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ABSTRACT
This paper presents a novel decision-theoretic approach to control
and coordinate multiple active cameras for observing a number of
moving targets in a surveillance system. This approach offers the
advantages of being able to (a) account for the stochasticity of tar-
gets’ motion via probabilistic modeling, and (b) address the trade-
off between maximizing the expected number of observed targets
and the resolution of the observed targets through stochastic op-
timization. One of the key issues faced by existing approaches
in multi-camera surveillance is that of scalability with increasing
number of targets. We show how its scalability can be improved
by exploiting the problem structure: as proven analytically, our
decision-theoretic approach incurs time that is linear in the number
of targets to be observed during surveillance. As demonstrated em-
pirically through simulations, our proposed approach can achieve
high-quality surveillance of up to 50 targets in real time and its
surveillance performance degrades gracefully with increasing num-
ber of targets. We also demonstrate our proposed approach with
real AXIS 214 PTZ cameras in maximizing the number of Lego
robots observed at high resolution over a surveyed rectangular area.
The results are promising and clearly show the feasibility of our
decision-theoretic approach in controlling and coordinating the ac-
tive cameras in real surveillance system.

Categories and Subject Descriptors
I.4.8 [Scene Analysis]: Tracking; I.2.9 [Robotics]: Commercial
robots and applications, Sensors

General Terms
Algorithms, Performance, Experimentation, Security

Keywords
Active camera networks, Smart camera networks, Multi-camera
coordination and control, Surveillance and security

1. INTRODUCTION
The use of active cameras in surveillance is becoming increas-

ingly popular due to the recent advances in smart camera technolo-
gies [4]. These active cameras are endowed with pan, tilt, and zoom
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capabilities, which can be exploited to provide high-quality surveil-
lance. In order to achieve effective, real-time surveillance, an effi-
cient collaborative mechanism is needed to control and coordinate
these cameras’ actions, which is the focus of our work in this paper.

Monitoring a set of targets moving in an environment is a chal-
lenging and difficult task because (a) the motion of these targets is
often stochastic in nature, (b) it needs to address the non-trivial
trade-off between maximizing the expected number of observed
targets and the resolution of the observed targets, and (c) a cam-
era coordination framework should be scalable with an increasing
number of targets. To elaborate, (a) the uncertainty in the targets’
motion makes it hard for the active cameras to know where to ob-
serve in order to keep these targets within their fields of view (fov)
and they may consequently lose track of the observed targets, (b)
increasing the resolution of observing some targets through pan-
ning, tilting, or zooming may result in the loss of other targets be-
ing tracked, and (c) when the number of targets increases, a camera
coordination framework, if poorly designed, tends to incur expo-
nentially increasing computational time, which degrades the per-
formance of the entire system. These issues arise in many real-
world surveillance applications such as target surveillance, observ-
ing a group of players in sports, industrial monitoring of protected
sites, etc. Hence, we believe that, by addressing these practical
issues, a more effective surveillance system can be realized and
subsequently deployed in the real world. Note that our proposed
surveillance task differs from the typical sensor coverage problem,
the latter of which instead focuses on maximizing the spatial cov-
erage of the cameras that are independent of targets’ motion. In our
work, we try to maximize the coverage of the observed targets in
the environment.

This paper presents a novel principled decision-theoretic approach
to control and coordinate the active cameras for the surveillance of
multiple moving targets (Section 2). This approach is based on
the Markov Decision Process (MDP) framework, which allows the
surveillance task to be framed formally as a stochastic optimization
problem (Sections 3 and 4). In particular, our MDP-based approach
resolves the above-mentioned issues: (a) the motion of the targets
can be modeled probabilistically (Section 4.2), and (b) to address
the trade-off, the active cameras’ actions are coordinated to maxi-
mize the expected number of observed targets while guaranteeing a
pre-defined resolution of these observed targets (Section 4.4), and
(c) the scalability can be improved by exploiting the problem struc-
ture: as proven analytically (Section 4.5), our MDP-based approach
incurs time that is linear in the number of targets to be observed dur-
ing surveillance. One key problem faced by existing multi-camera
multi-target surveillance approaches is that of scalability with in-
creasing number of targets (Section 2). As demonstrated empir-
ically through simulations (Section 5), our MDP-based approach



Table 1: Comparison of related work based on (a) camera:target ratio, (b) primary criterion, and (c) uncertainty in targets’ motion.

Surveillance/tracking strategy n� m n� m n = m
Maximizing no. of
observed targets

Minimizing uncertainty
of targets’ locations

Uncertainty in
targets’ motion

Banerjee et al. [3] × ×
Costello et al. [5] × ×

Krahnstoever et al. [9] × ×
Qureshi et al. [13] × ×

Soto et al. [15] × ×
Sommerlade et al. [14] × ×

Huang et al. [8] × ×
Alfy et al. [6] × ×

Proposed MDP-based approach × × ×

can achieve high-quality surveillance of up to 50 targets in real
time and its surveillance performance degrades gracefully with an
increasing number of targets. The real-world experiments (Sec-
tion 5.3) show the practicality of our decision-theoretic approach
to control and coordinate cameras in surveillance systems.

2. RELATED WORK
Our proposed work is compared and contrasted with existing

approaches for active camera surveillance based on the following
classification: (a) ratio of number n of cameras to numberm of tar-
gets, (b) primary criterion - the main objective/goal of the surveil-
lance system, and (c) uncertainty in targets’ motion - whether the
targets’ motion uncertainty is considered in camera coordination
and optimal decision making. This comparison is shown in Ta-
ble 1. The camera:target ratio is further classified based on n� m,
n � m, and n = m. The camera:target ratio plays an important
role in the choice of primary criterion that is used in the existing
works, as explained below. The primary criterion is classified into:
(i) maximizing the number of observed targets with certain guar-
anteed resolution and (ii) minimizing the uncertainty of individual
targets’ locations. The targets’ motion is stochastic in nature and
hence needs to be predicted and subsequently exploited for coordi-
nating the cameras in a typical surveillance system. The existing
works are also classified based on whether they have accounted for
the uncertainty in targets’ motion in their optimization framework.

Table 1 shows that when the camera:target ratio is either n = m
[3] or n � m [5, 6, 8, 9, 13, 14, 15], the primary criterion is to
minimize the uncertainty of individual targets’ locations. By ob-
serving individual targets with more cameras, the uncertainty of
targets’ locations is decreased. In contrast, when the camera:target
ratio is n� m, the primary criterion is to maximize the number of
observed targets in the environment. In either criterion, the targets’
motion is inherently non-deterministic. But, none of the previous
works have accounted for the motion uncertainty in their optimiza-
tion framework. The works of [2, 12] aim to maximize the coverage
of static targets in omni-directional active sensors. Since the targets
are static, there is no notion of stochasticity of targets’ motion. All
the above-mentioned works use heuristic approaches to select the
best actions for the active cameras. Such approaches are therefore
tailored specifically to their own objectives and cannot be modified
to achieve other objectives. In contrast, our approach is a general
framework in which different surveillance goals can be modeled as
formal objective functions.

To summarize, our proposed work is different from the exist-
ing works in the following ways: (a) we use a formal, principled
Markov Decision Process (MDP) framework to select the optimal
actions for active cameras to maximize the expected number of ob-

served targets; (b) we account for the uncertainty in targets’ motion
by integrating a probabilistic motion model into our optimization
framework; and (c) many previous works ([9, 13, 14, 16], etc.)
face a serious scalability issue in terms of the number of targets to
be observed. We shall show in later sections how the state space
of the targets can be managed efficiently by exploiting the structure
and properties that are inherent in the surveillance problem.

3. SYSTEM ARCHITECTURE
The proposed surveillance framework consists of a supervised

surveillance environment and an MDP controller. The environment
consists of targets, static cameras, and active cameras. The targets
are the moving objects (e.g., people, vehicles, robots, etc.) in the
surveillance environment whose motions are stochastic in nature.
The static cameras are wide-view cameras that can only provide
low-quality information of the surveillance environment. These
cameras are assumed to be calibrated and can get the 3D location,
direction, and velocity information of the targets. The active cam-
eras are PTZ (pan/tilt/zoom) cameras that can get high-resolution
images of the targets in the environment. The MDP controller mod-
els the interaction between the active cameras and the environment,
and provides a platform to choose optimal actions for these cameras
in order to achieve high-quality surveillance tasks.

Fig. 1 shows the top view of a representative surveillance en-
vironment where the full fov’s of the active cameras are shown
in dotted lines and the current active fov’s are shaded. For sim-
plicity, the static cameras are not shown. The active cameras are
placed such that they can observe the complete environment by
pan/tilt/zoom operations but cannot observe all locations of the en-
vironment simultaneously. This makes the problem more practical
and challenging, thus emphasizing the need to control these ac-
tive cameras. The static cameras determine the location, direction,
and velocity of targets and pass these information to the MDP con-
troller. Based on these information, the MDP controller computes
the optimal actions of active cameras such that the expected utility
of the surveillance system is maximized. The utility of the surveil-
lance system corresponds to the high-level application goal that can
be defined formally using a real-valued objective function, as de-
scribed in Section 4.4.

Formally, the MDP controller is defined as a tuple (S,A, R, Tf )
consisting of a set S of discrete states of active cameras and tar-
gets, a set A of joint actions of active cameras, a reward function
R : S → R representing the high-level surveillance goal, and a
transition function Tf : S × A × S → [0, 1] denoting the prob-
ability P (S′|S,A) of switching from the current state S ∈ S to
the next state S′ ∈ S using the joint action A ∈ A. In the MDP
framework, the policy function π : S → Amaps from each state to
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Figure 1: System architecture.

a joint action of the cameras. Solving the MDP involves choosing
the policy that maximizes the expected reward for any given state.
The optimal policy, denoted by π∗, maximizing the expected utility
of the system in the next time step is given by

π∗(S) = argmax
A∈A

∑
S′∈S

R(S′) P (S′|S,A) .

The main challenge in the MDP is managing the state space S and
action spaceA. This is because the state space grows exponentially
in the number of active cameras and targets. Hence, the policy
computation time for our surveillance problem is exponential. In
practice, the structure of the problem and environment can usually
be exploited to reduce the number of states and the time required
to compute the optimal policy. We will show in Section 4.5 how
the state space can be managed for our surveillance problem, thus
allowing the MDP to be solved more efficiently.

The following assumptions are made in our surveillance task:
• The targets are oblivious to the cameras, in particular, non-evasive

(i.e., they do not try to escape from the cameras’ fields of view)
and their motion cannot be controlled nor influenced;
• The static cameras are calibrated accurately such that the 3D po-

sitioning errors of the targets are minimal. This can be achieved
by placing the cameras at high altitude;
• The total number of targets in the environment can be obtained

from static cameras and/or motion sensors at the entry and exit.

4. PROBLEM FORMULATION
Given a set of cameras and targets in a surveillance system, the

MDP controller determines the optimal actions for these cameras
such that the expected utility of the surveillance system is maxi-
mized. In this section, we describe how an MDP framework can
be applied to a generic active camera surveillance in order to maxi-
mize the expected utility of the surveillance system. We enumerate
each component of the MDP framework and show how these com-
ponents can be formulated for a typical surveillance system. In
this work, the objective/reward function of the MDP modeling the
high-level surveillance goal measures the total number of targets
observed by active cameras with a guaranteed resolution. Maxi-
mizing the number of observed targets with a guaranteed resolution
is a mandatory task in surveillance because we need to obtain the
high-resolution images of targets for bio-metric tasks like target
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Figure 2: (a) Camera states and (b) target locations.

detection, recognition, etc. In this work, we present a decision-
theoretic approach for maximizing the expected number of targets
observed by the active cameras.

4.1 States and Actions
A state of the MDP comprises the states of active cameras and

targets in the surveillance environment. The passive static cameras
are first calibrated based on common ground plane coordinates and
then used to obtain the targets’ approximate 3D location, veloc-
ity, and the direction information. Let n be the number of active
cameras and m be the number of targets in the environment such
that n � m. In this manner, the surveillance problem becomes
more challenging and interesting since there are more targets to be
monitored by fewer active cameras.

Let the set of possible states of each active camera in the envi-
ronment be denoted by C such that each state ci ∈ C corresponds
to a discretized pan/tilt/zoom position of camera i. For example, in
Fig. 2a, the set of possible states of camera i based on discretized
pan angles is given by C = {+90 ◦,+45 ◦, 0 ◦,−45 ◦,−90 ◦} and
the current state ci is +45 ◦.

Let the state space of a target be represented by a set of tuples of
location, direction and velocity, and denoted by T = Tl ×Td ×Tv
where Tl denotes a set of all possible locations of the target in the
environment, Td denotes a set of all possible discretized directions
between all pairs of locations in Tl, and Tv denotes a set of dis-
cretized velocities of the target. The surveillance environment is
discretized into grid cells such that the centers of the grid cells rep-
resent the possible locations of a target, as shown in Fig. 2b. The
approximate 3D location of the target observed by static cameras
will be mapped to the center of the nearest grid cell. The direction
and velocity of the target are determined based on its current and
previous locations. The static cameras detect the targets in their
fov’s and report their locations, directions, and velocities to the
MDP controller.

By calibrating the active cameras, the possible target locations in
the environment that lie within the fov of each active camera in its
various states can be pre-computed. For each state ci ∈ C of active
camera i, the subset of locations lying within its corresponding fov
is denoted by fov(ci) ⊂ Tl. For example, Fig. 3 illustrates the
fov (i.e., shaded polygon) of active camera 1 in its current state c1;
the subset of locations that are observed by camera 1 is given by
fov(c1) = {(0, 1), (0, 2), . . . , (2, 3), (2, 4)}.

To observe targets with a guaranteed resolution, the zoom pa-
rameter of an active camera can be adjusted to focus its fov so that
imageries of the targets detected within its fov satisfy a pre-defined
resolution. This requires limiting the depth of its fov, as depicted
by the horizontal line in Fig. 3. As a result, if a target is located
within fov(ci) of any camera i, then it is observed with a guaran-
teed resolution. For example, the minimum resolution of the human
face should be 24× 24 pixels, which is the base resolution for face
detection [18]. The resolution of the targets should be higher than
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Figure 3: fov(c1) of camera 1.

24 × 24 pixels for other tasks like face recognition and expression
analysis, vehicle number plate detection and identification, etc.

Let the vector C = (c1, c2, . . . , cn) be the joint state of n active
cameras in the environment and the vector T = (t1, t2, . . . , tm)
be the joint state of m targets in the environment where tk ∈ T is
the state of target k. A state S ∈ S = T m × Cn of the MDP is
therefore of the form S = (T,C).

The actions of an active camera are pan/tilt/zoom commands to
move the camera to a specified state. Let ai be an action of cam-
era i corresponding to a pan/tilt/zoom command. We assume that
the delay in moving the camera to a specified state is negligible as
the state-of-the-art cameras are capable of panning at a speed of
360◦/sec [1]. The joint action of all cameras at any given time is
a vector A = (a1, a2, . . . , an) ∈ A. Since we assume that the
targets’ motion cannot be controlled, no action can be specified by
the MDP controller to influence their motion in the surveillance
environment.

4.2 Transition Function Tf

Recall that the transition function Tf of the MDP denotes the
probability P (S′|S,A) of moving from the current state S to the
next state S′ using the joint action A. In this subsection, we will
show how this transition probability can be factored into transi-
tion probabilities of individual active cameras and targets using the
conditional independence property, which is inherent in the state
transition dynamics of the surveillance environment. As a result,
the computation time of our optimal policy is significantly reduced
(i.e., from exponential to linear in the number m of targets), hence
alleviating the scalability issue (see Theorem 1).

Firstly, the transition probability P (S′|S,A) can be factored into
the transition probabilities of the active cameras and targets (i.e., re-
spectively, P (C′|C,A) and P (T ′|T )) due to conditional indepen-
dence (see first equality of (1)). Specifically, the transition proba-
bility P (C′|C,A) of the active cameras is conditionally indepen-
dent of the targets’ states. Since the targets are assumed to be obliv-
ious to the cameras, the transition probability P (T ′|T ) (i.e., mo-
tion model) of the targets is conditionally independent of the active
cameras’ states and actions.

Next, the transition probability P (C′|C,A) of the active cam-
eras can also be factored into transition probabilities of individ-
ual active cameras due to conditional independence. The transi-
tion probability of an individual camera i is P (c′i|ci, ai) where
ci, c

′
i ∈ C are, respectively, its current and next states, and ai is

its action. Since the transition probability of each active camera
is conditionally independent of the other cameras given its current
state and action, P (C′|C,A) can be factored into P (c′i|ci, ai)’s

for i = 1, . . . , n (see second equality of (1)). Modern active cam-
eras are equipped with advanced functionalities that enable them to
move to the desired pan/tilt/zoom positions accurately [1]. Hence,
it is practical to assume the transition of camera i to be deter-
ministic and consequently represented by a deterministic function
c′i = execute(ci, ai) since P (c′i|ci, ai) evaluates to either 0 or 1.

Similarly, the transition probability P (T ′|T ) of the targets can
be factored into transition probabilities (i.e., motion models) of in-
dividual targets by assuming conditional independence. The tran-
sition probability of target k is P (t′k|tk) where tk, t′k ∈ T are,
respectively, its current and next states. Since the transition proba-
bility of each target is conditionally independent of the other targets
given its current state, P (T ′|T ) can be factored into P (t′k|tk)’s for
k = 1, . . . ,m (see second equality of (1)).

As discussed above, the transition probability P (S′|S,A) of the
MDP can be factored into transition probabilities of individual ac-
tive cameras and targets after repeatedly applying the conditional
independence property:

P (S′|S,A)
= P (C′|C,A) P (T ′|T )

=

n∏
i=1

P (c′i|ci, ai)
m∏
k=1

P (t′k|tk)

=


m∏
k=1

P (t′k|tk) if P (c′i|ci, ai) = 1 for i = 1, . . . , n,

0 otherwise.

(1)

4.3 Transition Probability P (t′k|tk) of a Target
To calculate the transition probability of a target, we first pre-

dict a target’s movement in a surveillance environment using a gen-
eral velocity-direction motion model. Specifically, this model com-
prises two Gaussian distributions for the velocity v and direction d
of the target: v ∼ N (µv, σv) and d ∼ N (µd, σd) where the mean
parameters µv and µd are obtained from the static cameras at every
time step based on the previous location of the target, and the vari-
ance parameters σv and σd are learned from a dataset of targets’
trajectories in the given supervised surveillance environment.

Then, in every time step t, we draw paired samples of veloc-
ity v and direction d of the target from the Gaussian distributions,
compute its corresponding predicted location (xt, yt) in the envi-
ronment using

xt = xt−1 + v × cos(d)× dt
yt = yt−1 + v × sin(d)× dt (2)

and determine the proportion of samples in each grid cell to pro-
duce the transition probability P (t′k|tk) of the target. Fig. 4 shows
the transition probability distribution of a target that is located at
(xt−1, yt−1) = (5, 5) with µv = 2 cells per time step and µd =
45◦. The probability distribution of the neighboring locations that
the target will move to in time step t is shown as black dots. Since
the possible locations, directions, and velocities of the target are
finite, we can pre-compute the transition probabilities of the tar-
get and store them off-line. This helps to reduce the on-line policy
computation time, as discussed in Theorem 2.

4.4 Objective/Reward Function R
The advantage of using MDPs in surveillance systems is that

any high-level surveillance goal can be defined formally using a
real-valued objective/reward function. In this work, the goal of the
surveillance system is to maximize the number of observed targets
with a guaranteed resolution. Supposing the states of all targets are
known, such a goal can be achieved by defining a reward function
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that measures the total number of targets lying within the fov of any
of the active cameras:

R(S) = R((T,C)) =

m∑
k=1

R̃(tk, C) (3)

R̃(tk, C) =

{
1 if target k’s location lies in fov(C),
0 otherwise; (4)

where fov(C) =
⋃n
i=1 fov(ci) denotes a set of target locations in

the environment, each of which lies within the fov of at least one
active camera when the cameras are in state C. So, if the location
of target k lies within fov(C), then it is guaranteed to be observed
at a predefined image resolution, as discussed in Section 4.1, and
R̃(tk, C) = 1 results.

4.5 Policy Computation
The states of the targets in the next time step are uncertain due

to stochasticity of their motion. Therefore, the optimal policy π∗

has to instead maximize the expected total number of targets that
lie within the fov of any of the active cameras in the next time step:

π∗(S) = π∗((T,C)) = argmax
A∈A

V (T,C,A) (5)

V (T,C,A) =
∑

T ′∈Tm

R((T ′, C′)) P (T ′|T ) (6)

where T ′ and C′ are, respectively, the joint states of the targets
and active cameras in the next time step. The next joint state C′ of
the cameras can be determined deterministically from their current
joint state C and action A using the function c′i = execute(ci, ai)
for i = 1, . . . , n (Section 4.2).

Computing the policy π∗ (5) for a given state S incursO(|A||T |m)
time, which is exponential in the number m of targets. Its time
complexity can be significantly reduced by exploiting the inherent
structure of our surveillance problem, in particular, the conditional
independence property in the transition model of the MDP (Sec-
tion 4.3). As a result, the value function V (6) can be reduced to

V (T,C,A) =

m∑
k=1

Ṽ (tk, C
′) (7)

Ṽ (tk, C
′) =

∑
t′
k
∈T

R̃(t′k, C
′) P (t′k|tk) . (8)

For a detailed derivation of (7), see Appendix A. Computing the
policy π∗ for a given state S consequently incurs linear time in the
number m of targets, as shown in the result below:

THEOREM 1. If (1) holds, then computing policy π∗ (5) for a
given state S incurs O(|A||T |m) time.

To improve the real-time computation of policy π∗, the values of
Ṽ (tk, C

′) (8) for all tk ∈ T andC′ ∈ Cn can be pre-computed and
stored off-line. To do this, the values of P (t′k|tk) for all tk, t′k ∈ T
have to be pre-computed first, which incurs O(|T |2) time. The
values of R̃(t′k, C

′) for all t′k ∈ T and C′ ∈ Cn also have to be
pre-computed, which incurs O(|T ||C|n) time. Consequently, the
values of Ṽ (tk, C

′) (8) for all tk ∈ T and C′ ∈ Cn can be pre-
computed in O(|T |2|C|n) time. Hence, the total off-line computa-
tion time is O(|T |2|C|n). The on-line computation time to derive
policy π∗ can then be reduced to O(|A|m), which includes the
time taken to look up the values of Ṽ (tk, C

′) for m targets (7) and
over |A| possible joint actions (5). The result below summarizes
the computation time incurred by the on-line and off-line process-
ing steps:

THEOREM 2. If (1) holds, then computing policy π∗ (5) for a
given state S incurs off-line computation time of O(|T |2|C|n) and
on-line computation time of O(|A|m).

5. EXPERIMENTS AND DISCUSSIONS
In this section, we present empirical evaluation of our MDP-

based approach for maximizing the number of targets observed by
active cameras. Our proposed approach is simulated in Player/Stage
simulator [7] to perform extensive experimentations and imple-
mented using real AXIS 214 PTZ cameras to demonstrate its feasi-
bility in real surveillance system. Before describing them, it is im-
portant to point out that there is no standard benchmark surveillance
environments and datasets for active camera networks to compare
our proposed approach with the other systems in the literature (e.g.,
[9, 13, 14]). While the primary criterion of these systems is to min-
imize the uncertainty of targets’ locations, our objective function is
to maximize the number of targets observed in high-resolution im-
ages (see Table 1). These existing systems use heuristic approaches
that can optimize only their respective objective function and can-
not be used for other objective functions. These systems also suffer
from scalability issue when the number of targets is increased. Fur-
thermore, the optimization frameworks of these existing systems
determine the cameras’ actions (or schedule the cameras) for the
current time step based on the current locations of the targets. In
contrast, our approach determines the cameras’ actions for the cur-
rent time step based on the expected locations of the targets in the
next time step (see (7) and (8)). This makes our approach perform
better than the existing methods in maximizing the number of ob-
served targets. Our MDP-based approach is empirically compared
with the following existing heuristic methods:
• Krahnstoever’s (Krahns) Approach: The work of [9] provided an

optimization method to capture high-resolution images of a sin-
gle target. It schedules the tasks for active cameras based on the
location of the targets in the current time step and assumes that
the targets will not move out of the fov within the short duration;
• Systematic (Sys) Approach: The active cameras pan automati-

cally in a round robin fashion such that every camera pans to
each of its states for a finite duration;
• Static (Stat) Approach: The active cameras are fixed at specific

states such that they can cover maximum area to get high-resolu-
tion imageries of the targets.
Our approach and the above heuristic methods are evaluated us-

ing the following performance metric:

PercentObs =
100

τMtot

τ∑
i=1

M i
obs
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Figure 5: Setups of corridor and hall environments.

where τ (i.e., set to 100 in simulations) is the total number of time
steps taken in our experiments, M i

obs is the total number of targets
observed by the active cameras at a given time step i, and Mtot

is the total number of targets present in the environment. That is,
the PercentObs metric averages the percentage of targets being
observed by the active cameras over the entire duration of τ time
steps. We will first discuss the environmental setup for the simu-
lated experiments and analyze the experimental results. Then, we
will show the results of the real camera experiments. Interested
readers can view our demo video1.

5.1 Simulated Experiments: Setup
In Player/Stage simulator, we have designed an active camera

model with functionalities to simulate real active cameras by con-
figuring the number of states across pan angles, as discussed in
Section 4.1. The targets’ motion are generated in Player/Stage sim-
ulator based on velocity-direction motion model (see (2)), which
resembles real human motion in surveillance environment. The lo-
cations of the targets are determined by a static camera, which is
the simulator itself. We have conducted our experiments for two
environmental setups (Fig. 5): corridor and hall. The sizes of the
corridor and hall environments are, respectively, 40 × 5 grid cells
and 20× 10 grid cells such that |Tl| = 200. The size of a grid cell
in the simulator is approximately mapped to 1 m2 in real world. We
have used up to n = 4 active cameras with |C| = 3, 5, and tested
up to m = 50 targets. We have also conducted experiments for the
camera resolutions |fov(ci)| ≈ 25, 16 by reducing the size of the
camera’s fov polygon in the simulator. The set fov(ci) of target
locations that are observed by each active camera is determined by
calibrating the active cameras in each of its state.

5.2 Simulated Experiments: Results
Figs. 6 and 7 show the performance of our MDP-based approach

for corridor and hall setups with n = 4, |Tl| = 200, target’s ve-
locity v = 3 cells per time step, and with varying m, |fov(ci)|,
|C|, and sizes of clusters of targets that follow the Poisson distribu-
tion (λ = 3). The rest of this subsection describes the observations
from our experiments.

Our MDP-based approach performs better for any of the target’s
velocity v = 1, 2, 3 cells per time step. This is because the cam-
eras are controlled based on the predicted locations of a target by
matching its corresponding transition probabilities with respect to
its observed state. It can be observed from the experiments that the
performance of MDP is more superior than the other approaches
when (a) the velocity of the targets is higher, (b) the targets move
in clusters, and (c) when the resolution of the cameras is increased
(i.e., |fov(ci)| is decreased). This is because when the velocity
of the targets is high (i.e., v = 2.5, 3 cells per time step), all
the targets will almost certainly move out of the fov’s of the cam-
eras in Krahns approach as the cameras are controlled based on

1http://www.comp.nus.edu.sg/∼lowkh/camera.html

the current location of the targets, hence producing worse perfor-
mance (see Figs. 6a and 7a). When the targets move in clusters,
then the Krahns approach suffers even more performance degra-
dation because it has high tendency to lose clusters of targets. On
the other hand, since the MDP has the correct transition model, it
gives superior performance even when the targets move in high ve-
locity. By increasing the resolution of the active cameras (i.e., by
reducing |fov(ci)| ≈ 25 to 16), it can be observed that the MDP
performs much better when compared to the Krahns approach
(Figs. 6c, 6d, 7c, and 7d). This is because when the targets are
moving at a velocity of v = 3 cells per time step and are observed
at higher resolution (i.e., |fov(ci)| is smaller), the chance of losing
the targets is high when the cameras are controlled based on current
observed locations of the targets. Since MDP has transition model
that predicts the next locations of the targets, it outperforms the
other approaches when the targets are clustered and the resolution
of the cameras is high.

The Sys and Stat approaches perform worse in almost all cases
except when |fov(ci)| ≈ 16 (Figs. 6c, 6d, 7c, and 7d) where the
Sys approach performs better than Krahns approach. This is
due to the fact that the cameras are controlled independently of
the targets’ information in both Sys and Stat approaches. This
shows that the targets’ information (e.g., location, direction, etc)
play a vital role in achieving high-quality surveillance. But, when
|fov(ci)| ≈ 16, the Sys approach performs slightly better than
Krahns because the chance of targets moving out of the fov is
higher in Krahns approach if the velocity of the targets is v = 3
cells per time step and the fov is reduced to |fov(ci)| ≈ 16. In all
cases, the MDP outperforms the Sys and Stat approaches.

When the number of states of each camera is increased from
|C| = 3 (Figs. 6c and 7c) to |C| = 5 (Figs. 6d and 7d), the per-
formance improves because more targets can be observed due to
the additional camera states. The MDP-based approach performs
better than the other approaches even when the transition model
is inaccurate. This is tested by keeping the velocity of the targets
moving at v = 3 cells per time step and matching the transition
probabilities computed with velocities v = 2, 2.5, 3 cells per time
step (Figs. 6c, 6d, 7c, and 7d). The performance of MDP computed
with inaccurate transition probabilities is still much better than the
other approaches. This is because the reward function is optimized
with respect to the expected locations of the targets.

When the number of cameras is increased from n = 2, 3 to 4,
the increase in performance of MDP is much better than the other
approaches for m < 10 targets and comparable to (if not better
than) other approaches for m > 10. This is because the prediction
capability of our approach outperforms the other approaches with
every addition of a new camera. The graph with increasing number
of cameras is not shown here due to space limitation.

From these observations, we find that our MDP-based approach
performs better than the other tested approaches in all the cases due
to its prediction capability. Specifically, it outperforms Krahns
approach when the velocity of the targets and the resolution of the
cameras are high.

5.3 Real Experiments
We have conducted real experiments with n = 3 AXIS 214 PTZ

cameras to monitor up to m = 6 Lego robots (targets) in an envi-
ronment with the size of |Tl| = 11× 9 grid cells. The size of each
grid cell is 0.5 m2. Each camera has |C| = 3 states. The states
of the cameras are determined such that all the cells of the envi-
ronment can be observed at high resolution by at least one camera.
Given any joint state C of the cameras, only a subset of cells in the
environment can be observed by these cameras, i.e., fov(C) ⊂ Tl.
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Figure 6: Graphs of PercentObs vs. number m of targets for corridor setup: (a) non-clustered targets with |fov(ci)| ≈ 25 cells,
|C| = 3 and clustered targets with (b) |fov(ci)| ≈ 25 cells, |C| = 3, (c) |fov(ci)| ≈ 16 , |C| = 3, (d) |fov(ci)| ≈ 16 , |C| = 5.
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Figure 7: Graphs of PercentObs vs. number m of targets for hall setup: (a) non-clustered targets with |fov(ci)| ≈ 25 cells, |C| = 3
and clustered targets with (b) |fov(ci)| ≈ 25 cells, |C| = 3, (c) |fov(ci)| ≈ 16 , |C| = 3, (d) |fov(ci)| ≈ 16 , |C| = 5.

This makes the problem challenging for the active cameras to max-
imize the number of observed robots. We have a static camera that
can track these robots based on OpenCV Camshift tracker. The
static camera is calibrated using [17] to obtain the approximate lo-
cations of the robots at every time step. The direction and velocity
of the robots are determined based on their previous and current lo-
cations. The fov(C) is determined by calibrating the active cam-
eras in each of its state and determining the grid cells of the envi-
ronment in which the robots can be observed at a high resolution.
We guarantee the resolution of the robots that are observed by the
active cameras to be approximately more than 40 × 40 pixels. We
pre-computed the transition probabilities of an individual target for
all possible locations, directions, and velocities v = 1, 2 cells per
time step. The robots are moved based on the velocity-direction
motion model and are programmed to turn back or stop when they
hit the wall or cross other robots. Each robot is initialized with a
Camshift tracker in the static camera and is tracked to get its ap-
proximate 3D location, direction, and velocity.

We have tested our implementation up to m = 6 robots by mak-
ing one of the robots static. It can be observed that cameras 2 and
3 coordinate to observe the brown static robot (Fig. 8). Camera 2
pans to another state (see bottom two rows of Fig. 8) only when
camera 3 takes over the observation of the static target (see top two
rows of Fig. 8). This static target can be replaced by a portion of the
surveillance environment like the entrance/exit or reception where
we need to pay more attention. Table 2 shows the PercentObs
performance for the real experiments over τ = 50 time steps.

Our proposed approach has some limitations: (a) only when the
observations from static cameras are near-deterministic (i.e., with
the help of overhead static cameras), our proposed approach is ex-
pected to perform well; (b) MDP observes its targets less well when
their motion is more uncertain. In our future work, we will include
an observation model to handle location uncertainty due to static
cameras, which results in a Partially Observable Markov Decision
Process framework. We will also look into deploying active cam-
eras with a team of mobile robots [10, 11] for tracking and surveil-
lance of mobile targets.

Table 2: Performance for real experiments.
m 1 2 3 4 5 6

PercentObs 99.2 97 95.3 93.5 88 85.1

6. CONCLUSION
This paper describes a novel decision-theoretic approach to con-

trol and coordinate multiple active cameras for observing a number
of moving targets in a surveillance system. Specifically, it utilizes
the Markov Decision Process framework, which accounts for the
stochasticity of targets’ motion via a probabilistic motion model
and addresses the trade-off by maximizing the expected number of
observed targets with a guaranteed resolution via stochastic opti-
mization. The conditional independence property, which is inher-
ent in our surveillance problem, is exploited in the transition model
of the MDP to reduce the exponential policy computation time to
linear time. As shown in simulations, our approach can scale up
to 50 targets in real time. We have also implemented our proposed
decision-theoretic approach using real AXIS 214 PTZ cameras to
demonstrate its feasibility in real surveillance system.
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APPENDIX
A. PROOFS

Derivation of Equation 7
The value function V (6) is given by

V (T,C,A)

=
∑

T ′∈Tm

R((T ′, C′)) P (T ′|T )

=
∑

t′1∈T ,...,t′m∈T

m∑
k=1

R(t′k, C
′)

m∏
i=1

P (t′i|ti)

=

m∑
k=1

∑
t′
k
∈T

R(t′k, C
′) P (t′k|tk)

∑
T ′−k
∈Tm−1

∏
i 6=k

P (t′i|ti)

=

m∑
k=1

∑
t′
k
∈T

R(t′k, C
′) P (t′k|tk)

=

m∑
k=1

Ṽ (tk, C
′)

where T ′−k = (t′1, . . . , t
′
k−1, t

′
k+1, . . . , t

′
m). The second equality

is obtained using (1) and (3). The fourth equality follows from∑
T ′−k
∈Tm−1

∏
i6=k

P (t′i|ti) =
∑

T ′−k
∈Tm−1

P (T ′−k|T−k) = 1 .


