
Enhancing the Reactive Capabilities of Integrated Planning

and Control with Cooperative Extended Kohonen Maps

Kian Hsiang Low, Wee Kheng Leow

Dept. of Computer Science

National University of Singapore

3 Science Drive 2, Singapore 117543, Singapore

Email: lowkh, leowwk@comp.nus.edu.sg

Marcelo H. Ang Jr.

Dept. of Mechanical Engineering

National University of Singapore

10 Kent Ridge Crescent, Singapore 119260, Singapore

Email: mpeangh@nus.edu.sg

Abstract— Despite the many significant advances made in robot
motion research, few works have focused on the tight integration
of high-level deliberative planning with reactive control at the
lowest level. In particular, the real-time performance of existing
integrated planning and control architectures is still not optimal
because the reactive control capabilities have not been fully
realized. This paper aims to enhance the low-level reactive
capabilities of integrated planning and control with Cooperative
Extended Kohonen Maps for handling complex, unpredictable
environments so that the workload of the high-level planner
can be consequently eased. The enhancements include fine,
smooth motion control, execution of more complex motion tasks
such as overcoming unforeseen concave obstacles and traversing

between closely spaced obstacles, and asynchronous execution of
behaviors.

I. INTRODUCTION

Robot motion research has proceeded along two dichoto-

mous streams: high-level deliberative planning and low-level

reactive control. Deliberative planning uses a world model to

generate an optimal sequence of collision-free actions that

can achieve a globally specified goal in a complex static

environment. However, in a dynamic environment, unforeseen

obstacles may obstruct the action sequence, and replanning to

react to these situations can be too computationally expensive.

Reactive control directly couples sensed data to appropriate

actions. It allows the robot to respond robustly and timely

to unexpected obstacles and environmental changes but may

be trapped by them. These two paradigms have their own

strengths and weaknesses, which are rather complementary.

Their union into one coherent integrated framework can po-

tentially mitigate their respective drawbacks and yield the best

of both approaches.

Nevertheless, developing such a unification methodology

is non-trivial and recent proposals lack the capacity for real

world use. In particular, the real-time performance of existing

integrated planning and control architectures is still not op-

timal because the reactive control capabilities have not been

fully realized. Often, the workload of the high-level planner

far exceeds that of the low-level reactive controller ([1], [2]).

The planner produces the exact motion path with detailed

sequence of actions to be executed by the actuators. The

reactive controller performs only a single task, i.e., simple

local obstacle avoidance, by correcting the course of action.

Hence, the work presented in this paper aims to augment

the low-level reactive capabilities of integrated planning and

control for handling complex, unpredictable environments so

that the workload of the high-level planner can be conse-

quently eased. The following key enhancements distinguish

our framework from existing architectures:

A. Perform fine, smooth and efficient motion control

A high degree of smoothness and precision in motion

control is essential to the efficient execution of sophisticated

tasks and the social interaction with humans. This can only

be achieved with continuous response encoding (i.e., infinite

set of responses) of very low-level velocity/torque control

of motor/joint actuators. To do so, an alternative would be

to encode all possible action combinations ([3], [4]) but it

becomes computationally intractable with higher degrees of

freedom. Our proposed architecture trains a self-organizing

neural network to continuously sample the low-level configu-

ration space. Other integrated architectures ([2], [5]) utilize

potential fields [6] in their reactive controllers to encode

continuous responses, which are subject to local minima

problems [7]. In contrast, integrated architectures ([8], [9])

that employ discrete response encoding (i.e., finite, enumerated

set of responses) encode high-level motion commands (e.g.,

{forward, left, right, . . . , etc.}), which may not be physically

realizable due to negligence of kinematic constraints (e.g.,

non-holonomy). Interpolation of these discrete commands may

incur problems similar to potential fields.

B. Perform sophisticated motion tasks

Extensive simplification of the reactive mechanisms for

selecting actions may unnecessarily deflate the reactive ca-

pabilities to achieving only simple tasks because information

useful to selecting actions has not been fully exploited. For

example, arbitration strategies [10] only allow one winning

behavior among a group of competing ones to assume full

control of the robot until the next selection cycle. This

precludes the execution of several, possibly conflicting motion

tasks (e.g., target reaching and obstacle avoidance) in parallel.

Superposition techniques ([6], [11], [12]) perform a vector sum

of action commands, each optimal to its respective behavior,

to produce a combined output that may not guarantee the

Proc. 19th IEEE ICRA’03, pp. 3428-3433, May 12-17, 2003, Taipei, Taiwan.

.
.

..

..
.

.
.

actuatorsneural
integration

time scale

long−term

real−time

reactive model

1

a

h

target
reaching

avoidance
obstacle

deliberative

model

cb

obstacle
avoidance

b

planning
world
model

points
check

local
obstacles

Fig. 1. A framework for the tight integration of planning, target reaching,
and obstacle avoidance.

satisfaction of the overall motion task. Problems of local

minima and no passage between narrowly spaced obstacles

may arise [7]. Orientation selection models ([9], [13]) face

similar problems as distance information is not considered.

This class of methods allow a robot with long range sensors

to detect and avoid complex obstacles but the distant presence

of a narrow doorway may be missed due to poor resolution

at long range. It also cannot slow down while approaching

obstacles. Our architecture presents a versatile action selection

mechanism that utilizes both distance and angle information

to execute complex motion tasks (e.g., avoiding complex ob-

stacles) requiring a multitude of concurrently active behaviors.

C. Achieve asynchronous execution of behavioral modules

The asynchronous execution of behaviors, each at its fastest

rate possible, is crucial to the preservation of reactive capa-

bilities. Integrated architectures (e.g., [8], [9]) that coordinate

their behaviors to operate directly on the action representation

require them to be synchronized to produce a meaningful

action. On the other hand, our architecture utilizes a time-

independent action selection module to learn a neural map

representation of the local workspace that can interface with

asynchronized behaviors.

These enhancements to the reactive capabilities simplify the

deliberative planner such that it is only required to produce

a sequence of checkpoints in global workspace instead of a

complete motion path in configuration space. The constraint

of adhering strictly to a generated path is removed.

II. INTEGRATED PLANNING & CONTROL FRAMEWORK

A. Overview

Our integrated planning and control framework is illustrated

in Fig. 1. At the highest level, the planning module produces a

sequence of checkpoints from the start point to the goal using

an approximate cell decomposition method in [14]. However,

our algorithm operates in the robot’s workspace instead of

the configuration space. In essence, the free workspace is de-

composed into much fewer cells than do other decomposition

techniques to reduce the search time. Any two points in the cell

can be traversed by reactive motion. This method is elaborated

in a separate paper [15].

The reactive model consists of Cooperative Extended Koho-

nen Maps (EKMs), which are trained to produce a collision-

free sequence of low-level (motor velocity) control commands

that move the non-holonomic mobile robot from one check-

point to the next. The target reaching module contains a target

localization EKM that provides excitatory inputs to the motor

control EKM in the neural integration module at and around

locations of the sensed checkpoint. The obstacle avoidance

modules contain obstacle avoidance EKMs, which provide

inhibitory inputs to the motor control EKM at and around

locations where obstacles are detected. The motor control

EKM in the neural integration module combines these inputs

from the EKMs and uses them to select appropriate actions

that can negotiate unforeseen obstacles while reaching targets.

All the modules operate asynchronously at different rates.

The planning module typically operates at the time scale of

several seconds or minutes depending on task complexity. The

target reaching module operates at about 256 ms between

servo ticks while the obstacle avoidance module operates at

intervals of 128 ms. The neural integration module is activated

as and when neural activities are received. The asynchronous

execution of modules is the key to preserving reactive capa-

bilities while allowing improvement of performance by the

deliberative planner. In fact, the planner can be removed and

the resulting decapitated architecture degrades to a purely

reactive system capable of less complex motion tasks.

B. Target Reaching

The target reaching module adopts an egocentric represen-

tation of the sensory input vector up = (α, d)T where α and d
are the direction and the distance of a checkpoint relative to the

robot’s current location and heading. At the goal state at time

T , up(T) = (α, 0)T for any α. It uses the target localization

EKM to self-organize the sensory input space U . Each neuron

i in the EKM has a sensory weight vector wi = (αi, di)
T that

encodes a region in U centered at wi. Based on each incoming

sensory input up, the corresponding neuronal activities are sent

to the motor control EKM in the neural integration module

(Section II-D).

Target Localization

Given a sensory input vector up of a target location,

1) Determine the winning neuron s in the target localization

EKM. Neuron s is the one whose sensory weight vector

ws = (αs, ds)
T is nearest to the input up = (α, d)T :

D(up,ws) = min
i∈A(α)

D(up,wi). (1)

The difference D(up,wi) is a weighted difference be-

tween up and wi:

D(up,wi) = βα(α − αi)
2 + βd(d − di)

2 (2)

where βα and βd are constant parameters. The minimum

in Eq. 1 is taken over the set A(α) of neurons encoding

very similar angles as α:

|α − αi| ≤ |α − αj |,

for each pair i ∈ A(α), j /∈ A(α) .
(3)

In other words, direction has priority over distance in

the competition between EKM neurons. This method

+

U’

+

U’

+

XX

X

U’

+

XX

X

U’

(a) (b) (c) (d)
Fig. 2. Cooperative EKMs. (a) In response to the target ⊕, the nearest neuron (black dot) in the target localization EKM (ellipse) of the robot (gray circle)
is activated. (b) The activated neuron produces a target field (dotted ellipse) in the motor control EKM. (c) Three of the robot’s sensors detect obstacles and
activate three neurons (crosses) in the obstacle localization EKMs, which produce the obstacle fields (dashed ellipses). (d) Subtraction of the obstacle fields
from the target field results in the neuron at 4 to become the winner in the motor control EKM, which moves the robot away from the obstacle.

allows the robot to quickly orientate itself to face the

target while moving towards it. In the EKM, each neuron

encodes a location wi in the sensory input space U . The

region of U that encloses all the neurons is called the

local workspace U ′. Even if the target falls outside U ′,

the nearest neuron can still be activated (Fig. 2a).

2) Compute output activity ai of neuron i in the target

localization EKM.

ai = Ga(ws,wi) (4)

The function Ga is an elongated Gaussian:

Ga(ws,wi) = exp(−(
αs − αi

σa,α

)2 − (
ds − di

σa,d

)2). (5)

Parameter σa,d is much smaller than σa,α, making

the Gaussian distance-sensitive and angle-insensitive.

These parameter values elongate the Gaussian along

the direction perpendicular to the target direction αs

(Fig. 2b). This elongated Gaussian is the target field,

which plays an important role in avoiding local minima

during obstacle avoidance.

C. Obstacle Avoidance

Each obstacle avoidance module contains an obstacle lo-

calization EKM that is self-organized in the same way as

the target localization EKM (Section II-E); each neuron i in

the obstacle localization EKMs has the same input weight

vector wi as the neuron i in the target localization EKM.

The robot has h directed distance sensors around its body for

detecting obstacles. Hence, each activated sensor encodes a

fixed direction αj and a variable distance dj of the obstacle

relative to the robot’s heading and location. Each sensed input

uj = (αj , dj)
T induces neuronal activities, which are sent

to the motor control EKM in the neural integration module

(Section II-D).

Obstacle Localization

For each sensed input uj , j = 1, . . . , h,

1) Determine the winning neuron s′ in the jth obstacle

localization EKMs. Each sensor input uj activates a

winning neuron s′ in the jth obstacle localization EKM,

which is activated in the same manner as Step 1 of Target

Localization (Section II-B).

U

M
C

M

up

c

Fig. 3. Motor control EKM. The neurons map the sensory input space U

indirectly to motor control space C through control parameter space M.

2) Compute output activity bi,j of neuron i in the jth

obstacle localization EKMs:

bi,j = Gb(ws′ ,wi) (6)

where

Gb(ws′ ,wi) = exp(−(
αs′ − αi

σb,α

)2 − (
ds′ − di

σb,d(ds′ , di)
)2)

σb,d(ds′ , di) =

{

3.5 if di ≥ ds′

0.035 otherwise.

(7)

The function Gb is a Gaussian stretched along the ob-

stacle direction αs′ so that motor control EKM neurons

beyond the obstacle locations are also inhibited to indi-

cate inaccessibility (Fig. 2c). If no obstacle is detected,

Gb = 0. In the presence of an obstacle, the neurons in

the obstacle localization EKMs at and near the obstacle

locations will be activated to produce obstacle fields

(Eq. 6). The neurons nearest to the obstacle locations

have the strongest activities.

D. Neural Integration

The neural integration module contains a motor control

EKM, which integrates the excitatory and inhibitory inputs

from the neurons in the target and obstacle localization EKMs

respectively. It is trained to partition the sensory input space

U into locally linear regions. Each neuron i in the motor

control EKM is self-organized in the same way as the target

and obstacle localization EKMs by encoding the same input

weight vector wi as the neuron i in those EKMs. It also has a

set of output weights which encode the outputs produced by

the neuron. However, unlike existing direct-mapping methods

[16], the output weights Mi of neuron i of the motor control

EKM represents control parameters in the parameter space M
instead of the actual motor control vector (Fig. 3). The control

parameter matrix Mi is mapped to the actual motor control

vector c by a linear model (Eq. 10). Compared to direct-

mapping EKM, indirect-mapping EKM can provide finer and

smoother motion control. Detailed comparison and discussion

have been reported in [15]. With indirect-mapping EKM,

motor control is performed as follows:

Motor Control

1) Compute activity ei of neuron i in the motor control

EKM.

ei = ai −
h

∑

j=1

bi,j (8)

where ai is the excitatory input from the neuron in

the target localization EKM (Section II-B) and bi,j is

the inhibitory input from the neuron in the jth obstacle

localization EKM (Section II-C).

2) Determine the winning neuron k in the motor control

EKM. Neuron k is the one with the largest activity:

ek = max
i

ei . (9)

3) Compute motor control vector c for target reaching:

c =

{

Mkup if −c
∗ ≤ Mkup ≤ c

∗ and k = s

Mkwk otherwise.

(10)

The constant vector c
∗ denotes the upper limit of phys-

ically realizable motor control signal. For instance, for

the Khepera robots, c consists of the motor speeds vl

and vr of the robot’s left and right wheels. In this case,

we define c ≤ c
∗ if vl ≤ v∗l and vr ≤ v∗r . Note that if c

is beyond c
∗, simply saturating the wheel speeds does

not work. For example, if the target is far away and not

aligned with the robot’s heading, then saturating both

wheel speeds only moves the robot forward. Without

correcting the robot’s heading, the robot will not be able

to reach the target. Hence, the winning neuron’s input

weights wk are used to generate the physically realizable

motor control output. This motor control would be the

best substitution for the sensory input up because wk is

closest to up compared to other weights wi, i 6= k.

In activating the motor control EKM (Fig. 2d), the obstacle

fields are subtracted from the target field (Eq. 8). If the target

lies within the obstacle fields, the activation of the motor

control EKM neurons close to the target location will be

suppressed. Consequently, another neuron at a location that

is not inhibited by the obstacle field becomes most highly

activated (Fig. 2d). This neuron produces a control parameter

that moves the robot away from the obstacle. While the robot

moves around the obstacle, the target and obstacle localization

EKMs are continuously updated with the current locations and

directions of the target and obstacles. Their interactions with

the motor control EKM produce fine, smooth, and accurate

motion control of the robot to negotiate the obstacle and move

towards the target until it reaches the goal state up(T) at time

step T .

Recall that the various modules run asynchronously at dif-

ferent rates (Section II-A). In particular, the obstacle avoidance

module runs at a faster rate than the target reaching and robot

separation modules. During neural integration, the localization

EKMs remain activated until they are updated asynchronously

at the next sensing cycle. So, the motor control EKM can

receive continuous inputs from the localization EKMs and is

always able to produce a motor signal as and when new inputs

are sensed.

E. Self-Organization of EKMs

In contrast to most existing methods, online training is

adopted for the EKMs. Initially, the EKMs have not been

trained and the motor control vectors c generated are in-

accurate. Nevertheless, the EKMs self-organize, using these

control vectors c and the corresponding robot displacements

v produced by c, to map v to c indirectly. As the robot moves

around and learns the correct mapping, its sensorimotor control

becomes more accurate. At this stage, the same online training

mainly fine tunes the indirect mapping. The self-organized

training algorithm (in obstacle-free environment) is as follows:

Self-Organized Training

Repeat

1) Get sensory input up.

2) Execute target reaching procedure and move robot.

3) Get new sensory input u
′
p and compute actual displace-

ment v as a difference between u
′
p and up.

4) Use v as the training input to determine the winning

neuron k (same as Step 1 of Target Reaching).

5) Adjust the weights wi of neurons i in the neighborhood

Nk of the winning neuron k towards v:

∆wi = η G(k, i)(v − wi) (11)

where G(k, i) is a Gaussian function of the distance

between the positions of neurons k and i in the EKM,

and η is a constant learning rate.

6) Update the weights Mi of neurons i in the neighborhood

Nk to minimize the error e:

e =
1

2
G(k, i)‖c− Miv‖

2 . (12)

That is, apply gradient descent to obtain

∆Mi = −η
∂e

∂Mi

= η G(k, i)(c − Miv)vT . (13)

The target and obstacle localization EKMs self-organize in the

same manner as the motor control EKM except that Step 6 is

omitted. At each training cycle, the weights of the winning

neuron k and its neighboring neurons i are modified. The

amount of modification is proportional to the distance G(k, i)
between the neurons in the EKM. The input weights wi are

updated towards the actual displacement v and the control

parameters Mi are updated so that they map the displacement

v to the corresponding motor control c. After self-organization

has converged, the neurons will stabilize in a state such that

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

(a) (b)
Fig. 4. Negotiating unforeseen concave obstacle. (a) The robot using
Braitenberg obstacle avoidance and action superposition was trapped but
(b) the one adopting the integrated architecture with cooperative EKMs
successfully overcame the obstacle.

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

(a) (b)
Fig. 5. Passing through unforeseen narrow doorway between closely spaced
obstacles. (a) The robot using Braitenberg obstacle avoidance and action
superposition was trapped but (b) the one adopting the integrated architecture
with cooperative EKMs successfully passed through the narrow doorway to
the goal.

v = wi and c = Miv = Miwi. For any winning neuron

k, given the sensory input up = wk, the neuron will produce

a motor control output c = Mkwk which yields a desired

displacement of v = wk. For a sensory input up 6= wk but

close to wk, the motor control output c = Mkup produced by

neuron k will still yield the correct displacement if linearity

holds within the input region that activates neuron k. Thus,

given enough neurons to produce an approximate linearization

of the sensory input space U , the indirect-mapping EKM can

produce finer and smoother motion control than the direct-

mapping EKM.

III. EXPERIMENTS AND DISCUSSIONS

Quantitative evaluation of the performance of indirect-

mapping EKM for motor control has already been pre-

sented in [15]. This section presents a qualitative evalua-

tion of the enhanced reactive capabilities of the integrated

architecture with cooperative EKMs. The experiments were

performed using Webots, Khepera mobile robot simulator

(http://www.cyberbotics.com), which incorporated 10% noise

in its sensors and actuators. 12 directed long-range sensors

were also modelled around its body of radius 2.5cm. Each

sensor had a range of 17.5cm, enabling the detection of

obstacles at 20cm or nearer from robot center. To simulate

noise, the sensors have a resolution of 0.5cm.

Two tests were performed to compare the integrated archi-

tecture using cooperative EKMs with that presented in [15].

The latter used Braitenberg’s Type-3C vehicle [12] for obstacle

avoidance and superposition (or vector sum) technique for

action selection. For both architectures, the target reaching

and obstacle avoidance modules ran at intervals of 256ms and

128 ms respectively. The robot’s performance was assessed in

an environment under two unforeseen conditions: (1) concave

obstacle, and (2) narrow doorway between closely spaced

obstacles.

In the first test (Fig. 4), the robot fitted with the Braitenberg

-0.5 -0.25 0 0.25 0.5

-0.25

0

0.25

-0.5 -0.25 0 0.25 0.5

-0.25

0

0.25

-0.5 -0.25 0 0.25 0.5

-0.25

0

0.25

Fig. 6. Motion of robot (dark gray) in an environment with unforeseen static
obstacles (light gray). The checkpoints (small black dots) were located at the
doorways and the goal position. The robot can successfully navigate through
the checkpoints to the goal by traversing between narrowly spaced convex
obstacles in the first and the last room and overcoming a concave obstacle in
the middle room.

scheme and superposition technique got trapped by the con-

cave obstacle (Fig. 4a). The target reaching module tried to

move the robot forward to reach the target while the obstacle

avoidance module moved it backward to avoid the obstacle.

The combined output cancelled each other’s efforts. On the

other hand, the robot that adopted the integrated architecture

with cooperative EKMs successfully overcame the obstacle to

reach the goal (Fig. 4b).

In the second test (Fig. 5), the robot endowed with the Brait-

enberg scheme and superposition technique could not pass

through the narrow doorway between closely spaced obstacles

(Fig. 5a). The repulsive forces from the walls counteracted

the attractive force to the designated goal. In contrast, the

robot that adopted the integrated architecture with cooperative

EKMs successfully traversed through the narrow doorway to

the goal (Fig. 5b).

These two tests demonstrate that for the architecture with

action superposition mechanism, though each behavioral mod-

ule proposes an action optimal to itself, the vector sum of

these action commands produces a combined output that may

not guarantee the satisfaction of any motion task. The neural

integration method used in the integrated architecture with

cooperative EKMs, however, considers the suboptimal pref-

erences of each behavioral module via excitatory or inhibitory

inputs and integrates them to determine an action that can

satisfy each behavior to a certain degree. Such tightly coupled

interaction between the behaviors and the action selection

mechanism enable more complex motion tasks to be achieved.

The environment for the next test with unforeseen static

obstacles consisted of three rooms connected by two doorways

(Fig. 6). The robot began in the top corner of the left-most

room and was tasked to move into the narrow corner of the

right-most room via three checkpoints plotted by the planner.

It was regarded to have reached a checkpoint if it was less

than 5mm from the checkpoint and was required to stop at the

goal. The robot was able to navigate through the checkpoints

to the goal by traversing between narrowly spaced convex

obstacles in the first and the last room, and overcoming a

concave obstacle in the middle room. The results of this test

demonstrate the efficacy of the integrated planning and control

architecture with cooperative EKMs in handling complex,

unpredictable environments.

The environment for the last test also consisted of three

rooms connected by two doorways (Fig. 7). The middle room

-0.5 -0.25 0 0.25 0.5

-0.25

0

0.25

-0.5 -0.25 0 0.25 0.5

-0.25

0

0.25

-0.5 -0.25 0 0.25 0.5

-0.25

0

0.25

-0.5 -0.25 0 0.25 0.5

-0.25

0

0.25

-0.5 -0.25 0 0.25 0.5

-0.25

0

0.25

-0.5 -0.25 0 0.25 0.5

-0.25

0

0.25

-0.5 -0.25 0 0.25 0.5

-0.25

0

0.25

-0.5 -0.25 0 0.25 0.5

-0.25

0

0.25

Fig. 7. Motion of robot (gray) in an environment with two unforeseen obstacles (black) moving in anticlockwise circular paths. The robot could successfully
negotiate past the extended walls and the dynamic obstacles to reach the goal (small black dot).

housed two Khepera robots moving in anticlockwise circular

paths. The robot began in the left-most room and was tasked

to move to the right-most room without the help of the

planner. Nevertheless, the robot was able to negotiate past

the extended walls and the dynamic obstacles to reach the

goal. This experiment further verified the enhanced reactive

capabilities of the integrated architecture with cooperative

EKMs in performing more complex motion tasks.

IV. CONCLUSION

By tightly integrating the target reaching, obstacle avoidance

and neural integration modules with cooperative EKMs, the

reactive capabilities of an integrated planning and control

mobile robot architecture can be enhanced. This is extremely

useful in complex, unpredictable environments where a robot

controlled by this method can perform more complex mo-

tion tasks like negotiating unexpected concave and extended

obstacles, and traversing between narrowly spaced obstacles.

These characteristics distinguish our architecture from those

integrated frameworks (e.g., [5], [15], [17]) that employ action

superposition mechanisms ([6], [11], [12]), which can be easily

trapped by unforeseen concave obstacles and narrowly spaced

obstacles unless global replanning is executed. Our continuing

research goal is to apply the integrated framework to the

planning and control of robot manipulators.

ACKNOWLEDGMENTS

This research is supported by NUS R-252-000-018-112.

REFERENCES

[1] O. Brock and O. Khatib, “High-speed navigation using the global
dynamic window approach,” in Proceedings of IEEE International

Conference on Robotics and Automation, vol. 1, 1999, pp. 341–346.
[2] O. Khatib, S. Quinlan, and D. Williams, “Robot planning and control,”

Robotics and Autonomous Systems, vol. 21, pp. 249–261, 1997.
[3] P. Pirjanian, “Multiple objective behavior-based control,” Robotics and

Autonomous Systems, vol. 31, no. 1-2, pp. 53–60, 2000.

[4] J. Riekki and J. Röning, “Reactive task execution by combining action
maps,” in Proceedings of IEEE/RSJ International Conference on Intel-

ligent Robots and Systems, vol. 1, 1997, pp. 224–230.

[5] R. C. Arkin and T. Balch, “AuRA: Principles and practices in review,”
Journal of Experimental and Theoretical Artificial Intelligence, vol. 9,
no. 2-3, pp. 175–189, 1997.

[6] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Proceedings of IEEE International Conference on Robotics

and Automation, 1985, pp. 500–505.

[7] Y. Koren and J. Borenstein, “Potential field methods and their inherent
limitations for mobile robot navigation,” in Proceedings of IEEE Inter-

national Conference on Robotics and Automation, 1991, pp. 1394–1404.
[8] J. K. Rosenblatt, “DAMN: A distributed architecture for mobile navi-

gation,” Journal of Experimental and Theoretical Artificial Intelligence,
vol. 9, no. 2-3, pp. 339–360, 1997.

[9] A. Saffiotti, K. Konolige, and E. Ruspini, “A multi-valued logic approach
to integrating planning and control,” Artificial Intelligence, vol. 76, no.
1-2, pp. 481–526, 1995.

[10] R. Brooks, “A robust layered control system for a mobile robot,” IEEE

Journal of Robotics and Automation, vol. 2, no. 1, pp. 14–23, 1986.
[11] R. C. Arkin, “Motor schema based mobile robot navigation: An approach

to programming by behavior,” in Proceedings of IEEE International

Conference on Robotics and Automation, 1987, pp. 264–271.
[12] V. Braitenberg, Vehicles: Experiments in Synthetic Psychology. Cam-

bridge, MA: MIT Press, 1984.
[13] J. Borenstein and Y. Koren, “The vector field histogram: Fast obstacle

avoidance for mobile robots,” IEEE Transactions on Robotics and

Automation, vol. 7, no. 3, pp. 278–288, 1991.
[14] S. Quinlan and O. Khatib, “Towards real-time execution of motion

tasks,” in Experimental Robotics II: Proceedings of 2nd International

Symposium on Experimental Robotics, R. Chatila and G. Hirzinger, Eds.
Springer-Verlag, 1991.

[15] K. H. Low, W. K. Leow, and M. H. Ang Jr., “Integrated planning and
control of mobile robot with self-organizing neural network,” in Pro-

ceedings of IEEE International Conference on Robotics and Automation,
vol. 4, 2002, pp. 3870–3875.

[16] C. Touzet, “Neural reinforcement learning for behavior synthesis,”
Robotics and Autonomous Systems, vol. 22, no. 3-4, pp. 251–281, 1997.

[17] O. Brock and O. Khatib, “Executing motion plans for robots with many
degrees of freedom in dynamic environments,” in Proceedings of IEEE

International Conference on Robotics and Automation, vol. 1, 1998, pp.
1–6.

