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Abstract— The work in this paper describes a distributed
layered architecture for resource-constrained multi-robot coop-
eration, which is utilized in autonomic mobile sensor netwik
coverage. In the upper layer, a dynamic task allocation schae
self-organizes the robot coalitions to track efficiently amss re-
gions. It uses concepts of ant behavior to self-regulate thegional
distributions of robots in proportion to that of the moving
targets to be tracked in a non-stationary environment. As a
result, the adverse effects of task interference between bots are
minimized and network coverage is improved. In the lower tak
execution layer, the robots use self-organizing neural natorks
to coordinate their target tracking within a region. Both layers
employ self-organization techniques, which exhibit autoamic
properties such as self-configuring, self-optimizing, sehealing,
and self-protecting. Quantitative comparisons with othertracking
strategies such as static sensor placements, potential @ie] and
auction-based negotiation show that our layered approach an
provide better coverage, greater robustness to sensor failes,
and greater flexibility to respond to environmental changes

Index Terms—task allocation, motion control, multi-robot
architecture, swarm intelligence, self-organizing neurbnetworks

. INTRODUCTION
ENSOR networks have recently received significant

ention in the areas of networking, embedded systems,
pervasive computing, and multi-agent systems [1] due to its
wide array of real-world applications (e.g., disaster efeli

environment monitoring). In these applications, the disted

sensing task is achieved by the collaboration of a Iarg
number of static sensors, each of which has limited sensi

computational, and communication capabilities.

One of the fundamental issues that arises in a sen
network is coverage. Traditionally, network coverage ixima
mized by determining the optimal placement of static sens
in a centralized manner, which can be related to the cla%‘a
of art gallery problems [2]. However, recent investigaion
in sensor network mobility reveal that mobile sensors ca
self-organize to provide better coverage than static sens

([3], [4]). Existing applications have only utilized unorined
mobility (i.e., random motion or patrol) [1]. In contrasturo

work focuses on informed, intelligent mobility to further

improve coverage.
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Our network coverage problem is motivated by the fol-
lowing constraints that discourage static sensor placemen
or uninformed mobility: a) unknown target distributions or
motion patterns, b) limited sensing range, and c) large area
to be observed. All these conditions may cause the sensors to
be unable to cover the entire region of interest. Hence, fixed
sensor locations or uninformed mobility will not be adeguat
in general. Rather, the sensors have to move dynamically in
response to the motion and distribution of targets and other
sensors to maximize coverage.

Inspired by robotics, the above problem may be regarded
as that of low-level motion control to coordinate the ses'sor
target tracking movements in continuous workspace. Astern
tively, it can be cast as a high-level task allocation probbey
segmenting the workspace into discrete regions (Fig. 1) su
that each region is assigned a groupcoalition of sensors
to track the targets within. This paper presents a distibut
architecture that integrates low-level motion controlhaiigh-
level task allocation for autonomic mobile sensor network
coverage in complex, dynamic environments (Section Ill¢. W
will now refer to mobile sensors as robots since they are the
[ame in this paper’s context.

II. RELATED WORK ON COVERAGE

Existing sensor network coverage applications can be clas-
sified under the following characteristics: a) network ntigbi
tatic vs. mobile), b) network density (dense vs. sparsg),
rget distributions (known vs. unknown), and d) targetiorot
itterns (e.g., static, random, evasive). Static sendwons
;L,%]r are often densely deployed for complete coverage of the
area to be observed. Such networks typically require manual
cprositioning of the sensors and cannot be easily deployed in
%ntaminated or hostile regions. Mobile sensors, on theroth
nd, can be used for this purpose. Current implementations
mobile sensor networks have focused on evenly dispersing
e sensors from a source point throughout the observeairegi
6] without considering the target distributions. Receffibrts
have attempted to self-organize the mobile sensors to that
of the target distributions, which can potentially dececttse

0

number of deployed sensors (Section VI-B.1). However, the
target distributions are either static [3] or known bef@nath

[7]. Our work in this paper differs from all these by deplogin

a sparse network of mobile sensors to track unknown, time-
varying target distributions.

I1l. OVERVIEW OF MOBILE SENSORARCHITECTURE

Our mobile sensor architecture consists of two layers of
coordination (Fig. 1b): (1) lower task execution layer, &y
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Fig. 1. (a) A 4 mx 3 m environment that is divided into 6 regions. The circleh& bottom right represents the robot's sensing radius of®@rawn
to scale). The environment is 42.44 times as large as thet'sobensing area. (b) Distributed layered architecture nfmiti-robot cooperation (MRTA =
Multi-Robot Task Allocation, EKM = Extended Kohonen Map).

higher task allocation layer. It differs from existing lagd ar- Complexity of Robot Motion Task&xisting BCMs tend to
chitectures for multi-robot coordination ([8], [9]) by agling under-utilize the sensory inputs that can potentially dsiel
a reactive method, rather than deliberative planning, dskt useful information for coordinating behaviors and chogsin
allocation. Both layers employ concepts of self-orgamizat the most appropriate action. As a result, the robot is less
that exhibit the following characteristics of autonomist®ms: capable of performing complex motion tasks such as ne-

1) Self-ConfiguringBoth the task allocation and executiorftiating unforeseen concave and closely spaced obstacles
schemes enable the sensor network to adapt to dynaﬁ.ﬁ\g tracking multiple moving targets. Three classes of BCMs

cally changing environments; face this problem: behavior arbitration, action votingdan
2) Self-OptimizingBoth schemes aim to maximize coveraction superposition. Arbitration strategies ([14]) allonly
age and minimize robot interference; one winning behavior among a group of competing ones to

3) Self-Healing: The task allocation scheme is robust tproduce the action. This precludes the execution of several
robot failures while the task execution scheme is able RSSIPly conflicting behaviors in parallel. In action vafin
self-repair unexpected damages to the robot formatiofi¢hemes ([12]), each behavior can vote for various pre-etfin

4) Self-ProtectingThe task execution scheme enables tHiiScrete actions to different degrees and the action wiéh th
robot to negotiate unforeseen complex obstacles. highest vote is performed. Both behavior arbitration arttbac

. ) . , voting methods suffer from the drawbacks of discrete respon
These autonomic properties will be demonstrated in S€gscoding discussed in the previous paragraph. Action super
tion V1. . position techniques (e.g., potential fields) ([11], [159)bine
In the lower task execution layer, the robots use a reacti¥g ihe potential actions, each generated by a behaviargusi
motion control strategy based on self-organizing neuréd N§eactor sum to produce a single action. They may cause the
works [10] to coordinate their target trackingthin a region ropot to fail in complex motion tasks [16] even though they
without the need of communication (Section IV). This swte ijlize continuous response encoding. On the other hand, a

is also responsible for their navigation between regioms Vigpot endowed with our proposed BCM can achieve these
beacons or checkpoints identified by a motion planner [1Lsks (Section VI-A).

To perform these tasks, it has to coordinate multiple careuir

behaviors, which include target reaching, obstacle avmida  In the higher task allocation layer, the robots use a dynamic
and robot separation to minimize task interference. ltediff ant-based scheme [17] to cooperatively self-organizer thei
from other Behavior Coordination Mechanisms (BCMs) ([12)§oalitions in a decentralized manner according to the targe
in the following ways: distributionsacrossthe regions (Section V). It contrasts with

Self-Organization of Continuous State and Motor Contrér'e othe_r works of biologically-inspired robot swarms (134t
SpacesA high degree of smoothness and precision in motio phasize control- rather than task-level coopergnon. .
control is essential for efficiently executing sophistizhtasks. _ ©OUr ant-based scheme addresses the following issues, which
This can only be achieved wittontinuous response encodingd'St'”gu'Sh it from the other task allocation mechanisms:

(i.e., infinite set of responses) of very low-level veloftityque Task Allocation for Multi-Robot Task€xisting Multi-Robot
control of motor/joint actuators. Our proposed BCM uses sellTask Allocation (MRTA) algorithms (i.e., auction- and it
organizing neural networks to map continuous state spacebtsed) ([18], [19]) generally assume that a multi-robok tas
continuous motor control space. We have shown in ([11dan be partitioned into several single-robot tasks. B iy
[13]) via quantitative evaluation that such neural netvgatkn not be always possible, or the multi-robot task can be more
produce fine, smooth, and efficient motion control. In casttra efficiently performed by coalitions of robots. Furthermdte
BCMs that employdiscrete response encodir(@e., finite, partitioned single-robot tasks are sometimes assumed to be
enumerated set of responses) ([12], [14]) produce higatleindependent, i.e., no interference would occur. Howevre, t
motion commands (e.g., forward, left, right) that are ulsualrobots are bound to interfere with each other’s ongoingiygti

too coarse for fine, smooth robot control. Consequently, te¢her physically (e.g., space competition) or non-plaisjc
robot may fail to negotiate unforeseen complex obstacles. (e.g, shared radio bandwidth, conflicting goals). In theeare
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distributed methodologies are required to process andriate
the noisy, heterogeneous information to improve its qualit
that it can be effectively utilized to estimate the Coaha'_b Fig. 2. A behavioral coordination mechanism that is impleteé by an
cost and boost the task performance. Furthermore, if tB&emble of Extended Kohonen Maps (EKMSs).

robots have limited computational power, their coopegativ

strategies cannot involve complex planning or negotiatibn the EKM neurons also produce outputs that vary with the
isting task allocation mechanisms ([18], [19], [21]) haither incoming sensed inputs.

assumed perfect communications, high computational powerOur cooperative EKMs framework consists of four mod-
centralized coordination or global knowledge of the tasHl anles: target reaching, obstacle avoidance, robot separati
robots. For example, recent applications of sensor netwaikd neural integration (Fig. 2). Tharget localizationEKMs
coverage ([4]) and multi-robot systems [22] employ coaliti in the target reachingmodule (Section IV-B) are activated
leaders, one in each region, to negotiate with each othés. Thy the presence of targets within the robot's target sensing
negotiation is conducted iteratively using an auctionedasrange. Each EKM receives a sensed target location and sutput
mechanism and attempts to balance the proportion of robots:brresponding excitatory signals to the motor control EKM i
that of the targets across all regions. To do so, each awalitthe neural integration module at and around the locations of
leader must be able to obtain the exact number of robak® sensed targets.

and targets in its region as well as the task performance ofrhe obstacle localizatiorEKMs in the obstacle avoidance
these robots. Furthermore, it has to synchronize its na@ti  1,oqule (Section IV-C) are activated by the presence of ob-
with the coalition leaders in other regions via long-ranggacles within the robot's obstacle sensing range. Each EKM
communication. Note that this negotiation can be conductggheives a sensed obstacle location and outputs correisgond
entirely by a central coor_dinator_runningacentralizediu’oa inhibitory signals to the motor control EKM in the neural
formation scheme but it requires even more resources. jiflegration module at and around the locations of the sensed
contrast, our proposed method does not require such expgfstacles. Theobot localizationEKMs in therobot separation
sive resources, thus catering to resource-constraineats:0bmogule work in a similar fashion as the obstacle localizatio

The robots endowed with our ant-based scheme require oly\s except that they process the sensed robot locations.
local sensing information and short-range communicafitie. The motor control EKM in the neural integrationmodule

ro_br:)t coahhons_can also be self-organized asynchrogouiéection IV-D) serves as the sensorimotor interface, which
without negotiation. integrates the activity signals from the EKMs for coopenati

and competition to produce an appropriate motor signaléo th
actuators.
A. Overview The cooperative EKMs framework allows the modules to
Our proposed BCM, calledooperative Extended Kohoneroperate asynchronously at different rates, which is thetkey
Maps (EKMs), is implemented by connecting an ensemblareserving reactive capabilities. This contrasts witlosactot-
of EKMs ([11], [13]), each of which is a neural networking and superposition BCMs, which require synchronization
that extends the Kohonen Self-Organizing Map [23]. Its-selFor example, the target reaching and robot separation rasdul
organization of the input space is similar to Voronoi telssel operate at about 256 ms between servo ticks while the obstacl
tion such that each tessellated region is encoded by thé inpuoidance module can typically operate faster at interoéls
weights of an EKM neuron. In addition to encoding a set28 ms. The neural integration module is activated as and
of input weights that self-organize the sensory input spacghen neural activities are received. One noteworthy aspiect

faster

IV. SELF-COORDINATED TASK EXECUTION
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our framework is that no communication between robots is  The functionG, is an elongated Gaussian:
needed for the robots to cooperate in the tracking of meltipl

moving targets. In this paper, we demonstrate that robots, (a5 —)?  (ds — dy)?
which are able to discriminate between targets, obstacids a Go(Ws, W;) = exp (— - 32 — )
robot kins, are adequate for achieving the cooperative task 2060 Pad

5)

B. Target Reaching Parameter,, is much smaller thaw,,, making the
Gaussian distance-sensitive and angle-insensitive.€Thes
parameter values elongate the Gaussian along the direc-
tion perpendicular to the target directioen (Fig. 3b).

This elongated Gaussian is tharget field which plays

an important role in avoiding local minima during ob-
stacle avoidance.

The target reaching module adopts an egocentric represen-
tation of the sensory input vectay, = (a, d)” wherea andd
are the direction and distance of a target relative to thetr®b
current location and heading. It uses the target locatinati
EKM to self-organize the sensory input spa¢eEach neuron
i in the EKM has a sensory weight vecter, = (a;,d;)7
that encodes a region i1 centered atw;. Each target that The output activities of the neurons in thearget localization
appears within the robot’s sensory range activates a differ EKMs are aggregated in the motor control EKM to produce a
target localization EKM. That isp target localization EKMs motion that moves the robot towards the targets. This will be
will be activated forn targets. The same target can activatexplained in Section IV-D. In the next section, we will prese
a different EKM at a different time. Based on each incomintiie obstacle and robot localization EKMs, which are actiglat
sensory inputy, of the target location, the target localizatiorin a similar manner as the target localization EKMs.
EKM outputs excitatory signals to the motor control EKM
in the neural integration module (Section IV-D). The target

localization EKMs are activated as follows: ) )
C. Obstacle Avoidance and Robot Separation

Target Localization
For each sensory input, of a targetp = 1,...,n (i.e., n The obstacle avoidance module uses obstacle localization
targets), EKMs. The robot has: directed distance sensors around its
body for detecting obstacles. Hence, each activated sensor
encodes a fixed direction; and a variable distancé; of
the obstacle relative to the robot’s heading and locati@thE
sensor’s inputt; = (;,d;)? induces an obstacle localization
EKM. Note that the distance sensors operate differentlgnfro
D(u,,ws) = min D(u,, w;). (1) the target sensors. A target sensor (e.g., vision camera) ca
icA(a) sense multiple targets whereas each distance sensofdsey),
can only reflect the nearest obstacle in its sensing dimectio
Hence, unlike the target localization EKMs, the number of
obstacle localization EKMs that are activated does not aepe
D(up, w;) = Bala — ;) + Ba(d — d;)? (2) on the number of obstacles but rather, on the number of
distance sensors. The obstacle localization EKMs have the
whereg, andj, are constant parameters. The minimursame number of neurons and input weight values as the
in Eq. 1 is taken over the set(«) of neurons encoding target localization EKMs, i.e., each neurérin the obstacle
very similar angles as: localization EKM has the same input weight vectey as the
neuront in the target localization EKM. The EKMs output
! _ ©) inhibitory signals to the motor control EKM in the neural
for each pairi € A(a), j & A(e) . integration module (Section IV-D). The obstacle localizat

In other words, direction has priority over distance in tthMs are activated as follows:

competition between EKM neurons. This method allowgpstacle Localization

the robot to quickly orientate itself to face the target _ , _ _

while moving towards it. An EKM contains a limited set " €ach sensory input;, j = 1,....h (i.e., 1 distance
of neurons, each of which has a sensory weight vectdFnsors).

w; that encodes a point in the sensory input sgdce 1) Determine the winning neuros in the j-th obstacle

1) Determine the winning neuron in the p-th target
localization EKM. Each winning neuros is the one
whose sensory weight vecter, = (as, ds)” is nearest
to the inputu, = (a,d)?:

The differenceD(u,, w;) is a weighted difference be-
tweenu, andw;:

la = a;] < o — ayl,

The region inl/ that encloses all the sensory weight  |ocalization EKM. The obstacle localization EKM is
vectors of these neurons is called toeal workspace activated in the same manner as Step 1 of Target
U’'. Even if the target falls outsidg’, the nearest neuron Localization (Section IV-B).
can still be activated (Fig. 3a). _ 2) Compute output activityp;; of neuroni in the j-th

2) Compute output activity,; of neuron: in thep-th target obstacle localization EKM:

localization EKM.

api = Ga(WS,Wi) (4) bji = Gb(Ws,Wi) (6)
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(a) (b) (c) (d)
Fig. 3. Conceptual description of cooperative EKMs. (a)dsponse to the targei, the nearest neuron (black dot) in the target localizatigiMEellipse) of
the robot (gray circle) is activated. (b) The activated payproduces a target field (dotted region) in the motor coKM. (c) Three of the robot's sensors
detect obstacles and activate three neurons (crosses) wb#tacle localization EKMs, which produce the obstaclddiédashed ellipses). (d) Subtraction of
the obstacle fields from the target field results in the newii to become the winner in the motor control EKM, which moves ribleot away from the
obstacle.

where

Gp(ws,w;) = exp (—

(a5 — ai)2 (ds — di)2
3% 2% @)
2.475 if d; > d,

0.02475 otherwise. Fig. 4. Motor control EKM. The neurons map the sensory inpecel(
(7) indirectly to motor control spacé through control parameter spage.

ova(ds, d;) = {

The function G, is a Gaussian stretched along the where q,,; is the excitatory input from neuron of
obstacle directiom, so that motor control EKM neurons the p-th target localization EKM (Section IV-B)y;; is
beyond the obstacle locations are also inhibited to indi-  the inhibitory input from neurori of the j-th obstacle

cate inaccessibility (Fig. 3c). If no obstacle is detected,  |gcalization EKM, andr,; is the inhibitory input from

Gy = 0. In the presence of an obstacle, the neurons in- neyron; of theg-th robot localization EKM (Section IV-

the obstacle localization EKMs at and near the obstacle ),

(Eq. 6). The neurons nearest to the obstacle locations * Exm. Neuronk is the one with the largest activity:

have the strongest activities.
The separation between a robot and its other kins is achieved Ck = Maxe; . (9)
with robot localization EKMs. These EKMs work in the same )
way as obstacle localization EKMs, i.e., each neuramthe | ne motor control EKM also has a set of output weights,
¢-th robot localization EKM outputs an inhibitory activity,; which encode the outputs produced by the neuron. It is tiaine
to the motor control EKM in the neural integration moduld® Partition the sensory input spacé into locally linear
(Section IV-D). However, the robot localization EKMs pragu €9!0NS- Unlike existing direct-mapping methods ([24]xtth
wider robot kin fields This has the effect of keeping a roboP€rform discrete response encoding (Section 1), the output
away from targets that are close to other robot kins. As'4ightsM; of neuron: of the motor control EKM represent
result, the overlap in the coverage of targets between sdot CONrol parameters in the parameter spadeinstead of the
minimized. Unlike the distance sensors, a robot kin sensdftual motor control vector (Fig. 4). The control parameter
(e.g., communication) can sense multiple robots. Hence, 2trix M is mapped to the actual motor control vectoby
there arem robots detectedsy robot localization EKMs will 2 linear model (Eq. 10). Compared to direct-mapping EKM,
be activated. The robot localization EKMs have the sanfiadirect-mapping EKM can provide finer and smoother robot

number of neurons and input weight values as the target dRgtion control. Detailed comparison and discussion haesbe
obstacle localization EKMs. reported in ([11], [13]). With indirect-mapping EKM, motor

. control is performed as follows:
D. Neural Integration and Motor Control b

The neural integration module uses a motor control EKM f§otor Control
integrate the activities from the neurons in the targettads Compute motor control vectar:
and robot localization EKMs. The motor control EKM has the

same number of neurons and input weight values as the target, ¢ = Mgz (10)
robot, and obstacle localization EKMs. The neural intégrat \yhere
is performed as follows: Z Glles — ex|)w;
Neural Integration 2 = iEN (k) (1)
1) Compute activitye; of neuroni in the motor control Z G(lei — exl)
EKM. ieN (k)

n h m
e; = Z“Pi _ Zbﬁ — qui (8) G(le; — ex|) is a Gaussian with its peak located at neukon
=1 = = andN (k) defines a small set of neurons in the neighborhood
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of neuronk. At the goal state at tim&, z(T) = (o, 0)T for The target, obstacle, and robot localization EKMs self-
any a. organize in the same manner as the motor control EKM except
In activating the motor control EKM (Fig. 3d), the obstacl¢hat Step 6 is omitted. This will result in the same set of
fields are subtracted from the target field (Eq. 8). If the@airginput weight vectors for all the localization and motor coht
lies within the obstacle fields, the activation of the motdEKMs after training. At each training cycle, the weights loé t
control EKM neurons close to the target location will bavinning neuronk and its neighboring neurorisare modified.
suppressed. Consequently, another neuron at a location fifae amount of modification is proportional to the distance
is not inhibited by the obstacle fields becomes most highty(k,:) between the neurons in the EKM. The input weights
activated (Fig. 3d). This neuron produces a control parametv; are updated towards the actual displacemerand the
that moves the robot away from the obstacle. While the robaantrol parameterdM; are updated so that they map the
moves around the obstacle, the target and obstacle lodafizadisplacementy to the corresponding motor control After
EKMs are continuously updated with the current locatiors arself-organization has converged, the neurons will stdiin
directions of the target and obstacles. Their interactwitk a state such that = w; andc = M;v = M,w,. For
the motor control EKM produce fine, smooth, and accuragsy winning neurork, given thatz, = wyg, the neuron will
motion control of the robot to negotiate the obstacle andemoproduce a motor control output = M;w, which yields a
towards the target until it reaches the goal stat€l’) at time desired displacement of = wy,. If z; # w;, but close to
stepT. In the case of multi-robot target tracking task, thevy, the motor output = Mjz; produced by neuroi will
robots act like obstacles to other robots, thus separatiagt still yield the correct displacement if linearity holds i

from each other. the input region that activates neurén Thus, given enough
o neurons to produce an approximate linearization of thesgns
E. Self-Organization of EKMs input spacé/, indirect-mapping EKM can produce finer and

In contrast to offline learning methods, online training i§Moother motion control than direct-mapping EKM.
adopted for the EKMs. Initially, the EKMs have not been
trained and the motor control vectors generated are in- V. SELF-COORDINATED TASK ALLOCATION
accurate. Nevertheless, the EKMs self-organize, usingethe _ ) )
control vectorsc and the corresponding robot displacements Many multi-robot tasks, e.g., foraging [21], transpouati
v produced by, to mapv to ¢ indirectly. As the robot moves gnd exlploratlon, have been inspired by social insects [25],
around and learns the correct mapping, its sensorimotdraionin Particular, ants. Our MRTA scheme encapsulates three
becomes more accurate. At this stage, the online trainiRNCePts of ant behavior to self-organize the robot coalti
mainly fine tunes the indirect mapping. The self-organizédfcording to the target distributions across regions: (&) e

training algorithm (in obstacle-free environment) is afofgs; ~ Counter pattern based on waiting time, (b) self-orgarozedf
social dominance, and (c) dynamic task allocation.

Self-Organized Training A. Encounter Pattern Based on Waiting Time
Repeat Encounter patterns provide a simple, local cue for ants with
1) Get sensory input,. sensory and cognitive limitations to assess regional tessi

2) Execute target reaching procedure and move robot. of ants and objects of interest, which are crucial to redguiat

3) Get new sensory input, and compute actual displace-the division of labor [26]. Instead of relying on global comm
mentv as a difference between, andu,,. nication to relay target positions and density estimatidr,[

4) Usev as the training input to determine the winningur scheme uses encounter patterns to predict target yleiasit
neuronk (same as Step 1 of Target Reaching excefacal sensing. Regional robot density is captured in a aimil

thatu, is replaced by). way using local communication.
5) Adjust the input weightsv; of neuronsi in the neigh-  An encounter pattern can be derived from a series of waiting
borhood of the winning neuroh towardsv: time or interval between successive encounters. This simpl

_ form of information processing has accounted for the comple
Awi =1 G(k, i) (v — W) (12) adaptive process of task allocation in ant colonies [28pun
where G(k, i) is a Gaussian function of the distanc&€ovVerage task, the waiting time of a robot is defined in terms
between the positions of neuroksandi in the EKM, Of its encounters with the other robots and targets. A robot
andn is a constant learning rate. encounter is defined as a reception of a message from another
6) Update the output weightd; of neuronsi in the robot in the same region. A target encounter is defined as an

neighborhood of the winning neurdnto minimize the increase in the number of targets tracked between the pgvio
error e: and the current time steps. For a robot regionr, the waiting

1 ) 9 time for other robotsw;, (k) and targetsw;,. (k) is the time
‘= iG(k’ Dlle = Mav|™. (13) interval between thék —(1)th andkth encou(nters. Note that
That is, apply gradient descent to obtain each waiting time is subject to stochastic variation. Hence
multiple samplings of waiting time have to be integrated to
AM, = — de =Gk, (c— M)V . (14) produce an accurate estimation of the regional density. The

naMi average waiting timéV;,. (k) between thgk — 1)th andkth
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robot encounters for a robetin regionr is computed as: where § is small constant. Conversely, each time the robot

1 n—1 loses, it decreases its tendency of staying in the region:
WW(/{) = —w“‘(/{) + WW(/{ - 1)
n (15) 0:;(t)=0;(t—1)—0. (19)
n=min(k, nmas) ; varies in the range [0,1] to prevent robots from being overly

where n,,.. is the maximum number of encounters that isubmissive or dominating.

monitlc?red. '][his.tl_imitt.allowsh.thﬁ hrobotb to forgetb th(la teatll}hb_ Dynamic Task Allocation

samplings of waiting time, which have become obsolete. The o . . . i
pling g The distributed task allocation algorithm in ants can effi-

average target waiting tim&;, (k) is updated in the same _ . .
. . . ciently arrange the ants in proportion to the amount of work
manner. Both waiting times are updated according to the

: : . . in the changing environment [31]. In a similar manner, our
changing environment, and are inversely proportional ® th : . . .
L : .. ~scheme aims to self-organize the robot coalitions accgrtin
robot and target densities in region The target density o target distributions across the regions
directly reflects the task demand of the region. The robg} 9 9 '

density reflects the amount of physical interference in th?Our dynamic task allocation scheme is based on the notion

region, which is inversely proportional to the task demang, ¢sPonse thresholds [25]. In a threshold mo_del, robots
Therefore, the task demangi, (k) of a regionr can be with low response thresholds respond more readily to lower

: . e . levels of task demand than do robots with high response
determined by robot as the ratio of the waiting times: thresholds. Performing the task reduces the demand of the

Sir (k) = Wi (k) _ (16) task. If robots with low thresholds perform the requirecktas
Wi, (k) the task demand will never reach the thresholds of the high-
The task demand;,.(k) will be used in the Se|f-organizati0nthreshold robots. However, if the task demand increasgh; hi
of social dominance as well as in dynamic task allocation. threshold robots will engage in performing the task.
MRTA strategies that utilize fixed response thresholds]([21
B. Self-Organization of Social Dominance [27]) are incapable of responding effectively to dynamic

The division of labor in an ant colony is strongly influence§nvironments [25]. In contrast, the thresholds in our sahem
by its social dominance order [29], which self-organizes @€ continuously updated by the self-organizing process of
match the task demands of the colony and the changiﬁ‘&fr'al dominance. _
environment. Our scheme is inspired by this concept to move!© be effective in task allocation, a robot must at least
robots out of a region that has a lower target-to-robot dgnsP@ve some knowledge of the task demands in its neighboring
ratio than the other regions. Instead of fixing the dominaniee "€gions in order to make rational task decisions. To do smtro
der [30], the social dominance of the robots in each coaliso ¢ Maintains a memory of the task demasidl of each region-
self-organized according to their individual task perfarme. (initialized to 0) and the amount of tinig;,. that it previously
Robots in the same coalition engage in dominance contest$BgNt in regionr. T;, can be used as a certainty measure
a regular intervatr if they are within communication range.°f Sir- In addition to computings;, using Equation 165,

The winner increases its tendency to stay in the currenbnegic@n also be updated when roboteceives a message from a
while the loser increases its tendency to leave the currélifighboring robog with S, less thanS;,.. ThenS;. andTi,
region and join another coalition in other regions. Wherotob@'€ Updated to take the valugs. andT), respectively. In this

i encounters roboj in regionr, the probability of robo Manner, the task demands of the regions are kept in memory.
winning a contest against robgtis defined as: Robot: can then predict which region has the greatest task

2 62 demand and join that region. At every time interval ofif
% (17) S;- receives no update, the certainty valillg is decreased
n; S +niSy, by = while the task demand;, is increased by a small
whereS;, andS;, are respectively the task demand of regioamount, such that its magnitude reflects the robot’s matinat
r determined by robot and robotj, andn; andn; are the to explore.
number of targets currently under observation by roband Our distributed MRTA scheme uses a stochastic problem
robot j respectively. Equation 17 implies that robowvould ~solving methodology. It is performed at intervalsrofo allow
most likely win the contest if it observes more targets thaier multiple samplings of waiting time during each interval
robot j. However, if both are tracking the same number ofhe probability of a robot to stay in its current region is
targets, then their individual evaluation of the task dethean defined as:
be used to differentiate them. This will distinguish a rothait S2
has been observing the targets for a long time from another P(stay) = S2 4+ (1-6,)2+T.2°
that just encounters the same number of targets. N Y w_ _
To inject the influence of social dominance on the self-)n the other hand_, the probab|l|ty of a rohidp leave region
organization of robot coalitions, each time a robovins a © to go to regionr is defined as:
contest (Eq. 17), it increases its tendency of staying in the
current region, which is represented by the response thicesh
6;(t) to be used for dynamic task allocation:

P(roboti winning) =

(20)

g2
S2 4602 +T,2+d2,
whered,., is the pre-computed collision-free distance between
0;(t)=0;(t—1)+0 (18) regionc and regionr, which can be viewed as the cost of task

P(leave = (21)
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Fig. 5. (a—d) Motion of robot (gray) in an environment withatwnforeseen obstacles (black) moving in anticlockwiseutarr paths. The robot successfully
negotiated past the extended walls and the dynamic obstaxleeach the goal (small black dot). (e) Motion of robot kdgray) in an environment with an
unforeseen static obstacle (light gray). The robot susgsavigated through the checkpoints (small black dédspted at the doorways to reach the goal.
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switching. Note that a robot that loses in the dominanceasintconvex obstacles in the first and the last room, and overapmin
in a coalition does not always leave the region. If it experess an unforeseen concave obstacle in the middle room. Thi#tresu
a higher task demand in its region than in other regions,lit wiurther confirms the effectiveness of cooperative EKMs in
have a high tendency of remaining in its coalition. handling complex, unpredictable environments.

From Equations 20 and 21, if the robot does not respondsimilar tests have also been performed on robots that use
to any regions, it will not switch task and will remain in theytential fields. The robots were trapped by the extendeks wal
current coalition. The robot may also respond to more thgg narrowly spaced obstacles in the first and second test
one region. This conflict is resolved with a method that iggpectively. This is because the obstacle avoidance behav

similar to Equation 17. The probability of a robothoosing oy counteracted the target reaching behavior to cancei eac
a regionr that it has responded to is: other’s effort.

(SirlnTir)2
Z(SiTInTiT)Q .

If the robot: chooses regiom that is not the current region
¢, then it will employ cooperative EKMs to move throug
the checkpoints plotted by the planner to regien The
generation of checkpoints is performed by the approxim
cell decomposition method for motion planning [11].

22) These two tests show that for potential fields, though each
behavior proposes an action that is optimal by itself, the
vector sum of these action commands produces a combined
action that may not satisfy the overall task. Cooperative
KMs, however, considers the preferences of each behavior
and integrates them to determin an action that can satisty ea
ghavior to a certain degree. Such tightly coupled interact
etween the behaviors and BCM enables the robot to achieve
more complex tasks.

P(choosg =

VI. EXPERIMENTS AND DISCUSSION 2) Cooperative Multi-Robot Tracking of Moving Targets:
A. Qualitative Evaluation of Cooperative EKMs This section evaluates qualitatively the cooperativekirag
capability of a team of robots, each fitted with cooperative

1) ROb.Ot Motion in Comple_x, pnpred|ctaple Enwronment%KMsl to maximize the coverage of multiple mobile targets
This section presents a qualitative evaluation of the @hsta(i e.. self-optimizing property). Two tests were conddcte

negotiation capabilities (i.e., self-protecting propgaf a non- .using Webots simulator with settings similar to those in

holonomic mobile robot endowed with cooperative EKMs iy, tion VI-A 1. The first test (Fig. 6) was performed to

complex, unpredictable environments. The experiment®wef ot the advantages of cooperative EKMs over poténtia
performed using Webots, a Khepera mobile robot simulatg g0 0 g ,

S L felds utilized b 3], [6]) for the same task. The robot upin
which incorporated 10% noise in its sensors and aCtuatoﬁ%tential fields é]lo(t[tr]aggp]gd by the static target while B

12 directed long-range sensors were also modelled arosndtg track all four targets. Eventually, the three mobile

body of radius 2.5 cm. Each sensor had a range of 17.5 Sloved out of the robot's sensing range, causing the robot to

enabling the detection of obstacles at 20 cm or nearer frem tg'bserve only one out of four targets. In contrast, the robot

rol_)rotstcertwter, and a (rjesz:lu(;u;)ndof 0.5 ctm ttoti'mmateb'.}.?.'seﬁtied with cooperative EKMs was able to negotiate past the
wo tests were conducted fo demonstrate the capabilities tionary target to track the three moving targets as wdll.
cooperative EKMS in performing co_mplex obstac_le negairl targets were thus observed by the robot. The resultg®f t
tasks. The ent\n(rjogmt\eNnt (;or the fws;_ te55t con§|st?rc;l1 of tg(rj st demonstrated that local minima situations could great
rooms connected by two doorways (Fig. 5(@)—(d)). The mi crease the coverage of targets by robots using potential

room contained two obstacles moving in anticlockwise dacu fields. However, robots endowed with cooperative EKMs can
paths. The robot began in the left-most room and was task&dl provide ma>’<imum coverage under these situations.
to move to the right-most room. Test results show that the

robot was able to negotiate past the extended walls and thd "€ next test (Fig. 7) illustrates how two robots endowed
dynamic obstacles to reach the goal. with cooperative EKMs cooperate to track four moving tasget

The environment for the second test consisted of thr¥¢hen the targets were moving out of the robots’ sensory
rooms connected by two doorways and an unforeseen st&f9€ the robot below chose to track the two targets mowing t
obstacle (Fig. 5(e)). The robot began in the top corner the bottom left Whlle_ the robot abov_e respond_ed by tracking
the left-most room and was tasked to move into the narrdf#® WO targets moving to the top right. In this manner, all
corner of the right-most room via checkpoints identified by &/9€ts could be observed by the robots. This test shows that
motion planner [11]. The robot was able to move through tf{8€ two robots can cooperate to track multiple moving target
checkpoints to the goal by traversing between narrowlyspac/Vithout communicating with each other.
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and 35.3% of the environment size. The mobile targets were
forward-moving Braitenberg obstacle avoidance vehicB [

that changed their direction and speed with 5% probability.
The speed range of the robots and targets are 0-16 cm/s and
0-12 cm/s respectively.

1) Sensor Network Coverag&he first performance index

determines the overall sensor network coverage of the sobot

twork ~ 100" 23
sensor networ coverage; NT (23)

where N is the total number of targets; is the number
T of targets being tracked by the robots at timeand the

Fig. 6. (Top row) Robot (gray) using action superpositionMAgot stuck experiment lastsT amount of time. N and T are fixed

at the stationary target. Eventually, the three mobileet@rgnoved out of the h _ 4

robot's sensing range (circle). (Bottom row) Robot usingmerative EKMs respectively as 30 targets and 10000 time steps at intervals

could negotiate past the stationary target to track all ngets. of 128 ms.

Using this index, a quantitative test was conducted to
compare the network coverage of the robots adopting five dis-
tributed tracking strategies: (1) potential fields, (2) pexative
EKMs, (3) static placement, (4) auction-based negotiatonl
0.5 _ (5) ant-based MRTA. Note that this index reflects the self-
85 0T5—6—ai7s 035 . s o o o oss  Optimizing capability of the robots’ tracking strategy. like
Fig. 7f hCOO%erafive tracking Ofmoxing targegS- Whentgsﬂw_wi;? moving the latter three strategies, potential fields and cooperati
outof I bt senson ange, e i robets moved I SRAIECLOTS  EX\is are reactive motion control techniques that do. ot

involve explicit task allocation. With static placementatc

3) Self-Healing of Multi-Robot FormationThis section Sensors are placed at least 0.6 m apart to ensure no overlap
evaluates qualitatively the self-configuring capability @ in coverage. With auction-based negotiation and ant-based
team of robots, each fitted with cooperative EKMs, to repadMRTA, the robots are fitted with cooperative EKMs to co-
unexpected damages to its formation. Fig. 8 shows the safiglinate their target tracking within a region, avoid obka,
environment in Fig. 1a covered by a robot team. When ti#d navigate between regions.
robots in room 1 were removed (possibly due to bomb blast), Test results (Fig. 9a) show that ant-based MRTA provides
the remaining 60 robots in the other rooms were able to sefetter coverage than the other strategies. The differeimces

configure and extend their coverage into this room. Henee, fPverage between any two strategies have been verified using
formation is self-healed. t-tests ¢ = 0.1) to be statistically significant. Notice that

5 mobile robots endowed with our method can track better
B. Quantitative Evaluation of Ant-Based MRTA and Coopethan 10 static sensors. Although auction-based negatiaties
ative EKMs complex negotiation, longer communication range, and more
This section presents quantitative evaluations of the amformaﬂon about the robots and targets, it does not perfor

based MRTA and cooperative EKMs schemes for distribut@&tter t?an ofu(rj ant—basfed schelmet.. This will be explained in
mobile sensor network coverage in a complex, unpredictalmae section of degree ot specialization.

environment. The experiments were performed using Web%tsz) Total Coalitional Cost: The second performance index

simulator with settings similar to those in Section VI-A.1. etermines the total coalitional cost of the robots, whish i

Each robot could also sense targets and kin robots at 0_3|r}%pired by th?f set partitioning problem [20]. Given a set of
or nearer from its center and send messages to other robc&%nected regions where coverage tasl_<s are to_ be perf(_)rmed,
that were less than 1 m away via short-range communicatidh¢ & setd O.f.M robots, the task allocation a!gorlth_m assigns

A 4 m x 3 m environment (Fig. 1a) was used to house t fobot coalitionC,. C A to the coverage task in regionsuch
Khepera robots and targets, which were randomly scatte ("i‘t @U, Cr = A, (0)vr #5,C, (10, = 0, and (c) eaclC;

initially. The number of robots varied from 5, 10 to 15, whicmas a positive costn, /N) — (mT/M_)l whgremr an.dnr are
corresponded to total robot sensing area of 11.8%, 23.6 ° number of robots and targets in regyore_spe_ctlvely_a_nd_
' 'is the total number of targets. The objective is to minimize

the total coalitional cost [20]:

0.35

0.25 / \\\

0.15

0.05 9’ “

0.35
0.25
0.15
0.05
-0.05

L n. m
total coalitional cost= Z ’—T _
T

N " (24)

This index varies within the range [0,2]. A coalitional cost
of O implies that the robot distribution over all regions is
Fio 8. Selfthealing of multirobot f o When the ab i L exactly proportional to the target distribution. In this mnar,

1g. o. elf-healing of multi-robot formation. en the In room . . . I . .
were removed (left), the remaining 60 robots were able tbcsgifigure and !nterference between rObOt_S Is at It_s minimum, Wh!Ch will
extend their coverage into this room (right), thus repagirihe damage. improve overall coverage. High costs imply the oppositeteNo

Ll
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Fig. 9. Comparison of performance using different motiontoal and task allocation strategies: (a) Sensor networerege, (b) total coalitional cost, and
(c) mean degree of specialization. ABMRTA = Ant-Based MRBBN = Auction-Based Negotiation, CEKM = Cooperative EKMd; B Potential Fields,
and~ = total robot sensing area to environment size ratio.

that thIS Il’ldeX I’eﬂeCtS the SG|f-COI’IfIgUI’II’]g Capablllty bét pruportiu>n<iftime in region switching gf;goniun of time in target searching x
robots’ tracking strategy. 01 _x—"_  —e@-aBMRTA
Test results (Fig. 9b) show that auction-based negotiat o.s o X _s(- ABN

and ant-based MRTA have the lowest coalitional costs. Hen
we can conclude from Figures 9a and 9b that, with a low
cost, a higher coverage can be achieved. Although aucti
based negotiation achieves slightly lower coalitionalt ¢ban
i . - o ) a
?‘nt based MRTA’ Its Cove_r_age is lower. This will be, explerht Fig. 10. Comparison of proportions of time in (a) région shihg, and
in the next section. Coalitional cost has been Val|datengS|(b) target searching (i.e., not observing any targets) @etwexplicit task
t-tests ¢ = 0.1) to be significantly different for various allocation schemes. ABMRTA = Ant-Based MRTA, ABN = Aucti@ased

Strategies except those without eXpIiCit task allocatibe.,( Negotiation, andy = total robot sensing area to environment size ratio.

potential fields and cooperative EKMs). This is expectedssingased MRTA, its coverage is lower. This is because reducing
they do not perform coalition formation, which account fofhe degree of specialization will incur more time in task
their higher costs. switching and consequently decrease the time for perfaymin
Coalitional cost is higher with fewer robots because witjhe task [34]. In our test, this means that a robot endoweld wit
less robots, it is more difficult to achieve the same proparti g,ction-based negotiation will switch between severabreg
of robots to that of the targets over all regions. thus incurring longer time in travelling between regionsl an
3) Degree of SpecializationTo achieve low coalitional searching for targets (Fig. 10). As a result, it spends less t
cost, the robot coalitions must be highly responsive, i.6y target tracking. This accounts for the poorer coverage of
they can self-configure rapidly according to the changingction-based negotiation than ant-based MRTA.
distributions of targets across regions. In a temporallying

environment, an ant colony has to increase its responsgene Fc_>r ant-b_ased MRTA’ the mean degree of specahzatlon
1S _slightly higher with a smaller number of robots (Fig. 9c)

to cope with frequent changes in task demands by employi .
morep eneralist?;mts Whichg erform a ranae of taslzls [3Bg_syiggcause each robot receives fewer messages from the other
9 ' b g " “'robots. As a result, the robots are less certain about the tas

ilarly, we will like to examine the effect of our non-statiny . . .
Y, We ; . demands in other regions. This causes the robots to be more
task environment, induced by moving robots and targets, on

LT sHeciaIized and less inclined to explore other regions.ceen
the degree of specialization in the robots. Based on Shann%e spend less time in region switching (Fig. 10a). On the
Wiener information variabled, the third performance index y sP ' ' gl witehing (F19. '

i . . ; . other hand, the mean degree of specialization for auction-
guantifies the degree to which a robot specializes in a regign T :
ased negotiation is slightly lower with fewer robots bessau

degree of specializatioas 1— H fewer robots are available for switching regions to minimiz
H = —Zpr logy pr (25) coalitional cost when the target distributions change.r&he
r fore, each robot switches region more often (Fig. 10a). For

where p, is the proportion of time a robot stays in regior‘?Xp”Cit task allocation schemes_, we can observe in Fig. 1Qb
r for the task duration off, and R is the total number of that a larger number of robots incurs longer target seagchin
regions. This index varies within the range [0,1]. A degrédme. This is due to greater interference between robotth Wi
of 1 implies the robot specializes in tracking only one regicCo0Perative EKMs or potential fields, fewer robots result
whereas a degree of 0 means the robot spends equal propoifioRigher mean degree of specialization because the robots
of time tracking in allR regions. mte_rfere less with each other and stay longer in a particula
Figure 9¢ shows the mean degree of specialization of all tHed'0n-

robots, which is lower for auction-based negotiation and an The time spent in region switching and target searching
based MRTA. Hence, we can conclude from Figures 9b and @&g. 10) can also reflect the amount of energy expended
that a larger number of generalist robots leads to a lowir robot motion that is not due to target tracking. As such,
coalitional cost. Although auction-based negotiationiewds they can be used as metrics of energy efficiency. Even though
lower degree of specialization and coalitional cost thath arant-based MRTA provides better coverage than auctionebase
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proportion of robots TABLE |
0.6 X — - auction-based negotiation PERFORMANCE COMPARISON OF EXPLICIT TASK ALLOCATION SCHEMES
05 7\, —@— ant-based MRTA _
,,7 FQ\\\ - - - potential fields Ant-based Auction-based

04 . /'// ’ ‘\:\\\ —A- - cooperative EKMs MRTA negotiation
034 7 // \\ N Performance indices FT AF ST FT AF ST
02 / N _‘\_‘;:X\ Sensor network coverage (%) 52.74 47.79 62.80 49.75 43.78158
s NNt N Total coalitional cost 0.392 0.415 0.346 0.370 0.396 0.326
0.1 27 NI Y degreeof Mean degree of specialization 0.349 0.562 0.526 0.323 0.5%473

03 T T p————=—==—4 specialization FT = Fast-moving Targets, AF = Actuator Failures, ST = Sloawving Targets.

[002)  [0204)  [040.6)  [0608)  [081]

Fig. 11.  Comparison of proportions of robots within diffeteranges of jn the mean degree of specialization of the network. The
degrees of specialization. loss of mobility in these sensors reduces the network’s self

negotiation, we can observe that it is more energy efficisnt onfiguring capability, thus increasing the coalitionalsico

it spends less time in region switching and target searchin@nd consequently, decreasing the coverage (Section VI-B.2
Figure 11 shows the proportions of robots within differerffur ant-based scheme can still achieve better coverage than

ranges of degrees of specialization for the case of 10 robd§ction-based negotiation in the case of actuator faildres

Using ant-based MRTA and auction-based negotiation fBRS been explained in Section VI-B.3.

explicit task allocation, most of the robots have degrees of/) Varying Dynamism of Task Environmenthe self-

specialization< 0.6. The other two methods without explicitconfiguring capabilities of the explicit task allocatioremes

task allocation have comparatively larger number of robo@ve been evaluated under varying degrees of dynamism of

with degrees of specialization 0.6. Hence, the methods withthe task environment. To do so, we vary the speed range at
explicit task allocation are less rigid to changes in regldgask Which the targets move. Slower-moving targets will change
demands and incur lower coalitional cost. the regional target distributions less, thus making thé tas

4) Summary of Test ResultsCompared to the Otherenvironment less dynamic. The speed range of the targets

schemes, ant-based MRTA and auction-based negotiatien h%the pLewhous tes_ts have tl)een set to Oh-12 cr:n/s. To ?%m'
lower degree of specialization, coalitional cost, and IE\'rghIoare with the previous results, we test the schemes with a

coverage. But the degree of specialization cannot be tombwredgced targetAsperE].\d rar_lgeToglo-lél crrr:/s (|r.]e., less dynamic
the cost of generalization (i.e., excessive time spentgiore enwronlmelnt).h S S Ewﬂ In table h when the_ targbets move
switching and target searching) would then exceed its ksnef/"0'€ SIOWY, the task allocation schemes achieve better cov

This explains the higher coverage of ant-based MRTA ovEfage and lower coalitional cost but higher mean degree of
auction-based negotiation specialization. Since the target distributions changevestp

the robots do not need to switch regions so often. Hence,

In the next few subsections, we will show more quantitatiiey tend to specialize in specific regions. The slow-chamgi
test results that address other important issues in a sena@get distributions also give the robots greater amount of
network and its task environment. time to self-configure their coalitions more proportiogathus

5) Coverage of Evasive Target©ur approach has beenachieving lower coalitional cost. When the robot distribns
tested on the coverage of evasive targets that avoid thdrigac are more proportional to that of the targets, a better cgeera
robots. Compared with the tests of 15 robots tracking rapan be achieved (Section VI-B.2). Under different degrdes o
domly moving targets (Fig. 9), our ant-based scheme cdn s@ihvironmental dynamism, our ant-based scheme can provide
maintain a 53% coverage. On the other hand, the coverageefter coverage than auction-based negotiation even thibug
static sensors dropped significantly from 34% to 10% whereas higher coalitional costs and mean degree of specializat
the coverage of the other schemes dropped slightly. (Section VI-B.3).

6) Robustness to Sensor FailureSur scheme is robust to
sensor failures (i.e., self-healing property), which isaial for VII. CONCLUSION
operating in dynamic, uncertain environments. For example The work in this paper describes a distributed layered
in the event that 5 mobile sensors fail completely, our s@herarchitecture for resource-constrained cooperation of ilmob
can still outperform a fully operational static sensor matw sensors. This framework can be adapted to other autonomic
(Fig. 9a). multi-agent systems for distributed problem solving. Bgrit-

Apart from sensor deaths, the sensors may also malfunctiging the different granularities of coordination betwesgents
partially by experiencing faulty on-board sensing har@war (namely, for task decomposition, allocation, and execeytio
actuators. We have investigated the case of actuatordailar autonomic solutions can be devised for each of them. It has
one-third of a network of 15 mobile sensors. This is simitar tbeen demonstrated in Section VI how our task allocation
deploying a heterogeneous network of 10 mobile and 5 statind execution schemes employ self-organization techsitpie
sensors except that in our test, the sensors are not abléeitt deachieve self-configuration, self-optimization, self-leg and
actuator malfunctions and be excluded from the task all@cat self-protection. Our ant-based scheme can be used to assign
process. Table | shows that when 5 sensors fail to movasks optimally in an autonomic system. It requires a task
the task allocation schemes achieve poorer coverage, thigdemand/utility function to be specified (e.g., eq. 16), ahgan
coalitional cost, and higher mean degree of specializatidre used by autonomic agents for self-configuration to oggmi
These 5 sensors that are unable to switch regions have degask performance. Our cooperative EKMs strategy can be used
of specialization of 1, which result in an overall increasby autonomic mobile agents to move towards their assigned
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tasks, reduce interference, and maintain connectivityd®o [23] T. Kohonen Self-Organizing Maps3rd ed. New York: Springer, 2000.

so, the tasks and agents are modelled as targets or obstaél
Both schemes are robust to sensor failures and varying tc’[lgj

dynamism. Automatic task decomposition will be considered
in our future work on autonomic multi-agent systems.
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