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Abstract

This paper addresses the problem of active
task selection which involves selecting the
most informative tasks for meta-learning. We
propose a novel active task selection criterion
based on the mutual information between la-
tent task vectors. Unfortunately, such a crite-
rion scales poorly in the number of candidate
tasks when optimized. To resolve this issue,
we exploit the submodularity property of our
new criterion for devising the first active task
selection algorithm for meta-learning with a
near-optimal performance guarantee. To fur-
ther improve our efficiency, we propose an
online variant of the Stein variational gradi-
ent descent to perform fast belief updates of
the meta-parameters via maintaining a set
of forward (and backward) particles when
learning (or unlearning) from each selected
task. We empirically demonstrate the per-
formance of our proposed algorithm on real-
world datasets.

1 Introduction

Meta-learning (also known as few-shot learning) ex-
ploits the experience from previous tasks to form
a model (represented by meta-parameters) that can
rapidly adapt to a new task with its few-shot data.
Though meta-training requires only a few data points
from each task, these tasks have to be representative of
the distribution of meta-test tasks (Luna and Leonetti,
2020) in order to attain strong generalization perfor-
mance for any meta-test task. To achieve this, one can
naively consider acquiring (the data associated with)
a massive number of tasks like that in various bench-
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mark datasets, which in practice is prohibitively costly
in time and money (e.g., due to manual labeling or
data anonymization effort). Given a limited budget
of k tasks to be acquired, one can simply select them
randomly, but this often leads to a sub-optimal meta-
test performance (Liu et al., 2020). This motivates the
problem of active task selection which involves selecting
a subset of k most informative tasks from a finite yet
large collection of candidate tasks for meta-training.
These informative tasks are expected to be most repre-
sentative of the distribution of meta-test tasks among
any other k tasks and hence allow meta-training to
generalize best to any meta-test task.1

To address the active task selection problem, we start
by choosing a probabilistic meta-learning framework
for grounding our active task selection criterion based
on information theory. From the existing works on
probabilistic meta-learning (Chen et al., 2021; Finn
et al., 2018; Nguyen et al., 2021a; Rusu et al., 2019;
Yoon et al., 2018), we choose the implicit process-based
meta-learning (IPML) framework (Chen et al., 2021)
(Sec. 2) that explicitly represents each task as a contin-
uous latent vector and models its probabilistic belief
within the highly expressive implicit process (IP) frame-
work (Ma et al., 2019). Representing each task as a
latent task vector has a distinct advantage in that the
dimension of the representation does not increase with
the number of data points in a task, hence allowing
active task selection criteria based on mutual informa-
tion or entropy to be computed efficiently (Sec. 3.2).
We then propose a novel active task selection criterion
based on the mutual information between latent task
vectors (MILT) to quantify the informativeness of any
subset of tasks. Unfortunately, the MILT criterion
scales poorly in the number of candidate tasks when
optimized. To resolve this issue, we exploit the submod-
ularity property of the MILT criterion for devising the
first active task selection algorithm for meta-learning
with a near-optimal performance guarantee (Sec. 3).

Our active task selection algorithm requires frequent

1Note that the motivation of active task selection is not
to meta-learn faster in terms of wall-clock time.
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belief updates of the meta-parameters, which can be
computationally expensive. To further improve our
efficiency, we design a forward-backward method based
on our online variant of the Stein variational gradient
descent (SVGD) (Liu and Wang, 2016) to perform fast
belief updates such that a set of forward (and backward)
particles is maintained and updated by learning (or
unlearning) from each selected task (Sec. 4).

Our contributions are summarized as follows: (a) We
propose the first active task selection algorithm for
meta-learning with a near-optimal performance guaran-
tee (Sec. 3); (b) We design a forward-backward method
based on our online variant of SVGD to improve the
efficiency of our algorithm (Sec. 4); (c) Empirical eval-
uation on several benchmark datasets demonstrate the
state-of-the-art performance of our algorithm (Sec. 5).

2 Background and Notations

Among the existing probabilistic meta-learning frame-
works (Chen et al., 2021; Finn et al., 2018; Nguyen
et al., 2021a; Yoon et al., 2018), we adopt that of Chen
et al. (2021) which explicit represents each task as a con-
tinuous latent vector and models its probabilistic belief.
Following that of Chen et al. (2021), the inputs (out-
puts) for all candidate tasks are assumed to belong to
the same input (output) space. Consider meta-learning
on probabilistic regression tasks:2 Each candidate task
is assumed to be generated from a task distribution and
associated with a dataset (X,Y = y) where X is a set
of known/fixed input vectors,3 Y , (yx)>x∈X denotes
a vector of the corresponding noisy outputs (random
variables): yx , f(x) + ε(x), which are outputs of an
unknown function f corrupted by an i.i.d. Gaussian
noise ε(x) ∼ N (0, σ2) with variance σ2, and the vector
y denotes a realization of Y. Let f be distributed by
an implicit process (IP) (Ma et al., 2019), as follows:

Definition 1 (Implicit process (IP)). Let the col-
lection of random variables f(·) denote an IP de-
fined by meta-parameters (random variables) Θ: Ev-
ery finite collection {f(x)}x∈X has a joint prior belief
p(f , (f(x))>x∈X) implicitly defined as:

Z ∼ P (Z = z) = p(z), f(x) , gΘ(x,Z) (1)

for all x ∈ X where every latent task vector Z = z
(representing a task) is drawn from the prior belief
p(z) , N (0, I), and generator gΘ can be an arbitrary
model (in our work here, a deep neural network (DNN))
parameterized by meta-parameters Θ.

2We defer the discussion of meta-learning on proba-
bilistic classification tasks using the robust-max likelihood
(Hernández-Lobato et al., 2011) to Appendix A.

3From now on, for terms conditioned on the known/fixed
inputs, we omit the inputs to ease notations.

Let the meta-parameters (random variables) Θ follow a
prior belief P (Θ = θ) = p(θ). The goal of meta-learning
is to infer the posterior belief P (Θ|Y = y) of meta-
parameters Θ. In contrast to the work of Chen et al.
(2021) which adopts a point estimate of Θ, we consider
a Bayesian treatment of the meta-parameters, which
is empirically shown to improve performance (Sec. 5).
Using p(y|f) = N (f , σ2I) and the IP prior belief p(f)
from Def. 1, the marginal likelihood P (Y = y) can be
derived by marginalizing out f . Following that of Chen
et al. (2021), the coupling of Z with the IP model
is by masking the last DNN layer’s parameters (i.e.,
point-wise product) with Z during forward propagation
(Fig. 1c).

Notations. Let T denote a finite collection of can-
didate tasks. For each candidate task t ∈ T , we con-
sider a split of its dataset (Xt,Yt = yt) into a small
sample dataset4 (Xs

t ,Yst = yst ) known a priori and
a large remaining dataset (Xr

t ,Yrt = yrt ) to be ac-
quired/observed only after this task is selected by an
active task selection algorithm. So, Xt = Xs

t ∪Xr
t and

Xs
t ∩ Xr

t = ∅. Such a split is similar to the support-
query split of a meta-training task (Finn et al., 2018;
Gordon et al., 2019; Ravi and Beatson, 2018; Yoon
et al., 2018), albeit serving a different aim of active
task selection here. For a subset A ⊆ T of tasks, let
YrA , (Yrt )t∈A and yrA , (yrt )t∈A denote a realization
of YrA. Similarly, let ZA , (Zt)t∈A concatenate the
latent task vectors representing the tasks in A. Let
A ∪ t denote the union of A and {t}.

3 Active Task Selection

Problem Definition. Given a finite collection T of
candidate tasks with small, a priori known sample
datasets (Xs

t ,y
s
t ) for all t ∈ T (Sec. 2),5 the problem of

active task selection is about selecting a subset A ⊆ T
of most informative tasks subject to a budget of |A| =
k tasks. After selecting A, the remaining datasets
(Xr

t ,y
r
t ) for all tasks t ∈ A are acquired/observed for

meta-training.

Note that in this work, we assume the candidate tasks
are fixed prior to our selection. So, we are not al-
lowed to generate our own tasks by selecting classes
for meta-learning of classification tasks, like in (Liu
et al., 2020). Also, we do not assume the availability
of any contextual information (e.g., hyperparameters
generating task data) on the tasks, like in (Kaddour
et al., 2020). Our only assumption is the availability
of known sample datasets for each task, which is real-

4For N -way K-shot classification problems, the sample
dataset has K data points per class and N classes.

5From now on, for terms conditioned on the a priori
known sample datasets, we omit them to ease notations.
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istic and easy to achieve in practice. An example of
our problem setting is when a meta-learner wants to
purchase data from decentralized data marketplaces.
These decentralized data marketplaces enable a se-
cure data exchange between the participants. Powered
by blockchain, they can maintain the anonymity of
their participants which is why they are often used
for the trading of personal data. They usually of-
fer a period of free subscription such that the sample
datasets can be easily acquired. In reality, such a
decentralized data marketplace can be found in estab-
lished data sharing platforms like Streamr Marketplace
(https://streamr.network/marketplace) which of-
fers data like real-time finance market data, and HIT
Foundation (Eberhard and Paul, 2019) which offers
healthcare data like radiology image data.

Meta-Learning Algorithms used after Active
Task Selection. Given the selected A, in principle,
we are free to use any meta-learning algorithms to ob-
tain a final model, including probabilistic (Finn et al.,
2018; Nguyen et al., 2021a; Yoon et al., 2018) or non-
probabilistic (Finn et al., 2017) methods. We ground
our active task selection criterion on IP. Probabilistic
meta-learning of IP can be defined as the inference of
meta-parameters Θ and the work of Chen et al. (2021)
has used an expectation maximization (EM) algorithm
to perform meta-training such that the E step carries
out the IP inference of Z while the M step optimizes
Θ. Since our focus is on active task selection instead
of deriving a meta-learning algorithm, a detailed dis-
cussion of the meta-learning algorithms used in this
paper can be found in Appendix C. Fig. 1 shows the
graphical models of the IP for task selection as well as
meta-learning.

3.1 MILT Criterion

To quantify the informativeness of a subset A of tasks,
our proposed active task selection criterion measures
its reduction in uncertainty/entropy of the latent task
vectors ZT\A representing the other candidate tasks in
T \A or, equivalently, its information gain I(ZA;ZT\A)
on them. We use the prior entropy H(ZT\A) and poste-
rior entropy H(ZT\A|ZA) to represent the uncertainty
of ZT\A before and after conditioning on ZA. Then,

I(ZA;ZT\A) , H(ZT\A)−H(ZT\A|ZA) , (2)

which we call the mutual information between latent
task vectors (MILT) criterion. For simplicity, we de-
fine the set function MILT(A) , I(ZA;ZT\A). The k
most informative candidate tasks thus correspond to
the subset A? ⊆ T with the largest information gain
MILT(A?) on ZT\A? :

A? , arg maxA⊆T,|A|=kMILT(A) . (3)

Unfortunately, the MILT criterion (2) scales poorly
in the number |T | of candidate tasks when optimized
in (3). In fact, solving (3) has been shown to be NP-
hard even when ZT follows a tractable multivariate
Gaussian distribution (Ko et al., 1995). Inspired by
the work of Krause et al. (2008), we will now present a
polynomial-time greedy algorithm that can exploit the
submodularity of MILT to guarantee a (1− 1/e)-factor
approximation of that achieved by A?:

Algorithm I (Near-optimal active task selection
(informal)). Start with an empty set A0 = ∅ of tasks.
In each round i = 1, . . . , k, greedily select the next task:

t?i , arg maxtMILT(Ai−1 ∪ t)−MILT(Ai−1) (4)

and update the set Ai = Ai−1 ∪ t?i = {t?1, . . . , t?i } of
selected tasks.

Theorem 1 (Near-optimal guarantee). Algo-
rithm I is guaranteed to select a set A of k tasks s.t.

MILT(A) ≥ (1− 1/e)(OPT− C0) (5)

where OPT , MILT(A?) and the constant C0 , H(Θ)
is the prior entropy of meta-parameters Θ.

Its proof is in Appendix D.1. Note that for a mono-
tonic submodular set function, a greedy algorithm can
be designed to guarantee a (1 − 1/e)-factor approxi-
mation of OPT (Krause and Golovin, 2014). Though
the MILT(·) function is submodular, it is not strictly
monotonic. Nevertheless, we can show that MILT(·)
is approximately monotonic up to a constant error of
C0, which suffices for the proof of Theorem 1. This
approximate monotonicity holds due to Zt,Zt′ ,∀t 6= t′

being mutually independent given meta-parameters Θ.

3.2 Advantages of MILT over other Active
Task Selection Criteria

For our active task selection problem, other criteria
can be considered. For example, A can be selected to
maximize the mutual information between remaining
datasets of tasks (MIRD) criterion I(YrA;YrT\A) ,
H(YrT\A)−H(YrT\A|YrA). In fact, we can also prove a
similar near-optimal performance guarantee for MIRD,
as shown in Appendix D.2. However, any criterion
involving probabilities conditioned on YrA tends to be
computationally challenging to evaluate: Suppose that
each task has a potentially large remaining dataset of
size R. Since the dimension of YrA is proportional to
R|A|, it becomes computationally challenging to com-
pute an accurate Monte Carlo estimation of MIRD.
So, it is not computationally feasible to evaluate the
MIRD criterion when R is large. In contrast, MILT
does not suffer from this curse of dimensionality since

https://streamr.network/marketplace
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Figure 1: Graphical model of implicit process for (a) meta-learning and (b) task selection. We omit the random
variable f(·) to simplify illustration since f(·) → Y is simply the addition of i.i.d. Gaussian noises. (c) DNN
generator gθ where θ , (θa, θb) and θa can be convolutions to obtain high-level representations of the input vector,
while θb is the last DNN layer’s parameters.

the dimension of a latent task vector Z in (1) does not
increase with R.6

As another example, A can be selected to maximize
the entropy of latent task vectors (ELT) criterion
H(ZA). However, directly maximizing ELT is NP-
hard even when ZT follows a tractable multivariate
Gaussian distribution (Ko et al., 1995). So, we usu-
ally resort to greedily selecting arg maxtH(Zt|ZAi−1

)
for i = 1, . . . , k, which has a comparable computa-
tional cost as Algo. I. It is well-known that although
the entropy criterion is submodular, it may not be
monotonic (Krause and Golovin, 2014). Hence, such
a greedy algorithm based on ELT does not enjoy the
near-optimal performance guarantee and often per-
forms sub-optimally (Krause et al., 2008).

The work of Chen et al. (2021) has proposed to greed-
ily select the next task with the maximum variance
of Zt: t?i = arg maxtVar(p(zt|θ,yst )) for i = 1, . . . , k.
However, doing so neglects the dependence of Zt on
ZAi−1

; it can be observed from the Fig. 1b that they
are dependent when Yst and YsAi−1

are both observed.
To correctly account for such a dependence, the fol-
lowing variance criterion should be considered instead:
t?i = arg maxtVar(Zt|ZAi−1) for i = 1, . . . , k, which
has a similar computational cost as the greedy algo-
rithm based on ELT, but does not have any perfor-
mance guarantee. A comparison of the above-discussed
active criteria are summarized in Table 1.

4 Efficient Evaluation of (4)

Let A , T \A. From (4),

MILT(Ai−1 ∪ t)−MILT(Ai−1)

= H(Zt|ZAi−1
)−H(Zt|ZAi−1∪t) .

(6)

6Such an advantage of latent task modeling motivates
us to use the IP framework (Def. 1).

In (6), the posterior entropy H(Zt|ZA) =

−EzA∼p(zA)

[∫
zt
p(zt|zA) log p(zt|zA) dzt

]
can be

approximated by Monte Carlo sampling from p(zA)
such that for each sample of zA, we compute

p(zt|zA) =

∫
θ

p(θ|zA,ysA)︸ ︷︷ ︸
particles (Sec. 4.1)

p(zt|θ,yst )︸ ︷︷ ︸
Gaussian (Sec. 4.2)

dθ .

(7)
From (7), the selection of A affects that of the next
task t through the common meta-parameters Θ in the
IP model, as shown in Fig. 1.

4.1 Variational Inference (VI) with Particle
Representation of Θ

In this subsection, we will describe the procedure to
obtain the approximation of p(θ|zA,ysA). We use a par-
ticle representation of Θ and a stochastic VI method
for particles called the Stein variational gradient de-
scent (SVGD) (Liu and Wang, 2016) to compute the
posterior belief of Θ. Applied in a previous Bayesian
meta-learning framework (Yoon et al., 2018), SVGD
combines the strengths of MCMC and variational infer-
ence and enjoys a similar time efficiency as stochastic
gradient descent. SVGD represents the belief of Θ with
a set {θm}Mm=1 of M particles.

Though p(θ|zA,ysA) in (7) cannot be evaluated in closed
form, it can be computed via SVGD: Its gradient
∇θ log p(θ|zA,ysA) = ∇θ log[p(ysA|θ, zA)p(θ)] is avail-
able given our neural network implementation of IP:
p(ysA|θ, zA) =

∏
t∈A p(y

s
t |fst = (gθ(x, zt))

>
x∈Xs

t
) where

gθ is a neural network parameterized by θ (Def. 1). We
perform SVGD on the observed tuples {zA, Xs

A,y
s
A}

by first initializing each particle as a sample from p(θ)7

and then, in each SVGD iteration, updating each par-

7Note that this is not strictly needed for SVGD to con-
verge.
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Table 1: Comparison of different active task selection criteria. The last column indicates the dimension of the
sample space of the Monte Carlo sampling step when evaluating the active task selection criterion.
Criterion Expression Submodular Approx. monotonic Near-optimal Sample space
MILT H(ZT\A)−H(ZT\A|ZA) X X X O(k)
MIRD H(YrT\A)−H(YrT\A|YrA) X X X O(Rk)

ELT H(ZA) X 7 7 O(k)
Variance Var(Zt|ZAi−1) for i = 1, . . . , k 7 7 7 O(k)

ticle θm as

θm ← θm +
η

M

∑
θ∈{θm}Mm=1

[
k(θ, θm)

×∇θ log p(θ|zA,ysA) +∇θk(θ, θm)
] (8)

where η is the step size and k(·, ·) is a radial basis
function kernel representing a repulsive force between
particles to prevent them from collapsing. We denote
the abstraction of the entire VI process (containing
multiple SVGD iterations till convergence) to obtain
p(θ|zA,ysA) as p(θ|zA,ysA) ← SVGDΘ(p(θ), {zA,ysA})
where the first input is the initialization of the particles
and the second input is the observed tuples. By setting
M = 1, we will recover the gradient descent method to
compute the point estimate of Θ.

4.2 VI with Gaussian Approximation of Z

To model p(zt|θ,yst ) in (7), we use VI with a Gaus-
sian approximation of the posterior belief which makes
use of the gradient on Z: For each particle θm, we
perform VI to obtain the mean and variance pa-
rameterization8 of a Gaussian distribution q(zt|θm)
by maximizing the evidence lower bound ELBOZ ,
Eq(zt|θm)[log p(yst |zt, θm)]−KL(q(zt|θm)‖p(zt)) where
KL stands for Kullback–Leibler divergence. As a re-
sult, p(zt|zA) will be a mixture of Gaussians (since
p(θ|zA,ysA) is a set of M particles), which allows us
to arrive at an easy approximation of the posterior en-
tropy and hence (6). We denote the whole VI process
as: p(zt|zA)← VIZ(p(θ|zA,ysA)).

4.3 Forward-Backward Method for
Efficiently Evaluating (6)

In this subsection, we will describe a forward-backward
method based on online SVGD to perform fast be-
lief updates of the meta-parameters, thus improv-
ing the efficiency in evaluating (6). When we pro-
ceed from round (i − 1) to i, we update the set
Ai = Ai−1 ∪ t?i of selected tasks. Then, p(θ|zAi

,ysAi
)

can be correspondingly updated from p(θ|zAi−1
,ysAi−1

)

by learning from the (sample dataset of) newly

8The mean and variance are optimized using gradient
descent via the reparametrization trick.

added task t?i in an online manner:9 p(θ|zAi
,ysAi

) ←
SVGDΘ(p(θ|zAi−1

,ysAi−1
), {zt?i ,yst?i }). To this end, we

only maintain a single set of particles and update it in
place. We refer to the particles in this set as forward
particles. Note that a significant advantage here is that
in practice, by learning only from the newly added
task, we need much fewer SVGD iterations (around
5) to converge to p(θ|zAi

,ysAi
) compared with naively

learning p(θ|zAi ,y
s
Ai

) from scratch (i.e., from p(θ)).

The same trick applies when we compute
H(Zt|ZAi−1∪t) in (6). Firstly, we obtain p(θ|zAi

,ys
Ai

)

which can be updated from p(θ|zAi−1
,ys
Ai−1

) by
unlearning from the task t?i . As shown in (Nguyen
et al., 2020), unlearning in the variational Bayes setting
can be cast exactly as a minimization of an evidence
upper bound (EUBO)10, which is also applicable to
SVGD, as stated below:

Proposition 1 (Online SVGD for unlearning).
Suppose that p(θ) is an uninformative prior (e.g.,
∇θ log p(θ) = 0). With {θm}Mm=1 initially sampled
from p(θ|zA,ysA), the SVGD operation for obtaining
p(θ|zA\t,ysA\t) (i.e., unlearning from a task t ∈ A) is

θm ← θm +
η

M

∑
θ∈{θm}Mm=1

[
− k(θ, θm)

×∇θ log p(θ|zt,yst ) +∇θk(θ, θm)
]
.

(9)

We denote such an unlearning process (contain-
ing multiple SVGD iterations till convergence) as
p(θ|zA\t,ysA\t)← SVGD−1

Θ (p(θ|zA,ysA), {zt,yst}).

Note that SVGD for unlearning (9) differs from that
for learning (8): The sign of the likelihood gradient
is reversed due to unlearning, while the sign of the
kernel gradient is not as it corresponds to a repul-
sive force term which remains the same in both Stein
operators of learning and unlearning. The proof of
Proposition 1 (Appendix D.4) is obtained by deriving
the Stein operator (Liu and Wang, 2016) for the mini-
mization of EUBO (i.e., unlearning). We make use of
the unlearning variant of online SVGD by maintaining
another set of backward particles, which is initialized

9A relevant proposition that formally describes this on-
line SVGD is provided in Appendix D.3.

10See Appendix D.4 for more details.
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Algorithm 1 Near-Optimal Active Task Selection based on MILT
1: Set A = ∅;
2: Initialize forward particles: p(θ|zA,ysA) = p(θ);
3: Initialize backward particles: p

(
θ|zA,ysA

)
= p(θ|zT ,ysT )← SVGDΘ (p(θ) , {zT ,ysT });

4: while |A| < k do
5: Sample zA ∼ p(zA), zA ∼ p(zA);
6: for t ∈ T \A do
7: Compute with forward particles: p(zt|zA)← VIZ(p(θ|zA,ysA));
8: With backward particles: p(zt|zA∪t)← VIZ

(
SVGD−1

Θ

(
p
(
θ|zA,ysA

)
, {zt,yst}

))
;

9: Estimate H(Zt|ZA)−H(Zt|ZA∪t);
10: end for
11: Select t? = arg maxtH(Zt|ZA)−H(Zt|ZA∪t);
12: Update forward particles: p(θ|zA∪t? ,ysA∪t?)← SVGDΘ (p(θ|zA,ysA) , {zt? ,yst?});
13: Update backward particles: p

(
θ|zA∪t? ,ysA∪t?

)
← SVGD−1

Θ

(
p
(
θ|zA,ysA

)
, {zt? ,yst?}

)
;

14: Update A = A ∪ t?;
15: end while
16: return A

as p(θ|zT ,ysT ). We then update it in place in every
round of task selection through unlearning from task
t?i . Note that unlearning from a single task needs
much fewer SVGD iterations (around 5) to converge to
p(θ|zAi

,ys
Ai

) compared with learning it from scratch
(i.e., from p(θ)). Unlearning can also be applied to ob-
tain p(θ|zAi∪t,y

s
Ai∪t) (i.e., for H(Zt|ZAi−1∪t) in (6))

such that p(θ|zAi∪t,y
s
Ai∪t) is obtained by unlearning

p(θ|zAi
,ys
Ai

) from task t.

Time complexity. Fig. 2 shows a computational
graph of evaluating (6). Algo. 1 describes a detailed
variant of our near-optimal active task selection algo-
rithm that utilizes the forward-backward method. We
show in Appendix B that its computational cost scales
linearly in |T |. A detailed variant of the algorithm that
uses the naive method (without the forward-backward
method) is included in Appendix B where we show that
its computational cost scales quadratically in |T |.

5 Experiments and Discussion

In this section, we will empirically compare the perfor-
mance of three active task selection criteria listed in
Table 1:11 (a) greedy algorithm based on MILT (4), (b)
greedy algorithm based on ELT (Sec. 3.2), (c) greedy
algorithm based on an improved variance criterion over
that of Chen et al. (2021) (Sec. 3.2), and also random
task selection using three benchmark datasets.12 We

11Note that the comparison does not include MIRD due
to its potentially high computational cost (Sec. 3.2). We
have also included a comparison with (Luna and Leonetti,
2020) in Appendix E.6.

12We use regression benchmark datasets as surrogate
examples of real-time data like finance market data, and
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Figure 2: Computational graph of evaluating (6) with
the forward-backward method in Sec. 4.3. The blue seg-
ments are computed using forward particles while the
red segments are computed using backward particles.

have also adapted the greedy class-pair based sampling
(GCP) proposed in (Liu et al., 2020), and the probabilis-
tic active meta-learning algorithm (PAML) proposed
in (Kaddour et al., 2020) which have different problem
settings, and compared with them in Appendix E.2.

Sinusoid regression. In this setting, the data of
each regression task is sampled from a sinusoid wave
where the amplitude and phase vary between tasks.
Following the experimental setting of Finn et al. (2017),
the amplitude varies within [0.1, 5], the phase varies
within [0, π], and the input x is sampled uniformly from
[−5, 5]. We perform experiments in both the 5-shot
setting (i.e., |Xs

t | = |Xr
t | = 5) and the 10-shot setting

(i.e., |Xs
t | = |Xr

t | = 10)13. We randomly sample 1000

classification benchmark datasets as surrogate examples of
healthcare radiology image data.

13We have investigated the effect of using a larger remain-
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Figure 3: Meta-test mean squared error (MSE) and standard error over 5 runs vs. no. k of selected tasks on
(a) 5-shot Sinusoid and (b) 10-shot Sinusoid. (c) Comparison of meta-test MSE between forward-backward
method and naive method on 5-shot Sinusoid. All means meta-test MSE of the IP model trained on T (i.e., all
1000 candidate tasks). (d) plots the greedy criterion value MILT(Ai−1 ∪ t?i )−MILT(Ai−1) (4) corresponding to
selected task t?i vs. round i of selection.
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Figure 4: Meta-test accuracy (%) and standard error over 5 runs vs. no. k of selected tasks on (a) 1-shot 5-way
Omniglot, (b) 1-shot 20-way Omniglot, and (c) 1-shot 5-way MiniImageNet. All means meta-test accuracy of the
IP model trained on T (i.e., all 2000 candidate tasks).

tasks as T .

Omniglot classification. Omniglot (Lake et al.,
2011) is a benchmark few-shot image classification
dataset consisting of 20 instances of 1623 characters
from 50 different alphabets. Our experiment adopts
the same task generation process as that in (Finn et al.,
2017) (i.e., downsampling to 28× 28 and applying ran-
dom rotations). To further accelerate computation,
we select tasks in a batch manner: Each task consists
of 32 sub-tasks such that each sub-task is a 1-shot
5-way (i.e., |Xs

t | = |Xr
t | = 5) or 1-shot 20-way (i.e.,

|Xs
t | = |Xr

t | = 20) classification.14 We randomly gen-
erate 2000 tasks as T .

MiniImageNet classification. The MiniIma-
geNet (Ravi and Larochelle, 2017) dataset involves
64 training classes, 12 validation classes, and 24 test
classes of 84× 84 RGB images. Our experiment adopts
the same task generation process as that in (Finn et al.,
2017) (i.e., applying random rotations). Similarly, we
select tasks in a batch manner: Each task consists of
32 sub-tasks such that each sub-task is a 1-shot 5-way
(i.e., |Xs

t | = |Xr
t | = 5) classification.14 We randomly

generate 2000 tasks as T .

ing dataset in Appendix E.5.
14The active task selection criterion is a sum of the crite-

rion over all sub-tasks.

The IP model (Sec. 2) is a fully-connected neural net-
work with 2 hidden layers of size 40 with ReLU nonlin-
earities for Sinusoid, and a convolutional neural network
with 4 modules of 3× 3 convolutions and 64 filters, fol-
lowed by batch normalization, ReLU nonlinearities, and
strided convolutions for Omniglot or 2× 2 max-pooling
for MiniImageNet. We use M = 5 particles, and set
the step size η as 0.05 for sinusoid and MiniImageNet
and 0.5 for Omniglot.

5.1 Discussion of Baseline Comparisons

It can be observed from Figs. 3 and 4 that MILT
outperforms all other baselines, which demonstrates
the effectiveness of our proposed algorithm (Algo. 1).
Random task selection performs the worst among all
baselines, which is expected. ELT slightly outperforms
the Variance baseline in nearly all cases, likely due to
the entropy being able to better capture the uncertainty
in p(zt|zA) (7) which follows a mixture of Gaussians
instead of a Gaussian.

Fig. 3 shows results of Sinusoid regression. Fig. 3b
shows that actively selecting k = 40 tasks with MILT
can already achieve a lower MSE of 0.241 than ran-
domly selecting k = 100 tasks (MSE of 0.266). For both
5-shot (Fig. 3a) and 10-shot (Fig. 3b) settings, MILT
achieves comparable performance to the IP model
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trained with all 1000 candidate tasks in T when actively
selecting only 10% from T (i.e., k = 100 tasks).

Fig. 4 shows results of Omniglot and MiniImageNet
classifications. For both Omniglot and MiniImageNet,
we have generated 2000 candidate tasks in T . Meta-
training with all these candidate tasks achieves a meta-
test accuracy of 93.6% for 1-shot 5-way Omniglot,
89.6% for 1-shot 20-way Omniglot, and 42.8% for 1-shot
5-way MiniImageNet (Fig. 4). Previous works (Chen
et al., 2021; Finn et al., 2017, 2018; Yoon et al., 2018)
have generated 200000 tasks (batches) for meta-training
and hence achieve higher meta-test accuracy on these
cases. Nevertheless, our ablation study in Appendix E.3
shows that when selecting (∼250) tasks, MILT does not
need such a massive number (≈ 200000) of candidate
tasks to achieve competitive meta-test performance.

Fig. 4a shows that actively selecting only 120 tasks with
MILT can achieve a meta-test accuracy of 91.9% for
1-shot 5-way Omniglot, which is within one standard
error from that achieved by the IP model trained on all
2000 candidate tasks. Fig. 4b&c also show that for 1-
shot 20-way Omniglot and 1-shot 5-way MiniImageNet,
similar observations hold when selecting only 250 tasks
with MILT. All these observations further demonstrate
the effectiveness of our proposed algorithm (Algo. 1).

5.2 Ablation Study

Effect of using particles. Table 2 shows results of
meta-test performance of MILT with varying number
M of particles (Sec. 4.1) from 1 (point estimate) to
5. It can be observed that increasing M consistently
yields better performance for both 5-shot and 10-shot
Sinusoid regression, thus indicating that our Bayesian
treatment of the meta-parameters can improve the
meta-test performance.

Forward-backward method based on online
SVGD. Here, we compare the performance of the
forward-backward method (Algo. 1) with the naive
method (Sec. 4.3). Table 3 presents a comparison
of their runtime, which meets our theoretical analy-
sis. Fig. 3c presents a comparison of their meta-test
performance: It may be surprising to observe that
the forward-backward method clearly outperforms the
naive method. In theory, we should expect them to
perform similarly since the forward-backward method
only seems to improve the efficiency. However, in prac-
tice, the forward-backward method performs better
because it does not introduce extra randomness which
may potentially violate the submodularity property of
MILT. To see this, Fig. 3d plots the greedy criterion
value MILT(Ai−1∪t?i )−MILT(Ai−1) (4) corresponding
to selected task t?i vs. round i of active task selection.
Since MILT is theoretically submodular, we expect to

Table 2: Meta-test mean squared error (MSE) over 5
runs with varying no.M of particles on 5-shot Sinusoid
regression. MILT is used to select k = 100 tasks from
|T | = 1000 candidate tasks.

M = 1 M = 3 M = 5
5-shot 0.490 0.454 0.430
10-shot 0.144 0.137 0.129

Table 3: Mean runtime (seconds) on 5-shot Sinusoid
regression. MILT is used to select from |T | = 1000
candidate tasks.

forward-backward naive
k = 20 24.5 153
k = 40 38.9 293
k = 60 54.6 425

see a monotonically decreasing curve in Fig. 3d. How-
ever, we only observe such a monotonicity with the
forward-backward method. This is because the evalua-
tion of (4) involves approximation: It approximates the
belief of the meta-parameters through SVGD. However,
the naive method performs SVGD by initializing the
particles randomly, which introduces randomness such
that its approximation of the belief can be inconsistent
between successive rounds. In contrast, the forward-
backward method always performs belief updates with
only one task and thus maintains a consistent belief be-
cause the belief updates are highly correlated between
successive rounds. Such a “consistency” retains the
submodularity of (our approximation of) MILT, which
allows our algorithm (Algo. 1) to perform satisfactorily,
as implied by its near-optimal performance guarantee.

5.3 Generalization to Adaptive Task
Selection

This work considers the case of non-adaptive task se-
lection s.t. k tasks are selected greedily (one per it-
eration/round) and their remaining datasets are ac-
quired/observed only after all the k tasks are selected.
For the case of adaptive task selection s.t. the re-
maining dataset (Xr

t ,y
r
t ) is acquired immediately after

each task t is selected, an immediate improvement we
can make to our algorithm is to additionally use this
remaining dataset to update the forward particles to
obtain a more accurate posterior belief of Θ in line
12 of Algorithm 1. As a result, the meta-test perfor-
mance can be improved, as shown in Table 4. Note,
however, that no performance guarantee is available
for the adaptive case. Supposing the meta-learner’s
data need is time-critical (e.g., budget is available for
a limited time) and each acquired remaining dataset
can only be released after some time due to regulations,
non-adaptive task selection may be preferred.
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Table 4: Meta-test MSE or accuracy (%) over 5 runs comparing adaptive vs. non-adaptive task selection.
non-adaptive adaptive

5-shot Sinusoid (k = 100) 0.430 0.417
10-shot Sinusoid (k = 100) 0.129 0.124

1-shot 5-way Omniglot (k = 120) 91.9 93.2
1-shot 20-way Omniglot (k = 250) 88.6 89.2

1-shot 5-way MiniImageNet (k = 100) 39.5 41.1

6 Related Work

Several works have aimed at combining active learn-
ing (Cao et al., 2013; Chen et al., 2012, 2013, 2015;
Hoang et al., 2014a,b; Ling et al., 2016; Low et al.,
2008, 2009, 2011, 2012, 2014; Nguyen et al., 2021b;
Ouyang et al., 2014; Zhang et al., 2016) with meta-
learning. The work of Pang et al. (2018) has used
meta-learning to learn the best active learning crite-
rion for querying different datasets, which differs from
our aim of using active learning to select tasks for
meta-learning. The algorithms of Finn et al. (2018);
Yoon et al. (2018) have actively selected data points
in each task but are not capable of selecting tasks di-
rectly. The greedy class-pair based sampling proposed
in (Liu et al., 2020) and the probabilistic active meta-
learning algorithm proposed in (Kaddour et al., 2020)
have different problem settings. In comparison, our
problem setting is more general, as discussed in Sec. 3.
The work of Luna and Leonetti (2020) has proposed
an information-theoretic task selection algorithm for
meta-reinforcement learning, which assumes the avail-
ability of a validation set that can accurately represent
the entire task distribution. Such a strong assumption
contradicts the motivation of our active task selection
problem, as discussed in Sec. 1.

Most relevant to our work here is that of Chen et al.
(2021) proposing a variance-based greedy task selection
algorithm which does not account for the dependence
between latent task vectors (Sec. 3.2). In contrast, our
algorithm exploits such a dependence via our proposed
MILT criterion and also provides a near-optimal per-
formance guarantee. The work of Yu et al. (2019) has
proposed to use mutual information in meta-inverse re-
inforcement learning to enforce the connection between
the reward function and a latent contextual variable,
which is the first combination of mutual information
with meta-learning, but in a different context not re-
lated to active task selection.

7 Conclusion

This paper describes a novel active task selection algo-
rithm based on MILT for meta-learning with a near-
optimal performance guarantee. A forward-backward

method based on our proposed online SVGD is also
designed to improve our efficiency. Empirical evalua-
tion on several benchmark datasets have demonstrated
the state-of-the-art performance of our algorithm. For
future work, we plan to investigate the case of adaptive
task selection such that the remaining dataset (Xr

t ,y
r
t )

is acquired immediately after task t is selected instead
of waiting for the budget of k tasks to be expended.
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Algorithm 2 Near-Optimal Active Task Selection based on MILT (Naive Method without Forward-Backward
Method)
1: Set A = ∅;
2: while |A| < k do
3: Sample zA ∼ p(zA), zA ∼ p(zA);
4: for t ∈ T \A do
5: Compute p(θ|zA,ysA)← SVGDΘ (p(θ) , {zA,ysA});
6: Compute p

(
θ|zA∪t,ysA∪t

)
← SVGDΘ

(
p(θ) , {zA∪t,ysA∪t}

)
;

7: Compute with p(θ|zA,ysA) : p(zt|zA)← VIZ(p(θ|zA,ysA));
8: Compute with p

(
θ|zA∪t,ysA∪t

)
: p(zt|zA∪t)← VIZ

(
p
(
θ|zA∪t,ysA∪t

))
;

9: Estimate H(Zt|ZA)−H(Zt|ZA∪t);
10: end for
11: Select t? = arg maxtH(Zt|ZA)−H(Zt|ZA∪t);
12: Update A = A ∪ t?;
13: end while
14: return A

A Classification with Robust-Max Likelihood

We will discuss the robust-max likelihood for meta-learning of the probabilistic classification tasks here. Following
that of Hernández-Lobato et al. (2011), the likelihood of a data point (x, yx) in a N -way classification problem
given an N -dimensional IP output f , [f1, f2, . . . , fN ] depends on a binary variable a (i.e., one per x indicating if
arg max f prediction is correct or not):

p(yx|x, f , a) =
∏
c6=yx

Θ(fyx − fc)1−a (1/N)a

where Θ(·) is the Heaviside step function and a follows a factorizing multivariate Bernoulli prior distribution:

p(a|ρ) , Bern(a|ρ) = ρa (1− ρ)1−a

such that ρ estimates the fraction of outliers in the training data. The prior of ρ is defined as a conjugate beta
distribution:

p(ρ) , Beta(ρ|a0, b0) =
ρa0−1 (1− ρ)b0−1

BetaF(a0, b0)

where BetaF(·, ·) is the beta function, and a0 and b0 are free hyperparameters which do not have a big effect
on the final model, provided that b0 > a0 and that they are not too small (Hernández-Lobato et al., 2011). We
follow that of Chen et al. (2021) to set a0 = 1 and b0 = 9.

B Computational Cost of Forward-Backward Method and Naive Method

We will analyze here the computational cost of both the forward-backward method and the naive method to
understand the improvement by adopting the former. Algo. 1 describes the forward-backward method, while
Algo. 2 presents the naive method. The difference lies mainly in lines 7 and 8 of Algo. 1 where the forward-
backward method uses online SVGD to perform fast belief updates for the selected task. On the other hand, the
naive method computes such a belief of the meta-parameters from scratch using A (and T \ (A ∪ t)) in lines 5
and 6 of Algo. 2.

Though the computational cost of VI (containing multiple SVGD iterations till convergence) on n tasks (specifically,
the n sample datasets) is not necessarily n times the computational cost of VI on 1 task, we have observed in
practice that VI on a minibatch of tasks converges within (slightly more but) nearly the same number of iterations
as VI on one task; both require around 5 SVGD iterations. So, we have considered the following assumption:
Assumption 1 (informal). Suppose that the GPU can afford to process a minibatch of n ≤ B tasks in parallel.
VI (using SVGD to compute posterior belief of the meta-parameters) on a minibatch of n ≤ B tasks converges in
the same number of iterations as VI on 1 task.



Yizhou Chen, Shizhuo Zhang, Bryan Kian Hsiang Low

Note that line 3 of Algo. 1 and lines 5 and 6 of Algo. 2 can enjoy computational benefits from such parallel
processing of each minibatch of tasks. Since (a) the overall computational cost is dominated by the number of
SVGD iterations in the algorithms and (b) the computational cost of one iteration of online SVGD (for both
learning or unlearning) is the same as that of one SVGD iteration per task, the following results ensue:
Remark 1. The computational cost measured by the number of floating point operations is O(k|T |) for the
forward-backward method and O(k|T |2) for the naive method.
Remark 2. The computational cost measured by the runtime is O(k|T |) for the forward-backward method and
O(k|T |2/B) for the naive method.

The above results arise from iterating through all candidate tasks in T in each of the k rounds of Algo. 1 or
Algo. 2. For every candidate task, the naive method requires O(|T |) floating point operations in SVGD, while the
forward-backward method requires only O(1) floating point operations in online SVGD.

As can be concluded from the above remarks, the forward-backward method improves time efficiency by |T | times
over the naive method because its online SVGD performs fast belief updates for only 1 selected task instead of
using A (and T \ (A ∪ t)). The parallel processing of each minibatch of tasks can accelerate the naive method by
B times, but the naive method is still much slower than the forward-backward method since usually, B � |T |.

C EM Algorithm for Meta-Learning and Modified Variant

C.1 Probabilistic Meta-Learning with IP

Meta-learning on a set A of tasks, which adopt a split of their corresponding datasets according to Sec. 2, can be
defined as the inference of meta-parameters Θ with the following joint likelihood to be maximized (Chen et al.,
2014; Finn et al., 2017, 2018):

p(yrA, θ|ysA) = p(θ)
∏
t∈A

p(yrt |θ,yst ) = p(θ)
∏
t∈A

∫
frt

p(yrt |frt ) p(frt |θ,yst ) dfrt . (10)

Task adaptation p(frt |θ,yst ) is performed via IP inference (Chen et al., 2021) given the sample dataset (Xs
t ,y

s
t ):

p(frt |θ,yst ) =

∫
z

p(frt |z, θ) p(z|θ,yst ) dz . (11)

Fig. 1 shows a graphical model of the IP for meta-learning. Note that in meta-learning, we have to model the
belief of Yrt and use both the sample and remaining datasets to perform meta-training. On the other hand, we
have to model the belief of Yst to perform task selection (Sec. 4).

Chen et al. (2021) have used an expectation maximization (EM) algorithm to perform meta-training such that
the E step carries out the IP inference of Z (and f(·)) in (11) and the M step maximizes the joint likelihood (10)
w.r.t. a point estimate of Θ. Note that with our additional Bayesian treatment of Θ, meta-training returns a
posterior belief p(θ|ysA,yrA) of the meta-parameters instead of a point estimate, which is empirically shown to
improve performance (Sec. 5). While Chen et al. (2021) are mainly interested in deriving such an EM algorithm
for meta-training, the motivation of our work here is to derive an efficient active task selection algorithm for
meta-learning with a near-optimal performance guarantee. Nevertheless, we have modified their EM algorithm to
work in our case with the Bayesian treatment of Θ.

C.2 Our modification

We will provide details of the EM algorithm proposed by Chen et al. (2021) and describe our modifications here.

Expectation (E) step. The aim of the E step is to obtain (samples of) p(frt |θ,yst ). Note that (samples of)
p(frt |θ,yst ) can be obtained using the generator gΘ (1) and the latent task posterior belief p(z|θ,yst ), as follows:
First draw samples of z from p(z|θ,yst ), and then passing them and Xr

t as inputs to generator gΘ to obtain
samples from p(frt |θ,yst ). Hence, for a task t, performing its adaptation p(frt |θ,yst ) (11) reduces to obtaining the
latent task posterior belief p(z|θ,yst ).
In general, p(z|θ,yst ) cannot be evaluated in closed form. Instead of using variational inference (VI), the work
of Chen et al. (2021) has drawn samples from p(z|θ,yst ) using stochastic gradient Hamiltonian Monte Carlo
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(SGHMC), which introduces an auxiliary random vector r and samples from the joint distribution p(z, r|θ,yst )
following the Hamiltonian dynamics (Brooks et al., 2011; Neal, 1993) and making use of the tractable gradient on
Z: −∇z log p(z|θ,yst ) = −∇z log p(z,yst |θ) = −∇z[log p(yst |fst = (gθ(x, z))>x∈Xs

t
) + log p(z)].

Our modification of E step: We represent the belief of Θ as a set {θm}Mm=1 of M particles, which we denote
as q(θ) without loss of generality. To accelerate computation, we use VI in Sec. 4.2 to compute p(z|θm,yst ):

p(z|θm,yst )← VIZ(θm) .

We then pass the samples of p(z|yst , θm) to the generator gθm (i.e., corresponding to the particle θm) to obtain
samples of p(frt |θm,yst ).
Maximization (M) step. The aim of the M step is to optimize (10) w.r.t. a point estimate of θ using the
samples from the E step. In particular, (10) is optimized through gradient descent w.r.t. θ using samples of z
from the E step.

Our modification of M step: Instead of using gradient descent, we use SVGD (Sec. 4.1) on the datasets
(XA,yA) of the subset A of tasks to compute p(θ|yA) such that in every SVGD iteration, each particle θm is
updated as follows (i.e., similar to that in Sec. 4.1):

θm ← θm +
η

M

∑
θ∈{θm}Mm=1

[
k(θ, θm)

×∇θ log p(yrA|θ,ysA) +∇θk(θ, θm)
]

where η is the step size, and k(·, ·) is a radial basis function kernel representing a repulsive force between particles
to prevent them from collapsing. We denote the entire VI process (containing multiple SVGD iterations till
convergence) to obtain p(θ|yA) as

p(θ|yA)← SVGDΘ(p(θ),yA) .

D Proofs and other Theoretical Results

D.1 Proof of Theorem 1

Firstly, note that the MILT(·) function (2) is submodular:

Lemma 1. The set function A 7→ MILT(A) is submodular.

Its proof can be found in (Krause and Golovin, 2014). We can also formally prove that the MILT(·) function (2)
is approximately monotonic up to a constant error of C0:

Lemma 2. ∀B ⊆ T \A MILT(A ∪ B) ≥ MILT(A)− C0 where C0 , H(Θ).

Proof.
MILT(A ∪ B)−MILT(A)

= H(ZB|ZA)−H(ZB|ZT\(A∪B))

≥ H(ZB|ZA,Θ)−H(ZB|ZT\(A∪B))

≥ H(ZB|ZA,Θ)−H(ZB,Θ|ZT\(A∪B))

= H(ZB|Θ)−H(ZB,Θ|ZT\(A∪B))

≥ H(ZB|Θ)− (H(ZB|Θ,ZT\(A∪B)) +H(Θ|ZT\(A∪B)))

= −H(Θ|ZT\(A∪B))

≥ −H(Θ)

where the first equality is by definition of MILT(·) function (2), the first and last inequalities are due to the
“conditioning reduces entropy” property, the second and third inequalities are due to chain rule for entropy, and
the second and last equalities follow from Zt,Zt′ ,∀t 6= t′ being mutually independent given meta-parameters
Θ.
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Proof of Theorem 1. Let t?1, . . . , t?k be the k tasks selected by Algo. 1. So, Ai = {t?1, . . . , t?i }. Recall from (3)
that A? , arg maxA⊆T,|A|=kMILT(A). From Lemma 2,

MILT(A? ∪Ai) ≥ MILT(A?)− C0 (12)

for all rounds i = 1, . . . , k. Let ∆i , MILT(Ai) −MILT(Ai−1). From Lemma 1, we know that for any A and
t /∈ (A ∪Ai),

MILT((A ∪Ai) ∪ t)−MILT(A ∪Ai)
≤ MILT(Ai ∪ t)−MILT(Ai) ≤ ∆i+1 .

It follows that for any A s.t. |A| = k,

MILT(A ∪Ai)−MILT(Ai) ≤ k∆i+1 .

Consequently,

MILT(A? ∪Ai) ≤ MILT(Ai) + k∆i+1 =

i∑
j=1

∆j + k∆i+1 . (13)

From (12) and (13),

MILT(A?)− C0 ≤
i∑

j=1

∆j + k∆i+1 (14)

for round i = 0, . . . , k − 1. We refer to (14) as the i-th inequality. Now, by multiplying both sides of the i-th
inequality by a factor of (1/k)(1− (1/k))k−i−1 and then summing both sides over all rounds i = 0, . . . , k − 1,

(MILT(A?)− C0)

k−1∑
i=0

1

k

(
1− 1

k

)k−i−1

≤
k∑
i=1

∆i = MILT(Ak) .

(15)

To understand why the coefficient of ∆i in (15) reduces to 1 for i = 1, . . . , k, the ∆i term in the j-th inequality (14)
for j = i, . . . , k − 1 has a coefficient of (1/k)(1− (1/k))k−j−1, while the k∆i term in the (i− 1)-th inequality (14)
has a coefficient of (1/k)(1− (1/k))k−(i−1)−1. Then,

coefficient of ∆i in (15)

= 1×
k−1∑
j=i

1

k

(
1− 1

k

)k−j−1

+ k × 1

k

(
1− 1

k

)k−(i−1)−1

= 1 .

From (15),

MILT(Ak) ≥ (MILT(A?)− C0)

(
1−

(
1− 1

k

)k)
≥ (MILT(A?)− C0)(1− 1/e) .

D.2 Near-Optimal Performance Guarantee for MIRD

We will now describe a greedy algorithm similar to Algo. I:
Algorithm II. Start with an empty set A0 = ∅ of tasks. In each round i = 1, . . . , k, greedily select the next task:

t?i , arg maxtMIRD(Ai−1 ∪ t)−MIRD(Ai−1) (16)

and update the set Ai = Ai−1 ∪ t?i = {t?1, . . . , t?i } of selected tasks.
Theorem 2 (Near-optimal performance guarantee). Algorithm II is guaranteed to select a set A of k tasks s.t.

MIRD(A) ≥ (1− 1/e)(OPT− C0)

where OPT , maxA⊆T,|A|=kMIRD(A) and the constant C0 = H(Θ) is the entropy of meta-parameters Θ.
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Lemma 3. ∀B ⊂ T \A MIRD(A ∪ B) ≥ MIRD(A)− C0 where C0 , H(Θ).

Proof.
MIRD(A ∪ B)−MIRD(A)

= H(YrB|YrA)−H(YrB|YrT\(A∪B))

≥ H(YrB|YrA,Θ)−H(YrB|YrT\(A∪B))

≥ H(YrB|YrA,Θ)−H(YrB,Θ|YrT\(A∪B))

= H(YrB|Θ)−H(YrB,Θ|YrT\(A∪B))

≥ H(YrB|Θ)− (H(YrB|Θ,YrT\(A∪B)) +H(Θ|YrT\(A∪B)))

= −H(Θ|YrT\(A∪B))

≥ −H(Θ)

where the first equality is by definition of MILT(·) function (2), the first and last inequalities are due to the
“conditioning reduces entropy” property, the second and third inequalities are due to chain rule for entropy, and
the second and last equalities follow from Yrt ,Yrt′ ,∀t 6= t′ being mutually independent given meta-parameters
Θ.

Proof of Theorem 2. Similar to MILT, MIRD is submodular since it is also a mutual information criterion.
Lemma 3 reveals that MIRD is approximately monotonic. Therefore, we can adopt the same proof as that for
MILT (Appendix D.1) to derive the near-optimal performance guarantee for MIRD.

D.3 Online SVGD for Learning: Theoretical Result

Proposition 2 (Online SVGD for learning). Suppose that p(θ) is an uninformative prior (e.g., ∇θ log p(θ) =
0). With {θm}Mm=1 initially sampled from p(θ|zA,ysA), the SVGD operation for obtaining p(θ|zA∪t,ysA∪t) (i.e.,
learning from a task t /∈ A) is

θm ← θm +
η

M

∑
θ∈{θm}Mm=1

[
k(θ, θm)

×∇θ log p(θ|zt,yst ) +∇θk(θ, θm)
]
.

(17)

We denote such a learning process (containing multiple SVGD iterations till convergence) as

p(θ|zA∪t,ysA∪t)← SVGDΘ(p(θ|zA,ysA), {zt,yst}) .

Proof. With {θm}Mm=1 initially sampled from an arbitrary distribution q(θ), the SVGD operation for learning
p(θ|zA∪t,ysA∪t) is

θm ← θm +
η

M

∑
θ∈{θm}Mm=1

[
k(θ, θm)

×∇θ log p(θ|zA∪t,ysA∪t) +∇θk(θ, θm)
]

= θm +
η

M

∑
θ∈{θm}Mm=1

[
k(θ, θm)

×∇θ(log p(θ|zt,yst ) + log p(θ|zA,ysA)− log p(θ))

+∇θk(θ, θm)
]
.

Note that SVGD is a discretization of the underlying continuous functional gradient in the reproducing kernel
Hilbert space (RKHS) of k(·, ·). The corresponding continuous functional gradient, which is proven to be the
expectation of the Stein’s operator (Liu and Wang, 2016), of the above SVGD is

Eq(θ)[k(θ, ·)×∇θ
(

log p(θ|zt,yst )
+ log p(θ|zA,ysA)− log p(θ)

)
+∇θk(θ, ·)] .
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Since we have assumed an uninformative prior p(θ), ∇θ log p(θ) = 0 in the above SVGD. Also, using Stein’s
identity (Liu and Wang, 2016), Ep(θ|zA,ys

A)[k(θ, ·)∇θ log p(θ|zA,ysA)] = 0. Since q(θ) = p(θ|zA,ysA), the above
functional gradient reduces to

Eq(θ)[k(θ, ·)∇θ log p(θ|zt,yst ) +∇θk(θ, ·)]
which results in the SVGD in (17).

D.4 Proof of Proposition 1

Unlearning from a task t ∈ A can be cast as a problem of minimizing the evidence upper bound (EUBO):

EUBO , Eq(θ)[log p(yst |zt, θ)] + KL(q(θ)‖p(θ|zA,ysA))

which yields the exact solution to the original problem of maximizing the evidence lower bound (ELBO), which
involves learning from the set A \ t of tasks (Nguyen et al., 2020).

The above problem can also be cast as one of maximizing the negative EUBO (NEUBO): w.r.t. q(θ):

NEUBO , Eq(θ)[− log p(yst |zt, θ)]−KL(q(θ)‖p(θ|zA,ysA)) . (18)

Note that SVGD is a discretization of the underlying continuous functional gradient in the reproducing kernel
Hilbert space (RKHS) of k(·, ·). The corresponding continuous functional gradient, which is proven to be the
expectation of the Stein’s operator (Liu and Wang, 2016), of −KL(q(θ)‖p(θ|ysA, zA)) is

Eq(θ)[k(θ, ·)∇θ
(

log p(θ|zA,ysA)
)

+∇θk(θ, ·)] .

Using Stein’s identity (Liu and Wang, 2016), Ep(θ|zA,ys
A)[k(θ, ·)∇θ log p(θ|zA,ysA)] = 0. Since q(θ) = p(θ|zA,ysA),

the above functional gradient reduces to Eq(θ)[∇θk(θ, ·)].
On the other hand, the functional gradient of Eq(θ)[− log p(yst |zt, θ)] (Liu and Wang, 2016) is

−Eq(θ)[k(θ, ·)∇θ(log p(θ|zt,yst )− log p(θ))]

= −Eq(θ)[k(θ, ·)∇θ log p(θ|zt,yst )]

such that the equality follows from our assumption of an uninformative prior p(θ), that is, ∇θ log p(θ) = 0. By
summing the above two functional gradients, we obtain the functional gradient of (18):

Eq(θ)[−k(θ, ·)∇θ log p(θ|zt,yst ) +∇θk(θ, ·)]

which results in the SVGD in (9).

E More Experimental Results

E.1 Some Implementation Details

For Sinusoid regression, we execute 1 SVGD iteration to perform the adaptation of a task in meta-training and
execute 10 SVGD iterations to perform the adaptation of a task in meta-test. The training is performed for a
total of 15000 iterations with an Adam optimizer. For Omniglot and MiniImagenet classification, we execute 5
SVGD iterations to perform the adaptation of a task in meta-training and execute 10 SVGD iterations to perform
the adaptation of a task in meta-test. The training is performed for a total of 60000 iterations with an Adam
optimizer. For other meta-training settings, we adopt the same as that in (Chen et al., 2021).

E.2 Comparison with Two Recent Baselines: Probabilistic Active Meta-learning algorithm
(Kaddour et al., 2020) and Greedy Class-Pair Based Sampling (Liu et al., 2020)

The following describes our implementation details of the two baselines which we compared with. Note that both
works have different problem settings as compared to ours. Thus, we have to adapt their implementation to
perform a fair empirical comparison based on the experimental settings discussed in our paper (Sec. 5).
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Figure 5: Meta-test mean squared error (MSE) and standard error over 5 runs vs. no. k of selected tasks on (left)
5-shot Sinusoid and (right) 10-shot Sinusoid.

E.2.1 Probabilistic active meta-learning algorithm (PAML)

To describe our adapted implementation of PAML from (Kaddour et al., 2020), contextual information is omitted
to ensure a fair comparison since all other baselines in our experiments do not need to assume the availability
of such contextual information. To achieve this, we have removed the regularization term associated with the
contextual information (i.e., the summation term in equation 10 of Kaddour et al. (2020)). Then, the meta-training
objective becomes a typical meta-learning objective (i.e., equation 5 of Kaddour et al. (2020)) which is similar to
(i.e., a variational lower bound of) ours that explicitly represents the distributions via variational parameters. In
our implementation of PAML, we have adopted the same Gaussian variational distribution of the latent vector in
(Kaddour et al., 2020) and used the same model architectures as the ones in our baselines.

Results and discussion. The results on Sinusoid are presented in Fig. 5 and that on Omniglot and MiniImageNet
are presented in Fig. 6. The results show that our proposed MILT outperforms PAML. From our experiments, we
have observed that PAML is more inclined to select “boundary” tasks: For example, in 10-shot Sinusoid where the
amplitude amp is sampled from [0.1, 5.0], PAML has a proportion of 28.9% and 13.3% of its selected tasks from
amp > 4.0 and amp < 1.0, respectively. In contrast, our proposed MILT has a proportion of 17.5% and 7.5% of
its selected tasks from amp > 4.0 and amp < 1.0, respectively. So, the PAML criterion tends to rank “boundary”
tasks more highly due to their greater surprisals (Kaddour et al., 2020). However, selecting too large a proportion
of such “boundary” tasks may not yield as much information on the unobserved tasks, which explains why PAML
is outperformed by our proposed MILT.

E.2.2 Greedy class-pair based sampling (GCP)

The GCP proposed in (Liu et al., 2020) is an active task selection method for meta-classification tasks. GCP
does not directly sample tasks. Instead, it samples classes and then generates the tasks by randomly picking
images of the selected classes, which is fundamentally different from our setting. So, to establish a meaningful
empirical comparison with GCP, we have to adapt it such that it fits into the general problem setting where the
candidate tasks are given/fixed prior to task selection.

In the original GCP setting involving a N -way classification problem, a N -clique of classes is sampled in each
round such that the selection probability is formulated based on its potential which is the product of pairwise
potentials between two classes.

In our adapted implementation of GCP, we use GCP to compute the potential of each candidate task where
each task corresponds to a N -way classification problem. Then, we sample tasks (i.e., one task per round of task
selection without replacement) according to the probability computed from the potential. By doing so, instead of
allowing GCP to generate tasks, we use the GCP criterion to sample from the given candidate tasks. We adopt
the default hyperparameters value (i.e., aggressiveness of 1 and discounting factor of 0.5) in the original GCP
paper.

Results and discussion. The results on Omniglot and MiniImageNet are presented in Fig. 6. The results
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Table 5: Meta-test mean squared error (MSE) and standard deviation over 5 runs on Sinusoid regression.
Batch size: 1 5 10

5-shot 0.39± 0.16 0.46± 0.14 0.43± 0.10
10-shot 0.12± 0.03 0.12± 0.03 0.13± 0.03

Table 6: Meta-test accuracy (%) and standard deviation over 5 runs on Omniglot classification.
Batch size: 16 32 64

1-shot 20-way 89.1± 2.9 88.6± 3.0 88.8± 3.4

Table 7: Meta-test mean squared error (MSE) and standard deviation over 5 runs on Sinusoid regression.
No. of candidate tasks: 100 500 1000 2000
5-shot Sinusoid, k = 100 0.77± 0.19 0.48± 0.09 0.43± 0.10 0.40± 0.07
10-shot Sinusoid, k = 100 0.27± 0.10 0.19± 0.03 0.13± 0.03 0.11± 0.03

Table 8: Meta-test accuracy (%) and standard deviation over 5 runs.
No. of candidate tasks: 1000 2000 4000

1-shot 5-way Omniglot, k = 120 91.0± 3.3 91.9± 3.0 91.8± 3.0
1-shot 20-way Omniglot, k = 250 87.5± 2.6 88.6± 3.0 88.6± 2.6

show that our proposed MILT outperforms GCP. We think the reason is that GCP is designed to achieve the
best generalization performance on new classes during test time. However, MILT is designed to achieve the best
generalization performance on new tasks (but not necessarily new classes) during test time. MILT better fits our
general problem setting and thus achieves a better performance than GCP.

E.3 Performance Sensitivity to Number of Sub-tasks in a Task

In Sec. 5, we have mentioned that for Omniglot and MiniImageNet classifications, we have selected tasks in a batch
manner: Each task consists of 32 sub-tasks s.t. each sub-task is a 1-shot 5-way or 1-shot 20-way classification.
We refer to the number of sub-tasks in a task as the batch size. For this batch setting, the active task selection
criterion is the sum of the criterion over all sub-tasks (see footnote 14). Note that such a summation is exact if
we know a priori that all the sub-tasks in task t correspond to the same latent task vector Zt. Nevertheless, we
will investigate here whether the meta-test performance is sensitive to varying batch sizes.

For Sinusoid regression, we fix the total number of (5-shot or 10-shot) sub-tasks to be selected as 100 (e.g., when
the batch size is 10, k = 10) and the total number of sub-tasks in the candidate tasks to be 1000.15 For 1-shot
20-way Omniglot classification, we fix the total number of sub-tasks to be selected as 4000 and the total number
of sub-tasks in the candidate tasks to be 64000.

Tables 5 and 6 show results of Sinusoid regression and Omniglot classification, respectively. It can be observed
that the meta-test performance of MILT is similar across (and hence not so sensitive to) varying batch sizes
which are small compared to the total number of sub-tasks to be selected.

E.4 Performance Sensitivity to Number of Candidate Tasks

In Sec. 5, we have mentioned that we have generated a limited number of candidate tasks (i.e., 1000 for Sinusoid
regression and 2000 for Omniglot classification). We have argued in Sec. 5 that we did not generate a massive
number (≈ 200000) of candidate tasks since (a) it will require much more computation (linear in |T |, as shown in
Appendix B) to perform task selection and (b) only a limited number (≤ 250) of tasks will be selected. We will
investigate here whether the meta-test performance is sensitive to varying numbers of candidate tasks.

Tables 7 and 8 show results of Sinusoid regression and Omniglot classification, respectively. It can be observed
that increasing the number of candidate tasks tends to improve the meta-test performance. However, when the
number of candidate tasks becomes relatively large (respectively, 1000 and 2000 for Sinusoid and Omniglot), the
improvement in meta-test performance by further increasing the number of candidate tasks is marginal. This

15Doing so fixes the number of 5-shot or 10-shot sub-tasks that are available for selection.
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empirically supports our argument that our active task selection algorithm may not need such a massive number
of candidate tasks, like in previous works (Chen et al., 2021; Finn et al., 2017, 2018; Yoon et al., 2018), in order
to achieve reasonably competitive meta-test performance.

E.5 Generalization to Larger Remaining Sets

We have also performed experiments on using a larger remaining dataset to evaluate the meta-test performance
with varying ratios of remaining vs. sample dataset sizes from 1 to 20 given a fixed number R of data points in the
remaining datasets of all selected tasks. Table 9 shows that the meta-test performance degrades gracefully with
an increasing ratio due to a reduced diversity of selected tasks. This reveals that in the setting of meta-learning,
the meta-training task diversity plays an important role on the final meta-test performance.

Table 9: Meta-test MSE over 5 runs with varying ratios of remaining vs. sample dataset sizes given a fixed number
R of data points in the remaining datasets of all selected tasks.

Ratio 1 5 8 10 20
5-shot Sinusoid (R = 1000) 0.294 0.315 0.349 0.375 0.398
10-shot Sinusoid (R = 2000) 0.068 0.070 0.070 0.108 0.129

E.6 Comparison with Information-Theoretic Task Selection (Luna and Leonetti, 2020)

While it is complicated to generalize the existing active task selection algorithms to cater to our more general
problem setting (i.e., without making strong assumptions of the availability of contextual information or a
validation set (Sec. 6)), we have found a way to adapt the problem setting of the information-theoretic task
selection (ITTS) algorithm (Luna and Leonetti, 2020) to do so. A core assumption of ITTS is the availability of a
validation set that can accurately represent the entire (meta-test) task distribution. Such a strong assumption
contradicts the motivation of our active task selection problem, as discussed in Sec. 1. However, we can first
construct such a validation set by randomly selecting k′ < k candidate tasks as the validation set which we now
denote as V .16 Then, we actively select the rest of the (k − k′) tasks according to the ITTS criterion. In our
experiments, we set k′ = k/2.

Note that ITTS is conventionally designed for meta-reinforcement learning, but can be adapted to cater to
supervised meta-learning in our problem setting. The two key components of ITTS are (a) the quantification of
the difference between two tasks measured by KL divergence, and (b) the quantification of the relevance of a task
t to a task t′ measured by the difference in entropy. We adapt their meta-reinforcement learning framework into
our (probabilistic) supervised meta-learning framework, as follows:

(a) In the work of Luna and Leonetti (2020), the difference between two tasks t and t′ is measured as the averaged
KL divergence between their respective policies over the states of the validation tasks in V . For supervised
meta-learning, it is natural to consider the averaged KL divergence between their latent task beliefs over the
latent task vectors representing the tasks in V :

δ(t, t′) = EzV ∼p(zV )[KL(p(Zt = z|zV )‖p(Zt′ = z|zV ))] .

(b) The work of Luna and Leonetti (2020) has defined the relevance of task t to task t′ as the expected difference
in the entropy of the policies before and after learning (over the states of t′) w.r.t. the on-policy distribution
before learning. For supervised meta-learning, such a relevance translates to

ρ(t, t′) = H(Zt′ |Zt)−H(Zt) .

Apart from these two components, the rest of the ITTS algorithm follows the original implementation.

Fig. 7 shows results of Sinusoid regression comparing the meta-test performance of MILT vs. ITTS. It can be
observed that MILT outperforms ITTS for both 5-shot and 10-shot Sinusoid regression. Note that ITTS does

16To align with our problem setting where the remaining datasets for all tasks in A are acquired/observed for meta-
training only after A is selected by an active task selection algorithm (Sections 3 and 2), only the a priori known sample
datasets for all tasks in V are given during active task selection.
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not outperform random selection when k is not sufficiently large. This may be due to its validation set (whose
size k′ < k) not being highly representative of the distribution of meta-test tasks. As a result, the calculation of
the difference (see (a) above) using such a validation set can be misleading. When k is sufficiently large, the
validation set becomes representative enough for ITTS to perform better than random selection.
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Figure 6: Meta-test accuracy and standard error over 5 runs vs. no. k of selected tasks on (top) 1-shot 5-way
Omniglot, (middle) 1-shot 20-way Omniglot, and (bottom) 1-shot 5-way MiniImageNet.
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Figure 7: Meta-test mean squared error (MSE) and standard error over 5 runs vs. no. k of selected tasks on (a)
5-shot Sinusoid and (b) 10-shot Sinusoid.
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