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Abstract

This paper presents a novel generalization of predictive entropy search (PES) for
multi-fidelity Bayesian optimization (BO) called multi-fidelity PES (MF-PES). In
contrast to existing multi-fidelity BO algorithms, our proposed MF-PES algorithm
can naturally trade off between exploitation vs. exploration over the target and aux-
iliary functions with varying fidelities without needing to manually tune any such
parameters or input discretization. To achieve this, we first model the unknown
target and auxiliary functions jointly as a convolved multi-output Gaussian process
(CMOGP) whose convolutional structure is then exploited for deriving an efficient
approximation of MF-PES. Empirical evaluation on synthetic and real-world ex-
periments shows that MF-PES outperforms the state-of-the-art multi-fidelity BO
algorithms.

1 Introduction
Bayesian optimization (BO) has recently demonstrated to be highly effective in optimizing an
unknown (possibly non-convex and with no closed-form derivative) target function using a finite
budget of often expensive function evaluations [13]. In practice, this expensive-to-evaluate target
function often correlates well with some auxiliary function(s) of varying fidelities (i.e., degrees of
accuracy in reproducing the target function) that may be less noisy and/or cheaper to evaluate and can
thus be exploited to boost the BO performance. For example, to accelerate the hyperparameters tuning
of a machine learning (ML) model [15], one may consider a low-fidelity auxiliary function with
the same inputs (i.e., hyperparameters) and output (i.e., validation accuracy) as the target function
except that its validation accuracy is evaluated by training the ML model with a small subset of the
dataset, hence incurring less time [16]. Similarly, the parameter setting/configuration of a real robot
[10, 18] can be calibrated faster by simulating its motion in a low-fidelity but low-cost and noise-free
simulation environment [4]. The above practical examples motivate the need to design and develop
a multi-fidelity BO algorithm that selects not just the most informative inputs but also the target or
auxiliary function(s) with varying fidelities and costs to be evaluated at each selected input for finding
or improving the belief of the global target maximizer, which is the focus of our work here.

To do this, a number of multi-fidelity BO algorithms have been proposed [7, 8, 9, 11, 16]. However,
their performance are either highly sensitive (and hence not robust) to the manual/heuristic selection
of parameters to trade off between exploration vs. exploitation over the target and auxiliary functions
with varying fidelities [7, 8, 9, 16] or dependent on input discretization [11, 16], both of which are
undesirable in practice especially if there is no prior knowledge about how to optimize them for a
specific application. In this paper, we present a novel generalization of predictive entropy search
(PES) for multi-fidelity BO, which, in contrast to the state-of-the-art multi-fidelity BO algorithms,
does not suffer the above limitations: Our proposed multi-fidelity PES (MF-PES) does not require
input discretization and can jointly and naturally optimize the non-trivial exploration-exploitation
trade-off without needing to manually tune any such parameters to perform well in different real-world
applications.
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To achieve this, we model the unknown target and auxiliary functions jointly as a convolved multi-
output Gaussian process (CMOGP) [1] whose convolutional structure is exploited to formally
characterize the fidelity of each auxiliary function through its cross-correlation with the target
function (Section 2). Then, we derive an efficient approximation of MF-PES by exploiting (a) a novel
multi-output random features (MRF) approximation of the CMOGP model whose cross-correlation
structure between the target and auxiliary functions can be exploited for improving the belief of the
target maximizer (Section 3.1), and (b) new practical constraints relating the global target maximizer
to that of the auxiliary functions (Section 3.2). We empirically evaluate the performance of our
MF-PES algorithm in Section 4.

2 Multi-Fidelity Modeling with Convolved Multi-Output Gaussian Process
Among the various models [2, 3, 14, 17] that can jointly model target and auxiliary functions,
CMOGP [1] is used in this work due to its convolutional structure which can be exploited for deriving
an efficient approximation of MF-PES. Let M unknown functions f1, . . . , fM with varying fidelities
be jointly modeled as a CMOGP over a bounded input domain D ⊂ Rd such that each input x ∈ D
is associated with a noisy output yi(x) ∼ N (fi(x), σ2

ni
) for i = 1, . . . ,M . CMOGP defines each

i-th function fi as a convolution between a smoothing kernel Ki and a latent function L:

fi(x) ,
∫
x′∈D

Ki(x− x′) L(x′) dx′ . (1)

Let D+
i , {〈x, i〉}x∈D and D+ ,

⋃M
i=1D

+
i . As shown by [1], if {L(x)}x∈D is a GP with prior

covariance σ(x, x′) , N (x− x′|0,Λ−1) and Ki(x) , σsiN (x|0, P−1i ) . Then, {fi(x)}〈x,i〉∈D+ is
also a GP whose covariance function can be computed using σij(x, x′) = σsiσsjN (x− x′|0,Λ−1 +

P−1i +P−1j ) which characterizes both the correlation structure within each function (i.e., i = j) and
the cross-correlation between different functions (i.e., i 6= j).

Let t be the index of the target function and x∗i be the maximizer of function fi. Interestingly, the
fidelity of an auxiliary function fi with respect to target function ft in the context of BO can naturally
be characterized by the following normalized covariance between fi(x∗i) and ft(x∗t):

ρi , σij(x∗i , x∗t)/(σ
′
siσ
′
st) ∈ [0, 1] (2)

where σ′si , σsi/(2π|Λ−1 + 2P−1i |)1/4. Note that our defined fidelity measure ρi tends to 1 (i.e.,
higher fidelity of fi) when (a) the convolutional structure of fi parametrized by Pi becomes more
similar to that of ft (i.e., Pt) and (b) the maximizer x∗i of fi is closer to the target maximizer x∗t .

Given a vector yX , (yi(x))>〈x,i〉∈X of observed noisy outputs, a CMOGP can predict the posterior

distribution of fZ , (fi(x))>〈x,i〉∈Z for any set Z ⊆ D+ of input tuples as N (µZ|X ,ΣZZ|X) with:

µZ|X , µZ +ΣZX(ΣXX +Σε)
−1(yX −µX), ΣZZ|X , ΣZZ −ΣZX(ΣXX +Σε)

−1ΣXZ (3)

where ΣAA′ , (σij(x, x
′))〈x,i〉∈A,〈x′,j〉∈A′ and µA , (µi(x))>〈x,i〉∈A for any A,A′ ⊆ D+.

3 Multi-Fidelity Bayesian Optimization with Predictive Entropy Search
A multi-fidelity BO algorithm repeatedly selects the next input tuple 〈x, i〉 for evaluating the i-th
function fi at x that maximizes an acquisition function α(yX , 〈x, i〉) given the past observations
(X, yX): 〈x, i〉+ , arg max〈x,i〉∈D+\X α(yX , 〈x, i〉) and updates X ← X ∪ {〈x, i〉+} until the
budget is expended. Intuitively, the multi-fidelity acquisition function α should be constructed to
enable the multi-fidelity BO algorithm to jointly and naturally optimize the non-trivial trade-off
between exploitation vs. exploration over the target and auxiliary functions with varying fidelities for
finding or improving the belief of the global target maximizer x∗t . To do this, we follow the idea of
information-based acquisition functions [5, 6] in conventional BO and try to maximize information
gain of only the target maximizer x∗t from observing the next input tuple 〈x, i〉:

α(yX , 〈x, i〉) , H(x∗t |yX)− Ep(yi(x)|yX)[H(x∗t |yX , yi(x))]. (4)
Unfortunately, the approximation of (4) is very expensive and sometimes inaccurate since both Monte
Carlo sampling and a small set of well selected input candidates are required [16]. To circumvent this
issue, we can exploit the symmetric property of conditional mutual information and rewrite (4) as

α(yX , 〈x, i〉) = H(yi(x)|yX)− Ep(x∗t |yX)[H(yi(x)|yX , x∗t)] (5)
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which we call multi-fidelity PES (MF-PES).

Due to (3), the first Gaussian predictive/posterior entropy term in (5) can be computed analytically:
H(yi(x)|yX) , 0.5 log(2πe(σ2

〈x,i〉|X + σ2
ni

)) where σ2
〈x,i〉|X , Σ{〈x,i〉}{〈x,i〉}|X . Although the

second term appears to resemble that in PES [6], their approximation method, however, cannot be
applied straightforwardly since it cannot account for the cross-correlation structure between the target
and auxiliary functions. To achieve this, we will first propose a novel MRF approximation of the
CMOGP model whose cross-correlation (i.e., multi-fidelity) structure between the target and auxiliary
functions can be exploited for sampling the target maximizer x∗t from p(x∗t |yX) more accurately,
which is in turn used to approximate the expectation in (5). Then, we will formalize some practical
constraints relating the global target maximizer to that of the auxiliary functions, which are used to
approximate the second entropy term within the expectation in (5).

3.1 Multi-output random features (MRF) for sampling the target maximizer
Using the results of single-output random features (SRF) [12], the latent function L in (1) modeled
using GP can be approximated by a linear model L(x) ≈ φ(x)>θ where φ(x) is a random vector of
an m-dimensional feature mapping of the input x for L(x) and θ ∼ N (0, I) is an m-dimensional
vector of weights. Then, interestingly, by exploiting the convolutional structure of the CMOGP model
in (1), fi(x) can also be approximated analytically by a linear model:

fi(x) =

∫
x′∈D

Ki(x− x′)L(x) dx′ ≈
∫
x′∈D

Ki(x− x′)φ(x)>θ dx′ ≈ φi(x)>θ

where φi(x) , σsi diag(e−
1
2W
>P−1

i W ) φ(x) can be interpreted as input features of fi(x), W is a
d×m random matrix which is used to map x→ φ(x) in SRF [12] and function diag(A) returns a
diagonal matrix with the same diagonal components as A.

Then, a sample of fi can be constructed using f (s)i (x) , φ
(s)
i (x)>θ(s) where φ(s)i (x) and θ(s) are vec-

tors of features and weights sampled, respectively, from the random vector φi(x) and the posterior dis-
tribution of weights θ given the past observations (X, yX), the latter of which is derived to be Gaussian
by exploiting the conditionally independent property of MRF: p(θ|yX) = N (θ|A−1ΦΣ−1ε yX , A

−1)

where A = ΦΣ−1ε Φ> + I and Φ , (φj(x))〈x,j〉∈X . Consequently, the expectation in (5) can be
approximated by averaging over S samples of the target maximizer x(s)∗t which can be achieved by
optimizing f (s)t with any existing gradient-based optimization method.

3.2 Approximating the predictive entropy conditioned on the target maximizer
Next, we will discuss how the second entropy term in (5) is approximated. Firstly, the posterior
distribution p(yi(x)|yX , x∗t) =

∫
p(yi(x)|fi(x)) p(fi(x)|yX , x∗t) dfi(x) where p(yi(x)|fi(x))

is Gaussian and p(fi(x)|yX , x∗t) can be approximated using expectation propagation (EP) by
considering it as a constrained version of p(fi(x)|yX), as detailed later.

It is intuitive that the posterior distribution of fi(x) is constrained by fi(x) ≤ fi(x∗i),∀〈x, i〉 ∈ D+.
However, since only the target maximizer x∗t is of interest, how should fi(x) be constrained by x∗t
instead of x∗i if i 6= t? To resolve this, we introduce a slack variable ci to formalize the relationship
between maximizers of the target and auxiliary functions:

fi(x) ≤ fi(x∗t) + ci ∀x ∈ D, i 6= t (6)

where ci , Ep(x∗i |yX)[fi(x∗i)]− Ep(x∗t |yX)[fi(x∗t)] measures the gap between the expected maxi-
mum of fi and the expected output of fi evaluated at x∗t . Consequently, the following simplified
constraints instead of (6) will be used to approximate p(fi(x)|yX , x∗t):

C1. fi(x)≤fi(x∗t)+ δici for a given 〈x, i〉∈D+where δi equals to 0 if i = t, and 1 otherwise.

C2. fj(x∗t) + δjcj ≥ ymaxj + εj for j = 1, . . . ,M where ymaxj , max〈x,i〉∈Xj
yi(x) is the

largest among the noisy outputs observed by evaluating fj at Xj .
Similar as in [6], we can use an indicator function and the cdf of a standard Gaussian distribution to
represent the probability of C1 and C2, respectively. Let f∗j , fj(x∗t) for j = 1, ...,M ,

p(fi(x)|yX , x∗t)≈p(fi(x)|yX , C1, C2)∝
∫
p(fi(x)|yX , f∗i ) p(f∗i |yX , C2) I(fi(x)≤f∗i +δici) df∗i

(7)
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Figure 1: Graphs of log10(averaged IR) vs. cost incurred by tested algorithms for Hartmann-6D
(H-6D) function and its auxiliary functions func1, func2, and func3 with the respective fidelities ρ1,
ρ2, and ρ3 computed using (2) where ρ1 > ρ2 > ρ3.

where p(fi(x)|yX , f∗i ) can be computed using (3), I(fi(x) ≤ f∗i + δici) can be approximated as a
Gaussian distribution using EP, and

p(f∗i |yX , C2) ∝
∫
p(f∗1 , ..., f

∗
M |yX)

∏M
j=1 Φcdf

(
(f∗j + cj − ymaxj )/σnj

)
df∗{1,...,M}\i . (8)

Then, p(f∗i |yX , C2) can be approximated as a Gaussian distribution using EP by approximating all
the non-Gaussian factors (i.e., Φcdf) in (8) to be a Gaussian. Consequently, the posterior distribution
p(fi(x)|yX , x∗t) can be approximated as N (fi(x)|µfi , vfi) due to (7) and (8). Note that (8) is
independent of x such that it can be computed once and reused in (7).

Interestingly, by sampling the target and auxiliary maximizers x∗t and x∗j using the method proposed
in Section 3.1, the value of cj in (8) can be approximated in practice by Monte Carlo sampling:

cj = Ep(x∗j |yX)[fj(x∗j )]− Ep(x∗t |yX)[fj(x∗t)] ≈ S−1
∑S
s=1

(
f
(s)
j (x

(s)
∗j )− f (s)j (x

(s)
∗t )
)
.

Using the results in Section 3.1 and (7), it follows that MF-PES (5) can be approximated by

α(yX , 〈x, i〉) ≈ 1
2 log

(
σ2
〈x,i〉|X + σ2

ni

)
− 1

2S

∑S
s=1 log

(
v
(s)
fi

+ σ2
ni

)
.

When the costs of evaluating target vs. auxiliary functions differ, we use the following cost-sensitive
MF-PES instead: αcost(yX , 〈x, i〉) , α(yX , 〈x, i〉)/cost(i) which can be interpreted as the informa-
tion gain of the target maximizer per cost.

4 Experiments and Discussion
This section empirically evaluates the multi-fidelity BO performance of our MF-PES algorithm
against that of (a) PES [6], (b) MT-ES [16], (c) MF-GP-UCB with all parameters trading off between
exploitation vs. exploration set according to [8], and (d) MF-GP-UCB*: MF-GP-UCB with carefully
fine-tuned parameters. For a fair comparison, CMOGP is used to model multiple functions in all tested
algorithms since it has been empirically demonstrated by [1] to outperform the other MOGPs. The
performance of the tested algorithms are evaluated using immediate regret (IR) |ft(xt∗)− ft(x̃t∗)|
where x̃t∗ , arg maxx∈D µ{〈x,t〉}|X is their recommended target maximizer.

Hartmann-6D function. The original Hartmann-6D function is used as target function and M , 2
or 3. Similar to that in [8], three auxiliary functions of varying degrees of fidelity are constructed by
tweaking the Hartmann-6D function. The experiments are run with 10 different initializations.

Figs. 1 show results of all tested algorithms with a cost budget of 500. It can be observed from
Figs. 1a-b and 1d that MF-PES can achieve a much lower averaged IR with considerably less cost than
PES, which implies that the BO performance can be improved by auxiliary function(s) of sufficiently
high fidelity and low evaluation cost. The Hartmann-6D function are difficult to optimize due to its
multimodal nature (6 local and 1 global maxima) and the large input domain which cause MT-ES and
MF-GP-UCB to be trapped easily in some local maximum and hence perform not as well. We have
dedicated time to carefully fine-tune the parameters of MF-GP-UCB* such that it explores more to
perform better than MF-GP-UCB but is still outperformed by MF-PES. In contrast, MF-PES is rarely
trapped in a local maximum and performs significantly better than all the other tested algorithms
by naturally exploring more over these multimodal functions. Finally, Fig. 1c shows that when the
fidelity of the auxiliary function is very low (ρ3 = 0.0037), MF-PES can achieve a comparable
performance to PES, hence demonstrating its robustness to a low-fidelity auxiliary function.

Hyperparameters tunning. The tested algorithms are also used to automatically tune the hyperpa-
rameters of logistic regression and convolutional neural network (CNN) models in image classification
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tasks. For both models, MF-PES converges much faster than other tested algorithms. Also, MF-PES
improves the performance of CNN compared to the baseline achieved using the default hyperpa-
rameters in the online code, which shows that MF-PES is promising in finding more competitive
hyperparameters of complex ML models.
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