
Springer Nature 2021 LATEX template

Pruning During Training by

Network Efficacy Modeling

Mohit Rajpal1*, Yehong Zhang2 and Bryan Kian Hsiang Low1

1Department of Computer Science, National University of
Singapore, Republic of Singapore.

2Peng Cheng Laboratory, Shenzhen, People’s Republic of China.

*Corresponding author(s). E-mail(s): mohitr@comp.nus.edu.sg;
Contributing authors: zhangyh02@pcl.ac.cn;

lowkh@comp.nus.edu.sg;

Abstract

Deep neural networks (DNNs) are costly to train. Pruning is an
approach to alleviate model complexity by zeroing out or pruning
DNN elements with little to no efficacy for a given learning task
and has shown promise in reducing training costs for DNNs. This
paper presents a novel algorithm to perform early pruning of DNN
elements (e.g., neurons or convolutional filters) during the training pro-
cess while minimizing losses to model performance. To achieve this,
we model the efficacy of DNN elements with a Bayesian paradigm
conditioned on efficacy data collected during the training and prune
DNN elements with low predictive efficacy after training completion.
Empirical evaluations show that our Bayesian early pruning algorithm
improves the computational efficiency of DNN training while better
preserving model performance compared to other tested pruning methods.

Keywords: Early pruning, network efficacy modeling, network saliency,
multi-output Gaussian process, foresight pruning

1 Introduction

Deep neural networks (DNNs) are known to be overparameterized (Allen-
Zhu, Li, & Liang, 2019) as they usually have more learnable parameters than

1

Springer Nature 2021 LATEX template

2 Pruning During Training by Network Efficacy Modeling

needed for a given learning task. So, a trained DNN contains many ineffectual
parameters that can be safely pruned or zeroed out with little/no effect on its
performance.

Pruning (LeCun, Denker, & Solla, 1989) is an approach to alleviate overpa-
rameterization of a DNN by identifying and removing its ineffectual parameters
while preserving its predictive accuracy on the validation/test dataset. Pruning
is typically applied to the DNN after training to speed up test-time evaluation
and/or deploy the trained model on resource-constrained devices (e.g., mobile
phone, camera). For standard image classification tasks with MNIST, CIFAR-
10, and ImageNet datasets, it can reduce the number of learnable parameters
by up to 50% or more while maintaining model performance (Han, Pool, Tran,
& Dally, 2015; H. Li, Kadav, Durdanovic, Samet, & Graf, 2017; Lin et al., 2019;
Molchanov, Tyree, Karras, Aila, & Kautz, 2017).

In particular, the overparameterization of a DNN also leads to considerable
training cost being wasted on those DNN elements (e.g., connection weights,
neurons, or convolutional filters) which are eventually ineffectual after training
and can thus be safely pruned early. This problem is further compounded by
the development of larger network architectures which are very expensive to
train. These observations motivate the need of early pruning.

The objective of early pruning is to perform pruning during training for
reducing training cost while minimizing test-time loss given a fixed final network
sparsity (e.g., determined by the resource constraints of the deployed devices).
This necessitates consideration for both the test-time loss and training cost as
both metrics are highly desirable to users. Related works in pruning during
training (Lym et al., 2019) as well as prune and regrow (Bellec, Kappel, Maass,
& Legenstein, 2018; Dettmers & Zettlemoyer, 2019; Mostafa & Wang, 2019)
approaches do not jointly consider both competing metrics while offering a
fixed final network sparsity. Similarly, pruning at initialization (de Jorge et al.,
2021; Lee, Ajanthan, & Torr, 2019; Tanaka, Kunin, Yamins, & Ganguli, 2020;
C. Wang, Zhang, & Grosse, 2020) offers a method of reducing training cost,
which, however, overly sacrifices test-time accuracy by pruning at initialization
when test-time network element efficacy is not well known. Therefore, previous
works do not offer a mechanism to trade off between training cost and test-time
loss according to user-defined sparsity objectives. See Section 2 for a detailed
literature review.

To offer a mechanism to trade off between training cost and test-time loss,
a number of technical challenges must be addressed. Firstly, early pruning
needs to minimize test-time loss, but pruning occurs during training when
the test-time element efficacy is unknown. Thus, pruning decisions need to be
based on the inferred test-time network element efficacy. How to infer test-
time network element efficacy for making accurate early pruning decisions is
an important question that has not been addressed by related work. Secondly,
building an inference model requires collecting network efficacy observations
during training. A more accurate model requires collecting more observations
during training, which increases the DNN training cost. Meanwhile, pruning

Springer Nature 2021 LATEX template

Pruning During Training by Network Efficacy Modeling 3

with few observations incurs a low DNN training cost but sacrifices DNN model
performance due to the inaccurate efficacy inference. Given this trade-off, when
should an element that is predicted to perform poorly be pruned? Finally, as
both training cost and test-time loss are important metrics to end users, how
should these metrics be balanced while addressing the above challenges? These
important questions have not been addressed by related works and are the
focus of our work in this paper.

To answer these questions, our work here considers modeling the network
element efficacy during training and performing early pruning based on the
predictive element efficacy and its predictive confidence upon convergence.
A network element is pruned when a sufficiently high degree of confidence
is reached regarding its poor performance. To naturally trade off between
training cost and test-time loss, we formulate early pruning as a constrained
optimization problem and propose an efficient algorithm for solving it. The
trade-off is achieved by modulating the degree of confidence necessary before a
poorly performing element is pruned. Pruning with a high degree of confidence
makes fewer mistakes, yet requires collecting more observations, which increases
the training cost. Conversely, pruning with a low degree of confidence makes
more mistakes, yet requires fewer observations and thus less training cost. The
specific contributions of our work in this paper include:

• Posing early pruning as a constrained optimization problem to minimize test-
time loss while pruning during training under a fixed final network sparsity
(Section 4.1);

• Proposing to infer the efficacy of DNN elements using amulti-output Gaussian
process (MOGP) model which represents the belief of element efficacy condi-
tioned on efficacy measurements collected during training. This approach
not only identifies poorly performing elements but also provides a measure of
confidence by assigning a probabilistic belief to its prediction (Section 4.2);

• Designing a Bayesian early pruning (BEP) algorithm to allow trading off
between training cost and test-time loss1 (Section 4.3). To the best of our
knowledge, this is the first algorithm that can naturally satisfy a fixed final
network sparsity while dynamically achieving the trade-off between training
time vs. test-time loss. Existing works either require fixed scheduled pruning
strategy or cannot achieve the fixed final network sparsity without tuning
parameters; and

• Demonstrating strong performance improvements of our BEP algorithm
when a large percentage of the network is pruned. This improvement is
significant as DNNs continue to grow in size and may require significant
pruning to allow training in a short time frame (Section 5).

Pruning typically relies on a measure of network element efficacy, which is
termed saliency (LeCun et al., 1989). The development of saliency functions is
an active area of research with no clear optimal choice. To accommodate this,

1Code is available at https://github.com/mohitrajpal1/bep.

https://github.com/mohitrajpal1/bep

Springer Nature 2021 LATEX template

4 Pruning During Training by Network Efficacy Modeling

our algorithm is agnostic (and therefore flexible) to changes in saliency function.
We use BEP to prune neurons and convolutional filters and demonstrate its
ability to capture the trade-off between training cost vs. test-time loss.2

2 Related Work

2.1 Pruning and Related Techniques

Initial works in DNN pruning center around saliency-based pruning after
training including Skeletonization (Mozer & Smolensky, 1988), Optimal Brain
Damage, and other followup works (Hassibi & Stork, 1992; LeCun et al., 1989)
as well as sensitivity-based pruning (Karnin, 1990). In recent years, saliency
functions been adapted to pruning neurons or convolutional filters. H. Li et al.
(2017) defined a saliency function on convolutional filters by using the L1 norm.
Molchanov et al. (2017) proposed using a first-order Taylor series approximation
on the objective function as a saliency measure. Dong, Chen, and Pan (2017)
proposed layer-wise pruning of weight parameters using a Hessian-based saliency
measure. Several variants of pruning after training exist. Han et al. (2015)
proposed iterative pruning where pruning is performed in stages alternating
with fine-tune training. Guo, Yao, and Chen (2016) suggested dynamic network
surgery where pruning is performed on the fly during evaluation time. H. Li et
al. (2017) and Y. He et al. (2018) proposed reinforcement learning for pruning
decisions. A comprehensive overview can be found in (Gale, Elsen, & Hooker,
2019).

Knowledge distillation (Hinton, Vinyals, & Dean, 2015; Lu, Guo, & Renals,
2017; Tung & Mori, 2019; Yim, Joo, Bae, & Kim, 2017) aims to transfer
the capabilities of a trained network into a smaller network. Weight sharing
(Nowlan & Hinton, 1992; Ullrich, Meeds, & Welling, 2017) and low-rank matrix
factorization (Denton, Zaremba, Bruna, LeCun, & Fergus, 2014; Jaderberg,
Vedaldi, & Zisserman, 2014) compress the number of parameters of neural
networks. Network quantization (Courbariaux, Bengio, & David, 2015; Hubara,
Courbariaux, Soudry, El-Yaniv, & Bengio, 2017; Micikevicius et al., 2018) uses
lower-fidelity representation of network elements (e.g., 16 bits) to speed up
training and evaluation. Our work is orthogonal to network quantization as we
reduce overall training FLOPs.

2.2 Initialization Time or Training-Time Pruning

Frankle and Carbin (2019) showed that a randomly initialized DNN contains
a small subnetwork which, if trained by itself, yields equivalent performance
to the original network. Building on this work, SNIP (Lee et al., 2019) and
GraSP (C. Wang et al., 2020) perform pruning of connection weights at initial-
ization through a first-order and second-order saliency function, respectively.

2We have not considered pruning network connections since it cannot be easily capitalized upon
with performance improvements due to the difficulty of accelerating sparse matrix operations with
existing deep learning libraries (Buluç & Gilbert, 2008; Yang, Buluç, & Owens, 2018).

Springer Nature 2021 LATEX template

Pruning During Training by Network Efficacy Modeling 5

This technique was improved upon with IterSnip (de Jorge et al., 2021) and Syn-
Flow (Tanaka et al., 2020). PruneFromScratch (Y. Wang et al., 2020) performs
pruning at initialization to reduce training cost. In comparison to our approach,
the above works on initialization-time pruning do not offer a mechanism to
trade off between network training time and test-time loss.

Dynamic sparse reparameterization performs pruning and regrowing param-
eter weights during the training process (Bellec et al., 2018; Dettmers &
Zettlemoyer, 2019; Liu, Xu, Shi, Cheung, & So, 2020; Mostafa & Wang, 2019).
Sparse evolutionary training (Mocanu et al., 2018) initializes networks with
sparse topology prior to training. Dai, Yin, and Jha (2019) proposed a grow-and-
prune approach to learning network architecture and connection layout. Other
works (Louizos, Welling, & Kingma, 2018; Narang, Diamos, Sengupta, & Elsen,
2017) have proposed pruning using heuristics such as L0 norm regularization
for DNNs and recurrent neural networks. However, all the above-mentioned
works cannot be utilized to deliver training-time improvements because they
prune connection weights.2 These works also do not offer a principled approach
to capture the trade-off between training cost vs. test-time loss.

PruneTrain (Lym et al., 2019) also utilizes pruning filters during training to
achieve training cost reduction while minimizing degradation to performance.
PruneTrain does not allow specification of the desired network size after training.
A specified network size is important when training for resource-constrained
devices such as mobile phones or edge devices which require networks to
conform to user-specified size limits. It is unclear how to solve the early pruning
problem using PruneTrain. We compare with PruneTrain under the definition
of the early pruning problem in Section 5.2. Other works have also proposed
model compression during training as a constrained optimization problem as
part of a general framework encompassing pruning, quantization, and low-
rank decomposition (Idelbayev & Carreira-Perpiñán, 2021a, 2021b). Our work
here differs as we focus on minimizing test-time loss while reducing training
cost through pruning during training. We also offer a mechanism to trade off
between the metrics of test-time loss and training cost.

3 Preliminaries of Pruning

Consider a dataset of D training examples with inputs X := {x1, . . . ,xD}
and corresponding outputs Y := {y1, . . . , yD}, and a neural network Nvt

parameterized by a vector vt := [vat]
M
a=1 of M pruneable network elements (e.g.,

weight parameters, neurons, or convolutional filters) after t ≤ T iterations of
stochastic gradient descent (SGD). Let L(X ,Y; Nvt

) be the loss function for
the neural network Nvt

. Pruning refines the network elements vt given some
user-specified sparsity budget B while preserving the accuracy of the neural
network after convergence (i.e., NvT

). As shown by Molchanov et al. (2017),
pruning can be stated as a constrained optimization problem:

min
m∈{0,1}M

|L(X ,Y; Nm⊙vT
)− L(X ,Y; NvT

)| subject to ∥m∥0 ≤ B

Springer Nature 2021 LATEX template

6 Pruning During Training by Network Efficacy Modeling

where ⊙ is the Hadamard product and m := [ma]Ma=1 is a pruning mask. Note
that we abuse the Hadamard product to ease notations: For a = 1, . . . ,M ,
ma × vaT corresponds to pruning vaT if ma = 0, and keeping vaT otherwise.
Pruning a network element means zeroing the network element or the network
element weight parameters. Any weight parameters that use the output of the
pruned network element are also zeroed.

Solving the above optimization problem is computationally intractable due
to the NP-hardness of a combinatorial optimization problem. This leads to the
approach of using a saliency function which measures the efficacy of network
elements at minimizing the loss function. A network element with small saliency
can be pruned since it is not salient/important in minimizing the loss function.
Consequently, pruning is performed by maximizing the saliency of the network
elements given the user-specified sparsity budget B:

max
m∈{0,1}M

M∑
a=1

mas(a; X ,Y,NvT
,L) subject to ∥m∥0 ≤ B (1)

where s(a; X ,Y,NvT
,L) measures the saliency of vaT at minimizing L after

convergence through T SGD iterations. The above optimization problem (1) can
be efficiently solved by greedily selecting the B most salient network elements
in vT .

The construction of the saliency function has been discussed in many existing
works: Some works have derived the saliency function from first-order (LeCun
et al., 1989; Molchanov et al., 2017) and second-order (Hassibi & Stork, 1992;
C. Wang et al., 2020) Taylor series approximations of L. Other common saliency
functions include L1 (H. Li et al., 2017) or L2 (Wen, Wu, Wang, Chen, & Li,
2016) norm of the network element weights, as well as mean activation (Polyak
& Wolf, 2015). Our work here uses a first-order Taylor series approximation-
based saliency function defined for neurons and convolutional filters (Molchanov
et al., 2017).3 Due to the first-order (i.e., gradient-based) approximation, this
saliency function has minimal memory and computational overhead during
DNN training. However, our approach remains flexible to an arbitrary choice
of saliency function. For ease of reference, Table 1 summarizes the notations
that will be used frequently in the remaining sections of this paper.

4 Bayesian Early Pruning

4.1 Problem Formulation

As noted in Section 2, existing works based on saliency function typically
perform pruning after training completion/convergence (i.e., (1)) to speed
up the test-time evaluation on resource-constrained devices. However, doing
so will waste considerable time on training network elements which may be
pruned eventually. To resolve this issue, we extend the definition of the pruning

3Appendix A gives the implementation details of this saliency function.

Springer Nature 2021 LATEX template

Pruning During Training by Network Efficacy Modeling 7

Table 1: Summary of key notations.
Notation Description

M Total number of network elements in a neural network

T Total number of SGD iterations in the training procedure

sat Random variable denoting saliency of network element va
t at iteration t

st Random vector [sat]Ma=1 denoting saliency of network elements vt at iteration t

sτ1:τ2 Random matrix [st]
τ2
t=τ1

denoting saliency of network elements from iterations τ1 to τ2

s̃1:t Realization of s1:t denoting observed saliency measurements of network elements from iterations 1 to t

mt Vector of pruning mask at iteration t

Bs User-specified sparsity budget of the trained network

Bt,c User-specified computational budget at iteration t

µa
t′|1:t Predictive mean of the saliency sa

t′ given observed saliency measurements s̃1:t from iterations 1 to t

σaa′
t′|1:t Predictive covariance of saliencies sa

t′ and sa
′

t′ given observed saliency measurements s̃1:t from iterations 1 to t

problem (1) along the temporal dimension to allow network elements to be
pruned during the training process consisting of T SGD iterations.

Let the random variable sat := s(a; X ,Y,Nvt ,L) represent the saliency
of network element vat after t SGD iterations for t = 1, . . . , T , the random
vector st := [sat]

M
a=1 represent the saliency of network elements vt at SGD

iteration t = 1, . . . , T , and the random matrix sτ1:τ2 := [st]
τ2
t=τ1 represent

the saliency of all network elements from SGD iterations τ1 to τ2. Our early
pruning problem is formulated with the goal of maximizing the saliency of
the unpruned network elements after iteration T , yet allowing for pruning
at each iteration t given some computational budget Bt,c for t = 1, . . . , T :

ρT (mT−1, BT,c, Bs) :=max
mT

mT · sT (2a)

subject to ∥mT ∥0 ≤ Bs , (2b) mT ≤̇ mT−1 , (2c) BT,c ≥ 0 (2d)

ρt(mt−1, Bt,c, Bs) := max
mt

Ep(st+1|s̃1:t) [ρt+1(mt, Bt,c − ∥mt∥0, Bs)] (3a)

subject to mt ≤̇ mt−1 (3b)

where Bs is some user-specified sparsity budget of the trained network, s̃1:t
is a realization of s1:t representing the observed saliency measurements of all
network elements from SGD iterations 1 to t, m0 is an M -dimensional vector
of 1’s, and mt ≤̇ mt−1 represents an element-wise inequality between mt and
mt−1: m

a
t ≤ ma

t−1 for a = 1, . . . ,M . At each iteration t, the saliency st is
observed and mt ∈ {0, 1}M in (3a) represents a pruning decision performed
to maximize the expected value of ρt+1 with respect to the predictive belief of
st+1 conditioned on observed saliency measurements s̃1:t collected up to and
including SGD iteration t. This recursive structure terminates with the base
case ρT where the saliency of the unpruned network elements is maximized
after T SGD iterations.

In the above formulation, constraints (2c) and (3b) ensure that pruning is
performed in a practical manner whereby once a network element is pruned,
it can no longer be recovered in a later SGD iteration. The user specifies a
sparsity budget Bs (2b) which indicates the desired network size after training
completion. This constraint is important as training is often performed on
GPUs for resource-constrained devices (e.g., edge devices or mobile phones)

Springer Nature 2021 LATEX template

8 Pruning During Training by Network Efficacy Modeling

which can only support networks of limited size. The user also specifies the
total computational budget Bt,c for training from SGD iterations t to T , which
is reduced by the number ∥mt∥0 of unpruned network elements per SGD
iteration. The constraint BT,c ≥ 0 (2d) ensures training completion within the
specified computational budget. Here, we assume that a more sparse pruning
mask mt corresponds to a lower computational effort at SGD iteration t due
to fewer network elements being updated. Finally, (2a) maximizes the saliency
with a pruning mask mT constrained by the sparsity budget Bs (2b). Our
formulation of the early pruning problem balances the saliency of network
elements after convergence (i.e., mT · sT) against the total computational

effort to train the network (i.e.,
∑T

t=1∥mt∥0). This appropriately captures the
balancing act of training-time early pruning whereby computational effort is
saved by early pruning network elements while preserving the saliency of the
remaining network elements after training completion/convergence.

4.2 Modeling Saliency with Multi-Output Gaussian
Process

To solve the above early pruning problem, we can model the belief p(s1:T)
such that the predictive belief p(st+1:T | s̃1:t) of the future saliency st+1:T in
(3a) can be computed. A naive approach is to decompose the belief p(s1:T) :=∏M

a=1 p(s
a
1:T) and model the belief of the saliency sa1:T := [sat]

T
t=1 of each

network element independently. Independent modeling, however, ignores the
co-adaptation and co-evolution of the network elements, which have been
shown to be a common occurrence in DNNs (Hinton, Srivastava, Krizhevsky,
Sutskever, & Salakhutdinov, 2012; Srivastava, Hinton, Krizhevsky, Sutskever,
& Salakhutdinov, 2014; C. Wang et al., 2020). In addition, explicitly modeling
the correlation of the saliency between different network elements is non-trivial
since considerable feature engineering is needed to represent diverse network
elements such as neurons, connections, or convolutional filters.

To resolve such issues, we use a multi-output Gaussian process (MOGP)
model to represent the belief p(s1:T) of the saliency of all network elements
from SGD iterations 1 to T . Specifically, we assume that the saliency sat of
network element vat at iteration t is a linear mixture of Q independent latent

functions {uq(t)}Qq=1: s
a
t :=

∑Q
q=1 γ

a
q uq(t).

4 If each uq(t) is an independent
GP with prior mean of zero and covariance kq(t, t

′), then the resulting belief
p(s1:T) is a multivariate Gaussian with prior mean of zero and covariance

determined by the mixing covariance cov[sat , s
a′

t′] =
∑Q

q=1 γ
a
q γa′

q kq(t, t
′). This

explicit covariance between sat and sa
′

t′ helps to exploit the co-evolution and
co-adaptation of the network elements within the DNN.

To capture the asymptotic trend of sa1 , . . . , s
a
T visualized in Fig. 1, we

turn to a kernel used for modeling decaying exponential curves known as

4Among the various types of MOGP models (see (Álvarez & Lawrence, 2011) for a detailed

review), we have chosen such a linear model as its covariance between sat and sa
′

t′ can be computed
analytically.

Springer Nature 2021 LATEX template

Pruning During Training by Network Efficacy Modeling 9

Sa
lie

nc
y

0 50 100 150
Time, = =0.25

f

0 50 100 150
Time, = =0.50

0 50 100 150
Time, = =1.00

0 50 100 150
Time, = =1.50

Fig. 1: (Top) Saliency of different convolutional filters over 150 SGD epochs
for a convolutional neural network trained on CIFAR-10 dataset. (Bottom)
Function samples drawn from a GP using the exponential kernel with varying
hyperparameter values. Both the saliency of different convolutional filters and
the function samples from the GP follow an asymptotic, exponentially decaying
behavior.

the “exponential kernel” (Swersky, Snoek, & Adams, 2014) and set kq(t, t
′) :=

βq
αq/(t+ t′ + βq)

αq where the MOGP hyperparameters αq and βq can be

learned using maximum likelihood estimation (Álvarez & Lawrence, 2011).

Let the prior covariance matrix be Kτ1:τ2 := [cov[sat , s
a′

t′]]
a,a′=1,...,M
t,t′=τ1,...,τ2

for any
1 ≤ τ1 ≤ τ2 ≤ T . Then, given a matrix s̃1:t of observed saliency measurements
(i.e., a realization of s1:t), the MOGP regression model can provide a Gaussian
predictive belief p(st′ | s̃1:t) = N (µt′|1:t,Kt′|1:t) of any future saliency st′ with
the following posterior mean vector and covariance matrix:

µt′|1:t := K[t′t]K
−1
1:t s̃1:t , Kt′|1:t := Kt′:t′ −K[t′t]K

−1
1:t K

⊤
[t′t]

where K[t′t] := [cov[sat′ , s
a′

τ]]a,a
′=1,...,M

τ=1,...,t . The a-th element µa
t′|1:t of µt′|1:t

denotes the predictive mean of the saliency sat′ for a = 1, . . . ,M (i.e.,

µt′|1:t := [µa
t′|1:t]

M
a=1), while the [a, a′]-th element σaa′

t′|1:t of Kt′|1:t denotes the

predictive covariance between the saliencies sat′ and sa
′

t′ for a, a′ = 1, . . . ,M

(i.e., Kt′|1:t := [σaa′

t′|1:t]
M
a,a′=1).

4.2.1 On the Choice of the “Exponential Kernel”

We justify our choice of the exponential kernel as a modeling mechanism by
presenting visualizations of saliency measurements collected during training,
and comparing these to samples drawn from a GP using the exponential kernel
kq(t, t

′) := βα/(t+ t′ + β)α. As shown in Fig. 1, both the saliency of various
convolutional filters and the function samples from the GP exhibit exponentially
decaying behavior, which makes the exponential kernel a strong fit for modeling
saliency evolution over time.

Springer Nature 2021 LATEX template

10 Pruning During Training by Network Efficacy Modeling

We note that the exponential kernel was previously used by Swersky et al.
(2014) to model loss curves. Similar to the saliency measurement curves, loss
curves also exhibit an asymptotic, exponentially decaying behavior, which is a
further piece of evidence for the exponential kernel to be a suitable fit for our
saliency modeling task.

4.3 Bayesian Early Pruning (BEP) Algorithm

Solving the above optimization problem (2) and (3) is challenging due to the
interplay between [mt′]

T
t′=t, [Bt′,c]

T
t′=t, and mT · sT . To tackle this challenge,

we instead analyze a lower bound of ρt(·):

ρt(mt−1, Bt,c, Bs) = max
mt

Ep(st+1|s̃1:t) [ρt+1(mt, Bt,c − ∥mt∥0, Bs)]

≥ max
mt

Ep(sT |s̃1:t) [ρT (mt, Bt,c − (T − t)∥mt∥0, Bs)] .
(4)

We prove this lower bound in Appendix B. Substituting this lower bound,5 we
define ρ̂(·):

ρ̂t(mt−1, Bt,c, Bs) := max
mt

Ep(sT |s̃1:t)[ρT (mt, Bt,c − (T − t)∥mt∥0, Bs)] . (5)

This approach allows us to lift (2d) from (2), to which we add a Lagrange
multiplier and achieve:

ρ̂t(mt−1, Bt,c, Bs) := max
mt

Ep(sT |s̃1:t) [ρ̂T (mt, Bs)] + λt (Bt,c − (T − t)∥mt∥0)
(6)

for t = 1, . . . , T − 1 and ρ̂T is defined as ρT without constraint (2d). Conse-
quently, such a ρ̂T can be solved in a greedy manner as in (1). Afterwards, we
will omit Bt,c as a parameter of ρ̂T as it no longer constrains the solution of
ρ̂T . Note that the presence of an additive penalty in a maximization problem
is due to the constraint BT,c ≥ 0 ⇔ −BT,c ≤ 0, which is typically expected
prior to Lagrangian reformulation.

To proceed with the analysis, we show the above optimization problem is
submodular in mt. In (6), the problem of choosing m from {0, 1}M can be
considered as selecting a subset A of indexes from {1, . . . ,M} such that ma

t = 1
for a ∈ A, and ma

t = 0 otherwise. Therefore, P (m) := Ep(sT |s̃1:t)[ρ̂T (m, Bs)]
can be considered as a set function which we show to be submodular.

Lemma 1 Let m′, m′′ ∈ {0, 1}M , and e(a) be an arbitrary M -dimensional one
hot vector with 1 ≤ a ≤ M with P (m) := Ep(sT |s̃1:t)[ρ̂T (m, Bs)]. We have P (m′ ∨
e(a)) − P (m′) ≥ P (m′′ ∨ e(a)) − P (m′′) for any m′ ≤̇ m′′ when m′ ∧ e(a) = 0M ,

and m′′ ∧ e(a) = 0M .

5We omit (3b) as it is automatically satisfied due to our lower bound.

Springer Nature 2021 LATEX template

Pruning During Training by Network Efficacy Modeling 11

Here, ‘∨’ and ‘∧’ represent bitwise OR and AND operations, respectively.
The bitwise OR operation is used to denote the inclusion of e(a) in mt. The
proof for Lemma 1 is presented in Appendix C. Greedy approximations for
submodular optimization incur O(∥mt−1∥20) time, which remains far too slow
due to the large number of network elements in DNNs. To overcome this,
we exploit the strong tail decay of multivariate Gaussian density p(sT | s̃1:t)
to deliver an efficient approximation procedure. Our approach relies on the
following lemma (its proof is in Appendix D.):

Lemma 2 Let e(i) be a M -dimensional one-hot vectors with the ith element be
1. ∀ 1 ≤ a, b ≤ M,m ∈ {0, 1}M s.t.m ∧ (e(a) ∨ e(b)) = 0M . Given a matrix s̃1:t of
observed saliency measurements, if µa

T |1:t ≥ µb
T |1:t and µa

T |1:t ≥ 0, then

Ep(sT |s̃1:t)[ρ̂T (m ∨ e(b))]− Ep(sT |s̃1:t)[ρ̂T (m ∨ e(a))] ≤ µb
T |1:t Φ(ν/θ) + θ ϕ(ν/θ)

where θ :=
√

σaa
T |1:t + σbb

T |1:t − 2σab
T |1:t , ν := µb

T |1:t−µa
T |1:t , and Φ and ϕ are standard

normal CDF and PDF, respectively.

Lemma 2 indicates that, with high probability, opting for mt = m ∨ e(a)

is not a much worse choice than mt = m ∨ e(b) given µa
T |1:t ≥ µb

T |1:t due to

the strong tail decay6 of ϕ and Φ, . This admits the following approach to
optimize ρ̂t: Starting with mt = 0M , we consider the inclusion of network
elements in mt by the descending order of {µa

T |1:t}
M
a=1 which can be computed

analytically using MOGP. A network element denoted by e(a) is included in
mt if it improves the objective in (5). The algorithm terminates once the
highest not-yet-included element does not improve the objective function as a
consequence of the penalty term outweighing the improvement in Ep(sT |s̃1:t)[ρ̂T].
The remaining excluded elements are then pruned.

Following the algorithm sketch above, we define the utility of network
element vat with respect to candidate pruning mask mt≤̇mt−1 which measures
the improvement in Ep(sT |s̃1:t)[ρ̂T] as a consequence of inclusion of e(a) in mt:

∆(a,mt, s̃1:t, Bs) := Ep(sT |s̃1:t)[ρ̂T (e
(a) ∨mt, Bs)− ρ̂T (mt, Bs)]. (7)

In computing ∆(·), we take the expectation over the distribution p(sT | s̃1:t),
which utilizes both the predictive mean and variance of the network element.
Consquently, the confidence of the MOGP prediction is considered prior to
pruning. We can now take a Lagrangian approach to make pruning decisions
during iteration t by balancing the utility of network element vat against the
change of the penalty (i.e., λt(T − t)), as shown in Algorithm 2. Finally, we
show how λt offers a probabilistic guarantee in the poor performance of a
pruned network element:

6Note as µa
T |1:t ≥ µb

T |1:t, Φ(·) ≤ 0.5 and experiences tail decay proportional to µa
T |1:t − µb

T |1:t.

Springer Nature 2021 LATEX template

12 Pruning During Training by Network Efficacy Modeling

Lemma 3 Let e(∗) represent a pruned element at time t with the highest predictive
mean µ∗

T |1:t ≥ 0. Given an arbitrary pruned element e(a) at time t, then for all

δ ∈ (0, 1), the following holds:

p

(
ρ̂T (e

(a) ∨mt, Bs)− ρ̂T (mt, Bs) <
λt
δ
(T − t+ ϵ)

)
> 1− δ

where ϵ := λ−1
t

[
µa
T |1:tΦ(ν/θ) + θ ϕ(ν/θ)

]
with θ :=

(
σ∗∗
T |1:t + σaa

T |1:t − 2σ∗a
T |1:t

)1/2
,

and ν := µa
T |1:t − µ∗

T |1:t .

The proof of the above is in Appendix E. The above lemma shows that λt

acts as a probabilistic guarantee of the poor performance of a pruned network
element. A smaller λt offers a higher probability in the poor performance of an
element prior to pruning. Consequently, λt is inversely correlated with training
time where a lower λt requires more training time as fewer network elements
are pruned. This offers a trade-off between training time and test-time loss
using the penalty parameter λt.

Due to the relatively expensive cost of performing early pruning, we chose
to early prune every Tstep SGD iterations. Typically Tstep was chosen to
correspond to 10-20 epochs of training. To compute ∆(·) we sampled from
p(sT | s̃1:t) and used a greedy selection algorithm per sample as in (1). During
implementation, we also enforced an additional hard constraint ∥mt∥0 ≥ Bs

which we believe is desirable for practicality reasons. We used a fixed value of
B1,c = ∥m0∥0T0 +Bs(T − T0) in all our experiments.

4.4 BEP-LITE

We further reduce the training cost of BEP by combining with pruning
at initialization. This combination is motivated by noticing that initialization
pruning methods (Lee et al., 2019; C. Wang et al., 2020) implicitly utilize the
following predictive model of saliency:

p(sT) := δ(s0) (8)

where δ represents the Dirac delta function. We observe in validation that this
predictive model is effective to identify the poorest performing elements.7 Thus,
we may prune at initialization by solving the following optimization problem:

max
m0∈{0,1}M

M∑
a=1

m0 · s0 subject to ∥m0∥0 ≤ B0 (9)

where B0 ≥ Bs and is chosen to yield 10%-20% training cost overhead over
pruning at initialization. Consequently, pruning at initialization is used as
a permissive heuristic to determine m0, with the remainder of the pruning
decisions made using BEP as in Algorithm 2. This fusion of techniques, which we

7See Section 5.1.3 for verification.

Springer Nature 2021 LATEX template

Pruning During Training by Network Efficacy Modeling 13

Algorithm 1 Bayesian Early Pruning

Require: N , v1, T , B1,c, Bs, λ, (LITE, B0)▷ DNN N , Lagrangian penalties λ
1: s̃1:T0

← train(Nv1
, T0) ▷ Train for T0 iterations to create seed dataset.

2: BT0,c ← B1,c − T0 dim(v1) ▷ Track computational effort expenditure.

3: for k ← 0, . . . , T−T0

Tstep
; t← T0 + kTstep do

4: µT |1:t, σT |1:t ←MOGP (s̃1:t) ▷ Train and perform inference.
5: sT ← argsort(−µT |1:t) ▷ Sort descending.

6: mt ← 0dim(vt) ▷ Initial pruning mask.

7: for a← s1T , . . . , s
dim(vt)
T do ▷ Consider each network element.

8: if Bt,c − (T − t)∥mt∥0 > 0 then
9: mt = mt ∨ e(a)

10: else if ∆(a,mt, s̃1:t, Bs) ≥ λt(T − t) then ▷ Utility vs. penalty.

11: mt = mt ∨ e(a)

12: else
13: break
14: end if
15: end for
16: prune(vt,mt) ▷ dim(vt) is reduced here.
17: Bt+Tstep,c ← Bt,c − Tstep∥mt∥0
18: s̃t+1:t+Tstep

← train(Nvt
, Tstep) ▷ Continue training.

19: end for
20: return N

term BEP-LITE, significantly reduces training cost without adversely affecting
test performance (Section 5).

4.5 Dynamic Penalty Scaling

In BEP, each optimization problem ρ̂t(·) has a corresponding Lagrange
multiplier λt. This requires several hyperparameters, one for each pruning
iteration. Optimizing these hyperparameters is costly, and thus undesirable.
Due to this, we propose determining λt dynamically using a feedback loop
utilizing a singular Lagrange multiplier λ.

A proportional feedback loop can be defined as follows8:

λt := λ+Kp × e(t) (10)

where Kp ≥ 0 is a proportional constant which modulates λt according to
a signed measure of error e(·) at time t. Note that λt ≥ λ as e(t) ≥ 0, and
the opposite occurs if e(t) ≤ 0, which allows the error to serve as feedback to
determine λt. Implicitly, λt asserts some control over e(t+ 1) and closes the
feedback loop.

8This approach is inspired from proportional-integral-derivative (PID) controllers (Bellman,
2015), see Åström, Hägglund, Hang, and Ho (1993) for an introductory survey.

Springer Nature 2021 LATEX template

14 Pruning During Training by Network Efficacy Modeling

Algorithm 2 Bayesian Early Pruning

Require: N , v1, T , B1,c, Bs, λ, (LITE, B0)▷ DNN N , Lagrangian penalties λ
1: if LITE then ▷ See Section 4.4.
2: s0 ← evaluate(Nv1

) ▷ Evaluate saliency at initialization.

3: m0 ← argmaxm0∈{0,1}M

∑M
a=1 m0 · s0 subject to ∥m0∥0 ≤ B0

4: prune(v1,m0)
5: end if
6: s̃1:T0 ← train(Nv1 , T0) ▷ Train for T0 iterations to create seed dataset.
7: BT0,c ← B1,c − T0 dim(v1) ▷ Track computational effort expenditure.

8: for k ← 0, . . . , T−T0

Tstep
; t← T0 + kTstep do

9: µT |1:t, σT |1:t ←MOGP (s̃1:t) ▷ Train and perform inference.
10: sT ← argsort(−µT |1:t) ▷ Sort descending.

11: mt ← 0dim(vt) ▷ Initial pruning mask.

12: for a← s1T , . . . , s
dim(vt)
T do ▷ Consider each network element.

13: if Bt,c − (T − t)∥mt∥0 > 0 then
14: mt = mt ∨ e(a)

15: else if ∆(a,mt, s̃1:t, Bs) ≥ λt(T − t) then ▷ Utility vs. penalty.

16: mt = mt ∨ e(a)

17: else
18: break
19: end if
20: end for
21: prune(vt,mt) ▷ dim(vt) is reduced here.
22: Bt+Tstep,c ← Bt,c − Tstep∥mt∥0
23: s̃t+1:t+Tstep ← train(Nvt , Tstep) ▷ Continue training.
24: end for
25: return N

Traditional approaches to determine Kp do not work in our case as λ may
vary over several orders of magnitude. Consequently, a natural choice for Kp is
λ itself which preserves the same order of magnitude between Kp and λ:

λt = λ+ λ× e(t) = λ(1 + e(t)). (11)

Here we make two decisions to adapt the above to our task. First, as λ is
likely to be extremely small, we use exponentiation, as opposed to multiplication.
Secondly as λ ≤ 1 in practice, we use 1− e(t) as an exponent:

λt = λ∧ [1− e(t)] = λ [(1/λ) ∧e(t)] . (12)

The above equation is complete with our definition of e(t):

e(t) := (T − t)∥mt∥0/Bt,c − 1. (13)

Springer Nature 2021 LATEX template

Pruning During Training by Network Efficacy Modeling 15

Conv2D (32) Conv2D (32) MaxPool2D Conv2D (64) Conv2D (64)

MaxPool2D Dense (512) Dense (10)

Dropout

Dropout Dropout

Fig. 2: Small scale model neural network architecture for CIFAR-10. Paren-
theticals indicate the number of convolutional filters, or neurons in a layer. The
receptive field size for convolution is (3, 3), Max Pooling is done with receptive
field size (2, 2).

The signed error is determined by the discrepancy between the anticipated
compute required to complete training (T − t)∥mt∥0, vs. the remaining budget
Bt,c with e(t) = 0 if the two are equal. This is a natural measure of feedback
for λ as we expect the two to be equal if λ is serving well to early prune the
network.

5 Experiments

This section empirically validates the efficacy of our proposed methods. In
particular, we will demonstrate: (a) The effectiveness of our MOGP modeling
approach at inferring future saliency measurements; (b) The early pruning
performance of BEP compared to related works and the trade-off between
training-time vs. test-time loss; and (c) The robustness of the BEP performance
in its hyperparameter tuning.

To avoid the large cost in validating the above contributions in various
settings, we first evaluate our saliency modeling approach as well as our BEP
and BEP-LITE algorithms using a small-scale network: a CNN model9 trained
on the CIFAR-10, and CIFAR-100 dataset. The model architecture is presented
in Fig. 2 and consists of 4 convolutional layers followed by a fully connected
layer. MaxPooling and Dropout is also utilized in the architecture, similar to
VGG-16 (Simonyan & Zisserman, 2015).

The proposed BEP algorithm is compared with several pruning methods
applied at initialization stage: (a) Random: Random pruning; (b) SNIP (Lee
et al., 2019); (c) GraSP (C. Wang et al., 2020); (d) PFS : PruneFrom-
Scratch (Y. Wang et al., 2020); and (e) EagleEye (B. Li, Wu, Su, & Wang,
2020): A pruning-after-training approach which is applied to the initialization
stage for comparison.

Following the small scale experiments, we apply BEP and BEP-LITE to
prune ResNet-50 on the ImageNet dataset and compare against related works.
For our ResNet-50 we compare against (a) IterSnip (de Jorge et al., 2021);
and (b): SynFlow (Tanaka et al., 2020) as well as previously mentioned related
works. Our ResNet-50 validation shows that BEP is able to train networks with

9Code is available at https://github.com/mohitrajpal1/keras example/blob/main/keras network
.py

https://github.com/mohitrajpal1/keras_example/blob/main/keras_network.py
https://github.com/mohitrajpal1/keras_example/blob/main/keras_network.py

Springer Nature 2021 LATEX template

16 Pruning During Training by Network Efficacy Modeling

Table 2: Comparing log-likelihood (standard error) of test data for independent
GPs (GP) vs. MOGP with n latent functions (n-MOGP) on different size
of collected saliency measurements from CIFAR-10 and CIFAR-100 training.
The log-likelihoods are given as a multiple of −104 (lower is better). MOGP
outperforms GP, particularly on the small dataset. Using additional latent
functions improves MOGP modeling with diminishing returns. The large dataset
is easier to model due to an overabundance of data, thus MOGP may show
limited improvement due to task simplicity (e.g., see Layer (Lyr) 3, Large
dataset). Results are averaged over 20 runs. Extremely large values are due to
the GP model being unable to fit the data.

CIFAR-10

Small dataset Medium dataset Large dataset

Lyr 1 Lyr 2 Lyr 3 Lyr 1 Lyr 2 Lyr 3 Lyr 1 Lyr 2 Lyr 3

GP 1.19(0.5) 1.08(0.06) 1.07(1.07)e5 0.96(0.04) 0.93(0.03) 2.47(0.04) 0.49(0.01) 0.48(0.01) 1.33(0.02)
4-MOGP 1.15(0.05) 0.89(0.06) 2.44(0.05) 0.91(0.02) 0.80(0.03) 2.20(0.03) 0.38(0.02) 0.39(0.02) 1.25(0.02)
8-MOGP 1.09(0.04) 0.86(0.05) 2.38(0.04) 0.84(0.03) 0.78(0.03) 2.16(0.03) 0.32(0.01) 0.35(0.02) 1.20(0.02)
18-MOGP 0.97(0.04) 0.80(0.05) 2.33(0.04) 0.89(0.03) 0.76(0.03) 2.13(0.03) 0.31(0.01) 0.35(0.02) 1.20(0.02)
32-MOGP 0.96(0.06) 0.81(0.06) 2.32(0.04) 0.79(0.03) 0.74(0.03) 2.13(0.03) 0.31(0.01) 0.34(0.02) 1.20(0.02)

CIFAR-100

Small dataset Medium dataset Large dataset

Lyr 1 Lyr 2 Lyr 3 Lyr 1 Lyr 2 Lyr 3 Lyr 1 Lyr 2 Lyr 3

GP 0.75(0.06) 5.7(5.7)e4 5.6(5.6)e4 0.64(0.04) 0.70(0.04) 2.13(0.05) 3.4(3.4)e3 0.31(0.02) 1.06(0.02)
4-MOGP 0.79(0.05) 0.98(0.12) 3.13(0.10) 0.44(0.04) 0.60(0.10) 2.29(0.06) 0.12(0.01) 0.24(0.03) 1.07(0.03)
8-MOGP 0.65(0.05) 0.89(0.11) 3.00(0.09) 0.38(0.04) 0.60(0.10) 2.20(0.06) 0.10(0.01) 0.18(0.01) 1.02(0.03)
18-MOGP 0.62(0.05) 0.84(0.11) 2.93(0.10) 0.36(0.03) 0.56(0.10) 2.22(0.07) 0.09(0.01) 0.18(0.01) 1.01(0.03)
32-MOGP 0.65(0.05) 0.85(0.09) 2.89(0.10) 0.36(0.03) 0.59(0.10) 2.16(0.06) 0.09(0.02) 0.18(0.01) 1.00(0.03)

higher accuracy when compared to related work. Furthermore, utilizing the
BEP-LITE heuristic, these networks can be trained with only a small amount
of training cost overhead when compared to pruning at initialization.

In this work, we use training FLOPs to measure training cost. Due to the
continued growth in training cost of DNNs, we focus on the task of pruning a
large percentage of the DNN. Due to the cubic time complexity of MOGPs, we
used a variational approximation (Hensman, Matthews, & Ghahramani, 2015).
In all of our models, we used 60 variational inducing points per latent function.
The GPflow library (Matthews et al., 2017) is used to build our MOGP models.

5.1 Small-Scale Experiments

5.1.1 Saliency Modeling Evaluation

A key assertion in our approach is the importance of inferring the future
saliency of network elements given a dataset of past saliency measurements. This
inference process is important because it underpins the pruning decisions made
by BEP. To verify that our MOGP approach demonstrates strong performance
at this task, we compare MOGP vs. GP belief modeling with GP assuming
independence in saliency measurements across network elements (i.e., p(s1:T) :=∏M

a=1 p(s
a
1:T)). To validate this assertion, we collect saliency measurements

of convolutional filters and neurons (network elements) by instrumenting the

Springer Nature 2021 LATEX template

Pruning During Training by Network Efficacy Modeling 17

Sa
lie

nc
y

0 50 100 150
Time

Sa
lie

nc
y

0 50 100 150
Time

0 50 100 150
Time

0 50 100 150
Time

0 50 100 150
Time

0 50 100 150
Time

Fig. 3: Visualization of qualitative differences between GP and MOGP predic-
tion. Top: GP. Bottom: 18-MOGP. Dataset is separated into training (green)
set of observations and future saliency forms the validation (blue) set. Pos-
terior belief of the saliency is visualized as predictive mean (red line), and
95% confidence interval (error bar).In many cases (e.g., top left graph), GP
is unable to predict the long term trends of the data due to irregular element
saliency observations. However, MOGP is able to overcome data irregularities
by utilizing correlations between saliency of the network elements.

training process of our Small scale CNN model on the CIFAR-10/CIFAR-100
dataset.10 We train the belief models with a small (t = [0, 26] epochs), medium
(t = [0, 40] epochs), and large (t = [0, 75] epochs) training dataset of saliency
measurements. For GPs, a separate model was trained per network element
(convolutional filter, or neuron). For MOGP, all network elements in a single
layer shared one MOGP model. We measure these models’ performance at
inferring the future (unobserved) saliency measurements using log-likelihood
and present the results in Table 2 for CIFAR-10 and CIFAR-100. Our MOGP
approach better approximates the future saliency of network elements than
a GP approach. In addition, increasing the size of the training dataset (e.g.,
from small to large) significantly improves the log-likelihood. A larger dataset
is more accurate for pruning decisions, but collecting a larger dataset incurs
more training cost. This is consistent with our focus on the trade-off between
training cost vs. test-time loss.

We visualize the qualitative differences between GP and MOGP prediction
in Fig. 3. We observe that MOGP is able to capture the long term trend of
saliency curves with significantly less data than GP. In many cases, GP is
unable to predict the long term trends of the data due to irregular element
saliency observations. However, MOGP is able to overcome data irregularities
by utilizing correlations between saliency of the network elements.

5.1.2 Dynamic Penalty Scaling

We applied the early pruning algorithm on the aforementioned architecture,
and training regimen. We investigated the behavior of the penalty parameter,
λ. We compare dynamic penalty scaling, and penalty without scaling in Fig.

10Complete experimental setups are detailed in Appendix G.1.

Springer Nature 2021 LATEX template

18 Pruning During Training by Network Efficacy Modeling

0 20 40 60 80 100 120 140
Epochs

30%

40%

50%

60%

70%

80%

90%

100%
M
od

el
 si

ze
 (P

ct
)

Dynamic penalty scaling
Prune 59%, λ=1e-09
Pr%ne 59%, λ=1e-04
Pr%ne 59%, λ=1e-02
Pr%ne 28%, λ=1e-09
Pr%ne 28%, λ=1e-04
Pr%ne 28%, λ=1e-02

0 20 40 60 80 100 120 140
Ep chs

Static penalty

Fig. 4: Comparing dynamic penalty scaling vs. static on pruning tasks on
CIFAR-100 CNN training. Dynamic penalty scaling encourages gradual pruning
across a wide variety of settings of λ.

4 using T0 = 20 epochs, Tstep = 10 epochs for two pruning tasks. Dynamic
penalty scaling encourages gradual pruning across a wide variety of settings of
λ. We use dynamic penalty scaling in the remainder of our validation.

5.1.3 BEP-LITE Heuristic

For BEP-LITE we utilize the following predictive model of saliency

p(sT) := δ(s0) (14)

where δ represents the Dirac delta function. To verify the effectiveness of this
model as a permissive heuristic for BEP, we plot the relation between saliency
at initialization and after training completion.

Using the same experimental setup as Section 5.1.1, we plot the saliency
measurements collected at initialization and after training completion. This
is presented in Fig. 5. Saliency at initialization well correlates with saliency
after training, hence demonstrating the validity of our heuristic. Following
this observation, we utilize the above predictive model as a permissive heuris-
tic applied at initialization to speed up the BEP algorithm. We utilize the
GraSP (C. Wang et al., 2020) heuristic for initialization pruning in BEP-LITE
due to its strong empirical performance.

5.1.4 BEP on CIFAR-10/CIFAR-100 Dataset

We apply the tested algorithms to prune a portion of filters/neurons of
each layer11 and evaluate their performance with various degrees of pruning
percentage. As shown in Table 3, our approach better preserves performance
at equivalent pruning percentage. A lower penalty λ yields higher performing

11We do pruning per layer instead of across the whole network since the saliency measurement
has been known to not work well in comparing network element efficacy across layers (see Appendix
A.1 and A.2 of (Molchanov et al., 2017) and Section 3 of (C. Wang et al., 2020)). Developing novel
saliency functions which overcome this shortcoming is outside the scope of this work.

Springer Nature 2021 LATEX template

Pruning During Training by Network Efficacy Modeling 19

0.0 0.2 0.4 0.6 0.8 1.0
Saliency at initialization

0.0

0.2

0.4

0.6

0.8

1.0
Sa

lie
nc

y
af

te
r t

ra
in

in
g

Fig. 5: Correlation between saliency of network elements at initialization, and
saliency of network elements after training. Top: CIFAR-10, Bottom: CIFAR-
100. Left-to-right: Layers 1 through 5 of the convolutional neural network.

Table 3: Performance (standard error) of the tested algorithms with varying
inference FLOPs (percentage of pruned FLOPs) for CIFAR-10 and CIFAR-
100 on the small scale CNN model. The BEP is tested with varying penalty:
λ = 1e−2, 1e−4, and 1e−7. Unpruned baseline train and inference FLOPs are
1.9e13 and 2.5M, respectively.

CIFAR-10 (Small scale CNN model)

223K Inference FLOPs (91%) 95K Inference FLOPs (96.2%) 24K Inference FLOPs (99.0%) 6K Inference FLOPs (99.8%)

Val Acc Train FLOPs Val Acc Train FLOPs Val Acc Train FLOPs Val Acc Train FLOPs

Random 72.3(0.6)% 1.7e12 66.5(0.7)% 7.1e11 41.4(7.9)% 1.8e11 14.5(4.5)% 4.6e10
SNIP 75.4(4.7)% 1.7e12 67.7(0.7)% 7.1e11 50.8(0.8)% 1.8e11 29.4(4.9)% 4.6e10

GraSP 74.6(0.6)% 1.7e12 66.5(0.9)% 7.1e11 50.7(0.6)% 1.8e11 32.9(1.0)% 4.6e10
PFS 71.3(2.0)% 1.7e12 59.9(5.8)% 7.1e11 43.3(2.5)% 1.8e11 31.7(1.7)% 4.6e10

EagleEye 60.9(7.5)% 1.7e12 44.6(11.3)% 7.1e11 47.8(7.8)% 1.8e11 28.7(4.5)% 4.6e10
BEP 1e−2 75.9(0.3)% 4.0e12(9.5e10) 69.7(0.4)% 3.1e12(2.1e9) 54.8(1.0)% 2.6e12(4.1e9) 18.9(5.4)% 2.5e12(2.2e10)
BEP 1e−4 75.4(1.7)% 4.3e12(3.7e10) 70.5(3.2)% 3.3e12(3.3e10) 55.7(0.9)% 2.6e12(8.4e9) 36.1(1.1)% 2.5e12(2.0e9)
BEP 1e−7 76.0(0.1)% 4.5e12(1.4e11) 70.6(0.2)% 3.4e12(6.6e10) 56.2(0.4)% 2.7e12(1.4e10) 30.4(5.1)% 2.5e12(2.2e9)

CIFAR-100 (Small scale CNN Model)

251K Inference FLOPs (89.4%) 113K Inference FLOPs (95.7%) 33K Inference FLOPs (98.8%) 10K Inference FLOPs (99.6%)

Val Acc Train FLOPs Val Acc Train FLOPs Val Acc Train FLOPs Val Acc Train FLOPs

Random 27.8(6.7)% 1.9e12 27.1(0.7)% 8.5e12 3.7(2.7)% 2.5e11 1.0(0.0)% 8.0e10
SNIP 22.9(9.0)% 1.9e12 15.7(6.1)% 8.5e12 9.0(3.7)% 2.5e11 2.2(1.2)% 8.0e10

GraSP 28.4(7.0)% 1.9e12 22.6(5.4)% 8.5e12 13.9(3.2)% 2.5e11 1.0(0.0)% 8.0e10
PFS 37.3(0.9)% 1.9e12 26.9(4.0)% 8.5e12 19.3(2.4)% 2.5e11 8.5(0.7)% 8.0e10

EagleEye 19.8(12.0)% 1.9e12 20.2(7.1)% 8.5e12 12.6(2.6)% 2.5e11 4.7(2.2)% 8.0e10
BEP 1e−2 40.6(0.2)% 4.2e12(4.8e9) 32.2(0.6)% 3.3e12(2.2e9) 19.1(0.5)% 2.8e12(4.3e8) 7.1(1.6)% 2.7e12(1.3e9)
BEP 1e−4 41.3(0.3)% 4.6e12(3.7e10) 32.4(0.3)% 3.5e12(2.3e10) 19.7(0.8)% 2.9e12(6.5e10) 8.5(0.8)% 2.7e12(4.7e10)
BEP 1e−7 40.6(0.2)% 4.8e12(1.0e11) 33.0(0.5)% 3.5e12(5.9e10) 19.5(0.5)% 2.9e12(1.2e10) 6.6(1.5)% 2.7e12(5.2e9)

results but larger training FLOPs, which shows that λ in BEP serves well
at balancing performance vs. computational cost. A clear superiority of BEP
in validation accuracy can be observed when the pruning percentage is large
(i.e., right column of Table 3). Although PruneFromScratch (Y. Wang et al.,
2020) demonstrates comparable performance to BEP in some cases, we show in
more complex experiments (Section 5.2) a significant performance gap emerges.
Although BEP incurs larger training FLOPs than other tested algorithms,
we can further reduce the training cost via BEP-LITE as will be shown in
Section 5.2. EagleEye achieves much lower validation accuracy than other tested
algorithms, which implies that an after training pruning method typically does
not work well when applied to the initialization stage for reducing training cost.

Springer Nature 2021 LATEX template

20 Pruning During Training by Network Efficacy Modeling

Table 4: Ablation study showing validation accuracy (standard error) with
varying early pruning hyperparameters: MOGP variational inducing points
(Ind. pnts.), MOGP latent functions (Lat. func.), and Tstep. Default setting
for hyperparameters are 60, 1.0×, and 10 respectively. Outside of the highest
sparsity setting (6K Inf. FLOPs), the validation accuracy of DNN is robust to
changes of all hyperparameters, with mild degradation observed in the extremal
settings.

CIFAR-10 CIFAR-100

95K Inf. 24K Inf. 6K Inf. 95K Inf. 24K Inf. 6K Inf.

Ind. pnts.

1 70.2(0.3)% 55.6(0.3)% 32.1(0.5)% 31.7(0.6)% 19.1(0.2)% 6.6(1.2)%
2 70.4(0.2)% 55.8(0.3)% 35.4(0.2)% 33.3(0.4)% 18.8(0.2)% 8.0(0.2)%
5 70.5(0.2)% 56.3(0.2)% 35.9(0.2)% 32.9(0.2)% 19.3(0.3)% 4.7(1.3)%
10 70.4(0.5)% 56.1(0.4)% 30.6(4.7)% 32.6(0.4)% 19.1(0.6)% 7.4(1.5)%
26 69.6(0.4)% 56.8(0.2)% 29.7(4.9)% 31.7(0.6)% 19.2(0.5)% 8.3(0.7)%
40 70.9(0.1)% 55.6(0.6)% 30.5(5.1)% 32.3(0.7)% 19.6(0.3)% 6.6(1.4)%
60 70.5(3.2)% 55.7(0.9)% 36.1(1.1)% 32.4(0.3)% 19.7(0.8)% 8.5(0.8)%
90 70.4(0.3)% 55.1(0.7)% 35.5(1.9)% 32.6(0.4)% 18.5(0.6)% 8.7(0.3)%

Lat. func.

0.10× 70.1(0.3)% 55.3(0.7)% 30.9(4.7)% 31.8(0.4)% 20.2(0.2)% 5.9(1.8)%
0.15× 70.6(0.2)% 55.1(0.4)% 25.9(5.8)% 32.1(0.3)% 20.2(0.2)% 6.5(1.3)%
0.20× 69.8(0.1)% 56.0(0.3)% 20.4(5.7)% 33.3(0.2)% 19.3(0.5)% 4.7(1.3)%
0.25× 70.4(0.4)% 55.6(0.8)% 35.8(0.2)% 32.6(0.3)% 16.3(3.8)% 7.4(1.8)%
0.50× 70.0(0.2)% 56.9(0.4)% 34.5(0.6)% 32.1(0.5)% 18.9(0.7)% 7.0(1.5)%
1.0× 70.5(3.2)% 55.7(0.9)% 36.1(1.1)% 32.4(0.3)% 19.7(0.8)% 8.5(0.8)%
2.0× 69.8(0.3)% 55.7(0.7)% 34.8(0.5)% 32.0(0.4)% 20.8(0.2)% 7.7(0.4)%

Tstep

2 69.2(0.5)% 54.7(0.6)% 29.4(5.0)% 32.1(0.2)% 20.0(0.3)% 4.3(1.5)%
5 70.3(0.2)% 55.6(0.5)% 31.6(5.4)% 32.7(0.4)% 19.4(0.4)% 5.2(1.8)%
10 70.5(3.2)% 55.7(0.9)% 36.1(1.1)% 32.4(0.3)% 19.7(0.4)% 8.5(0.8)%
20 70.3(0.2)% 56.2(0.1)% 29.8(5.0)% 32.8(0.5)% 19.6(0.4)% 6.8(1.5)%
40 70.8(0.3)% 55.5(0.6)% 34.6(0.5)% 32.8(0.2)% 18.9(0.4)% 8.3(0.5)%
80 72.0(0.3)% 58.4(1.8)% 39.2(6.6)% 33.9(0.5)% 22.3(0.7)% 9.5(0.8)%
100 74.3(0.4)% 62.4(0.6)% 36.7(6.4)% 37.1(0.2)% 24.6(0.4)% 9.4(2.0)%

5.1.5 Ablation Study

The objective of BEP is to reduce the cost for DNN training. As such,
hyperparameter tuning of BEP on a per DNN architecture basis is not feasible
due to its expensive cost. Thus, we check the robustness of BEP and MOGP
hyperparameters in this section, which demonstrates that tuning is not necessary
on a per DNN architecture basis.

We vary the number of MOGP variational inducing points, MOGP latent
functions as well as Tstep. Under these varying conditions we test the perfor-
mance of BEP 1e−4 on CIFAR-10/CIFAR-100 at 95K, 24K, and 6K inference
FLOPs with our small scale CNN model. As shown in Table 4, we observe
that in general, the validation accuracy of the pruned DNN is robust to the
changes of all hyperparameters. Degradation is observed in extremal hyper-
parameter settings. Reducing the inducing points, and latent functions has
a strong effect on the effectiveness of the algorithm in the extremal setting
(e.g., 6K Inf. FLOPS and minimal inducing points or latent functions). How-
ever, this can be easily avoided in practice. Pruning with a large Tstep offers

Springer Nature 2021 LATEX template

Pruning During Training by Network Efficacy Modeling 21

Table 5: BEP and BEP-LITE vs. related work for ResNet-50 on ImageNet
dataset. We vary the inference FLOPs (percentage of pruned FLOPs) of the
model after training. ‘Model’ refers to all inclusive overhead of the pruning
algorithm. PFS algorithm failed to prune to the desired sparsity in the unlisted
scenarios. Unpruned baseline train and inference FLOPs are 9.3e17 and 7.3e9,
respectively.

ResNet-50

9.7e8 Inf. FLOPs (86.7%) 4.4e8 Inf. FLOPs (94.0%) 4.2e8 Inf. FLOPs (94.3%) 1.7e8 Inf. FLOPs (97.7%)

Acc Train FLOPs Model Acc Train FLOPs Model Acc Train FLOPs Model Acc Train FLOPs Model

Random 69.2% 1.2e17 0.0h 51.6% 5.7e16 0.0h 35.7% 5.4e16 0.0h 34.3% 2.3e16 0.0h
SNIP 69.3% 1.2e17 0.7h 50.9% 5.7e16 0.7h 35.1% 5.4e16 0.7h 31.8% 2.3e16 0.7h

GraSP 69.3% 1.2e17 2.7h 52.2% 5.7e16 2.7h 36.7% 5.4e16 2.7h 34.1% 2.3e16 2.7h
IterSNIP 0.4% 1.2e17 1.4h 0.4% 5.7e16 1.4h 0.5% 5.4e16 1.4h 0.4% 2.3e16 1.4h
SynFlow 32.3% 1.2e17 1.2h 0.3% 5.7e16 1.2h 0.1% 5.4e16 1.2h 0.1% 2.3e16 1.2h

PFS 60.3% 1.2e17 1.6h - - - - - - - - -
EagleEye 26.1% 1.2e17 18h 36.6% 5.7e16 18h 24.1% 5.4e16 18h 26.6% 2.3e16 18h

BEP-LITE 1e−4 69.7% 1.4e17 2.6h 53.7% 6.6e16 2.9h 39.5% 6.2e16 2.8h 37.0% 2.6e16 2.4h
BEP 1e−4 70.0% 2.2e17 1.9h 53.5% 1.7e17 2.4h 40.0% 1.6e17 2.3h 36.1% 1.3e17 1.6h

ResNet-50 (Compare with PruneTrain)

1.4e9 Inf. FLOPs (80.7%) 5.4e8 Inf. FLOPs (92.6%) 1.3e8 Inf. FLOPs (98.2%) 3.0e7 Inf. FLOPs (99.6%)

PruneTrain 69.2% 2.9e17 0.0h 60.6% 2.0e17 0.0h 40.6% 7.2e16 0.0h 8.3% 5.8e16 0.0h
BEP-LITE 1e−4 71.4% 1.4e17 2.4h 66.3% 6.6e16 2.9h 53.8% 6.2e16 2.6h 20.6% 2.6e16 1.9h

BEP 1e−4 71.6% 2.4e17 2.8h 66.8% 1.7e17 3.0h 53.6% 1.6e17 1.9h 20.6% 1.3e17 1.7h

improved performance, however this correspondingly increases computational
cost. The hyperparameter robustness in our approach demonstrates the feasibil-
ity of applying BEP to “never-before-seen” network architectures and datasets
without additional hyperparameter tuning.

5.2 ResNet Early Pruning

We train ResNet-50 with BEP and other tested algorithm for 100 epochs
on 4× Nvidia Geforce GTX 1080Ti GPUs. More experimental details can be
found in Appendix G.1. We used λ = 1e−4 because of its strong performance
in our smaller scale experiments. As can be observed in Table 5, the proposed
methods achieve higher validation accuracy than other tested algorithms, with
BEP-LITE showing only a modest 15% increase in training FLOPs over pruning
at initialization. BEP-LITE achieves a 85% training cost reduction over BEP
for 1.7e8 inference FLOPs while achieving superior validation accuracy. The
modeling and pruning overhead of our algorithm is comparable to other tested
algorithms. PruneFromScratch (Y. Wang et al., 2020) shows severe degradation
when compared to BEP in the 86.7% pruned FLOPs experiment, and fails to
prune altogether in higher sparsity settings. IterSnip (de Jorge et al., 2021) and
SynFlow (Tanaka et al., 2020) are unable to prune effectively at high pruning
ratios, with severe degradation observed in all tested scenarios. EagleEye
continues showing poor performance, which demonstrates the inability of
pruning-after-training techniques to be applied to the early pruning problem. In
particular, BEP and BEP-LITE significantly outperforms competing approaches
at larger pruning ratios. This improvement is crucial as DNNs continue to grow
in size and require considerable pruning to allow training and inference on
commodity hardware. We note that PruneTrain does not provide a mechanism
to constrain the trained network size; see constraint (2b). To compare with

Springer Nature 2021 LATEX template

22 Pruning During Training by Network Efficacy Modeling

Table 6: Timing evaluation. Overhead time consists of disk I/O, and image
decoding. Unpruned baseline is 47h wall-clock and 31h GPU time.

ResNet-50 (Timing)

86.7% 94.0% 94.3% 97.7% 86.7% 94.0% 94.3% 97.7%

BEP-LITE
GPU 12.2h 6.9h 6.4h 3.8h

BEP
GPU 14.6h 9.2h 9.2h 7.1h

Wall-clock 27.8h 22.6h 22.4h 19.4h Wall-clock 30.2h 25.2h 24.9h 22.7
Overhead 15.6h 16.0h 15.8h 15.6h Overhead 15.6h 15.9h 15.8h 15.6h
Model 2.6h 2.9h 2.8h 2.4h Model 1.9h 2.4h 2.3h 1.6h

PruneTrain, we train ResNet-50 under varying pruning settings offered by
PruneTrain. After training is completed for these networks, we train equivalent
inference cost networks using BEP.

5.3 Training-Time Improvements and Discussion

Our approach delivers training time improvements in Wall-clock time. In
Table 6 we show the GPU, wall-clock, overhead, and model time for BEP and
BEP-LITE on the ResNet-50 pruning tasks. GPU training time speedup is
correlated with the size of the model after training completion. BEP-LITE
delivers improved performance in wall-clock and GPU time. This improvement
is delivered with no significant loss of performance after training when compared
to BEP.

The measured wall-clock time is significantly higher than GPU time due
to the disk I/O and image decoding overhead of training. The GPU time
reduction is well correlated with the amount of pruning, with higher pruning
yielding shorter GPU time. However, due to the constant training overhead,
these improvements do not perfectly translate to wall-clock time improvements.
Despite this, BEP and BEP-LITE are able to deliver significant improvements
in wall-clock training time compared to the unpruned baseline of 47h. In
particular, with 86.7% pruned flops, BEP-LITE shows a 40% improvement in
wall-clock time with only a 5.5% drop in accuracy.

The training overhead can be significantly reduced in many ways to deliver
further wall-clock time improvements. Disk I/O can be reduced by utilizing
faster disks, or disk arrays for higher throughput. Image decoding overhead can
be alleviated by storing predecoded files in bitmap form. These approaches can
further reduce the wall-clock time of the training process. Thus our approach
delivers significant, practical improvements in GPU time reduction and wall-
clock time reduction. The wall-clock time reduction can be further improved
with minimal effort.

6 Conclusion

This paper presents a novel efficient algorithm to perform pruning of DNN
elements such as neurons, or convolutional layers during the training process.
To achieve pruning during training while preserving the performance of the
DNN upon convergence, a Bayesian model (i.e., MOGP) is used to predict

Springer Nature 2021 LATEX template

Pruning During Training by Network Efficacy Modeling 23

the future (unseen) saliency of DNN elements by exploiting the exponentially
decaying behavior of the saliency and the correlations between saliency of
different network elements. Then, we exploit several properties (Lemma 1 and
Lemma 2) of the objective function and propose an efficient Bayesian early
pruning algorithm. Empirical evaluations on benchmark datasets show that our
algorithm performs favorably to related works for pruning convolutional filters
and neurons. In particular, BEP shows strong improvement when compared
to related work with minimal cost overhead when a significant portion of
the DNN is pruned. Moreover, the proposed BEP is robust to changes in
hyperparameters (see Table 4), which demonstrates its applicability to “never-
before-seen” network architectures and datasets without further hyperparameter
tuning. Our approach also remains flexible to changes in saliency function, and
appropriately balances the trade-off between training cost vs. test-time loss in
DNN pruning.

Acknowledgments. This research is part of the programme DesCartes
and is supported by the National Research Foundation, Prime Minister’s
Office, Singapore under its Campus for Research Excellence and Technological
Enterprise (CREATE) programme. This research is also supported by the
Major Key Project of PCL, China.

Declarations

Funding. This research is part of the programme DesCartes and is supported
by the National Research Foundation, Prime Minister’s Office, Singapore under
its Campus for Research Excellence and Technological Enterprise (CREATE)
programme. This research is also supported by the Major Key Project of PCL,
China.
Competing interests/conflict of interest. Not Applicable.
Ethics approval. Not Applicable.
Consent to participate. Not Applicable.
Consent for publication. Not Applicable.
Availability of data and material. All datasets for this work are publicly
available.
Code availability. The authors will open source the BEP code upon publication.

Authors’ Contributions

Mohit Rajpal: This author defined the problem statement, proposed and
proved the theoretical guarantees of the proposed solution, and designed and
performed the validation. This author was also the primary contributor to the
text of the manuscript.

Yehong Zhang: This author aided in drafting the manuscript and offering
valuable feedback and review on all sections of the manuscript including
introduction, related work, design, and validation. This author also aided in
editing and revising the manuscript prior to submission.

Springer Nature 2021 LATEX template

24 Pruning During Training by Network Efficacy Modeling

Bryan Kian Hsiang Low: This author provided guidance and research
direction for the work. This author also aided in providing valuable feedback
on the introduction, motivation, and framing of the problem in the context of
related work.

References

Allen-Zhu, Z., Li, Y., Liang, Y. (2019). Learning and generalization in overpa-
rameterized neural networks, going beyond two layers. Proc. NeurIPS
(pp. 6155–6166).

Álvarez, M.A., & Lawrence, N.D. (2011). Computationally efficient convolved
multiple output Gaussian processes. JMLR, 12 (1), 1459–1500.

Åström, K.J., Hägglund, T., Hang, C.C., Ho, W.K. (1993). Automatic tuning
and adaptation for PID controllers - A survey. Control Engineering
Practice, 1 (4), 699–714.

Bellec, G., Kappel, D., Maass, W., Legenstein, R.A. (2018). Deep rewiring:
Training very sparse deep networks. Proc. ICLR.

Bellman, R.E. (2015). Adaptive control processes: A guided tour. Princeton,
New Jersey: Princeton University Press.

Buluç, A., & Gilbert, J.R. (2008). Challenges and advances in parallel sparse
matrix-matrix multiplication. Proc. ICCP (pp. 503–510).

Courbariaux, M., Bengio, Y., David, J. (2015). BinaryConnect: Train-
ing deep neural networks with binary weights during propagations
(arXiv:1511.00363).

Dai, X., Yin, H., Jha, N.K. (2019). Nest: A neural network synthesis tool
based on a grow-and-prune paradigm. IEEE Trans. Computers, 68 (10),
1487–1497.

de Jorge, P., Sanyal, A., Behl, H.S., Torr, P.H.S., Rogez, G., Dokania, P.K.
(2021). Progressive skeletonization: Trimming more fat from a network
at initialization. Proc. ICLR.

Denton, E.L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R. (2014). Exploiting
linear structure within convolutional networks for efficient evaluation.
Proc. NeurIPS (pp. 1269–1277).

Springer Nature 2021 LATEX template

Pruning During Training by Network Efficacy Modeling 25

Dettmers, T., & Zettlemoyer, L. (2019). Sparse networks from scratch: Faster
training without losing performance (arXiv:1907.04840).

Dong, X., Chen, S., Pan, S.J. (2017). Learning to prune deep neural networks
via layer-wise optimal brain surgeon. Proc. NeurIPS (pp. 4857–4867).

Frankle, J., & Carbin, M. (2019). The lottery ticket hypothesis: Finding sparse,
trainable neural networks. Proc. ICLR.

Gale, T., Elsen, E., Hooker, S. (2019). The state of sparsity in deep neural
networks (arXiv:1902.09574).

Guo, Y., Yao, A., Chen, Y. (2016). Dynamic network surgery for efficient
DNNs. Proc. NeurIPS (pp. 1379–1387).

Han, S., Pool, J., Tran, J., Dally, W. (2015). Learning both weights and
connections for efficient neural networks. Proc. NeurIPS (pp. 1135–1143).

Hassibi, B., & Stork, D.G. (1992). Second order derivatives for network pruning:
Optimal brain surgeon. Proc. NeurIPS (pp. 164–171).

He, K., Zhang, X., Ren, S., Sun, J. (2016a). Deep residual learning for image
recognition. Proc. CVPR (pp. 770–778).

He, K., Zhang, X., Ren, S., Sun, J. (2016b). Identity mappings in deep residual
networks. Proc. ECCV (pp. 4432–4440).

He, Y., Lin, J., Liu, Z., Wang, H., Li, L., Han, S. (2018). AMC: AutoML for
model compression and acceleration on mobile devices. Proc. ECCV (pp.
784–800).

Hensman, J., Matthews, A., Ghahramani, Z. (2015). Scalable variational
Gaussian process classification. Proc. AISTATS (pp. 351–360).

Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.
(2012). Improving neural networks by preventing co-adaptation of feature
detectors (arXiv:1207.0580).

Hinton, G.E., Vinyals, O., Dean, J. (2015). Distilling the knowledge in a neural
network (arXiv:1503.02531).

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y. (2017).
Quantized neural networks: Training neural networks with low precision
weights and activations. JMLR, 18 (1), 6869–6898.

Idelbayev, Y., & Carreira-Perpiñán, M.Á. (2021a). LC: A flexible, extensible
open-source toolkit for model compression. Proc. CIKM (pp. 4504–4514).

Springer Nature 2021 LATEX template

26 Pruning During Training by Network Efficacy Modeling

Idelbayev, Y., & Carreira-Perpiñán, M.Á. (2021b). More general and effective
model compression via an additive combination of compressions. Proc.
ECML PKDD (pp. 233–248).

Jaderberg, M., Vedaldi, A., Zisserman, A. (2014). Speeding up convolutional
neural networks with low rank expansions. Proc. BMVC.

Karnin, E.D. (1990). A simple procedure for pruning back-propagation trained
neural networks. IEEE Trans. Neural Networks, 1 (2), 239–242.

Kingma, D.P., & Ba, J. (2015). Adam: A method for stochastic optimization.
Proc. ICLR.

LeCun, Y., Denker, J.S., Solla, S.A. (1989). Optimal brain damage. Proc.
NeurIPS (pp. 598–605).

Lee, N., Ajanthan, T., Torr, P.H.S. (2019). SNIP: Single-shot network pruning
based on connection sensitivity. Proc. ICLR.

Li, B., Wu, B., Su, J., Wang, G. (2020). EagleEye: Fast sub-net evaluation for
efficient neural network pruning. Proc. ECCV (pp. 639–654).

Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P. (2017). Pruning filters
for efficient ConvNets. Proc. ICLR.

Lin, S., Ji, R., Yan, C., Zhang, B., Cao, L., Ye, Q., . . . Doermann, D. (2019).
Towards optimal structured CNN pruning via generative adversarial
learning. Proc. CVPR (pp. 2790–2799).

Liu, J., Xu, Z., Shi, R., Cheung, R.C.C., So, H.K. (2020). Dynamic sparse
training: Find efficient sparse network from scratch with trainable masked
layers. Proc. ICLR.

Louizos, C., Welling, M., Kingma, D.P. (2018). Learning sparse neural networks
through L 0 regularization. Proc. ICLR.

Lu, L., Guo, M., Renals, S. (2017). Knowledge distillation for small-footprint
highway networks. Proc. ICASSP (pp. 4820–4824).

Lym, S., Choukse, E., Zangeneh, S., Wen, W., Sanghavi, S., Erez, M. (2019).
PruneTrain: Fast neural network training by dynamic sparse model
reconfiguration. Proc. SC (pp. 1–13).

Matthews, A., van der Wilk, M., Nickson, T., Fujii, K., Boukouvalas, A., León-
Villagrá, P., . . . Hensman, J. (2017). GPflow: A Gaussian process library
using TensorFlow. JMLR, 18 (1), 1-6.

Springer Nature 2021 LATEX template

Pruning During Training by Network Efficacy Modeling 27

Micikevicius, P., Narang, S., Alben, J., Diamos, G.F., Elsen, E., Garćıa, D., . . .
Wu, H. (2018). Mixed precision training. Proc. ICLR.

Mocanu, D.C., Mocanu, E., Stone, P., Nguyen, P.H., Gibescu, M., Liotta, A.
(2018). Scalable training of artificial neural networks with adaptive sparse
connectivity inspired by network science. Nature, 9 (1), 1–12.

Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J. (2017). Pruning
convolutional neural networks for resource efficient inference. Proc. ICLR.

Mostafa, H., & Wang, X. (2019). Parameter efficient training of deep convo-
lutional neural networks by dynamic sparse reparameterization. Proc.
ICML (pp. 4646–4655).

Mozer, M., & Smolensky, P. (1988). Skeletonization: A technique for trimming
the fat from a network via relevance assessment. Proc. NeurIPS (pp.
107–115).

Nadarajah, S., & Kotz, S. (2008). Exact distribution of the max/min of two
Gaussian random variables. Trans. VLSI , 16 (2), 210–212.

Narang, S., Diamos, G., Sengupta, S., Elsen, E. (2017). Exploring sparsity in
recurrent neural networks. Proc. ICLR.

Nowlan, S.J., & Hinton, G.E. (1992). Simplifying neural networks by soft
weight-sharing. Neural Computation, 4 (4), 473–493.

Polyak, A., & Wolf, L. (2015). Channel-level acceleration of deep face
representations. IEEE Access, 3 , 2163–2175.

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for
large-scale image recognition. Proc. ICLR.

Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov,
R. (2014). Dropout: A simple way to prevent neural networks from
overfitting. JMLR, 15 (1), 1929–1958.

Swersky, K., Snoek, J., Adams, R.P. (2014). Freeze-thaw Bayesian optimization
(arXiv:1406.3896).

Tanaka, H., Kunin, D., Yamins, D.L., Ganguli, S. (2020). Pruning neural
networks without any data by iteratively conserving synaptic flow. Proc.
NeurIPS.

Springer Nature 2021 LATEX template

28 Pruning During Training by Network Efficacy Modeling

Tung, F., & Mori, G. (2019). Similarity-preserving knowledge distillation. Proc.
ICCV (pp. 1365–1374).

Ullrich, K., Meeds, E., Welling, M. (2017). Soft weight-sharing for neural
network compression. Proc. ICLR.

Wang, C., Zhang, G., Grosse, R.B. (2020). Picking winning tickets before
training by preserving gradient flow. Proc. ICLR.

Wang, Y., Zhang, X., Xie, L., Zhou, J., Su, H., Zhang, B., Hu, X. (2020).
Pruning from scratch. Proc. AAAI (pp. 12273–12280).

Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H. (2016). Learning structured
sparsity in deep neural networks. Proc. NeurIPS (pp. 2074–2082).

Yang, C., Buluç, A., Owens, J.D. (2018). Design principles for sparse matrix
multiplication on the GPU. Proc. Euro-Par (pp. 672–687).

Yim, J., Joo, D., Bae, J., Kim, J. (2017). A gift from knowledge distillation:
Fast optimization, network minimization and transfer learning. Proc.
CVPR (pp. 7130–7138).

Springer Nature 2021 LATEX template

Pruning During Training by Network Efficacy Modeling 29

Appendix A Saliency Function

In this work, we use a first-order Taylor series saliency function proposed
by Molchanov et al. (2017). Our design (Section 4) remains flexible to allow
usage of arbitrary saliency functions in a plug-n-play basis. We partition a DNN
of L layers, where each layer ℓ contains Cℓ convolutional filters, into a sequence
of convolutional filters [zℓ,c]

c=1,...,Cℓ

ℓ=1,...,L . Each filter zℓ,c : RCℓ−1×Wℓ−1×Hℓ−1 →
RWℓ×Hℓ can be considered as one network element in vT and zℓ,c(Pℓ−1) :=

R(Wℓ,c ∗Pℓ−1+bℓ,c) where Wℓ,c ∈ RCℓ×Oℓ×O′
ℓ , bℓ,c are kernel weights and bias.

With receptive field Oℓ ×O′
ℓ, ‘∗’ represents the convolution operation, R is the

activation function, Pℓ−1 represents the output of zℓ−1 := [zℓ−1,c′]c′=1,...,Cℓ−1

with P0 corresponding to an input xd ∈ X , and Wℓ, Hℓ are width and height
dimensions of layer ℓ for ℓ = 1, . . . , L. Let Nzℓ:zℓ′

:= zℓ′◦, . . . , ◦zℓ denote a
partial neural network of layers [ℓ, . . . , ℓ′]1≤ℓ≤ℓ′≤L. The Taylor series saliency
function on the convolutional filter zℓ,c denoted as s([ℓ, c]) is defined12:

s([ℓ, c]) :=
1

D

D∑
d=1

∣∣∣∣∣ 1

Wℓ ×Hℓ

Wℓ×Hℓ∑
j=1

∂L(P(xd)
ℓ , yd; Nzℓ+1:zL

)

∂P
(xd)
ℓ,c,j

P
(xd)
ℓ,c,j

∣∣∣∣∣ . (A1)

where P
(xd)
ℓ is the output of the partial neural network Nz1:zℓ

with xd as the
input and [Pxd

ℓ,c,j]j=1,...,Wℓ×Hℓ
interprets the output of the cth filter in vectorized

form. This function uses the first-order Taylor series approximation of L to
approximate the change in loss if zℓ,c was changed to a constant 0 function.
Using the above saliency definition, pruning filter zℓ,c corresponds to collectively
zeroing Wℓ,c, bℓ,c as well as weight parameters13 [Wℓ+1,c′,{:,:,c}]c′=1,...,Cℓ+1

of
zℓ+1 which utilize the output of zl,c. This definition can be extended to elements
(e.g., neurons) which output scalars by setting Wℓ = Hℓ = 1.

Appendix B Proof of Pruning Lower Bound

We state Lemma 4 asserting the lower bound in (4).

Lemma 4 Let mt ∈ {0, 1}M then the following holds true:

max
mt

Ep(st+1|s̃1:t)

[
ρt+1(mt, Bt,c − ∥mt∥0, Bs)

]
≥ max

mt

Ep(sT |s̃1:t)[ρT (mt, Bt,c − (T − t)∥mt∥0, Bs)].
(B2)

Proof To prove the above, we show a solution to the latter that can be transformed
into an equivalent feasible solution to the former. Let

m∗
t := max

mt

Ep(sT |s̃1:t)[ρT (mt, Bt,c − (T − t)∥mt∥0, Bs)].

12For brevity, we omit parameters X , Y, Nz1:zL
, L.

13Here we use {} to distinguish indexing into a tensor from indexing into the sequence of tensors
[Wℓ+1,c′].

Springer Nature 2021 LATEX template

30 Pruning During Training by Network Efficacy Modeling

Accordingly, we define a feasible solution for the former optimization problem:

m∗
t+1 = m∗

t+2 = . . . = m∗
T = m∗

t .

Let the above serve as solutions to ρt+1, ρt+2, . . . , ρT satisfies the constraint of ρt in
the former optimization problem:

ρt(m
∗
t , Bt,c − ∥m∗

t ∥0, Bs)

= ρt+1(m
∗
t , Bt,c − 2∥m∗

t ∥0, Bs)

...

= ρT (m
∗
t , Bt,c − (T − t)∥m∗

t ∥0, Bs)

which completes the proof as the maximization of the former optimization can only
be greater or equal to a feasible solution. □

Appendix C Proof of Lemma 1

We restate Lemma 1 for clarity.

Lemma 1 Let m′, m′′ ∈ {0, 1}M , and e(a) be an arbitrary M -dimensional one
hot vector with 1 ≤ a ≤ M with P (m) := Ep(sT |s̃1:t)[ρ̂T (m, Bs)]. We have P (m′ ∨
e(a)) − P (m′) ≥ P (m′′ ∨ e(a)) − P (m′′) for any m′ ≤̇ m′′ when m′ ∧ e(a) = 0M ,

and m′′ ∧ e(a) = 0M .

Proof According to (2),

Ep(sT |s̃1:t)[ρ̂T (m, Bs)] = Ep(sT |s̃1:t)

[
max
mT

[
mT · s̃T s.t. ∥mT ∥0 ≤ Bs,mT ≤̇ m

]]
Let α(m) := argmaxmT

[
mT · s̃T s.t. ∥mT ∥0 ≤ Bs,mT ≤̇m

]
return the optimized

mask mT given any m, Λm := min(α(m) ⊙ sT) be the minimal saliency of the
network elements selected at iteration T for P (m). Then, we have

P (m ∨ e(a)) = Ep(sT |s̃1:t)

[
ρ̂T (m ∨ e(a), Bs)

]
= Ep(sT |s̃1:t)

[
ρ̂T (m, Bs)− Λm +max(saT ,Λm)

]
The second equality is due to the fact that the network element vaT would only replace
the lowest included element in mT in order to maximize the objective. Then,

P (m ∨ e(a))− P (m)

= Ep(sT |s̃1:t)

[
ρ̂T (m, Bs)− Λm +max(saT ,Λm)

]
− Ep(sT |s̃1:t) [ρ̂T (m, Bs)]

= Ep(sT |s̃1:t)

[
−Λm +max(saT ,Λm)

]
= Ep(sT |s̃1:t)

[
max(saT − Λm, 0)

]
(C3)

Given m′ ≤̇ m′′, we have Λm′ ≤ Λm′′ since mT ≤̇ m in α(m′) is a tighter constraint
than that in α(m′′). Consequently, we can get sat − Λm′ ≥ sat − Λm′′ , and thus

[P (m′ ∨ e(a))− P (m′)] ≥ [P (m′′ ∨ e(a))− P (m′′)] .

□

Springer Nature 2021 LATEX template

Pruning During Training by Network Efficacy Modeling 31

Appendix D Proof of Lemma 2

We restate Lemma 2 for clarity.

Lemma 2 Let e(i) be a M -dimensional one-hot vectors with the ith element be
1. ∀ 1 ≤ a, b ≤ M,m ∈ {0, 1}M s.t.m ∧ (e(a) ∨ e(b)) = 0M . Given a matrix s̃1:t of
observed saliency measurements, if µa

T |1:t ≥ µb
T |1:t and µa

T |1:t ≥ 0, then

Ep(sT |s̃1:t)[ρ̂T (m ∨ e(b))]− Ep(sT |s̃1:t)[ρ̂T (m ∨ e(a))] ≤ µb
T |1:t Φ(ν/θ) + θ ϕ(ν/θ)

where θ :=
√

σaa
T |1:t + σbb

T |1:t − 2σab
T |1:t , ν := µb

T |1:t−µa
T |1:t , and Φ and ϕ are standard

normal CDF and PDF, respectively.

To prove this Lemma, we prove the following first:

Lemma 5 Ep(sT |s̃1:t)

[
ρ̂T (m ∨ e(b))

]
− Ep(sT |s̃1:t)

[
ρ̂T (m ∨ e(a))

]
≤ E[max(sbT −

saT , 0)].

Proof Due to (C3), we have

Ep(sT |s̃1:t)

[
ρ̂T (m ∨ e(b))

]
− Ep(sT |s̃1:t)

[
ρ̂T (m ∨ e(a))

]
= P (m ∨ e(b))− P (m)− (P (m ∨ e(a))− P (m))

= Ep(sT |s̃1:t)

[
max(sbT − Λm, 0)

]
− Ep(sT |s̃1:t)

[
max(saT − Λm, 0)

]
= Ep(sT |s̃1:t)

[
max(sbT − Λm, 0)−max(saT − Λm, 0)

]
(D4)

= Ep(sT |s̃1:t)

[
max(sbT − saT ,Λm − saT)−max(0,Λm − saT)

]
(D5)

≤ Ep(sT |s̃1:t)

[
max(sbT − saT , 0)

]
(D6)

The equality (D5) is achieved by adding Λm − saT in each term of the two max
functions in (D4). The inequality (D6) can be proved by considering the following
two cases:

If Λm − saT ≥ 0, then

max(sbT − saT ,Λm − saT)−max(0,Λm − saT)

= max(sbT − saT ,Λm − saT)− (Λm − saT)

= max(sbT − saT − (Λm − saT), 0)

≤ max(sbT − saT , 0) .

If Λm − saT < 0, then

max(sbT − saT ,Λm − saT)−max(0,Λm − saT)

= max(sbT − saT ,Λm − saT)

≤ max(sbT − saT , 0) .

□

Springer Nature 2021 LATEX template

32 Pruning During Training by Network Efficacy Modeling

Next we utilize a well known bound regarding the maximum of two Gaussian
random variables (Nadarajah & Kotz, 2008), which we restate:

Lemma 6 Let sa, sb be Gaussian random variables with means µa, µb and standard

deviations σa, σb, then E[max(sa, sb)] ≤ µaΦ
(µb−µa

θ

)
+ µbΦ

(µb−µa

θ

)
+ θϕ

(µb−µa

θ

)
where θ :=

√
[σb]2 + [σa]2 − 2cov(sb, sa) and Φ, ϕ are standard normal CDF and

PDF respectively.

Then,

Ep(sT |s̃1:t)[max(sbT − saT , 0)]

= Ep(sT |s̃1:t)[max(sbT , s
a
T)]− Ep(sT |s̃1:t)[s

a
T]

≤ (µb
T |1:t + µa

T |1:t)Φ
(µb

T |1:t − µa
T |1:t

θ

)
+ θϕ

(µb
T |1:tµ

a
T |1:t

θ

)
− µa

T |1:t

= µb
T |1:tΦ

(µb
T |1:t − µa

T |1:t

θ

)
+ θϕ

(µb
T |1:tµ

a
T |1:t

θ

)
+ µa

T |1:t

(
Φ

(
µb
T |1:t − µa

T |1:t

θ

)
− 1

)

≤ µb
T |1:tΦ

(µb
T |1:t − µa

T |1:t

θ

)
+ θϕ

(µb
T |1:t − µa

T |1:t

θ

)
The first inequality follows from Lemma 6. The second inequality is due to

Φ
(µb

T |1:t−µa
T |1:t

θ

)
≤ 1 and µa

T |1:t ≥ 0.

Appendix E Proof of Lemma 3

We restate Lemma 3 for clarity.

Lemma 3 Let e(∗) represent a pruned element at time t with the highest predictive
mean µ∗

T |1:t ≥ 0. Given an arbitrary pruned element e(a) at time t, then for all

δ ∈ (0, 1), the following holds:

p

(
ρ̂T (e

(a) ∨mt, Bs)− ρ̂T (mt, Bs) <
λt
δ
(T − t+ ϵ)

)
> 1− δ

where ϵ := λ−1
t

[
µa
T |1:tΦ(ν/θ) + θ ϕ(ν/θ)

]
with θ :=

(
σ∗∗
T |1:t + σaa

T |1:t − 2σ∗a
T |1:t

)1/2
,

and ν := µa
T |1:t − µ∗

T |1:t .

Proof The proof follows as a consequence of Lemma 2 and Markov inequality. By def-
inition of e(∗) being a pruned element with the highest µ∗

T |1:t according to Algorithm
2 Line 15:

∆(∗,mt, s̃1:t, Bs) ≤ λt(T − t).

By substituting the definition of ∆:

Ep(sT |s̃1:t)[ρ̂T (mt ∨ e(∗))− ρ̂T (mt)] ≤ λt(T − t). (E7)

Springer Nature 2021 LATEX template

Pruning During Training by Network Efficacy Modeling 33

Table F1: Performance (standard error) of the tested algorithms with varying
inference FLOPs (percentage of pruned FLOPs) for CIFAR-10 and CIFAR-
100 on the VGG-16 model. Unpruned baseline train and inference FLOPs are
8.2e15 and 6.6e8, respectively.

CIFAR-10 (VGG-16)

26.5M Inference FLOPs (96.0%) 6.68M Inference FLOPs (98.9%) 1.72M Inference FLOPs (99.7%) 414K Inference FLOPs (99.9%)

Val Acc Train FLOPs Val Acc Train FLOPs Val Acc Train FLOPs Val Acc Train FLOPs

Random 82.3(0.7)% 3.3e14 71.8(0.5)% 8.2e13 49.2(3.5)% 2.1e13 26.5(1.8)% 5.1e12
SNIP 82.8(0.8)% 3.3e14 70.2(0.7)% 8.2e13 49.9(1.2)% 2.1e13 26.4(1.5)% 5.1e12

GraSP 82.7(0.4)% 3.3e14 71.6(0.1)% 8.2e13 46.2(2.1)% 2.1e13 19.4(3.9)% 5.1e12
BEP 1e−2 83.1(0.3)% 1.1e15(1.9e11) 69.9(1.0)% 9.3e14(4.6e10) 51.9(1.1)% 8.7e14(1.2e10) 29.5(0.5)% 8.6e14(1.2e10)
BEP 1e−4 84.1(0.2)% 1.2e15(3.2e11) 72.2(0.4)% 9.4e14(4.1e10) 50.1(0.9)% 8.8e14(2.0e10) 31.8(0.8)% 8.6e14(9.6e9)
BEP 1e−7 83.7(0.2)% 1.3e15(3.4e11) 70.7(0.7)% 9.5e14(1.7e12) 53.1(1.4)% 8.8e14(2.8e11) 27.9(2.2)% 8.6e14(8.8e10)

CIFAR-100 (VGG-16)

60.2M Inference FLOPs (90.9%) 26.6M Inference FLOPs (95.9%) 6.76M Inference FLOPs (98.9%) 1.76M Inference FLOPs (99.7%)

Val Acc Train FLOPs Val Acc Train FLOPs Val Acc Train FLOPs Val Acc Train FLOPs

Random 55.9(0.2)% 7.4e14 47.3(0.7)% 3.4e14 25.7(1.4)% 8.3e13 7.8(0.5)% 2.2e13
SNIP 54.9(0.4)% 7.4e14 45.7(1.2)% 3.4e14 22.1(0.6)% 8.3e13 6.2(0.4)% 2.2e13

GraSP 54.1(0.6)% 7.4e14 46.7(0.01)% 3.4e14 23.3(0.6)% 8.3e13 6.9(0.7)% 2.2e13
BEP 1e−2 55.2(0.5)% 1.5e15(1.3e11) 46.2(0.1)% 1.1e15(2.6e11) 26.3(1.1)% 9.3e14(7.0e10) 8.6(0.4)% 8.7e14(1.2e10)
BEP 1e−4 55.2(0.6)% 1.7e15(1.4e13) 46.4(0.6)% 1.2e15(3.7e12) 28.0(0.2)% 9.4e14(4.6e11) 11.4(0.6)% 8.8e14(2.1e11)
BEP 1e−7 56.0(0.0)% 1.8e15(1.8e12) 47.3(0.1)% 1.3e15(2.4e12) 28.4(0.5)% 9.6e14(6.9e11) 11.6(0.2)% 8.8e14(2.9e11)

Consequently, as µ∗
T |1:t ≥ µa

T |1:t, we can apply Lemma 2 and achieve:

E[ρ̂T (mt ∨ e(a))− ρ̂T (mt)]

=E[ρ̂T (mt ∨ e(∗))]− E[ρ̂T (mt)] + E[ρ̂T (mt ∨ e(a))]− E[ρ̂T (mt ∨ e(∗))]

=E[ρ̂T (mt ∨ e(∗))− ρ̂T (mt)] + E[ρ̂T (mt ∨ e(a))]− E[ρ̂T (mt ∨ e(∗))]

≤λt(T − t) + λtϵ

=λt(T − t+ ϵ)

where the inequality is due to (E7) and Lemma 2. The proof is complete by applying
Markov’s inequality:

p

(
ρ̂T (mt ∨ e(a))− ρ̂T (mt) ≥

λt
δ
(T − t+ ϵ)

)
≤E[ρ̂T (mt ∨ e(a))− ρ̂T (mt)]

λt(T − t+ ϵ)/δ
≤ λt(T − t+ ϵ)

λt(T − t+ ϵ)/δ
= δ .

Observing the negation of the above yields the desired result. □

Appendix F Additional Experiments

To verify the robustness of our approach, we repeat our CIFAR-10 and
CIFAR-100 early pruning experiments on the VGG-16 architecture comparing
against the most competetive baselines (SNIP and GraSP). This is presented
in Table F1.

Appendix G Experimental Details

G.1 Experimental Details

To train our CIFAR-10 and CIFAR-100 models we used an Adam opti-
mizer (Kingma & Ba, 2015) with an initial learning rate of 0.001. The learning

Springer Nature 2021 LATEX template

34 Pruning During Training by Network Efficacy Modeling

rate used an exponential decay of k = 0.985, and a batch size of 32 was used.
Training was paused three times evenly spaced per epoch. During this pause,
we collected saliency measurements using 40% of the training dataset. This
instrumentation subset was randomly select from the training dataset at ini-
tialization, and remained constant throughout the training procedure. We
performed data preprocessing of saliency evaluations into a standardized [0, 10]
range.14 We used (A1) to measure saliency of neurons/convolutional filters.
For the convolutional layers we used 12 latent MOGP functions. For the dense
layer we used 4 latent MOGP functions.

For our ResNet-50 model we used an SGD with Momentum optimizer
with an initial learning rate of 0.1. The learning rate was divided by ten at
t = [30, 60, 80] epochs. We collected saliency data every 5 SGD iterations, and
averaged them into buckets corresponding to 625 SGD iterations to form our
dataset. We used a minimum of 10 latent functions per MOGP, however this
was dynamically increased if the model couldn’t fit the data up to a maximum
of 15. We used these hyperparameter settings for the VGG-16 architecture for
CIFAR-10 and CIFAR-100 experiments. In our VGG-16 experiments, we also
used BatchNormalization to reduce overfitting.

We sampled 10K points from our MOGP model to estimate ∆(·) for CIFAR-
10/CIFAR-100. For ResNet we sampled 15K points. We repeated experiments
5 times for reporting accuracy on CIFAR-10/CIFAR-100.

G.2 Pruning on ResNet

ResNet architecture is composed of a sequence of residual units: Zℓ :=
F(Pℓ−1) + Pℓ−1, where Pℓ−1 is the output of the previous residual unit Zℓ−1

and ‘+’ denotes elementwise addition. Internally, F is typically implemented as
three stacked convolutional layers: F(Pℓ−1) := [zℓ3 ◦ zℓ2 ◦ zℓ1] (Pℓ−1) where zℓ1 ,
zℓ2 , zℓ3 are convolutional layers. Within this setting we consider convolutional
filter pruning. Although zℓ1 , zℓ2 may be pruned using the procedure described
earlier. Pruning zℓ3 requires a different procedure. Due to the direct addition
of Pℓ−1 to F(Pℓ−1), the output dimensions of Zℓ−1 and zℓ3 must match
exactly. Thus a ResNet architecture consists of sequences of residual units
of length B with matching input/output dimensions: ζ := [Zℓ]ℓ=1,...,B, s.t.
dim(P1) = dim(P2) = . . . = dim(PB). We propose group pruning of layers
[zℓ3]ℓ=1,...,B where filters are removed from all zℓ3 in a residual unit sequence

in tandem. We define s([ζ, c]) :=
∑B

ℓ=1 s([ℓ3, c]), where s(·) is defined for
convolutional layers as in (A1). To prune the channel c from ζ, we prune
it from each layer in [zℓ3]ℓ=1,...,B. Typically we pruned sequence channels
less aggressively than convolutional filters as these channels feed into several
convolutional layers.

We group pruned less aggressively as residual unit channels feed into a large
number of residual units, thus making aggressive pruning likely to degrade
performance.

14Generally, saliency evaluations are relatively small (≤ 0.01), which leads to poor fitting models
or positive log-likelihood. Precise details of our data preprocessing is in Appendix G.3.

Springer Nature 2021 LATEX template

Pruning During Training by Network Efficacy Modeling 35

G.3 Data Preprocessing

Our chief goal in this work is to speed up training of large-scale DNNs such
as ResNet (K. He, Zhang, Ren, & Sun, 2016a, 2016b) on the ImageNet dataset.
Pruning ResNet requires a careful definition of network element saliency to
allow pruning of all layers. ResNet contains long sequences of residual units
with matching number of input/output channels. The inputs of residual units
are connected with shortcut connections (i.e., through addition) to the output
of the residual unit. Due to shortcut connections, this structure requires that
within a sequence of residual units, the number of inputs/output channels of
all residual units must match exactly. This requires group pruning of residual
unit channels for a sequence of residual units, where group pruning an output
channel of a residual unit sequence requires pruning it from the inputs/outputs
of all residual units within the sequence.

We followed the same data preprocessing procedure for both our small
scale and ImageNet experiments. To standardize the saliency measurements
for a training dataset s̃1:t in our modeling experiments we clip them between
0 and an upper bound computed as follows: ub := percentile(s̃1:t, 95) × 1.3.
This procedure removes outliers. We used 1.3 as a multiplier, as this upper
bound is used to transform test dataset as well, which may have higher saliency
evaluations.

After clipping the training data, we perform a trend check for each element
va by fitting a Linear Regression model to the data s̃a1:t. For s̃a1:t with an
increasing trend (i.e., the linear regression model has positive slope) we perform
the transformation s̃a1:t = ub − s̃a1:t. The reasoning behind this is that the
exponential kernel strongly prefers decaying curves. After this preprocessing,
we scale up the saliency measurements to a [0, 10] range: s̃1:t = s̃1:t × 10.
We found that without scaling to larger values, log-likelihood of our models
demonstrated extremely high positive values due to small values of unscaled
saliency measurements.

We transform the test data in our modeling experiments s̃t+1:T with the
same procedure using the same ub and per-element va regression models as com-
puted by the training data. We measure log-likelihood after this transformation
for both the test dataset in our small scale experiments.

During the BEP Algorithm, the same steps are followed, however we inverse
the trend check transformation (s̃a1:t = ub − s̃a1:t) on the predicted MOGP
distribution of sT prior to sampling for estimation of ∆(·).

	Introduction
	Related Work
	Pruning and Related Techniques
	Initialization Time or Training-Time Pruning

	Preliminaries of Pruning
	Bayesian Early Pruning
	Problem Formulation
	Modeling Saliency with Multi-Output Gaussian Process
	On the Choice of the ``Exponential Kernel"

	Bayesian Early Pruning (BEP) Algorithm
	BEP-LITE
	Dynamic Penalty Scaling

	Experiments
	Small-Scale Experiments
	Saliency Modeling Evaluation
	Dynamic Penalty Scaling
	BEP-LITE Heuristic
	BEP on CIFAR-10/CIFAR-100 Dataset
	Ablation Study

	ResNet Early Pruning
	Training-Time Improvements and Discussion

	Conclusion
	Acknowledgments

	Saliency Function
	Proof of Pruning Lower Bound
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Additional Experiments
	Experimental Details
	Experimental Details
	Pruning on ResNet
	Data Preprocessing

