up,wi) is a weighted difference be-

tween up and wi:

D(up,wi) = (γα(α − αi)
2 + γd(d − di)

2)1/2 (3)

where γα and γd are constant parameters. The minimum

in Eq. 2 is taken over the set A(α) of neurons encoding

very similar angles as α:

|α − αi| ≤ |α − αj |,

for each pair i ∈ A(α), j /∈ A(α) .
(4)



In other words, direction has priority over distance in the

competition between EKM neurons. This method allows

the robot to quickly orientate itself to face the target

while moving towards it [16].

2) Compute motor control vector cp for target reaching:

cp =

{

Mkup if −c
∗ ≤ Mkup ≤ c

∗

Mkwk otherwise.
(5)

The constant vector c
∗ denotes the upper limit of phys-

ically realizable motor control signal. For instance, for

the Khepera robots, cp consists of the motor speeds vl

and vr of the robot’s left and right wheels. In this case,

we define cp ≤ c
∗ if vl ≤ v∗l and vr ≤ v∗r . Note that if

cp is beyond c
∗, simply saturating the wheel speeds does

not work. For example, if the target is far away and not

aligned with the robot’s heading, then saturating both

wheel speeds only moves the robot forward. Without

correcting the robot’s heading, the robot will not be able

to reach the target.

The motor control algorithm is applied at each time step

t to compute the motor control vector cp(t) for the current

sensory input up(t). It is repeated until the robot reaches the

goal state up(T ) at time step T .

The direct-mapping approach ([15], [16]) maps all the

sensory inputs up in a region in the sensory input space U ,

represented by a neuron k, to the same discrete point ck in

the motor output space C, i.e., cp = ck. As a result, only a

small number of points in C are represented by the neurons’

outputs, i.e., the motor output space is very sparsely sampled.

In contrast, the indirect approach maps each up in a locally

linear region in U to a different point cp in C through Eq. 5.

Since this mapping is continuous, the indirect approach maps a

region in U to a region in C, thus providing finer and smoother

control of the robot’s motion than does direct mapping.

C. Self-Organization of Indirect Mapping

In contrast to most existing methods, online training is

adopted for the indirect-mapping EKM. Initially, the EKM has

not been trained and the motor control vectors cp generated are

inaccurate. Nevertheless, the EKM self-organizes, using these

control vectors cp and the corresponding robot displacements

v produced by cp, to map v to cp indirectly. As the robot

moves around and learns the correct mapping, its sensorimotor

control becomes more accurate. At this stage, the same online

training can still be performed, and it mainly fine tunes the

indirect mapping. The self-organized training algorithm (in an

obstacle-free environment) can be summarized as follows:

Self-Organized Training

Repeat

1) Get sensory input up.

2) Execute motor control algorithm and move robot.

3) Get new sensory input u
′
p and compute actual displace-

ment v as a difference between u
′
p and up.

4) Use v as the training input to determine the winning

neuron k (same as Step 1 of Motor Control).

5) Adjust the weights wi of neurons i in the neighborhood

Nk of the winning neuron k towards v:

∆wi = η G(k, i)(v − wi) (6)

where G(k, i) is a Gaussian function of the distance

between the positions of neurons k and i in the EKM,

and η is a constant learning rate.

6) Update the weights Mi of neurons i in the neighborhood

Nk to minimize the error e:

e =
1

2
G(k, i)‖cp − Miv‖

2 . (7)

That is, apply gradient descent to obtain

∆Mi = −η
∂e

∂Mi
= η G(k, i)(cp − Miv)vT . (8)

At each training cycle, the weights of the winning neuron

k and its neighboring neurons i are modified. The amount of

modification is proportional to the distance G(k, i) between

the neurons in the EKM. The input weights wi are updated

towards the actual displacement v and the control parameters

Mi are updated so that they map the displacement v to the

corresponding motor control cp.

After self-organization has converged, the neurons will

stabilize in a state such that v = wi and cp = Miv = Miwi.

For any winning neuron k, given the sensory input up = wk,

the neuron will produce a motor control output cp = Mkwk

which yields a desired displacement of v = wk. For a

sensory input up 6= wk but close to wk, the motor control

output cp = Mkup produced by neuron k will still yield the

correct displacement if linearity holds within the input region

that activates neuron k. Therefore, given enough neurons to

produce an approximate linearization of the sensory input

space U , the indirect-mapping EKM can produce finer and

smoother motion control than that of direct-mapping EKM.

D. Obstacle Avoidance

The reactive obstacle avoidance module adopts the archi-

tecture of Braitenberg’s Type-3C vehicle [17]. Given a set uo

of sensor inputs, the motor velocity co for obstacle avoidance

is computed as:

co = Zuo (9)

where Z = [zij ] is the control matrix. The matrix elements zij

that link the forward-facing sensors on one side of the robot’s

body with the motor on the opposite side have large negative

values, while the other matrix elements have small positive

values. When the robot senses the presence of an obstacle, say,

in front and on the left, the right motor will rotate backward

faster than the left motor’s rotation forward, thus turning the

robot away from the obstacle.



E. Command Fusion

The motor control for obstacle avoidance co is added to the

motor control for target reaching cp to produce the final motor

control signal c:

c = β cp + (1 − β) co (10)

where β is a constant parameter. The homeostatic control of

the motors is omitted. Equation 10 is analogous to the potential

fields method for obstacle avoidance ([12], [18]) and is able

to overcome small unforeseen obstacles and non-adversarial

moving obstacles.

Recall that the target reaching and obstacle avoidance

modules run at different rates. Each time one of the modules

produces a new motor control signal, it updates a global motor

state, which then causes the combined motor control signal c

to be sent to the robot’s wheels to drive the robot. In the

absence of obstacles, the motor control signal will be sent

at regular intervals. In the presence of obstacles, additional

control signal may be sent as and when obstacles are detected.

This method allows the robot to run as smoothly as possible

and to make adjustments only when necessary.

III. EXPERIMENTS AND DISCUSSIONS

A. Quantitative Evaluation

Experiments were conducted to assess both the quantitative

and qualitative performance of the integrated framework for

mobile robot navigation. The experiments were performed

using Webots (http://www.cyberbotics.com), the simulator for

Khepera mobile robots. In the experiments, EKMs with 15×15
neurons were trained in an obstacle-free environment. Each

training/testing trial took 100,000 time steps and each time

step for target reaching control lasted 1.024 sec. During train-

ing, the weights of the EKM were initialized to correspond

to regularly spaced locations in the sensory input space U .

The robot began the training at the origin and a randomly

selected sequence of checkpoints were presented. The robot’s

task was to move to the checkpoints, one at a time, and weight

modification was performed at each time step after the robot

had made a move. At each time interval of 10,000 steps during

training, a fixed testing process was conducted. In each test, the

robot began at the origin and was presented with 50 random

target locations in sequence. The robot’s task was to move

to each of the target locations (this time, no training was

performed). The above training/testing trial was repeated five

times and testing performance was averaged over the five trials.

In the above trials, the robot’s performance was assessed by

measuring the mean positioning error E, which is the average

distance εi between the center of the robot and the ith target

location after it has come to a stop (i.e., motor control c = 0):

E =
1

RN

∑

i

εi (11)

where R is the number of trials and N is the number of

testing target locations. Experimental results (Fig. 3) show

that, with indirect mapping, the self-organization of EKM
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Fig. 3. Mean positioning error at various training stages.
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Fig. 4. Mean deviation from straight line trajectory.

began to stabilize at 50,000 time steps. At the end of 100,000

time steps, the robot driven by the trained EKM had a mean

positioning error of 3 mm. In comparison, the same EKM

that adopted the direct-mapping method stabilized at about the

same time but the direct-mapping robot had a mean positioning

error of 8 mm.

After training, the robot’s performance in an obstacle-free

environment was assessed by measuring the mean deviation

from straight-line trajectory D(ε). It measures how straight

or wavy the robot’s motion trajectory is:

D(ε) =
1

RN

∑

i

δ̃i(ε) , δ̃i(ε) =
|di(ε) − li|

li
(12)

where di(ε) is the distance traveled to reach closer than a

distance of ε from target location i, li is the straight line

distance to target i, and δ̃i is the deviation from straight-line

trajectory for target i. The radius of the robot is 25 mm.

So, it is reasonable to regard the robot to have reached (and

touched) a target if the distance-to-target ε is less than 25 mm.

Experimental results (Fig. 4) show that, with indirect mapping,

the robot’s trajectories deviated by less than 9% from perfect

straight line trajectories. In contrast, with direct mapping,

its trajectories deviated by about 18% from straight line.

In summary, indirect-mapping EKM produces better motion

control than does direct-mapping EKM.

B. Qualitative Evaluation

The robot’s performance was also qualitatively assessed in

an environment under two conditions: (1) moving obstacle

and (2) unforeseen change in environment. The environment

consisted of three rooms connected by two doorways (Figs. 5–

6). The robot began in the left-most room and was tasked to

move to the right-most room via three checkpoints. The robot

was regarded to have reached a checkpoint if it was less than
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Fig. 5. Motion of robot (gray) in an environment with an obstacle (black)
moving in an anticlockwise circular path.
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opened. The planning module changed the second checkpoint to a new
checkpoint (triangle) while the robot was enroute to the old one. The target
reaching module was able to react immediately and it changed the robot’s
heading.

5 mm from the checkpoint. The robot was required to stop at

the goal. The target reaching module ran at 1.024 sec interval

while the obstacle avoidance module ran at 0.128 sec interval.

In the first test (Fig. 5), a mobile robot, following an

anticlockwise circular path, served as the moving obstacle.

When the robot first met the obstacle on its left, it tried to avoid

by turning right. Subsequently, it encountered the obstacle on

its right and was diverted to the left before it moved out of the

obstacle’s path and headed towards the second checkpoint.

In the second test (Fig. 6), the same checkpoints as the

previous tests were initially planned for the robot. However,

while the robot was enroute to the second checkpoint, the

high-level planning module realized that the environment had

changed. A new checkpoint was planned and given to the

target reaching module. Consequently, the target reaching

module changed the heading of the robot enroute, so that it

could reach the goal through the new checkpoint. This test

clearly demonstrates the advantage of our integrated approach.

First, a plan can be easily modified by changing only the

checkpoints. Second, the target reaching module can react

immediately to the change of a checkpoint, and produce a

course change at ease. In contrast, existing architectures that

plan the entire path need to make detailed modifications to the

path such as turning the robot around while it is moving.

In all cases, the robot under the control of the trained EKM

was able to move to the checkpoints successfully. The paths

taken by the robot between checkpoints were not perfectly

straight due to several realistic constraints. The two-wheeled

robot was non-holonomic. The motor control injections by

the obstacle avoidance and target reaching modules were not

strictly continuous, but at discrete servo intervals. Further-

more, the Webots simulator automatically injected noise into

the sensor inputs and motor outputs, which offered realistic

simulation of low-level robot control. Nevertheless, the paths

taken were quite close to straight lines.

IV. CONCLUSION

A framework for integrated planning and control is pre-

sented in this paper. It differs from existing integrated frame-

works in the following ways. It is one of very few integrated

frameworks that perform continuous response encoding that

permits fine, smooth motion control. A neural network is

trained online to produce the fine, smooth control. It can be

easily trained to control different mobile robots, thus providing

flexibility and adaptability that are lacking in many hard-wired

reactive controllers.

Quantitative experimental results show that the neural net-

work can perform fine control of the motion of a mobile robot

very accurately and efficiently. In addition, qualitative test

results show that the low-level reactive control modules can

be seamlessly integrated with the high-level planning module.

In particular, changes to the robot’s heading can be easily

made at every level even when the robot is enroute to the

goal position. Our continuing research goal is to apply the

integrated framework to the planning and control of static as

well as mobile robot manipulator.
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