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ABSTRACT
A key challenge of environmental sensing and monitoring is
that of sensing, modeling, and predicting large-scale, spa-
tially correlated environmental phenomena, especially when
they are unknown and non-stationary. This paper presents
a decentralized multi-robot active sensing (DEC-MAS) al-
gorithm that can efficiently coordinate the exploration of
multiple robots to gather the most informative observations
for predicting an unknown, non-stationary phenomenon. By
modeling the phenomenon using a Dirichlet process mixture
of Gaussian processes (DPM-GPs), our work here is novel in
demonstrating how DPM-GPs and its structural properties
can be exploited to (a) formalize an active sensing criterion
that trades off between gathering the most informative ob-
servations for estimating the unknown, non-stationary spa-
tial correlation structure vs. that for predicting the phe-
nomenon given the current, imprecise estimate of the corre-
lation structure, and (b) support efficient decentralized co-
ordination. We also provide a theoretical performance guar-
antee for DEC-MAS and analyze its time complexity. We
empirically demonstrate using two real-world datasets that
DEC-MAS outperforms state-of-the-art MAS algorithms.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Stochastic processes;
I.2.9 [Robotics]: Autonomous vehicles

General Terms
Algorithms, Performance, Experimentation, Theory

Keywords
Dirichlet process mixture of Gaussian processes; multi-robot
exploration and mapping; adaptive sampling; active learning

1. INTRODUCTION
A key challenge of environmental sensing and monitoring

is that of sensing, modeling, and predicting complex urban
and natural environmental phenomena, which are typically
characterized by spatially correlated measurements [15]. To
tackle this challenge, recent research efforts in the robotics
community have focused on developing multi-robot active
sensing (MAS) algorithms: Their objective is to coordi-
nate the exploration of a team of mobile robots to actively
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Figure 1: Real-world non-stationary environmen-
tal phenomena: (a) Plankton density (chl-a) phe-
nomenon (measured in mg/m3) in log-scale in Gulf
of Mexico, and (b) traffic (road speeds) phenomenon
(measured in km/h) over an urban road network.

gather the most informative observations for predicting a
spatially varying phenomenon of interest while being sub-
ject to resource cost constraints (e.g., number of deployed
robots, energy consumption, mission time). To achieve this,
a number of MAS algorithms [1, 3, 4, 9, 11, 12, 13, 14, 20,
22] have modeled the phenomenon as a Gaussian process
(GP) [2], which allows its spatial correlation structure to
be formally characterized and its predictive uncertainty to
be formally quantified (e.g., based on mean-squared error,
entropy, or mutual information criterion) and subsequently
exploited for directing the robots to explore its highly un-
certain areas. In order not to incur high computational ex-
pense, these algorithms have assumed the spatial correlation
structure to be known (or estimated crudely using sparse
prior data) and stationary (i.e., degree of smoothness in the
spatial variation of the measurements is the same across the
entire phenomenon), properties of which are often violated
in real-world environmental sensing applications and limited
to small-scale phenomena [21].

In practice, the spatial correlation structure of possibly
large-scale environmental phenomena is usually not known
and non-stationary [21] (i.e., separate areas of a phenomenon
exhibit different local degrees of smoothness in the spatial
variation of the measurements; e.g., see Fig. 1). For ex-
ample, in some ocean phenomena (e.g., temperature, salin-
ity, sea surface height), their measurements far offshore are
more smoothly varying (i.e., more spatially correlated) in
the cross-shore direction than nearshore [10]. Urban traf-
fic networks also display non-stationary phenomena (e.g.,
traffic speeds, taxi demands), which pose important consid-
erations to traffic routing and signal control. Existing MAS
algorithms can still be used for sampling a non-stationary
phenomenon by assuming, albeit incorrectly, its spatial cor-



relation structure to be known and stationary in order to
preserve time efficiency. So, though they can gather the
most informative observations under an assumed stationary
correlation structure, they will perform sub-optimally with
respect to the true non-stationary correlation structure.

A more desirable MAS algorithm should instead be de-
signed to consider the informativeness of its selected obser-
vations for both estimating the unknown spatial correlation
structure of a phenomenon as well as predicting the phe-
nomenon given the true correlation structure. According to
previous geostatistical studies [16], the most informative ob-
servations that are gathered for achieving the former active
sensing criterion are not necessarily as informative for sat-
isfying the latter. This raises a fundamental issue faced by
active sensing: How can a MAS algorithm trade off between
these two possibly conflicting criteria? The work of [7] has
addressed such a trade-off for sampling stationary phenom-
ena only and does not tackle the issue of time efficiency with
multi-robot coordination.

This paper presents a decentralized multi-robot active sens-
ing (DEC-MAS) algorithm that can efficiently coordinate
the exploration of multiple robots to jointly optimize the
above trade-off for sampling unknown, non-stationary envi-
ronmental phenomena. Our DEC-MAS algorithm models
a non-stationary phenomenon as a Dirichlet process mix-
ture of Gaussian processes (DPM-GPs) (Section 2): Using
the gathered observations, DPM-GPs can learn to automat-
ically partition the phenomenon into separate local areas,
each of which comprises measurements that vary according
to a stationary spatial correlation structure and can thus be
modeled by a locally stationary GP. The main contributions
of our work here are novel in demonstrating how DPM-GPs
and its structural properties can be exploited to (a) for-
malize an active sensing criterion that trades off between
gathering the most informative observations for estimating
the unknown partition (i.e., a key component of the non-
stationary correlation structure) vs. that for predicting the
phenomenon given the current, possibly imprecise estimate
of the partition (Section 3), and (b) support effective and ef-
ficient decentralized coordination (Section 4). We also pro-
vide a theoretical performance guarantee for DEC-MAS and
analyze its time complexity. Finally, we empirically demon-
strate using two real-world datasets that DEC-MAS outper-
forms the state-of-the-art MAS algorithms (Section 5).

2. MODELING A PHENOMENON

2.1 Gaussian Process (GP)
A GP [2] can be used to model a spatially varying phe-

nomenon as follows: The phenomenon is defined to vary as
a realization of a GP. Let V denote a set of sampling units
representing the domain of the phenomenon such that each
sampling unit x ∈ V is specified by a d-dimensional feature
vector and is also associated with a realized (random) mea-
surement yx (Yx) if x is sampled/observed (unobserved). Let
{Yx}x∈V denote a GP, that is, every finite subset of {Yx}x∈V
has a multivariate Gaussian distribution [2, 19]. The GP is

fully specified by its prior mean µx , E[Yx] and covari-

ance σxx′|θ , cov[Yx, Yx′ |θ] for all x, x′ ∈ V , the latter of
which characterizes the spatial correlation structure of the
phenomenon and can be defined using a covariance function
parameterized by θ, as described later.

Supposing a column vector yD of realized measurements

is available for some set D ⊂ V of observed sampling units,
the GP can exploit these observations to predict the mea-
surements for any set X ⊆ V \ D of unobserved sampling
units as well as provide their corresponding predictive uncer-
tainties using the following Gaussian posterior mean vector
and covariance matrix, respectively:

µX|D,θ , µX + ΣXD|θΣ
−1
DD|θ(yD − µD) (1)

ΣXX|D,θ , ΣXX|θ − ΣXD|θΣ
−1
DD|θΣDX|θ (2)

where µX (µD) is a column vector with mean components
µx for all x ∈ X (x ∈ D), ΣXX|θ (ΣDD|θ) is a covariance
matrix with covariance components σxx′|θ for all x, x′ ∈ X
(x, x′ ∈ D), ΣXD|θ is a covariance matrix with covariance
components σxx′|θ for all x ∈ X,x′ ∈ D, and ΣDX|θ is
the transpose of ΣXD|θ. The posterior covariance matrix
ΣXX|D,θ (2), which is independent of the measurements yD,
can be used to quantify the uncertainty of the predictions
through, for example, the Gaussian posterior joint entropy:

H[YX |yD, θ] ,
1

2
log(2πe)|X|

∣∣ΣXX|D,θ∣∣ . (3)

We will focus on using this entropy-based measure of pre-
dictive uncertainty in this paper.

A GP can model a stationary phenomenon by defining its
prior covariance σxx′|θ using a stationary covariance function
[19], that is, it is a function of x− x′. Hence, it is invariant
to translations in the domain V . A common choice is the
squared exponential covariance function:

σxx′|θ , σ2
s exp

(
−1

2

d∑
i=1

(
xi − x′i
`i

)2
)

+ σ2
nδxx′ (4)

where xi (x′i) is the i-th component of the d-dimensional fea-

ture vector x (x′), the set of hyperparameters θ , {σ2
s , σ

2
n, `1,

. . . , `d} are, respectively, signal and noise variances and length-
scales, and δxx′ is a Kronecker delta that is 1 if x = x′

and 0 otherwise. Intuitively, the signal and noise variances
describe, respectively, the intensity and noise of the mea-
surements while each length-scale `i controls the degree of
smoothness in the spatial variation of the measurements
(i.e., spatial correlation or “similarity” between measure-
ments) with respect to the i-th feature component. If the
hyperparameters are not known, they can be trained using
the available observations via maximum likelihood estima-
tion (MLE) [19], that is, by choosing θ that maximizes the
log marginal likelihood log p(yD|θ) =

−1

2
(yD−µD)>Σ−1

DD|θ(yD−µD)− 1

2
log(2π)|D|

∣∣ΣDD|θ∣∣ . (5)

Similarly, a GP can model a non-stationary phenomenon
by specifying its prior covariance with a non-stationary co-
variance function, the choice of which involves a trade-off
between the richness of the resulting GP model vs. compu-
tational efficiency. For example, the simple non-stationary
polynomial and neural network covariance functions [19] only
need a few hyperparameters to be determined. But, they
do not exhibit a desirable locality property1 that holds for
many stationary covariance functions (e.g., (4)) and, more
importantly, has been widely exploited by existing MAS al-
gorithms mentioned in Section 1 to achieve time efficiency.
On the other hand, the complex non-stationary version of

1The locality property [8] states that the spatial correlation
of measurements between sampling units decreases to zero
with increasing distance between them.



Matérn covariance function [17] requires a large number of
hyperparameters to be specified. Though it can capture the
locality property, the training of its hyperparameters, when
unknown, is computationally expensive. An alternative to
using a single GP is to consider modeling the non-stationary
phenomenon with a mixture of GPs that can provide a fine
balance between richness and efficiency as well as a useful
structural property to be exploited by our DEC-MAS algo-
rithm, as described next.

2.2 Dirichlet Process Mixture of Gaussian Pro-
cesses (DPM-GPs)

It is often observed (e.g., see Fig. 1) that the measure-
ments in separate areas of a non-stationary phenomenon
vary according to different locally stationary spatial corre-
lation structures [21]. Such a phenomenon can be mod-
eled with high fidelity by a Dirichlet process mixture of lo-
cally stationary GPs [18], which offers the following rep-
resentational and computational advantages over a single
non-stationary GP (Section 2.1): (a) It preserves the use
of the well-studied and widely-applied stationary covariance
functions, many of which exhibit the locality property (Sec-
tion 2.1) and are computationally friendly with only a few
(unknown) hyperparameters to be trained, (b) the required
number of locally stationary GPs can automatically grow
with the increasing complexity of the phenomenon, and (c)
each locally stationary GP only incurs cubic time in the size
of the observations that are local to its corresponding area
of prediction instead of over the entire phenomenon.

A DPM-GPs can model a non-stationary phenomenon as
follows: The phenomenon is defined to vary as a realiza-
tion of a DPM-GPs. Let its number of locally stationary
GP components be denoted by K. For each GP component
k = 1, . . . ,K, its prior covariance characterizes a locally sta-
tionary spatial correlation structure and is defined using a
stationary covariance function parameterized by θk. In order
to estimate the unknown θk using MLE (5), the measure-
ments yDk (where Dk ⊆ D) that are induced by GP com-
ponent k have to be identified first. That is, every observed
sampling unit x ∈ D has to be associated with a realized
component label denoted by zx and Dk , {x ∈ D|zx = k}.
To realize these component labels zD , {zx}x∈D, we use
Gibbs sampling, as detailed next.

Each random component label, denoted by Zx, for all x ∈
D follows a sampling unit-dependent Dirichlet process prior:

p(Zx = k|zD\{x}, θk) =


nxk

|D| − 1 + α
if k ≤ K,

α

|D| − 1 + α
if k = K + 1,

(6)

where nxk , (|D|−1)(
∑
x′∈Nx

σxx′|θkδzx′k)/(
∑
x′∈Nx

σxx′|θk ),

Nx , {x′ ∈ D \{x}|dG(x, x′) ≤ γ} for some γ > 0, dG(x, x′)
is the shortest path length between sampling units x and x′

with respect to the topology of a graph G induced from V to
be traversed by the robots (Section 3), σxx′|θk is previously
defined in (4), and α denotes a concentration parameter.
The Dirichlet process prior (6) can be understood as fol-
lows: When k = 1, . . . ,K, the probability of the observation
at x being induced by GP component k is proportional to
the number of neighboring observed sampling units with the
same component label k weighted by their proximity to x.
Its probability of being induced by a new GP component
K + 1 is proportional to α. Hence, α controls the addition
of new GP components. For the new GP component K + 1,

its θK+1 is sampled from a pre-defined uniform distribution.
Given the realized measurements yD for the set D of ob-

served sampling units, the Dirichlet process prior can be
updated using Bayes’ rule to the following posterior:

p(Zx = k|zD\{x}, yD, θk) ∝{
p(yx|Zx = k, yDk\{x}, θk)p(Zx = k|zD\{x}, θk) if k ≤ K,
p(yx|Zx = k, θk)p(Zx = k|zD\{x}, θk) if k = K + 1,

(7)
where p(yx|Zx = k, yDk\{x}, θk) ∼ N (µx|Dk\{x},θk ,Σxx|Dk\{x},θk )
for k ≤ K and p(yx|Zx = K + 1, θK+1) ∼ N (µx, σxx|θK+1

).
It can be seen from p(yx|Zx = k, yDk\{x}, θk) that an ob-
servation induced by a GP component is conditionally inde-
pendent of the observations induced by the other GP com-
ponents, a structural property of which will be exploited by
our DEC-MAS algorithm (Sections 3 and 4).

Using the posterior (7), Gibbs sampling [5] is performed
(starting with K = 1) to realize the component labels zD.
Given zD, θk can now be trained using MLE (5). Such a
process of Gibbs sampling followed by MLE is iterated until
the values of zD stabilize or a user-defined limit is reached.

Given the realized measurements yD and component la-
bels zD for observed sampling units D, the DPM-GPs can
exploit them to predict the measurement for an unobserved
sampling unit x by aggregating the predictions of the K GP
components weighted by their probability of inducing it:

µx|D,θ =

K∑
k=1

µx|Dk,θk p(Zx = k|zD, θk) (8)

where θ , {θ1, . . . , θK} and p(Zx = k|zD, θk), which is de-
fined in a similar way to (6), can be used to estimate the
unknown partition of the phenomenon.

3. MULTI-ROBOT ACTIVE SENSING (MAS)
Define a directed graph G , (V,E) where the domain V

of a phenomenon is connected by a set E ⊆ V × V of edges
such that there is an edge (x, x′) if and only if a robot can
traverse from x ∈ V to x′ ∈ V within some user-defined cost
constraint (e.g., time interval, traveling distance). The MAS
problem is then formulated as follows: Supposing the robots
have previously observed the measurements yD from a set
D ⊂ V of sampling units and used these observations to
estimate their corresponding component labels zD by Gibbs
sampling and the hyperparameters θ of the DPM-GPs by
MLE (Section 2.2), they have to coordinate to jointly select
the next most informative set X∗ of sampling units (i.e.,
with corresponding measurements and component labels of
maximum joint entropy) to be observed:

X∗ = arg max
X

H[YX , ZX |yD, zD, θ] . (9)

The next possible sampling unit to be observed by each
robot is constrained to be selected from one that is adja-
cent to the robot’s current residing sampling unit in G. Us-
ing chain rule for entropy, it can be shown that these max-
entropy sampling units X∗ minimize the posterior joint en-
tropy (i.e., H[YV \(D⋃

X∗), ZV \(D⋃
X∗)|YX∗ , ZX∗ , yD, zD, θ])

of the measurements and component labels for the remaining
unobserved sampling units (i.e., V \ (D

⋃
X∗)) in the phe-

nomenon. Since H[YV \(D⋃
X∗), ZV \(D⋃

X∗)|YX∗ , ZX∗ , yD, zD, θ]=
H[ZV \(D⋃

X∗)|ZX∗ , zD, θ]+H[YV \(D⋃
X∗)|YX∗ , ZV \D, yD, zD, θ]

by chain rule for entropy, the choice of X∗ (9) jointly op-
timizes a trade-off between gathering the most informative



observations for estimating the unknown partition (i.e., com-
ponent labels ZV \(D

⋃
X∗) in unobserved areas) vs. that for

predicting the phenomenon (i.e., measurements YV \(D⋃
X∗)

in unobserved areas) given the current, imprecise estimate
of the partition (i.e., component labels ZV \D and zD).

Unfortunately, evaluating H[YX , ZX |yD, zD, θ] in (9) is pro-
hibitively expensive with a large number |X| of robots, as
explained below. We will therefore derive a tractable ap-
proximation to H[YX , ZX |yD, zD, θ]:

H[YX , ZX |yD, zD, θ]
= H[ZX |zD, θ] + H[YX |ZX , yD, zD, θ]
≈
∑
x∈X

H[Zx|zD, θ] + H[YX |ẑX , yD, zD, θ]

=
∑
x∈X

H[Zx|zD, θ] +

K∑
k=1

H[YXk |ẑXk , yDk , θk]

(10)

where H[Zx|zD, θ],−
K∑
k=1

p(Zx=k|zD, θk) log p(Zx=k|zD, θk),

p(Zx = k|zD, θk) is defined in a similar way to (6), Xk ,
{x ∈ X|ẑx = k}, and H[YXk |ẑXk , yDk , θk] can be evalu-
ated in closed form using (14). The first equality follows
from the chain rule for entropy and can then be expanded
to
∑
zX

(− log p(zX |zD, θ)+H[YX |zX , yD, zD, θ])p(zX |zD, θ),
which requires enumerating an exponential (i.e., in the num-
ber |X| of robots) number of possible assignments zX to eval-
uate the summation. This computational burden is eased
by the approximation in (10): Its first summation term is
obtained using chain rule for entropy followed by assuming
conditional independence of Zx for all x ∈ X given zD and θ.
Its second term is due to the same conditional independence
assumption to yield p(zX |zD, θk) =

∏
x∈X p(zx|zD, θk) fol-

lowed by plugging the maximum likelihood estimate ZX =
ẑX into H[YX |ZX , yD, zD, θ] where ẑx = arg maxzx p(zx|zD, θk)
for all x ∈ X. We conjecture that, in practice, the assump-
tion becomes less restrictive when the number |D| of obser-
vations increases to potentially reduce the degree of violation
of conditional independence, the spatial correlation between
measurements decreases, and the robots are sufficiently far
apart. The last equality in (10) arises from the chain rule
for entropy and the structural property of DPM-GPs that
observations between GP components are conditionally in-
dependent (Section 2.2).

If the approximation in (10) is used as the active sensing
criterion instead, then the MAS problem becomes

X̃ = arg max
X

H̃[YX , ZX |yD, zD, θ] , (11)

H̃[YX , ZX |yD, zD, θ] ,
∑
x∈X

H[Zx|zD, θ]+
K∑
k=1

H[YXk |ẑXk , yDk , θk].

(12)

Note that the choice of X̃ jointly optimizes a trade-off be-
tween observing sampling units with most uncertain com-
ponent labels (i.e., first summation term) vs. that with
most uncertain measurements (i.e., second summation term)
given the current, imprecise estimate of their labels and zD.

4. DECENTRALIZED MULTI-ROBOT AC-
TIVE SENSING (DEC-MAS)

In the previous section, we have presented a centralized
MAS (CEN-MAS) algorithm (11) that coordinates the ex-
ploration of multiple robots to jointly optimize a trade-off

between observing sampling units with most uncertain com-
ponent labels vs. that with most uncertain measurements
given the current, imprecise estimate of their labels. How-
ever, solving (11) is computationally costly due to the space
of possible X that grows exponentially in the number |X| of
robots. To alleviate this computational difficulty, we pro-
pose a DEC-MAS algorithm that exploits the structural
property of DPM-GPs (Section 2.2) and the locality prop-
erty of stationary covariance functions used by each GP com-
ponent (Section 2.1) for efficient decentralized coordination.

The key idea underlying the need to coordinate any two
robots in a team is as follows: Based on (a) the structural
property of DPM-GPs that observations between GP com-
ponents are conditionally independent (Section 2.2), and (b)
the locality property of each stationary GP component that
the spatial correlation of measurements between sampling
units decreases to zero with increasing distance between
them (Section 2.1), two robots have to coordinate their ac-
tive sensing only when (a) some pair of their next possible
sampling units to be observed are associated with the same
GP component (i.e., same estimated component labels), and
(b) the correlation of the measurements for such a pair is
high enough due to their spatial proximity, respectively. We
formalize this idea using the notion of a coordination graph,
as defined next.

A coordination graph is defined to be an undirected graph
G , (V, E) that consists of a set V of vertices denoting the
robots, and a set E of edges representing coordination de-
pendencies between robots such that there exists an edge
{r, r′} incident with robots r ∈ V and r′ ∈ V \ {r} iff

max
x∈Nr,x′∈Nr′

|ςxx′ | > ε

ςxx′ =

{
Σxx′|Dk,θk if ẑx = ẑx′ = k,
0 otherwise,

(13)

for some ε > 0 where Nr (Nr′) denotes the set of sampling
units adjacent to robot r’s (r′’s) current residing sampling
unit in G. Using (13), each robot can determine its ad-
jacency to all the other robots in a decentralized manner
and exchange this adjacency information with them so as to
construct a consistent adjacency matrix for representing G.

The next step is to determine the connected components
of G whose resulting vertex sets partition the set V of robots
into, say, N disjoint subsets V1, . . . ,VN such that the robots
within each subset have to coordinate their active sensing.
Each robot can determine its residing connected component
in a decentralized way by performing a depth-first search in
G starting from it as root.

Finally, define

Ĥ[YXk |ẑXk , yDk , θk] ,
1

2
log(2πe)|Xk|

∣∣∣Σ̂XkXk|Dk,θk

∣∣∣ (14)

where Σ̂XkXk|Dk,θk is a block-diagonal matrix comprising
diagonal blocks of the form ΣXknXkn|Dk,θk for n = 1, . . . , N

where Xkn , {x ∈ Xn|ẑx = k} and Xn denotes a set of
next possible sampling units to be observed by the set Vn
of robots for n = 1, . . . , N . So, Xn =

⋃K
k=1Xkn and X =⋃N

n=1Xn. Then, it can be derived from (14) that

Ĥ[YXk |ẑXk , yDk , θk] =

N∑
n=1

H[YXkn |ẑXkn , yDk , θk] (15)

by exploiting the property that the log-determinant of a
block-diagonal matrix is equal to the sum of log-determinants
of its diagonal blocks. The MAS problem (11) is conse-
quently approximated by



max
X

∑
x∈X

H[Zx|zD, θ] +

K∑
k=1

Ĥ[YXk |ẑXk , yDk , θk]

= max⋃N
n=1Xn

N∑
n=1

∑
x∈Xn

H[Zx|zD, θ] +

K∑
k=1

H[YXkn |ẑXkn , yDk , θk]

=

N∑
n=1

max
Xn

∑
x∈Xn

H[Zx|zD, θ] +

K∑
k=1

H[YXkn |ẑXkn , yDk , θk]

(16)
where the first equality is due to (15). More importantly, the
last equality can be solved in a partially decentralized man-
ner by each disjoint subset Vn of robots for n = 1, . . . , N :

X̂n = arg max
Xn

∑
x∈Xn

H[Zx|zD, θ]+
K∑
k=1

H[YXkn |ẑXkn , yDk , θk] .

(17)
The degree of decentralization for our DEC-MAS algorithm
(17) can be varied by controlling ε: Increasing ε causes more
robots to become isolated vertices in G, thus decreasing the
size η , maxn |Vn| of its largest connected component and
entailing higher degree of decentralization.

Let
ξ , max

k,n,Xkn,i,i
′

∣∣∣[Σ−1
XknXkn|Dk,θk

]
ii′

∣∣∣ (18)

and ε , 0.5K log 1
/(

1−
(
|V|1.5ηξε

)2)
. We prove in the

theoretical result below that X̂ =
⋃N
n=1 X̂n is guaranteed to

achieve an entropy H̃[YX̂ , ZX̂ |yD, zD, θ] (i.e., by plugging X̂
into (12)) that is at most ε less than the maximum entropy

H̃[YX̃ , ZX̃ |yD, zD, θ] achieved by X̃ (11):

Theorem 1 (Performance Guarantee). If |V|1.5ηξε<
1, then H̃[YX̃ , ZX̃ |yD, zD, θ]− H̃[YX̂ , ZX̂ |yD, zD, θ] ≤ ε.

The proof of Theorem 1 is given in Appendix A. The impli-
cation of Theorem 1 is that our DEC-MAS algorithm (17)
is competitive (i.e., small ε) as compared to the CEN-MAS
algorithm (11) when (a) the number |V| of robots is not too
large, (b) the largest connected component of η robots being
formed in G is reasonably small, (c) the minimum required
correlation ε between the next possible sampling units to be
observed by adjacent robots is kept low, and (d) the number
K of GP components is small.

4.1 Time and Communication Complexity
In this subsection, we will analyze the time and commu-

nication complexity of our DEC-MAS algorithm. Suppose
that the observations are distributed evenly among the K
GP components and denote the maximum out-degree and in-
degree of G by δ and δ′, respectively. Then, |Nx| ≤ ∆ , (δ+
δ′)γ for all x ∈ D. Gibbs sampling for estimating the com-
ponent labels zD followed by MLE for estimating the hyper-
parameters θ (Section 2.2) incur O(M |D|K((|D|/K)3 + ∆))
time over M iterations. Our DEC-MAS algorithm (17) in-
curs O(K(|D|/K)3 + ηδη(K∆ + (|D|/K)2 + η2)) time. By
setting η = |V|, it yields the time complexity of the CEN-
MAS algorithm (11) for comparison.

Central to the efficiency of our DEC-MAS algorithm is
the requirement of a small η (i.e., size of largest connected
component of robots being formed in G to coordinate their
active sensing), which is in fact achieved in practice, as ex-
plained by the following observations: For a GP component
with small spatial correlation, the posterior entropy of the
measurements in the unobserved part of its local area of pre-
diction remains high after sampling, hence attracting more

robots to explore it. But, its small spatial correlation entails
high degree of decentralization (13), thus resulting in a small
η. On the other hand, for a GP component with large spa-
tial correlation, the posterior entropy of the measurements
in the unobserved part of its local area of prediction becomes
low after sampling, hence attracting fewer robots to explore
it. So, a small η is also maintained.

For our DEC-MAS algorithm, each robot broadcastsO(|V|)-
sized and O(1)-sized messages on its adjacency information
and new observation, respectively.

5. EXPERIMENTS AND DISCUSSION
This section evaluates the active sensing performance and

time efficiency of DEC-MAS empirically on two real-world
datasets featuring non-stationary phenomena: (a) June 2012
MODIS plankton density (chlorophyll-a) data of Gulf of
Mexico (Fig. 1a) discretized into a 60× 60 grid of sampling
locations/units and bounded within lat. 28.175 − 29.975N
and lon. 87.675− 89.475W. The mean density is 4.5 mg/m3

and standard deviation is 9.8 mg/m3; (b) Traffic speeds data
along 775 road segments (including highways, arterials, slip
roads, etc.) of an urban road network (Fig. 1b) during the
evening peak hours on April 20, 2011. The mean speed is
52.8 km/h and standard deviation is 21.1 km/h. Each sam-
pling unit (i.e., road segment) is specified by a 4-dimensional
feature vector: length, number of lanes, speed limit, and di-
rection. This non-stationary traffic phenomenon is modeled
using a Dirichlet process mixture of stationary relational
GPs; the relational GP is previously developed in [4] and its
stationary correlation structure can exploit both the road
segment features and road network topology information.

For each dataset, 5% of the data are randomly selected
as prior observations to estimate their corresponding prior
component labels zD by Gibbs sampling and the prior hy-
perparameters θ of the DPM-GPs by MLE (Section 2.2).
Subsequently, they are constantly updated using the new ob-
servations gathered by running DEC-MAS repeatedly. For
DEC-MAS, ε (13) is set to 0.1. The experiments are run on
a PC with Intelr CoreTM2 Quad CPU Q9550 at 2.83 GHz.
The results shown below are averaged over 40 trials of ran-
domly selected initial robots’ residing sampling units.

Performance metrics. The first metric evaluates active
sensing performance of a tested MAS algorithm: It measures

root mean squared error (RMSE)
√∑

x∈V (µx|D,θ − yx)2/|V |
over domain V of the phenomenon that results from using
the posterior mean µx|D,θ of the algorithm’s utilized model
(i.e., (1) of GP or (8) of DPM-GPs with stationary covari-
ance function (4)) to predict the measurements for the re-
maining unobserved sampling units V \ D given the gath-
ered observations. The second metric evaluates the time
efficiency and scalability of a tested MAS algorithm by mea-
suring its incurred time.

Comparison of MAS algorithms. The performance of
our DEC-MAS algorithm is compared to that of the state-
of-the-art MAS algorithms, as listed in Table 1 and briefly
described next: The centralized maximum entropy sampling
(CEN-MES) algorithm [13] repeatedly selects the next set X
of sampling units to be observed that maximizes (3) based
on a stationary GP model. After gathering the observations,
CEN-MES can alternatively use DPM-GPs (instead of GP)
for prediction (i.e., (8)) and we call this CEN-MES+D. The
partially decentralized maximum entropy sampling (DEC-



Algorithm Model Criterion
CEN-MES [13] GP (3)
DEC-MES [4] GP (3)

CEN-MES+D
GP (active sensing)

(3)
DPM-GPs (prediction)

MAX-SUM [20] DPM-GPs (11)
CEN-MAS DPM-GPs (11)
DEC-MAS DPM-GPs (17)
DEC-MAS-C DPM-GPs (19)

Table 1: Comparison of MAS algorithms (Each algo-
rithm exploits a single model for both active sensing
and prediction, except for CEN-MES+D).

MES) algorithm [4] exploits a similar notion of the coordi-
nation graph to split a robot team into disjoint sub-teams,
each of which runs CEN-MAS separately without coordinat-
ing with other sub-teams. The MAX-SUM algorithm [20] is
a general-purpose iterative solver for distributed constraint
optimization problems. In [20], MAX-SUM is only used to
optimize (3) based on the GP model; it does not utilize
DPM-GPs nor optimize our novel MAS criterion (11), which
are done here. Unlike DEC-MAS, the performance guaran-
tee of MAX-SUM offers a non-informative, loose worst-case
approximation ratio that only holds for tree-like coordina-
tion structures. Lastly, to show the importance of observing
sampling units with highly uncertain component labels, the
first summation term in (17) is removed to yield

max
Xn

K∑
k=1

H[YXkn |ẑXkn , yDk , θk] , (19)

which we call DEC-MAS-C. Note that it is prohibitively ex-
pensive to compare with the maximum mutual information-
based algorithm of [8], which scales poorly with increasing
domain size |V | and is hence not practical for real-time ac-
tive sensing. For example, it incurred > 62 hours to generate
paths for 3 robots to sample a total of 267 observations in a
grid of |V | = 1424 sampling units, as reported in [14].

5.1 Results and Analysis
A. Effect of criterion on predictive performance. Fig. 2
shows results of the predictive performance using varying
number |D| of observations gathered by |V| = 4 robots run-
ning the tested algorithms. The observations are as follows:

(I) The algorithms optimizing active sensing criterion (11) or
(17) based on DPM-GPs (i.e., CEN-MAS, DEC-MAS, and
MAX-SUM) can achieve the best predictive performance
(i.e., lowest RMSE) due to the following reasons: (a) DPM-
GPs can model and predict the non-stationary phenom-
ena better than a stationary GP, as observed in the per-
formance improvement of CEN-MES+D over CEN-MES by
using DPM-GPs (instead of GP) for prediction, and (b) al-
gorithms optimizing the criteria (11) or (17) can gather more
informative observations than algorithms using criterion (3),
as observed in the performance improvement of CEN-MAS,
DEC-MAS, and MAX-SUM over CEN-MES+D while using
DPM-GPs for prediction.

(II) More superior predictive performance can be achieved
by jointly optimizing the trade-off between observing sam-
pling units with most uncertain component labels vs. that
with most uncertain measurements given the current, im-
precise estimate of their labels than by solely addressing the
latter criterion; this is observed in the more superior per-
formance of CEN-MAS, DEC-MAS, and MAX-SUM over
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Figure 2: Graphs of predictive performance vs. total
no. |D| of observations gathered by |V| = 4 robots.
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Figure 3: Graphs of predictive performance vs. no.
|V| of deployed robots gathering a total of (a) |D| =
1200 and (b) |D| = 500 observations from plankton
density and traffic phenomena, respectively.

DEC-MAS-C, the latter of which neglects observing sam-
pling units with highly uncertain labels (19).

(III) DEC-MAS optimizing criterion (17) can achieve predic-
tive performance close to that of CEN-MAS and MAX-SUM
using criterion (11). It is prohibitively expensive to obtain
results for CEN-MAS with |V| > 4 robots. So, we will only
present results for decentralized algorithms from now on.

B. Effect of decentralization on predictive perfor-
mance. Fig. 3 shows results of the predictive performance
using a total of |D| = 1200 and |D| = 500 observations gath-
ered from plankton density and traffic phenomena, respec-
tively, by varying number |V| of robots running the tested
decentralized algorithms. The observations are as follows:

(I) The predictive performance of all decentralized algo-
rithms improve with increasing number of robots because ev-
ery robot is tasked to gather less observations and their per-
formance are thus less adversely affected by their greedy se-
lection of maximum-entropy sampling units. Consequently,
more informative unobserved sampling units are explored.

(II) DEC-MAS performs significantly better than DEC-MES
and DEC-MAS-C due to the same reasons as that given in
the previous observations A(I) and A(II), respectively.

(III) DEC-MAS can achieve predictive performance compa-
rable to that of MAX-SUM. Intuitively, MAX-SUM exploits
and exchanges additional coordination information between
robots in different connected components formed by DEC-
MAS, but this results in little performance improvement
of MAX-SUM over DEC-MAS. We will also see later that
MAX-SUM is less computationally efficient and significantly
less scalable than DEC-MAS in the number of robots.

C. Effect of decentralization on time efficiency and
scalability. Fig. 4 shows results of the incurred time of the
tested algorithms with varying number of observations and
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Figure 4: Graphs of incurred time vs. total no. |D| of observations gathered from (a-f) plankton density and
(g-l) traffic phenomena by varying no. |V| of robots.

robots. The observations are as follows:

(I) CEN-MAS incurs at least 1 order of magnitude more
time than the decentralized algorithms for |V| = 4 robots.

(II) DEC-MAS incurs computational time less than or com-
parable to that of DEC-MES: Even though DEC-MAS in-
curs additional time needed to estimate the component la-
bels and compute the entropy of labels in (17), it saves time
in the following aspects: (a) As mentioned previously in Sec-
tion 2.2, DPM-GPs (i.e., used by DEC-MAS) offers the com-
putational advantage over a single GP (i.e., used by DEC-
MES) that each GP component only incurs cubic time in the
size of the observations that are local to its corresponding
area of prediction instead of over the entire phenomenon;
and (b) DEC-MAS tends to form smaller connected com-
ponents than DEC-MES due to the structural property of
DPM-GPs that requires two robots to coordinate their ac-
tive sensing only when some pair of their next possible sam-
pling units to be observed are associated with the same GP
component (Section 4), and also due to its behavior of keep-
ing the size η of the largest connected component small, as
explained in Section 4.1.

(III) DEC-MAS is more time-efficient and significantly more
scalable than MAX-SUM in the number of robots (Fig. 4)
while achieving comparable predictive performance (Fig. 3).
MAX-SUM is computationally more expensive because it
has to process the additional coordination information be-
tween robots in different connected components formed by
DEC-MAS that results in little performance improvement
over DEC-MAS.

6. CONCLUSION
This paper describes a novel DEC-MAS algorithm that

can efficiently coordinate multiple robots in a partially de-
centralized manner to gather the most informative observa-
tions for predicting an unknown, non-stationary phenomenon.
In particular, we demonstrate how its efficient decentralized
coordination and theoretical performance guarantee can be
realized by exploiting the structural property of DPM-GPs
and the locality property of each stationary GP component.
Empirical evaluation on two real-world datasets featuring
non-stationary phenomena shows that (a) more superior ac-
tive sensing performance can be achieved by optimizing our
proposed MAS criterion (11) or (17) that trades off between
observing sampling units with most uncertain component
labels vs. that with most uncertain measurements given the

current, imprecise estimate of their labels, and (b) DEC-
MAS outperforms the decentralized MAX-SUM [20] (DEC-
MES [4]) algorithm in time efficiency and scalability (active
sensing) while achieving comparable active sensing perfor-
mance (time efficiency).
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APPENDIX
A. PROOF OF THEOREM 1

Let Σ̃XkXk|Dk,θk , ΣXkXk|Dk,θk − Σ̂XkXk|Dk,θk and ρk

be the spectral radius of Σ̂−1
XkXk|Dk,θk

Σ̃XkXk|Dk,θk . We first

bound ρk from above.

For any Xk, Σ̂−1
XkXk|Dk,θk

Σ̃XkXk|Dk,θk comprises diagonal

blocks of size |Xkn| × |Xkn| with components of value 0 for
n = 1, . . . , N and off-diagonal blocks of the form Σ−1

XknXkn|Dk,θk

ΣXknXkn′ |Dk,θk for n, n′ = 1, . . . , N and n 6= n′. Any pair

of robots r ∈ Vn and r′ ∈ Vn′ reside in different connected
components of coordination graph G and are therefore not
adjacent. So, by (13),

max
i,i′

∣∣∣[ΣXknXkn′ |Dk,θk

]
ii′

∣∣∣ ≤ ε (20)

for n, n′ = 1, . . . , N and n 6= n′. Using (18) and (20), each

component in any off-diagonal block of Σ̂−1
XkXk|Dk,θk

Σ̃XkXk|Dk,θk

can be bounded as follows:

max
i,i′

∣∣∣[Σ−1
XknXkn|Dk,θk

ΣXknXkn′ |Dk,θk

]
ii′

∣∣∣ ≤ |Xkn| ξε (21)

for n, n′ = 1, . . . , N and n 6= n′. It follows from (21) that

max
i,i′

∣∣∣[Σ̂−1
XkXk|Dk,θk

Σ̃XkXk|Dk,θk

]
ii′

∣∣∣ ≤ max
n
|Xkn| ξε ≤ ηξε .

(22)
The last inequality is due to max

n
|Xkn| ≤ max

n
|Vn| ≤ η.

Then,

ρk ≤
∣∣∣∣∣∣Σ̂−1

XkXk|Dk,θk
Σ̃XkXk|Dk,θk

∣∣∣∣∣∣
2

≤ |Xk|max
i,i′

∣∣∣[Σ̂−1
XkXk|Dk,θk

Σ̃XkXk|Dk,θk

]
ii′

∣∣∣
≤ |V|ηξε .

(23)

The first two inequalities are due to standard properties of
matrix norm. The last inequality follows from (22).

The rest of this proof uses the following result of [6] that
is revised to reflect our notations:

Theorem 2. If |Xk|ρ2k < 1, then log
∣∣ΣXkXk|Dk,θk

∣∣ ≤
log
∣∣∣Σ̂XkXk|Dk,θk

∣∣∣ ≤ log
∣∣ΣXkXk|Dk,θk

∣∣ − log
(
1− |Xk|ρ2k

)
for

any Xk.

Using Theorem 2 followed by (23),

log
∣∣∣Σ̂XkXk|Dk,θk

∣∣∣− log
∣∣ΣXkXk|Dk,θk

∣∣≤ log
1

1− |Xk|ρ2k
≤ log

1

1−(|V|1.5ηξε)2
(24)

for any Xk.

H̃[YX̃ , ZX̃ |yD, zD, θ]− H̃[YX̂ , ZX̂ |yD, zD, θ]
=
∑
x∈X̃

H[Zx|zD, θ]−
∑
x∈X̂

H[Zx|zD, θ]

+

K∑
k=1

H[YX̃k
|ẑX̃k

, yDk , θk]−H[YX̂k
|ẑX̂k

, yDk , θk]

≤
∑
x∈X̃

H[Zx|zD, θ]−
∑
x∈X̂

H[Zx|zD, θ]

+

K∑
k=1

Ĥ[YX̃k
|ẑX̃k

, yDk , θk]−H[YX̂k
|ẑX̂k

, yDk , θk]

≤
∑
x∈X̂

H[Zx|zD, θ]−
∑
x∈X̂

H[Zx|zD, θ]

+
K∑
k=1

Ĥ[YX̂k
|ẑX̂k

, yDk , θk]−H[YX̂k
|ẑX̂k

, yDk , θk]

≤ K

2
log

1

1−(|V|1.5ηξε)2

The first equality is due to (12). The first, second, and last
inequalities follow from (14) and Theorem 2, (16), and (24),
respectively.


