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Abstract

Scientific discovery aims to find new patterns and
test specific hypotheses by analysing large-scale
experimental data. However, various practical
limitations (e.g., high experimental costs or
the inability to perform some experiments)
make it challenging for researchers to collect
sufficient experimental data for successful
scientific discovery. To this end, we propose
the collaborative active learning (CAL)
framework that enables researchers to share their
experimental data for mutual benefit. Specifically,
our proposed coordinated acquisition function
sets out to achieve individual rationality and
fairness so that everyone can equitably benefit
from collaboration. We empirically demonstrate
that our method outperforms existing batch active
learning ones (adapted to the CAL setting) in
terms of both learning performance and fairness
on various real-world scientific discovery datasets
(biochemistry, material science, and physics).

1 INTRODUCTION

Scientific discoveries in biochemistry (Borkowski et al.,
2020; Kabir and Wong, 2022), material science (Bassman
et al., 2018), physics (de Silva et al., 2020), and other
areas rely on performing experiments to collect large-scale
observational data to find patterns and test specific
hypotheses. However, many practical limitations (e.g.,
high cost of performing experiments1 or the inability to

1For example, the high cost can arise from running highly
specialised, expensive equipment like the Large Hadron Collider
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do some experiments) make it fundamentally challenging
for researchers to gather sufficient experimental data by
themselves for successful scientific discovery. To overcome
these limitations, we propose a collaboration framework
that allows researchers to collaborate and share their
experimental data for mutual benefit.

These collaborations among researchers lead to two main
benefits. (1) Cost saving: Performing some experiments
can be costly, so researchers can share their experimental
data to reduce costs. For example, synthesising new
drugs is expensive due to the cost of chemicals and the
long experimentation time, so biochemists can reduce the
costs of experiments by sharing their data. (2) Principled
quid-pro-quo: If the researchers want to collect specific
experimental data that are unobtainable by themselves
but accessible to others, then through collaboration, the
researchers can exchange their data to overcome such
limitations. For example, astrophysicists rely on observed
trajectories of planets to discover the differential equation
governing a planetary system. However, constrained by
their geographical locations, they cannot observe the whole
trajectory by themselves (Voiland, 2017; Dunn, 2022). With
collaboration (i.e., data sharing) among astrophysicists
located at different geographical locations, they all can
accurately learn about the underlying differential equation.

However, in practice, the norm is sharing the analysis
obtained from the experimental data but not the data per
se (Rousseau and Ustyuzhanin, 2022). It is because data
sharing can lead to issues such as misperforming secondary
analyses due to a lack of familiarity of the data collection
process (Longo and Drazen, 2016), the original researchers
not receiving appropriate credit for collecting the data
(Park and Greene, 2018), or other researchers publishing
the findings before the researchers who collected data
(Taichman et al., 2016; Emmert-Streib et al., 2016). These
issues can contribute toward a zero-sum paradigm as sharing
the collected data can prove detrimental to those who
collected the data (Lo and DeMets, 2016) and discourage

at CERN or quantum computers with high maintenance costs.
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collaboration, thus hindering research progress.

One possibility to address these issues is to enable
researchers to collaborate during data collection, promote
familiarity with the data, form shared authorship, and agree
on the priority of research findings (Lo and DeMets, 2016).
Then, sharing the data collected through such collaborations
will provide the benefits of cost-saving and principled
quid-pro-quo. Specifically, we consider active learning
(AL) as the data collection framework because it is a
principled experimental design method that utilises previous
data points to efficiently select subsequent data points and
is often used in biochemistry (Kell, 2012; Schneider, 2018),
material science (Bassman et al., 2018; Gubaev et al., 2019;
Lookman et al., 2019), and physics (Atkinson et al., 2019).

This paper proposes the collaborative active learning (CAL)
framework that enables agents (researchers) to collaborate
during data collection and requires each agent to specify
its support (i.e., what data it can collect) and target (i.e.,
what data it wants). To encourage the collaboration, CAL
should satisfy individual rationality (IR) (Sim et al., 2020;
Tay et al., 2022) and fairness (Li et al., 2020, 2021; Sim
et al., 2021). Here, IR ensures that collaboration benefits
everyone, and fairness ensures that benefits are equitable.
While existing batch AL methods may seem promising,
they are not guaranteed to satisfy IR and fairness as they
do not explicitly account for different agents who may have
different supports and targets (Chen and Krause, 2013).

The first question we face is what would be a suitable form
of collaboration. To answer this, we propose a coordinated
acquisition function that enables the agents to leverage each
other’s support to learn about their targets. With this, we
can characterise the benefit to an agent in collaboration via
(a lower bound of) the information gain (IG) on its target.
Higher IG implies that the agent can learn about its target
effectively. Importantly, IR is satisfied (i.e., the agent is
better off) if the IG for an agent with collaboration is at least
what the agent can achieve individually.

It naturally raises the question of how to characterise what
an agent can achieve without collaboration. What an agent
can learn individually about its target would be limited
if the agent’s support cannot “cover” the target due to
its observation constraints. Specifically, we derive an IG
upper bound of the agent’s target based on a distance-based
formalisation of its observational constraints. The IG upper
bound will be lower if the support is further from its target.
Then, we derive a sufficient condition for IR, that is, the IG
lower bound with collaboration is higher than the IG upper
bound without collaboration.

The other key aspect of CAL is fairness which ensures that
the agents benefit equitably to avoid unfair and exploitative
collaborations (Li et al., 2020, 2021; Sim et al., 2021). It
naturally leads to the question of how to achieve fairness
in CAL. Intuitively, during data collection, if the IGs of all

agents increase at an equitable rate, then their final IGs
are also equitable, which entails fairness. To this end,
we adopt a modified Nash social welfare (Kaneko and
Nakamura, 1979) to show that our proposed coordinated
acquisition function, which carefully selects what data to
collect, effectively achieves fairness.

Our specific contributions of this work are as follows:

• We propose FAIR: Fair collaborative Active learning
with Individual Rationality via a coordinated acquisition
function to enable agents to collaborate during data
collection (Sec. 3);

• We derive the IG upper bound of an agent without
collaboration using the observational constraint between
its support and target, then derive the IG lower bound of
the agent with collaboration, and combine both results to
characterise the sufficient condition for IR (Sec. 3.1);

• We exploit a modified Nash social welfare to show that
the proposed coordinated acquisition function satisfies
a generalised Pigou Dalton Principle, which effectively
achieves fairness (Sec. 3.2); and

• We perform extensive experiments on synthetic data and
real-world scientific discovery datasets in biochemistry,
material science and physics. We demonstrate that our
method outperforms existing batch AL ones in achieving
better performance (i.e., IR) and fairness (Sec. 4).

2 PRELIMINARIES

Gaussian process (GP) in information-theoretic AL. A
GP is defined by a mean function µ : X 7→ R and
a kernel function K : X × X 7→ R (e.g., squared
exponential) where X is the input space for the data.
Denote the ground truth function as f : X 7→ R (i.e.,
a regression setting). Moreover, the observed regression
response is modelled with an additive Gaussian noise:
y := f(x) + N (0, λ) (Rasmussen and Williams, 2006).
Though the noisy observations y are not explicitly used
in AL, this modelling choice affects the calculation of
information gain (IG). Denote the acquired data as Xm :=
{x1, . . . , xm} such that each data/input location is from a
support S ⊆ X . Then, denote the kernel-based gram matrix
KXm ∈ Rm×m on Xm as KXm

:= [K(x, x′)]x,x′∈Xm and
a noise variance-regularised K̃Xm

:= KXm + λI.

Denote the target T := {x∗1, . . . , x∗m′} ⊆ X as the
data/input locations to learn about. We assume a conditional
independence between S, T : ∀XA, XB ⊂ S, s.t. XA ∩
XB = ∅, XA ⊥ XB |T . Using GP, we can place
a covariance (matrix) over T : denote KT := ΣT as
the prior covariance over T (i.e., before acquiring Xm);
denote ΣT |Xm

:= KT − KT Xm
K̃−1

Xm
KXmT as the

posterior covariance over T (i.e., after acquiring Xm)
where KT ∈ Rm′×m′

is the gram matrix of T (i.e.,
KT [p, q] = K(x∗p, x∗q)) and KT Xm

= K⊤
XmT ∈ Rm′×m is
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the covariance between T andXm such thatKT Xm [p, q] :=
K(x∗p, xq) between the p-th target data and q-th acquired
data. The covariances KT and ΣT |Xm

represent the
uncertainty, respectively, before and after acquiring the
data Xm through differential entropy H[T |Xm], which
quantifies the uncertainty about the target T conditioned on
the acquired dataXm.2 Based on this, information-theoretic
AL methods (e.g., (Krause et al., 2008)) adopt the view
of minimising uncertainty via the mutual information
I[T ;Xm] := H[T ] − H[T |Xm]. Consequently, IG is
defined as IG({x};Xm, T ) := I[T ;Xm∪{x}]−I[T ;Xm],
with the following closed-form expression in GP:

IG(T ;Xm) = 0.5(log detΣT − log detΣT |Xm
) . (1)

However, the exact maximisation of IG poses an NP-hard
subset selection problem with a budget to collect m data
points. To address this, the submodularity of IG is exploited
to show that greedily collected Xm over m iterations
satisfy near-optimality: IG(T ;Xm) ≥ (1−1/e) IG(T ;X∗)
(Nemhauser et al., 1978). The conditional independence
assumption mentioned above between (disjoint subsets of S)
and T is used to ensure the submodularity of Eq. (1) (Krause
and Guestrin, 2005, Corollary 4). A further discussion is
provided in Appendix A.

In addition to admitting such a near-optimal approximation,
IG is often used as a surrogate measure for learning
effectiveness due to a lack of knowledge of the function
space (the reason for AL) (Kirsch et al., 2019; Chen
and Krause, 2013). In contrast, in machine learning, the
accuracy of a test set is often used to evaluate the learning
performance. However, in scientific discoveries, due to no
knowledge of search space, such a test set is unavailable,
so IG lends itself to be a useful measure (evaluated in our
experiments in Sec. 4).

3 FAIR: FAIR COLLABORATIVE
ACTIVE LEARNING WITH
INDIVIDUAL RATIONALITY

We propose FAIR, specified by a coordinated acquisition
function, derive the conditions for individual rationality
(Sec. 3.1) and provide the fairness guarantee (Sec. 3.2). Due
to the page limitation, we defer the derivations and proofs,
along with an overview of the key assumptions used in
presented results to Appendix A.

Coordinated acquisition function. Denote n agents as
N := {1, . . . , n} and Si, Ti ⊆ X are the respective support
and target of an agent i ∈ N . Let SN :=×i∈N

Si be
the Cartesian product of the supports of all the agents.
Denote x⃗N,k (resp. XN,k) as the data acquired by all agents

2A set of data (e.g., Xm ⊆ X or T ⊆ X ) are treated as a
collection of random variables at the corresponding locations of
the data, for H and subsequently I to be well defined.

in iteration k only (resp. up to and including iteration k).
Define the shorthand IGi,k := IG(Ti;XN,k) and ∆i,k :=
IGi,k − IGi,k−1. For simplicity, assume all agents have an
equal budget of m. In iteration k, agent i acquires one data
point from its support Si, so there are m iterations of the
following coordinated acquisition function:

XN,k ← XN,k−1 ∪ argmax
x⃗N,k∈SN

∑
i ∆i,k/βi, (2)

where βi > 1 are the sharing coefficients and
w.l.o.g.

∑
i 1/βi = 1. A larger βi means the agent i is more

willing to share, as IGi,k is maximised with a lower priority
(i.e., 1/βi). More details on the effects of and how to set
βi are in Sec. 3.2 and Sec. 4. The specific optimisation
objective is to leverage a near-optimality result (Krause
et al., 2008) to provide a performance guarantee (Lemma 6
in Appendix A) and to derive IR (Sec. 3.1).

Figure 1: Left: Mismatch between Ti,Si and match between
Ti,Sj for j ̸= i imply each agent can benefit significantly
from collaboration. Right: Individually, each agent’s
support (orange circles) cannot cover their targets (blue
stars), so the learning effectiveness (i.e., IGs) is low.

To illustrate how Eq. (2) provides the quid-pro-quo benefit,
if Si is far from Ti, but there is some other Sj which is close
to Ti, then letting agent j acquire a data point from Sj near
Ti is beneficial to agent i (about Ti) that will reciprocate to
agent j or some other agent. For instance, in Fig. 1, with 3
agents, the support S1 of agent 1 cannot effectively cover
its own target T1, but can help cover agent 2’s target T2. If
these agents do not collaborate, then Fig. 1 (right) shows
that none of them can effectively cover their own target to
learn effectively. Intuitively, since their supports can cover
someone else’s target, if these agents collaborate (i.e., adopt
Eq. (2)), then their learning effectiveness can all improve
(empirically verified later in Sec. 4, see Fig. 2).

One alternative to Eq. (2) is to explicitly instruct the agents
to acquire data points to help each other. However, it is
not guaranteed that the target of an agent is close to the
support of another, which means extra care must be taken to
ensure that no agent acquires data points outside its support.
Moreover, it can be difficult to determine which agent
should help which other agent. In contrast, formulating the
acquisition function as an optimisation over the Cartesian
product SN avoids these difficulties. The cost-saving benefit
can be seen as follows, suppose all the targets and supports
are close (all the agents are interested in similar targets and
can observe them closely), but it requires a high budget
(costly for each agent individually). Then, Eq. (2) enables
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the agents to pool their budgets to learn about their targets
in a coordinated way. For instance, based on Eq. (2), two
agents are unlikely to pick the same data point, as doing so
is unlikely optimal (Sim et al., 2020).

3.1 Individual Rationality (IR)

Collaboration needs to result in a higher (or equal) IG for an
agent than without collaboration to satisfy the IR. We first
characterise the limitation to learning without collaboration
(via an IG upper bound) due to observational constraints
(i.e., Si is far from Ti). Next, we derive the conditions for
collaboration to result in IG for i being higher than the upper
bound without collaboration, hence achieving IR.

3.1.1 Limitation to Learning Without Collaboration

As the analysis is w.r.t. an agent i, the subscript i is omitted
for simplicity: T := Ti, S = Si. Let Xm ⊆ S denote
the acquired data by i without collaboration. By utilising a
distance-based observational constraint (between S and T ),
Proposition 1 gives the IG upper bound w.r.t. a singleton T .

Proposition 1. For singleton T = {x∗}, v∗ is the prior
variance at x∗, and budget m. Suppose infx∈S,x∗∈T ∥x−
x∗∥2 ≥ δ. Let

M∗ :=

tr(K̃Xm)− (m− 1)

(
m det(K̃Xm)

tr(K̃Xm
)

) 1
m−1

m ε2K

where εK := supx∈S K(x∗, x) and tr(·) is the trace of a
matrix. Then, IG(x∗;Xm) ≤ 0.5 log(v∗/(v∗ −M∗)).

By focusing on the simpler case of singleton T ,
Proposition 1 provides an interpretable expression between
the IG upper bound, the budget m and the observational
constraint δ. In this IG upper bound, v∗ is fixed given x∗

and the kernel K. Then, for a fixed budget m, a more
restrictive observational constraint (i.e., a larger δ) leads to
a smaller εK and M∗, resulting in a lower IG upper bound.
On the other hand, for a fixed δ, a smaller budget m results
in a lower IG upper bound (if the expression in the square
brackets of M∗ changes slowly/sublinearly with m). Put
differently, the learning effectiveness of an agent without
collaboration depends on the budget and its ability to collect
data close to the target.

For an intuition of the proof, let d̃∗ :=
det(ΣT |Xm

)/det(KT ). Then,

IG(T ;Xm) = −1/2 log d̃∗ . (3)

Intuitively, the covariance matrix KT captures the prior
uncertainty at T whilst the covariance matrix ΣT |Xm

,
conditioned on the acquired data Xm, captures the posterior
uncertainty. The ratio d̃∗ naturally arises as an indicator of

learning effectiveness where a smaller ratio implies more
effective learning (i.e., higher IG). Importantly, Eq. (3)
sheds light on the analysis of IG where a larger δ (S cannot
cover T ) leads to a higher det(ΣT |Xm

) and thus a higher
d̃∗, resulting in a smaller (upper bound of) IG(T ;Xm).
Note that this intuition applies to general T (i.e., not only
singleton). However, the non-single T case is fundamentally
more complex (due to additional cross-term covariances)
and has a less interpretable IG upper bound due to the use of
additional proof techniques (e.g., Lemma 4 in Appendix A).
Proposition 2. For general T = {x∗1, . . . , x∗m′}, budget m
and infx∈S,x∗∈T ∥x− x∗∥2 ≥ δ. Define ε1 = ε1(δ,K) :=
supx∈S,x∗∈T K(x, x∗), ε2 := maxp,q K̃

−1
Xm

[p, q], ξoff :=
maxp ̸=q |(AB)[p, q]|, and ξdiag := maxp |(AB)[p, p]|
where A := KXmTK

−1
T KT Xm

, and B := K̃−1.
If max(ξdiag, ξoff) ≤ λmin[KT ]mm

′ε21ε2 where λmin[·]
denotes the minimum eigenvalue of a matrix. Then,

IG(T ;Xm) ≤ 0.5(m− 1)×
log[(1− ξdiag − (m− 1)ξoff)(1− ξdiag + ξoff)]

−1 .

In Proposition 2, the IG upper bound increases linearly
with m but decreases at a logarithmic rate w.r.t. m, so in
general, a larger m leads to a higher upper bound. However,
The dependence on the observational constraint δ is more
complicated: While ε1 is monotonically decreasing in δ,
ε1 does not directly appear in the upper bound but serves
in a condition. Assuming the condition on ξdiag, ξoff holds,
a smaller ε1 implies both ξdiag, ξoff are smaller. While a
smaller ξdiag does lead to a lower IG upper bound, the effect
of a smaller ξoff is worth future exploration. As we focus
on how CAL can benefit the agents instead of the specific
mechanics of single agent AL (e.g., how its observational
constraint affects its IG), we adopt this IG upper bound
thereafter, and defer further investigation to future work.

3.1.2 Collaboration Overcomes these Limitations

Denote the IG upper bound from Proposition 2 as IGi,indiv.
As mentioned previously, Eq. (2) enables the agents to help
each other if their supports and targets complement each
other to achieve a higher IG, formalised via a lower bound
for IGi,m. Moreover, we derive the conditions where the
lower bound for IGi,m ≥ IGi,indiv to show IR.
Lemma 1. For agent i’s target Ti = {x∗1, . . . , x∗m′}, and
X := {x1, . . . , xm} as some acquired data. Let ε̄ :=

maxxl∈X,x∗
l′∈Ti

supx∈X |K(xl, x)−K(x∗l′ , x)|, and K̃X be
defined w.r.t. X as in Sec. 2, then,

IG(Ti;X) ≥ 1/2[−m log(2ε̄+mε̄2−λ)+log det(K̃X)] .3

We highlight that X differs from Xm as X is a hypothetical
data set for analysis purposes, so it does not have the same

3Note that since ε̄ and λ are believed to be small, it is expected
2ε̄+mε̄2 − λ ≤ 1 (though not explicitly guaranteed).
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observational constraint. Lemma 1 characterises a lower
bound of IG w.r.t.Ti via X . Note that K̃X , λ do not depend
on Ti, so whether X is useful to learn about Ti depends on
ε̄ and m. In particular, as ε̄ relates the target to the acquired
data through their kernel values w.r.t. an arbitrary x ∈ X , a
lower ε̄ means X is useful to learn about Ti (i.e., a higher
IG lower bound). In addition, a larger m (more data) gives
a higher IG lower bound.

An important implication of Lemma 1 is that if it is possible
in a collaboration to acquire data similar to X s.t. the IG
lower bound is higher than IGi,indiv, then the collaboration
satisfies IR as agent i has a higher IG than the IG upper
bound without collaboration.

Proposition 3. For i ∈ N , if there is a covering set
Xcover,i ⊆ XN,m for Ti, then IGi,indiv ≤ IG(Ti, XN,m).

The full technical definition of a covering set Xcover,i for Ti
is deferred to Appendix A (Definition 2) because it directly
combines Proposition 2 and Lemma 1 to describe a set of
data that “covers” Ti so that IG(Ti;Xcover,i) ≥ IGi,indiv.
Then, Proposition 3 states that if collaboration enables
the agents to acquire data such that each target Ti can be
covered, then agent i has a higher IG in collaboration than
without collaboration. To see this, by definition of the
covering set, IG(Ti;Xcover,i) ≥ IGi,indiv; since Lemma 1
also implies that more data leads to a higher IG lower bound
and Xcover,i ⊆ XN,m, the result follows. To illustrate,
suppose the supports of the agents are largely different (even
completely disjoint), but importantly these supports “cover”
the targets of some other agents, then the collaboration will
be effective (empirically shown in Sec. 4). In other words,
our method does not require the supports of the agents to be
close or similar.

However, we highlight that the condition that a covering
set exists for each agent i is difficult to explicitly guarantee
during the optimisation in Eq. (2). This difficulty is because
the optimisation objective is specifically designed to provide
a near-optimal performance (Lemma 6 in Appendix A).
This implies a modification to the optimisation to explicitly
guarantee the condition may “break” the near-optimality.
Nevertheless, we empirically observe that the IGs of the
agents improve with collaboration (e.g., Table 1 in Sec. 4),
which verifies the effectiveness of Eq. (2) and Proposition 3.

3.2 Fairness via Maximising Nash Social Welfare

As in Sec. 1, fairness means all agents have equitable IGs,
which (seemingly) requires equitable rates of learning for all
the agents in every iteration. Then, by leveraging Eq. (2)’s
equivalence to maximising a (modified) Nash social welfare
(NSW), we show that Eq. (2) helps achieve equitable rates of
learning for all the agents in an iteration. Finally, we adopt
a global-to-local paradigm to show Eq. (2) helps achieve
equitable final IGs, thus fairness.

From Eq. (2), the rate of learning for agent i in iteration k
is the marginal IG ∆i,k. A more convenient (but equivalent)
form is derived from d̃−1

∗,i,k = exp(2IGi,k) from Eq. (3)
with explicit notational dependence on i, k. Let ρi,k :=

d̃−1
∗,i,k/d̃

−1
∗,i,k−1, then log ρi,k = ∆i,k. Since the IGs before

the collaboration are all 0, then intuitively, if the rates
of learning (or marginal IGs ∆i,k) are equitable in each
iteration, then the final IGs are also equitable:

Claim 1. Let δIG ≥ 0, if for all 1 ≤ k ≤ m,
mmax(

ρi,k

ρj,k
,
ρj,k

ρi,k
) ≤ exp(δIG), then |IGi,m−IGj,m| ≤ δIG.

Therefore, fairness can be achieved if the rates of learning
{ρi,k}i∈N are equitable. To see why ρi,k is more convenient
in showing Eq. (2) achieves fairness, re-write Eq. (2):

argmax
∑

i log(ρi,k)/βi = argmax
∏

i ρ
1/βi

i,k , (4)

which corresponds to maximising the {1/βi}-powered
NSW of ρi,k’s. If all βi’s are equal, it reduces to NSW
(Kaneko and Nakamura, 1979), which is often adopted to
jointly optimise welfare and fairness; the welfare in this case
is formalised via the sum of marginal IGs, and the fairness
is in terms of how equitable the ρi,k’s are. Informally,
NSW favours high total rates of learning but simultaneously
encourages inequality-reducing transfers (Endriss, 2018).
As an example with two agents (fix a k), while a utilitarian
approach may prefer ϱk = (1.201, 1) to ρk = (1.1, 1.1)
as 1.201 + 1 > 1.1 + 1.1, NSW prefers ρk because
1.1 × 1.1 > 1.201 × 1. Importantly, (maximising) NSW
helps ensure that ρi,k’s are equitable as it evaluates the
product instead of the sum (de Clippel, 2010), formalised
by the Pigou Dalton Principle (PDP) (Sakamoto, 2020).
Formally, Eq. (2) satisfies a generalised PDP.

Definition 1 (ε-Pigou Dalton Principle). A social welfare
ordering (SWO) ι satisfies ε-PDP if for any ρ := {ρi; i ∈
N} and ϱ := {ϱi; i ∈ N} (the subscript k is omitted):
∀ε′ > ε ≥ 0, (∃i, j ∈ N, ϱi − ε′ = ρi ≥ ρj = ϱj + ε′) ∧
(∀l ∈ N \ {i, j}, ρl = ϱl) =⇒ ρ ⪰ι ϱ.

This definition formalises the example of two agents and
ρ ⪰ι ϱ means ι (e.g., NSW) prefers ρ to ϱ. As ε → 0,
ε-PDP recovers PDP, so a smaller ε is more desirable.

Lemma 2. Define ζβ̄ := maxi,j∈N :1/βi>1/βj
(βi − βj)/βi

and εi,j := inf{ε′; ε′ > 0∧ρ ∈ [1,∞)n ∧ ρi ≥ ρj ∧ (ρi−
ε′)(ρj + ε′) ≥ (ρiρj)

1+ζβ̄}. Then Eq. (2) satisfies εβ-PDP
with εβ = maxi,j∈N :i ̸=j εi,j .

Lemma 2 characterises the effects of the sharing coefficients
βi on fairness in a single iteration (since the subscript k
is omitted). Recall a smaller εβ is more desirable. The
smallest εβ = 0 is when ∀i, j, βi = βj and (2) reduces to
NSW. Intuitively, it means if all agents are equally willing
to share, then it is easier to achieve fairness. In contrast, if
the differences in sharing coefficients are large (relative to
βi) then the fairness is weaker (εβ is larger). In the extreme
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case, suppose 1/βi → 1, 1/βj → 0, ∀j ̸= i, then IG for
agent i is optimised with highest priority while IGs for other
agents are not explicitly optimised. Empirically, our method
is relatively robust to the differences in βi’s (equitable IGs
even βi = 10βj for some i ̸= j, e.g., Table 1 in Sec. 4).

Global-to-local paradigm. Recall Claim 1 requires
equitable {ρi,k}i∈N “globally” over all iterations 1 ≤ k ≤
m, but Lemma 2 describes a fairness “localised” to the k-th
iteration. To globalise the localised fairness to all iterations,
define an SWO as follows,

ιglobal(ρm) :=
∏

i∈N

∏m
k=1 ρi,k (5)

where ρm = ρ1,1, . . . , ρn,1, . . . , ρ1,m, . . . , ρn,m and ιglobal,
ρm ⪰ιglobal ϱm iff

∏
i∈N

∏m
k=1 ρi,k ≥

∏
i∈N

∏m
k=1 ϱi,k.

It extends Eq. (4) with the additional product over the m
iterations. Consequently, as Eq. (4) helps achieve fairness
in iteration k (Lemma 2), Eq. (5) is used to show a fairness
guarantee over m iterations.

Proposition 4. ιglobal(ρm) in Eq. (5) satisfies εglobal-PDP
where εglobal := max1≤k≤m εβ,k and εβ,k is εβ in Lemma 2
but with an explicit notational dependency on iteration k.

We make two observations. Firstly, the condition (equitable
rates of learning every iteration k) in Claim 1 can be
relaxed to equitable rates of learning in aggregate (i.e.,
the product over iterations). Moreover, we highlight that
optimising an SWO that satisfies the generalised PDP
naturally favours more equitable outcomes/IGs (such as the
previous example with two agents) instead of definitively
guaranteeing equitable outcomes/IGs. Empirically, our
approach, in general, achieves the most equitable final IGs
(e.g., Table 3 in Sec. 4).

Secondly, εglobal = max1≤k≤m εβ,k hints at a possible
limitation: If in some iteration k, the fairness guarantee is
poor (i.e., a large εβ,k) due to the difficulties in optimising
Eq. (2) (e.g., the high computational complexity for exact
optimisation), it results in poor global fairness (i.e., high
εglobal). Similar to the previous discussion of guaranteeing
the condition of a covering set in Proposition 3, addressing
this limitation (e.g., by modifying Eq. (2)) may “break”
the near-optimality of XN,m and is thus challenging.
Empirically, we find that using a heuristic to vary βi
over iterations can address this limitation, but its learning
performance decreases slightly. Hence, how to attain both
is an interesting future direction.

4 EMPIRICAL RESULTS

We empirically demonstrate that our algorithm outperforms
existing baselines w.r.t. learning performance (via IR and
subsequently regression error) and fairness on synthetic
data and three real-world scientific discovery datasets.
Our implementation can be found at https://github.
com/XinyiYS/FAIR.

4.1 Experiment Setup

Datasets. We begin with synthetic data (1- and
2-dimensional) in order to specify the supports and
targets and clearly interpret the outcome via visual
illustrations. Subsequently, we consider several real-world
scientific discovery datasets, including material design (MD)
(Bassman et al., 2018), drug discovery (DD) (Pahikkala
et al., 2015), and differential equation discovery (DED)
(Heinonen et al., 2018). We consider n = 3 agents to
be able to quantitatively and qualitatively verify the results
without losing generality (Sim et al., 2020; Xu et al., 2021b).

MD involves predicting the real-valued band gap of a
synthesised 3-layer material of different atoms. However,
the agents are unable to synthesise certain materials due to
the lack of access to certain atoms (i.e., the observational
constraints) and, thus, unable to learn to predict their
corresponding band gaps. DD involves predicting the
real-valued affinity score between certain drug molecules
and amino acids. Similarly, the agents are unable to
synthesise certain drugs (i.e., the observational constraints)
and thus unable to learn to predict their corresponding
affinity scores. DED requires the agents to learn an
underlying (possibly stochastic) 2-dimensional differential
equation (DE) from the data. However, the agents are unable
to observe the full trajectory, which can span from time
t = 0 to t = 10, but an agent can only observe within
t ∈ [0, 2]. Further, there are 3 separate DE systems denoted
by ODE, VDP, and SDE where the true underlying DE is
deterministic in ODE but stochastic in both VDP and SDE
(i.e., more difficult to learn). Additional details on the GP
implementation are deferred to Appendix B.

These real-world datasets echo the use cases in Sec. 1 where
the agents (researchers) can benefit through collaboratively
performing experiments and sharing the results because
the observational constraints prevent them from learning
effectively (e.g., cannot directly synthesise certain drugs) or
cost-effectively (e.g., expensive to perform a large number
of experiments) by themselves.

Baselines. We consider the following baselines: a
batch AL method (Chen and Krause, 2013) (joint),
entropy maximising acquisition function (Lewis and
Catlett, 1994) (entropy), random acquisition function (rand),
and individual without collaboration for verifying IR
(ind). For our method via Eq. (2), we vary the sharing
coefficients [10, 5, 1], [10, 2, 1], [10, 1, 1], [1, 1, 1] (denoted
as greedy_1-4, respectively) for the synthetic data. The
coefficients for real-world datasets are in Appendix B.
Moreover, inspired by Proposition 4, we include a heuristic
that dynamically changes βi over the iterations k: βi,k+1 ←
0.5[βi,k + exp(IGi,k)/(

∑
i exp(IGi,k))], to investigate the

IG vs. fairness trade-off (denoted as dynamic β). Intuitively,
it sets a higher sharing coefficient βi,k+1 for i if IGi,k is
already relatively high (so i may be more willing to share

https://github.com/XinyiYS/FAIR
https://github.com/XinyiYS/FAIR
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and let other agents improve their IGs).

Implementation of Eq. (2). The exact optimisation over
SN in Eq. (2) can be practically intractable for large n and/or
Si. Therefore, our implementation adopts an approximation
by first drawing a random subset S ′N ⊂ SN and optimising
over S ′N : argmaxx⃗N,k∈S′

N
in Eq. (2). The size of the subset

S ′N is 1000 for synthetic datasets, DD and MD, and reduced
to 10 for DED for computational reasons. Details (including
a theoretical guarantee) are deferred to Appendix B.

Evaluation. For learning performance, (1) the final
average IG as IGm := (1/n)

∑
i IGi,m; (2) on the

real-world datasets, the average (over the agents) of mean
squared errors (MSEs) on Ti: MSE := (1/n)

∑
i MSE(Ti)

where MSE(Ti) is the prediction error for agent i by
performing GP regression on the acquired data and
represents the final learning performance for i. For IG
(MSE), higher (lower) is better. It is used to verify
IR and provide assurance to the agents of performance
improvement with collaboration. For fairness, (1) the
mean-corrected standard deviation (std) of the final IGs:
stdIG := std({IGi,m/IGm}i) (Li et al., 2020),4 and (2) the
std of the individual MSEs: stdMSE := std({MSE(Ti)}i).
For stdIG, stdMSE, lower is better. We report the average
and standard error (SE) over 5 independent trials. Verifying
fairness (i.e., equitable final performance) is important to
ensure that the agents would not be exploited (e.g., sharing
data with others without getting an equitable performance).

4.2 Results

Synthetic data. We examine two settings for synthetic data
(2D) called mismatch and identical. The mismatch setting
considers the mismatch between each agent’s Ti,Si (but
with a match Ti,Sj for i ̸= j) to verify the quid-pro-quo
benefit in Sec. 1 and the example shown in Fig. 1. The
outcome from the collaboration is shown in Fig. 2. In both
types of collaboration, the agents “share” their information
to improve the learning effectiveness: Their jointly acquired
observations can cover their respective targets significantly
better than without collaboration as in Fig. 1 (right). The
identical setting is when all agents have the (approximately)
same Ti, and if they have sufficient budget, each i can learn
about Ti reasonably well. However, the agents have limited
budgets by themselves (in this experiment m = 5), so
they can benefit from sharing data to save the high cost
of performing more experiments to collect data individually
(the cost-saving benefit in Sec. 1).

Table 1 shows that our method performs best w.r.t. learning
(i.e., high IGm) and fairness (i.e., low stdIG). In
general, the high learning performance of our method
(i.e., greedy_1-4) can be attributed to the near-optimality
guarantee (Lemma 6 in Appendix A). Though the joint

4The fairness metric is not included for the ind baseline.

Figure 2: In the same setup as Fig. 1. Left: The agents
collaborate by optimizing jointly (Chen and Krause, 2013).
Right: Our method following Eq. (2).

baseline achieves comparable performance in the mismatch
setting, it underperforms our method in the identical setting
and subsequently on real data.

From Proposition 4, one might expect that greedy_4 (i.e.,
∀i, j, βi = βj) achieves the best fairness, but it is not the
case for the mismatch setting. The reason is that the targets
Ti ̸= Tj , which can imply the inherent difficulties to learn
about the different targets. Hence, having the same sharing
coefficients as in greedy_4 might not guarantee the best
fairness. Instead, a more careful way to update the sharing
coefficients according to this difference (to account for the
difficulties of learning about different Ti’s) can lead to better
fairness by dynamic β. In contrast, in the identical setting
where Ti and Tj are very similar, setting the same sharing
coefficients does achieve the best fairness.

Table 1: Learning performance (IR) and fairness (std) for
Synthetic-2D mismatch (left) and identical (right). Average
(SE) over 5 independent trials is reported (in brackets).

Setting mismatch identical

Baselines IGm stdIG IGm stdIG

ind 42.130 (3.639) N.A. 20.537 (4.777) N.A.

rand 123.407 (2.739) 0.031 (0.022) 68.963 (0.413) 0.008 (0.006)
entropy 99.576 (2.314) 0.033 (0.023) 32.536 (1.088) 0.047 (0.033)
joint 143.570 (3.353) 0.033 (0.023) 71.093 (0.621) 0.012 (0.009)

greedy_1 133.613 (6.105) 0.065 (0.046) 81.847 (3.171) 0.055 (0.039)
greedy_2 138.877 (1.799) 0.018 (0.013) 81.884 (3.035) 0.052 (0.037)
greedy_3 140.196 (2.312) 0.023 (0.016) 82.423 (1.371) 0.024 (0.017)
greedy_4 143.726 (4.202) 0.041 (0.029) 83.346 (0.402) 0.007 (0.005)
dynamic β 139.623 (0.693) 0.007 (0.005) 81.876 (0.679) 0.012 (0.008)

Real data. For MD and DD, Tables 2 and 3 show
that our method performs the best in terms of both
learning performance (IGm is higher by a considerable
margin) and fairness (low stdIG and stdMSE). In addition,
while dynamic β achieves the lowest stdIG for both MD
and DD, it underperforms our method in terms of IGm

(and subsequently MSE). This can be attributed to
the near-optimality guarantee of Eq. (2) (Lemma 6 in
Appendix A), which dynamic β does not provide.

On the most complicated data DED, Tables 4 and 5
show that collaboration (regardless of the baseline) results
in a significant improvement since all baselines perform
much better than the individual. Results for SDE are
deferred to Appendix B. This implies that collaboration
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Table 2: Learning performance (IG, MSE) and fairness
evaluation (stds) for MD. Average (SE) over 5 independent
trials is reported (in brackets).

Baselines IGm stdIG MSE stdMSE

ind 51.708 (7.369) N.A. 0.228 (0.001) N.A.

rand 171.949 (7.276) 0.060 (0.042) 0.201 (0.018) 0.044 (0.004)
entropy 99.825 (2.176) 0.031 (0.022) 0.212 (0.016) 0.028 (0.006)
joint 182.095 (7.227) 0.056 (0.040) 0.209 (0.026) 0.040 (0.004)

greedy_1 215.673 (29.651) 0.194 (0.137) 0.222 (0.021) 0.031 (0.005)
greedy_2 220.073 (31.980) 0.206 (0.145) 0.262 (0.022) 0.054 (0.009)
greedy_3 221.808 (32.490) 0.207 (0.146) 0.226 (0.027) 0.027 (0.007)
greedy_4 223.263 (14.591) 0.092 (0.065) 0.173 (0.024) 0.035 (0.012)
dynamic β 215.206 (1.041) 0.007 (0.005) 0.255 (0.036) 0.046 (0.014)

Table 3: Learning performance (IG, MSE) and fairness
evaluation (stds) for DD. Average (SE) over 5 independent
trials is reported (in brackets).

Baselines IGm stdIG MSE stdMSE

ind 1.577 (0.068) N.A. 0.042 (0.000) N.A.

rand 21.430 (6.594) 0.435 (0.308) 0.037 (0.005) 0.032 (0.007)
entropy 0.238 (0.068) 0.407 (0.288) 0.057 (0.000) 0.055 (0.000)
joint 56.872 (17.508) 0.435 (0.308) 0.026 (0.004) 0.020 (0.004)

greedy_1 65.174 (21.093) 0.458 (0.324) 0.033 (0.006) 0.029 (0.007)
greedy_2 65.617 (20.584) 0.444 (0.314) 0.022 (0.004) 0.022 (0.006)
greedy_3 65.207 (20.559) 0.446 (0.315) 0.024 (0.004) 0.018 (0.004)
greedy_4 66.626 (22.223) 0.472 (0.334) 0.022 (0.002) 0.017 (0.004)
dynamic β 54.261 (12.927) 0.337 (0.238) 0.034 (0.006) 0.028 (0.007)

is more beneficial for more challenging learning tasks
and thus encourages collaboration among the agents (i.e.,
scientists/researchers). Our method, in particular, achieves
the best learning performance in terms of IGm and the
best/competitive performance in terms of MSE. The highest
IG does not guarantee the lowest MSE because IG does not
include the true regression labels, but MSE does.

Table 4: Learning performance (IG, MSE) and fairness
evaluation (stds) for DED-ODE. Average (SE) over 5
independent trials is reported (in brackets).

Baselines IGm stdIG MSE stdMSE

ind -6.617 (0.393) N.A. 7.270 (0.198) N.A.

rand 2.011 (1.267) 0.891 (0.630) 4.506 (0.163) 2.342 (0.207)
entropy 0.832 (0.383) 0.651 (0.460) 4.116 (0.132) 2.524 (0.091)
joint 2.888 (1.057) 0.517 (0.366) 5.551 (0.803) 2.190 (0.465)

greedy_1 3.349 (0.484) 0.204 (0.144) 4.415 (0.070) 2.230 (0.238)
greedy_2 3.487 (0.480) 0.195 (0.138) 4.349 (0.238) 2.136 (0.172)
greedy_3 3.175 (0.374) 0.167 (0.118) 4.509 (0.189) 2.264 (0.224)
greedy_4 3.706 (0.877) 0.335 (0.237) 4.234 (0.032) 2.629 (0.053)
dynamic β 3.107 (0.551) 0.251 (0.177) 4.321 (0.103) 2.438 (0.130)

Conveniently, DED admits a visualisation in Fig. 3 to
illustrate how and why collaboration is beneficial. Fig. 3
compares the learned trajectory w.r.t. the 1st dimension of
the true DE with (left) and without collaboration (right).
Intuitively, as the agent can only observe a partial trajectory
(from a limited time window), it is unable to effectively
learn the true DE (right). In contrast, through collaboration

Table 5: Learning performance (IG, MSE) and fairness
evaluation (stds) for DED-VDP. Average (SE) over 5
independent trials is reported (in brackets).

Baselines IGm stdIG MSE stdMSE

ind -8.843 (0.050) N.A. 6.796 (0.555) N.A.

rand 2.855 (0.851) 0.432 (0.298) 4.974 (1.254) 2.457 (0.895)
entropy 2.775 (0.839) 0.428 (0.303) 4.473 (0.499) 1.860 (0.430)
joint 2.786 (0.872) 0.443 (0.313) 3.889 (0.299) 1.486 (0.345)

greedy_1 2.723 (0.845) 0.439 (0.310) 4.070 (0.369) 2.004 (0.511)
greedy_2 2.750 (0.822) 0.423 (0.299) 4.284 (0.140) 1.470 (0.448)
greedy_3 2.823 (0.877) 0.440 (0.311) 3.961 (0.367) 1.780 (0.357)
greedy_4 2.899 (0.871) 0.425 (0.300) 4.198 (0.320) 1.841 (0.355)
dynamic β 2.833 (0.855) 0.427 (0.302) 3.831 (0.247) 1.335 (0.487)

(i.e., sharing of data/observations over the full trajectory of
the DE), the agent can effectively learn about the true DE
(i.e., the sampled orange trajectories match the true VDP in
blue). An illustration over the entire 2-dimensional vector
field is deferred to the Appendix B.

Figure 3: Left (right) shows sampled trajectories from the
learnt GP of collaboration (agent 3 observing time t ∈ [6, 8]
w/o collaboration) w.r.t. the 1st dimension x1 of the DE.

Key takeaways. Our empirical settings closely follow those
motivated in Sec. 1 to reflect the observational constraints
for agents due to (i) limited resources/budgets and/or (ii)
no access to certain raw materials/geographical locations,
etc. Our method is shown to enable effective collaborations
by assuring the agents of better performance (higher IGm

and lower MSE) than without collaboration for IR, and
importantly, equitable performance (through low stdIG and
stdMSE) for fairness. Empirically, dynamic β can provide
better fairness by trading off some performance. It is
interesting to investigate this further in the future.

5 RELATED WORK

Active learning. In addition to scientific discovery,
the information-theoretic AL framework has also been
applied to deep learning to leverage structural properties
of neural networks (Gal et al., 2017; Ash et al., 2020).
Subsequently, some existing works develop the batch
version of AL (Chen and Krause, 2013) where instead
of acquiring one data point per iteration, these methods
acquire a batch of data points. However, typical batch
AL methods have limited effectiveness in guaranteeing
IR or fairness (shown in Sec. 4). Some other batch AL
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methods (Kirsch et al., 2019; Gal et al., 2017) specifically
target the classification problem, whereas we adopt the
GP to leverage the closed-form expressions for IGs for
regression. Separately, (Ash et al., 2020; Citovsky et al.,
2021) have a different setting with homogeneous supports
(our is heterogeneous) and a given parametric model, often
a neural network (we do not assume such as model). Hence,
their method is not directly comparable with ours.

Collaborative learning and data sharing. There have
been an increasing number of recent works on the topic
of collaborative (machine) learning. Sim et al. (2020)
adopt a Bayesian perspective and facilitate collaborative
learning by evaluating the reduction in entropy from
including an agent’s data. Hoang et al. (2021) propose
a model-fusion method to enable collaborative learning
from agents, each with a trained machine learning model
(but without data). Xu et al. (2021a); Li et al. (2020,
2021) investigate the federated learning setting as a
collaborative learning framework. Tay et al. (2022) study the
unsupervised learning setting and propose a mechanism to
incentivise the agents to share data/collaborate. Agussurja
et al. (2022) consider the Bayesian inference framework
and design an (asymptotically) Shapley-fair 2-agent data
sharing/collaborative learning algorithm. In contrast,
the motivating use case for our work (i.e., scientific
discovery) and the setting (i.e., active learning in the
information-theoretic framework) have not previously been
explored in existing works.

In this line of work on collaborative learning, a notion
of fairness is often emphasised. Sim et al. (2020);
Xu et al. (2021a); Tay et al. (2022); Agussurja et al.
(2022); Nguyen et al. (2022) all adopt the formalization
of fairness from the well-known Shapley value (Shapley,
1953) from cooperative game theory. Intuitively, this
notion of fairness encourages a sense of proportionality
between what each agent shares/contributes and what each
agent receives. In contrast, Sim et al. (2021); Li et al.
(2020, 2021) champion an egalitarian notion of fairness
by (approximately) equalising what each agent receives to
reduce inequality and thus achieve fairness. Our work also
shares this inequality-reducing perspective as the notion
of fairness by exploiting a problem-specific structure that
enables the maximisation of Nash social welfare. The use of
Nash social welfare in collaborative learning has not been
previously investigated.

Another distinction from some existing works is that
our method explicitly considers the welfare, in addition
to fairness, which in this case refers to the learning
performance of the agents after the collaboration. In doing
so, our work additionally guarantees individual rationality
(Sim et al., 2020; Tay et al., 2022). Intuitively, it means
the agents can achieve better learning performance with
collaboration than without.

6 DISCUSSION AND CONCLUSION

We propose collaborative active learning formalised
by a coordinated acquisition function to enable
the agents (researchers) to collaborate during data
collection. By leveraging the Gaussian process and
an information-theoretic approach, we characterise the
conditions for individual rationality (i.e., the information
gain of an agent improves in collaboration). By utilising a
modified Nash social welfare to satisfy a generalised Pigou
Dalton Principle, we show that our coordinated acquisition
function helps achieve fairness (i.e., the information gains of
the agents are equitable). We identify that the coordinated
acquisition function, which is designed to achieve a
near-optimal performance, can be somewhat restrictive (i.e.,
difficult to explicitly guarantee the covering set condition
and/or address the fairness limitation). Nevertheless, our
experimental results show that our approach outperforms
existing baselines in achieving both individual rationality
and fairness. For our future work, we plan to generalise our
approach to cater to non-myopic active learning (Cao et al.,
2013; Hoang et al., 2014; Ling et al., 2016; Low et al., 2009,
2008, 2011), level set estimation (Nguyen et al., 2021),
and active learning of a multi-output GP model (Zhang
et al., 2016), and improve its scalability with the use of
distributed/decentralized (Chen et al., 2012, 2013a,b, 2015;
Hoang et al., 2016, 2019; Low et al., 2015; Ouyang and
Low, 2018), online/stochastic (Hoang et al., 2015, 2017;
Low et al., 2014; Xu et al., 2014; Yu et al., 2019a), or
deep (Yu et al., 2019b, 2021) sparse GP models to represent
the belief of the unknown ground truth function efficiently.
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A PROOFS AND DERIVATIONS

A.1 Useful Lemmas - Existing Results

Lemma 3 (Upper bound on matrix quadratic norm using eigenvalues). Let A ∈ Rn×n and A⊤ = A and λmin, λmax

denote its maximum and minimum eigenvalues. Then,

∀u ∈ Rn, λminu
⊤u ≤ u⊤Au ≤ λmaxu

⊤u.

The upper- and lower bounds are tight because they can be realised by the corresponding eigenvectors to λmax and λmin,
respectively.

Proof. Since A is real and symmetric, it is orthogonally diagonalisable. Denote its orthonormal eigenvectors as [µ1, . . . , µn]
with corresponding eigenvalues as [λ1, . . . , λn] (i.e., Aµi = λiµi). Define matrix P such that its i-th column is µi and
matrix D as diag([λ1, . . . , λn]) so that its i-th diagonal entry is λi. Then, we have A = PDP⊤ and P⊤P = I.

For some u ∈ Rn, let v = P⊤u, we have

v⊤v = (P⊤u)⊤P⊤u = u⊤P⊤Pu = u⊤u

and

u⊤Au = u⊤PDP⊤u = (P⊤u)⊤D(P⊤u) = v⊤Dv =

n∑
i=1

λiµ
2
i .

W.l.o.g., assume λ1 ≥ λ2 ≥ . . . λn, then∑
i

λnµ
2
i ≤

∑
i

λiµ
2
i ≤

∑
i

λ1µ
2
i =⇒ λnv

⊤v ≤
∑
i

λiµ
2
i ≤ λ1v⊤v

=⇒ λnu
⊤u ≤ u⊤Au ≤ λ1u⊤u.

Lemma 4 (Bounds on the determinant of an approximate identity matrix (Brent et al., 2015, Theorem 1,2)). For a
matrix A = I − E ∈ Rt×t such that |Ei,j | ≤ ξoff, i ̸= j and |Ei,i| ≤ ξdiag, then

det(A) ∈ [(1− ξdiag − (t− 1)ξoff)(1− ξdiag + ξoff)
t−1, ((1 + ξdiag)

2 + (t− 1)ξ2off)
t/2]

where the lower bound requires a condition ξdiag + ξoff(t− 1) ≤ 1 and the lower bound is sharp (best possible).

Lemma 5 (Matrix determinant lemma). For an invertible square matrix A ∈ Rn×n and U, V ∈ Rn×m, we have

det(A+ UV ⊤) = det(Im + V ⊤A−1U) det(A).

A.2 Useful Lemma - Our Result

Lemma 6 (Near-optimality of a monotonic submodular function via the greedy heuristic). The solution to Eq. (2) has∑
i IGi,m/βi ≥ (1− 1/e)maxXN,m

∑
i IGi,m/βi.

Proof. The proof follows from (Krause et al., 2008, Theorem 7) by noting
∑

i IGi,k/βi is monotone submodular because
each individual IGi,k is monotone submodular 1/βi > 0. In general, a concave transformation of a monotone submodular
function preserves monotonicity and submodularity. In this case, a non-negative linear combination using 1/βi of submodular
functions is a concave transformation.

Each individual IGi,k is monotone submodular because of the conditional independence assumption between (disjoint
subsets of Si) and T by (Krause and Guestrin, 2005, Corollary 4).
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Note on the cumulative aspect of Lemma 6. Similar to (Krause et al., 2008, Theorem 7), Lemma 6 provides a cumulative
performance guarantee in a sense for this greedy heuristic achieves a near-optimal factor of 1− 1/e for each 1 ≤ k ≤ m:∑

i IGi,k/βi ≥ (1 − 1/e)maxXN,k

∑
i IGi,k/βi. This cumulative guarantee is particularly useful in practice if (i) the

outcome of each iteration k is important. For instance, each iteration takes a long time (e.g., due to long experimentation
time), and after each iteration k, the collected data XN,k so far is used for analysis, learning another machine learning
model for inference (Kabir and Wong, 2022), then the quality of XN,k is important for each iteration k, instead of only
the final iteration; (ii) the budget m is not known a priori. For instance, a research project has a fixed timeline (e.g., to
synthesise a vaccine/drug), but the time it takes to collect data (by performing experiments) is indeterminate beforehand, so
the budget m might not be known. Then, it is important to ensure the quality of the collected data XN,k collected so far
since it is not guaranteed there is sufficient time for the next iteration. Such advantages can further highlight the advantage
of the cumulative aspect of this performance guarantee. For empirical verifications, we perform experiments to evaluate the
cumulative performance in Appendix B (e.g., Fig. 6).

A.3 Proofs of Propositions 1 and 2

We first describe the high-level idea applicable to both singleton and general T and then present their respective derivations.

IG represents the reduction in uncertainty about T through some acquired data where, if the acquired data are close (i.e., by
Euclidean distance) to T , then IG is high. Consequently, if these data are far (constrained by the support, which is far from
T ), then there is an upper bound (limit) on IG that depends on this distance between the support and T (which also depends
on the kernel and its related hyperparameters).

Proof of Proposition 1. Define the kernel operation k∗ := K(x∗, x∗), which is equal to the prior variance v∗ on x∗ by
definition of GP. Let posterior variance on a single target x∗ be σ2

m(x∗) (from the acquired data Xm ⊆ S). Then,

IG(T ;Xm) := H[x∗]−H[x∗|Xm]

=
1

2
log v∗ +

1

2
log(2πe)−

[
1

2
log σ2

m(x∗) +
1

2
log(2πe)

]
=

1

2
log v∗ −

1

2
log σ2

m(x∗)

≤ 1

2
log v∗ −

1

2
log(k∗ −M∗)

(6)

where H[·] is differential entropy and the last inequality will be derived subsequently. Intuitively, if observing Xm reduces
σ2
m(x∗) (i.e., having a low conditional entropy H[x∗|Xm]), then we are more certain about x∗, which leads to a larger IG.

Now we analyse the expressions in Eq. (6) and their relationships with Xm and S, T . First, v∗ only depends on the prior on
x∗ (i.e., the specific GP instance including the choice for kernel and its hyperparameters and the noise variance λ), and is
independent on Xm so we can treat it as a constant for analysing the effect of Xm on IG. We can obtain the following lower
bound on σ2

m(x∗) by using the assumed condition on the relationship between x∗ and Xm (or S): infx∈S ∥x− x∗∥2 ≥ δ
which implies minx∈Xm

∥x− x∗∥2 ≥ δ. It means agent i is constrained in the data acquisition capabilities and unable to
acquire data arbitrarily close to the target x∗. Recall that a low posterior variance σ2

m(x∗) means agent i is certain about the
target x∗ and learning is effective, so a lower bound on σ2

m(x∗) translates to an upper bound on IG/learning effectiveness.

Precisely, define km(x∗) := {K(xl, x∗)}xl∈Xm
,

σ2
m(x∗) ≜ K(x∗, x∗)− km(x∗)⊤K̃−1

Xm
km(x∗)

= k∗ − km(x∗)⊤K̃−1
Xm

km(x∗)

≥ k∗ − λmax[K̃
−1
Xm

]× km(x∗)⊤km(x∗)

= k∗ − λmin[K̃Xm
]× km(x∗)⊤km(x∗)

≥ k∗ −

tr(K̃Xm)− (m− 1)

(
m det(K̃Xm)

tr(K̃Xm
)

)1/(m−1)
× (mε2K)︸ ︷︷ ︸

M∗

where λmax[·] finds the maximum eigenvalue of a matrix (similarly for λmin). The two terms in M∗ are derived respectively
next.
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The third line (first inequality) is due to Lemma 3. The fourth line is due to the relationship between eigenvalues of a squared
matrix and those of its inverse (i.e., λi ̸= 0 is a valid eigenvalue for a matrix A iff 1/λi is a valid eigenvalue for A−1) and
all eigenvalues for the positive definite K̃Xm

are positive. Next, we derive and interpret the two terms in M∗ in the last line,
respectively.

The first term is an upper bound on the smallest eigenvalue of a positive (semi-)definite hermitian matrix K̃Xm
(Kumar,

1984). We note the following implication. If the variance of the observation noise λ is larger, this upper bound on λmin) is
looser (larger) because the trace increases. Consequently, the lower bound for σ2

m(x∗) is looser (smaller), and the upper
bound on IG is looser (larger). It can lead to an overly optimistic estimate of the learning effectiveness. In other words, if
the observation noise is large, the IG can be over-estimated.

The second term is by exploiting the (decreasing) monotonicity of K(x∗, ·) in ∥x∗ − ·∥2. Explicitly using the observational
constraint, define εK = εK(x

∗) := supx∈S K(x∗, x). Then, km(x∗)⊤km(x∗) =
∑

x∈Xm
K(x∗, x)2 ≤ tε2K. Given a

specific kernel such as squared exponential, we can derive the monotonic relationship between K(x∗, ·) and ∥x∗ − ·∥2
to give a specific expression of εK using δ (and other kernel-specific hyperparameters). This analysis sheds light on a
fundamental limit to learning effectiveness if all acquired data (or the entire support) are outside of the δ-ball centred at x∗.
In other words, if the agents are constrained by their resources (so that they cannot observe arbitrarily close to x∗), there is
an upper bound on the effectiveness of learning (i.e., IG).

Proof of Proposition 2. Substitute Eq. (8) into Eq. (1),

IG(T ;Xm) =
1

2
log detΣT −

1

2
log(det(ΣT )× d̃∗) = −

1

2
log d̃∗ .

This greatly simplifies the derivation to instead focus on a single term which is a (log) determinant.

Focusing on the matrix (whose determinant is denoted as d̃∗) Im − KXmTK
−1
T KT XmK̃

−1
Xm

, we can provide an upper
bound on IG(T ;Xm) by providing a lower bound on d̃∗, which is achieved by bounding KXmTK

−1
T KT Xm︸ ︷︷ ︸
A

K̃−1
Xm︸ ︷︷ ︸
B

to be

close to the zero matrix 0m via |AB[p, p]| ≤ ξdiag and |AB[p, q]| ≤ ξoff, p ̸= q for some small ξdiag, ξoff > 0.

Apply Lemma 4 for a sharp lower bound,

d̃∗ ≥ (1− ξdiag − (t− 1)ξoff)(1− ξdiag + ξoff)
t−1 . (7)

Now for ξdiag, ξoff. Denote ψ⊤
p := [K(xp, x∗1), . . . ,K(xp, x∗m′)] for convenience. Then,

AB[p, q] ≜ ⟨rowA(p), colB(q)⟩
= ⟨[ψ⊤

p K
−1
T ψ1, . . . , ψ

⊤
p K

−1
T ψm], colB(q)⟩

= ⟨[ψ⊤
p K

−1
T ψ1, . . . , ψ

⊤
p K

−1
T ψm], [K̃−1

Xm
[q, p], . . . , K̃−1

Xm
[q,m]⟩

=

m∑
k=1

ψ⊤
p K

−1
T ψk × K̃−1

Xm
[q, k]

≤
m∑

k=1

λmax[K
−1
T ]ψ⊤

p ψk × K̃−1
Xm

[q, k] (Lemma 3)

=

m∑
k=1

λmin[KT ]ψ
⊤
p ψk × K̃−1

Xm
[q, k] (Inverse eigenvalues for a positive definite matrix)

= λmin[KT ]

m∑
k=1

ψ⊤
p ψk × K̃−1

Xm
[q, k]

= λmin[KT ]

m∑
k=1

(

m′∑
l=1

K(xp, x∗l )×K(xk, x∗l ))× K̃−1
Xm

[q, k]

≤ λmin[KT ]

m∑
k=1

(

m′∑
l=1

ε1 × ε1)× K̃−1
Xm

[q, k] (Using the assumption supx,x∗ K(x, x∗) ≤ ε1)
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= λmin[KT ]

m∑
k=1

(mε21)× K̃−1
Xm

[q, k]

= λmin[KT ]m
′ε21

m∑
k=1

K̃−1
Xm

[q, k]

≤ λmin[KT ]m
′ε21

m∑
k=1

K̃−1
Xm

[q, k] (Using the assumption maxj,k K̃
−1
Xm

[q, k] ≤ ε2)

= λmin[KT ]m
′ε21

m∑
k=1

ε2

= λmin[KT ]mm
′ε21ε2 .

For generality, use a uniform bound max(ξdiag, ξoff) ≤ λmin[KT ]mm
′ε21ε2. Substituting this into Eq. (7) completes the

proof.

For a non-vacuous bound, as IG is inherently upper bounded by the prior uncertainty (entropy),

IG(T ;Xm) ≤ 1/2min[log |ΣT |+m log(2πe), (1−m) log((1− ξdiag − (t− 1)ξoff)(1− ξdiag + ξoff))] ,

but this is not necessary for our other analysis.

The existence of ε1 is due to the monotonicity of kernel K in ∥x− x∗∥2 (i.e., as δ increases ε1 monotonically decreases)
and it can be explicitly derived w.r.t. a specific choice of kernel. For example, for the radial basis kernel Krbf(∥x− x′∥2) :=
exp(−∥x − x′∥22/(2σ2)), ε1(δ,Krbf) = exp(−δ2/(2σ2)). The value of ε2 represents the largest (regularised) partial
correlation between any two observations xq, xw, conditioned on all the other observations xp, p ̸= q, p ̸= w. It is small
because typical active learning methods rarely acquire extremely close data (in Euclidean distance), and as a result, any two
different data have small partial correlations (conditioned on other data).

A.4 Derivation of Eq. (3)

Proof. Apply Lemma 5 to det(ΣT |Xm
) in IG in Eq. (1),

d̃∗ := det(ΣT |Xm
)/ det(KT ) = det(It −KXmTK

−1
T KT Xm

K̃−1
Xm

) , (8)

combined with KT = ΣT (by definition),

IG(T ;Xm) = 1/2[log detΣT − log(det(ΣT )× d̃∗)] = −1/2 log d̃∗ .

Observations based on d̃∗ and IG upper bound for general T . Based on Eq. (8) and Eq. (3), we make two observations:
(i) in Eq. (1), IG(T ;Xm) ≥ 0, and since ΣT = KT , it implies d̃∗ ∈ [0, 1] where d̃∗ = 0 corresponds to exact learning (i.e.,
IG is maximum) and d̃∗ = 1 corresponds to no learning at all (i.e., IG(T ;Xm) = 0). To see its implication, suppose perfect
learning capabilities with no observation noise, i.e., λ = 0 (so K̃Xm

= KXm
) and perfect acquisition of data T = Xm,

then we have
Im −KXmTK

−1
T KT Xm

K̃−1
Xm

= Im −KTK
−1
T KTK

−1
T = 0m

which gives d̃∗ = 0 (exact learning).5

5In this scenario, if we substitute 0m back into Eq. (1), it becomes undefined since the determinant is 0 and log 0 is undefined. This is
due to the fact that any covariance matrix (e.g., ΣT |Xm ) needs to be positive (semi-)definite and, in particular invertible. This requirement
is violated in exact learning since observing Xm without any noise already completely tells us about T = Xm. We describe this special
and extreme case solely for illustrative purposes (to describe exact learning). Our following analysis will stipulate to ΣT |Xm being
invertible and so log detΣT |Xm in Eq. (1) is always well-defined.
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(ii) The term det(KT ) is independent of Xm, so we focus on d̃∗ for analyzing learning effectiveness w.r.t. Xm (and S, T ).
Its implication is: Suppose there is noise i.e., λ > 0 but with perfect acquisition of data T = Xm, then

Im −KXmTK
−1
T KT Xm

K̃−1
Xm

= Im −KXM
K̃−1

Xm

and its determinant d̃∗ is small (i.e., learning is effective) if the noise variance λ is small.

These two illuminating observations are under ideal conditions: perfect/noise-free observation and/or perfect data acquisition
capability T = Xm. In practice, perfect (noise-free) observation is improbable (especially for physical, (bio)chemical
and material science experiments), which is often modelled via an additive (zero-mean) Gaussian noise with variance λ
Rasmussen and Williams (2006) as mentioned in §2. More importantly, the main motivation for CAL is that each agent does
not have perfect acquisition (i.e., infx∈S,x∗∈T ∥x− x∗∥2 ≥ δ).

Comparative discussion on explicitly specifying targets vs. learning about f in general. In our setting, AL is used
to collect data to learn about (the functional mapping) on some explicitly specified target T . In particular, the functional
mapping is w.r.t. the ground truth function f , the observations of which contain an additive zero-mean Gaussian noise with
variance λ, as in Sec. 2.

One primary reason for this setting is so that the IG w.r.t. an explicitly specified target T has a closed-form expression
in GP. This enables the subsequent analysis and derivations of individual rationality and fairness (e.g., Proposition 3 and
Proposition 4).

We note that while the practical use cases investigated in our experiments, such as the material design and drug discovery,
might also be addressed with an alternative setting: each agent is interested in learning the functional mapping, i.e., f itself
instead of T , it may not enable analysis with closed-form expressions.6 In addition, to learn about f itself, it means both
the input space and output domain of f may need to be fixed (e.g., the output domain for regression is R). However, our
setting circumvents this need to explicitly fix the output domain of f as the IG calculation (and subsequently Eq. (2)) only
requires the input space X to be fixed (and a suitable kernel is available). This implies our method is more flexible. For
instance, in our experiments, while the output space of f is R for DD and MD, the output space of f for DED is R2 as it is
w.r.t. a 2-dimensional differential equation (where we have used the vector-valued operator kernel (Heinonen et al., 2018)).
In contrast, it may be challenging to apply a method which assumes the output space of the f to be R to another problem
where the output space is different such as R2.

Lastly, our setting of explicitly specified targets can also be used to address aforementioned use cases via a perspective of
a discrete approximation of the continuous input space.7 In particular, learning about the function f , it is equivalent to
learning the functional values f(x) over the entire input space ∀x ∈ X . However, for a continuous input space X , it is not
tractable in practice. Therefore, a discretisation of X is often adopted, and T can be viewed as such discretisation, except it
can additionally encode an agent’s preference about which part of the input space. In other words, if the agent wants to learn
about the functional values of the entire input space in general, it can specify its T to contain uniformly “spread out” input
locations in X . An example of this is investigated via the DED dataset, where each agent is interested in learning about the
entire underlying differential equation through GP regression as the modelling framework. In this case, their respective
(similar but different) targets are over the entire input space (i.e., the time dimension). We highlight that this is to show our
setting can address the use-cases where the agents are interested in the functional mapping in general by specifying their
targets accordingly, and our work does not discuss how such targets are specified, but treats them as given.

In summary, our setting of explicitly specifying the targets has the following advantages over learning about the function f
in general: (1) it enables closed-form expressions for IGs and tractable analysis; (2) it is more flexible in not having to fix
the output space of f ; and (3) it can be seen as a discrete approximation of learning about the function f in general.

A.5 Proof of Lemma 1

Proof. Given a set X of m data, recall the expression for IG(T ;X),

IG(Ti;X) = −1/2 log det(Im −KXTK
−1
T KT XK̃

−1
X ) ,

and define auxiliary matrices
D := KXT −KT , E := KT − K̃ + λI .

6Daxberger and Low (2017) provides a formulation (i.e., precise expression of IG w.r.t. the function f itself) which is amenable to the
alternative: directly learning f instead of some explicitly specified targets. It would be an interesting future direction.

7Note that if the input space itself is discrete, then our setting follows naturally where T is a subset of the discrete input space.
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Substitute the auxiliary matrices into Im −KXTK
−1
T KT XK̃

−1
X ,

Im −KXTK
−1
T KT XK̃

−1
X = (KT +D)K−1

T (KT +D)K̃−1
X

= (KT + 2D +D2)

= I+ (2D +D2 + E)K̃−1
X .

Consequently,

IG(T ;X) = −1

2
log det(I− I+ (2D +D2 + E)K̃−1

X

= −1

2
log det((2D +D2 + E)(K̃−1

X ))

= −1

2
log(det((2D +D2 + E) det(K̃−1

X )) . (9)

Bound each diagonal entry of the matrix (2D +D2 + E) to bound its trace and determinant:

(2D +D2 + E)[pp] ≜ 2D[pp] +D2[pp] + E[pp]

= 2 (K(xp, x∗p)−K(x∗p, x∗p))︸ ︷︷ ︸
D[pp]

+

m′∑
q=1

(K(xp, x∗q)−K(x∗p, x∗q))2︸ ︷︷ ︸
D2[pp]

+K(xp, x∗p)−K(xp, xp)− λ︸ ︷︷ ︸
E[pp]

= K(xp, x∗p)−K(x∗p, x∗p) +K(xp, x∗p)−K(xp, xp)− λ+

m′∑
q=1

(K(xp, x∗q)−K(x∗p, x∗q))2

≤ ε̄+ ε̄+mε̄2 − λ .

Use the result det(A) ≤ ( tr(A)
m )m, A ∈ Rm×m,

det(2D +D2 + E) ≤ (2ε̄+mε̄− λ)m .

Substituting this back into Eq. (9) completes the proof.

A.6 Proof of Proposition 3

Definition 2 (Covering Set for Ti). For target Ti = {x∗1, . . . , x∗m′}, a covering set Xcover,i = {x1, . . . , xm} is s.t.

ε̄ := max
xl∈Xcover,i,x∗

l′∈Ti

sup
x∈X
|K(xl, x)−K(x∗l′ , x)| ≤

λ+ m′

√√√√ det K̃X

ε
(1−m)/(1−1/e)
diag

+
1

m′2

1/2

− 1

m′

where εdiag := (1− ξdiag − (m− 1)ξoff)(1− ξdiag + ξoff) and ξdiag, ξoff are defined in Proposition 2.

By combining Proposition 2 and Lemma 1, Definition 2 describes the condition on the set Xcover,i of data (i.e., covering set)
that can provide a higher IG than IGi,indiv, which leads to Proposition 3.

Proof of Proposition 3. This is by directly substituting the definition of a covering set and verifying the following
inequalities.

IGi,indiv ≤ (1− 1/e)IGcover ≤ (1− 1/e)IG(Ti;D∗
N,m) ≤ IG(Ti;DN,m) (10)

where IGcover := IG(Ti;X) and IGi,indiv denotes the IG upper bound for without collaboration from Proposition 2.

This is a constructive proof: substitute the values of ε̄ to verify the first inequality in Eq. (10). Lemma 1 is used.

The second inequality is due to the definition of D∗
N,m which is optimal so that IGcover ≤ IG(Ti;D∗

N,m) and the last
inequality is due to Lemma 6.
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A.7 Derivation of Claim 1

Derivation of Claim 1. Note that IGi,0 = 0,∀i ∈ N . Given some small δIG > 0 as a specified requirement on the
equitability of the IGs.

Substitute log(ρi,k) = ∆i,k,

max

(
m∏

k=1

ρi,k
ρj,k

,

m∏
k=1

ρj,k
ρi,k

)
≤ exp(δIG) =⇒ |IGi,m − IGj,m| ≤ δIG .

Relaxing the condition in Claim 1. As mentioned after Proposition 4, the condition in Claim 1

for 1 ≤ k ≤ m,max

(
ρi,k
ρj,k

,
ρj,k
ρi,k

)
≤ exp(δIG)/m ,

can be relaxed to

max

(
m∏

k=1

ρi,k
ρj,k

,

m∏
k=1

ρj,k
ρi,k

)
≤ exp(δIG) .

This relaxed condition also satisfies the implication that |IGi,m − IGj,m| ≤ δIG.

A.8 Proof of Lemma 2

The high-level idea is by finding the property, specifically, w.r.t. ε-PDP (Definition 1) of the SWO defined as in Eq. (2) with
a set of sharing coefficients {βi}i∈N .

ζβ̄ , the maximum over all pairwise differences (relative to some βi), characterises how different these sharing coefficients
are. εi,j , derived from the condition between i, j ∈ N from the ε-PDP definition, leads to an implication in ε-PDP when it
is not vacuously true (i.e., ensures the condition is true), so as to derive the precise conditions (i.e., εβ) for Eq. (2) to satisfy
ε-PDP.

Proof. For Eq. (2) to satisfy ε-PDP, it requires ∀ε′ > ε, (∃i, j ∈ N, ρi − ε′ = ϱi ≥ ϱj = ρj + ε′) ∧ (∀l ∈ N \ {i, j}, ρl =
ϱl) =⇒ ρ ⪯Equ. (2) ϱ. Note that ρ ⪯Equ. (2) ϱ is equivalent to

∏
i ρ

1/βi

i ≤
∏

i ϱ
1/βi

i , which will be shown in the proof.

As ε does not affect (∀l ∈ N \ {i, j}, ρl = ϱl), the proof focuses on (∃i, j ∈ N, ρi − ε′ = ϱi ≥ ϱj = ρj + ε′) and uses
ρl = ϱl,∀l ∈ N \ {i, j} to simplify the inequality

∏
i ρ

1/βi

i ≤
∏

i ϱ
1/βi

i to ρ1/βi

i ρ
1/βj

j ≤ ϱ1/βi

i ϱ
1/βj

j .

Note that if ε satisfies the following implication

(ρi − ε = ϱi ≥ ϱj = ρj + ε) =⇒ ρ
1/βi

i ρ
1/βj

j ≤ ϱ1/βi

i ϱ
1/βj

j ,

then all ε′ > ε also satisfies it, restricted to ε′ ∈ (ε, |ρi − ρj |/2]. The upper bound |ρi − ρj |/2 is necessary to preserve the
correct order ρi − ε′ ≥ ρj + ε′ in PDP.

It remains to show ε satisfies this implication. The proof first simplifies the inequality, beginning with raising both sides to
the power of βj ,

1βj = 1 ≤ ϱiϱj
ρiρj

(ρiρj)
βj−βi

βi .

Substitute ϱi = ρi − ε and ϱj = ρj + ε,

1 ≤ (ρi − ε)(ρj + ε)

ρiρj
(ρiρj)

βj−βi
βi .

Collect ρiρj to one side,

(ρi − ε)(ρj + ε) ≥ (ρiρj)
1+

βi−βj
βi .
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Substitute the definition of εi,j ,

(ρi − εi,j)(ρj + εi,j) ≥ (ρiρj)
1+ζβ̄ ≥ (ρiρj)

1+
βi−βj

βi .

Substituting the definition of εβ completes the proof.

Note on the social welfare ordering ι. Typically ι is ordinal: ι gives an ordering between two ρ,ϱ. A different version
called cardinal SWO orders any two ρ,ϱ by calculating (and comparing) some values. For instance, NSW is a cardinal
SWO by comparing

∏
i ρi vs.

∏
i ϱi (larger is preferred). A cardinal SWO is more “informative” in the sense that there is

some numerical value of each ρ available (in addition to being used for ordering).

A.9 Proof of Proposition 4

Proof. For some m ≥ 1,
ρm = ρ1,1, . . . , ρn,1, ρ1,2, . . . , ρn,2, . . . , ρ1,m, . . . , ρn,m ,

and
ϱm = ϱ1,1, . . . , ϱn,1, ϱ1,2, . . . , ϱn,2, . . . , ϱ1,m, . . . , ϱn,m .

From Lemma 2, 1 ≤ k ≤ m,(
ρi,k − ζβ̄,l = ϱi,k ≥ ϱj,k = ρj,k + ζβ̄,l

)∧
(∀l ∈ N \ {i, j}, ρl,k = ϱl,k)

=⇒ ρi,k × ρj,k ≤ ϱi,k × ϱj,k .

Substitute the definition of εglobal to verify εglobal-PDP,

(ρi,k − εglobal = ϱi,k ≥ ϱj,k = ρj,k + ζglobal)
∧

(∀l ∈ N \ {i, j}, ρl,k = ϱl,k)

=⇒ ρi,k × ρj,k ≤ ϱi,k × ϱj,k

=⇒
m∏

k=1

ρi,k × ρj,k ≤
m∏

k=1

ϱi,k × ϱj,k .

A.10 An Overview of Assumptions and Limitations of Presented Theoretical Results

We discuss at a high level some important assumptions and limitations of our presented theoretical results and refer the
readers to the precise and specific conditions of the respective result (and their proofs/derivations).

Note on the conditional independence assumption used by Lemma 6. As an example of how the conditional
independence assumption can be satisfied: if for each agent i , Si ⊆ Ti , then the conditional independence is satisfied.
While this may seem counter-intuitive to the motivation that each agent has limited ability to observe its target directly, one
way to consider is this: Although Si ⊆ Ti , agent i can still benefit from collaboration as Ti may contain additional input
locations Ui such that Ti = Si ∪ Ui . As agent i may have a limited budget and may not have access to collect observations
near Ui , other agents can provide additional observations, particularly observations that are highly informative to Ui (which
help agent i) while agent i can, in turn, provide such observations to other agents, corresponding to the quid pro quo use-case
highlighted to Sec. 1.

Our results (Proposition 1, Proposition 2) defined δ to be the minimum distance between any point x in the support Si
and any point x∗ in the target Ti of the agent i in order to clearly illustrate the observational constraint, so it may seem
counter-intuitive to consider the scenario of Si ⊂ Ti. We clarify here that the formalisation of observational constraint
using δ is primarily to clearly illustrate the observational constraint and to aid the interpretation of the results subsequently.
However, the specific value of δ does not have a precise and quantitative effect on the results (Proposition 1, Proposition 2).
To elaborate, in Proposition 1, the upper bound of IG depends on εK, which is a monotonically decreasing relationship with
δ, but the precise relationship between εK and δ is not specified since the choice of the kernel is not fixed. Similarly, in
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Proposition 2, ε1 is monotonically decreasing in δ, but the precise relationship between them is not specified without having
fixed the kernel. In this regard, the specific value of δ does not have a critical quantitative effect in the results Proposition 1
and Proposition 2. Then, the scenario of Si ⊂ Ti can correspond to a special case where δ = 0 in both results. We highlight
that this does not change the derivation or the result, but is a specific case to illustrate how conditional independence and
thus the submodularity of IG in Eq. (1) can be satisfied, which is used later in Proposition 3 to derive individual rationality
(IR).

As an informal intuition on how Si ⊂ Ti can lead to conditional independence: For any two disjoint proper subsets
XA, XB of Si: XA, XB ⊂ Si, XA ∩ XB∅, we can consider the following conditional distributions P (XA|Ti, XB)
and P (XA|Ti). In particular, if they are the same, then by definition, we have conditional independence. To see why
P (XA|Ti, XB) = P (XA|Ti), recall that XB ⊂ Si ⊂ Ti. Hence, P (XA|Ti, XB) = P (XA|Ti) as XB is already contained
in Ti.

In our experiments, without having enforced the condition of Si ⊂ Ti (which means that submodularity of Eq. (1) and
Eq. (2) are not automatically guaranteed), we still observe that IR is satisfied (e.g., Tables 3 and 7): the IG from collaboration
for each agent is markedly higher than that without collaboration. It is an interesting future work to identify a possibly less
restrictive condition for the submodularity of Eq. (1) than conditional independence.

Assumption on the maximum difference in kernel values in Lemma 1. Lemma 1 presents a contrasting view to
Proposition 1 and Proposition 2, and characterises a sufficient condition on the lower bound of the learning/IG. The
assumption on the maximum (of supremum) difference in the kernel values between any collected point (in X) and any point
in target (in Ti) intuitively describes “how good” this collected dataset X is for learning about the target Ti. Specifically, the
lower this maximum, the better X is.

Proposition 3 takes advantage of both Proposition 2 and Lemma 1. Importantly, another assumption is that the optimisation
of Eq. (2) is “near-optimal” as in Lemma 6, which requires Eq. (1) to be submodular (discussed above).

Assumption on the equitability of the sharing coefficients in Lemma 2. Lemma 2 characterises the interaction among
the sharing coefficients βi’s so that Eq. (2) satisfies the generalised PDP. Generally, if the βi’s are more equitable (i.e., their
values are closer to each other), the better the generalised PDP. The definition of εi,j in Lemma 2 follows from the condition
in the definition in (generalised) PDP. Subsequently, Proposition 4 extends the result of Lemma 2 (which is w.r.t. one
iteration k) to all iterations. The key assumption is that the global result (i.e., over all iterations) can be decomposed to the
local results (i.e., each iteration), as in Eq. (5).

B ADDITIONAL EMPIRICAL SETTING DETAILS AND EMPIRICAL RESULTS

B.1 Additional Dataset Settings and Implementation

Synthetic-2D Identical setting. In addition to the mismatch setting in Sec. 4 to intuitively demonstrate why the
quid-pro-quo benefit can be achieved, the identical setting in Fig. 4 can help demonstrate why the cost-saving benefit can be
achieved. In particular, left 3 plots of Fig. 4 show that each agent is able to observe reasonably close to their respective
targets (which are similar in this case). However, each has a very limited budget m = 5 to “cover”/learn effectively about
their targets. Right 3 plots of Fig. 4 show that if the agents pool their resources (i.e., 5 budget from each) and coordinate in
collecting the data, they are able to cover their targets more effectively.

Implementation details for real-world data. The (unnormalised) sharing coefficients corresponding to greedy_1-4
used in the experiments for the real-world data are as follows, for MD: [19,1,10], [18,2,10], [15,5,10] and [1,1,1]; for
DD: [19,1,10], [18,2,10], [16,5,10] and [1,1,1]; for DED: [10,5,1], [10, 2, 1], [10, 1, 1] and [1,1,1]. The input spaces,
kernel choices and corresponding references for these real-world data are in Table 6. The specific data preprocessing steps
and kernel hyperparameters follow these implementations. for MD: https://github.com/rajak7/Bayesian_
Optimization_Material_design; for DD: https://github.com/kexinhuang12345/DeepPurpose
and for DED, https://github.com/cagatayyildiz/npde/. Note that DED is more complex because the
output space of the true function f is R2, and we adopt the operator kernel (Heinonen et al., 2018) in our method.

https://github.com/rajak7/Bayesian_Optimization_Material_design
https://github.com/rajak7/Bayesian_Optimization_Material_design
https://github.com/kexinhuang12345/DeepPurpose
https://github.com/cagatayyildiz/npde/
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Figure 4: Identical: all agents have the same domain for their Ti,Si. The point is that each agent can learn about their Ti
reasonably well with sufficient budget. In this case, the budget is limited to 5 for each agent so the agents can benefit by
pooling resources, i.e., their budgets.

Datasets Input space X Kernel Reference

MD 12-dimensional real value Matérn kernel Bassman et al. (2018)
DD String Gap-weighted subsequences kernel Pahikkala et al. (2015)

DED 2-dimensional real value matched to time Vector-valued operator kernel Heinonen et al. (2018)

Table 6: GP implementation details for real-world datasets.

B.2 An Approximation for Computational Tractability

Recall Eq. (2) optimises over a Cartesian product in each iteration k, which can be computationally costly if n and/or Si is
large, so we describe an approximation.

Solving an approximate problem exactly. This approach reduces the exponential complexity to a polynomial through
the way of approximation so that the polynomial problem can be solved exactly. Recall the exponential complexity in
argmaxx⃗N,k∈SN

is due to the Cartesian product SN :=×i∈N
Si. For notational simplicity, the subscript k is omitted (when

considering a specific k) and denote J(x⃗N ) :=
∑

i ∆i/βi.

Specifically, the approximate problem is finding the maximiser x⃗N,M in a uniformly sampled subset S ′ ⊆ SN of size M to
approximate the true maximiser x⃗∗N := argmaxx⃗N∈SN

J(x⃗N ). In general SN can be discrete or continuous depending on
each Si.8 The approximation analysis is w.r.t. the continuous case because it can be extended to the discrete case. W.l.o.g.,
consider [0, 1]d as the input space (essentially a dimension-wise normalised version of SN with d dimensions). Note that d
is the dimension of the Cartesian product SN .

Theoretical guarantee. We describe the theoretical guarantee of this approximation approach via the relationship between
a probabilistic error and the size of the subset S ′ in Corollary 1.

Corollary 1. For some small εJ > 0, to achieve J(x⃗∗N ) − J(x⃗N,M ) ≤ εJ w.p. ≥ 1 − δJ , it requires M ≥
ln(1/δJ)/ ln[1/(1− V × εJ)] where V := πd/2/[Γ(d/2 + 1)2d+1L].

Therefore, for an (εJ , δJ)-approximation, the subset size M depends on εJ , 1/δj logarithmically (the dependence on εJ
is less straightforward). The computational complexity is linear in M (assuming the computational complexity of J(·) is
fixed): M × O(J(·)). In this result, as L increases, M increases. We note that the analysis can be made more specific
by obtaining a specific value for L w.r.t. a specific choice of kernel. Moreover, the belief of (the location of) x⃗∗N can be
leveraged to improve the uniform random sampling. These interesting explorations are deferred to future work.

Proof of Corollary 1. Substitute εJ , δJ in to Lemma 7.

For εJ ,

L2r ≤ εJ =⇒ r ≤ εJ/(2L) .

8We do not consider the hybrid case: some Si is discrete while others are continuous.
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For δJ ∈ (0, 1/2],

1− δJ ≥ 1− [1− V (x⃗∗N , r)/2
d]M

δJ ≤ [1− V (x⃗∗N , r)/2
d]M

ln(δJ) ≤M ln(1− V (x⃗∗N , r)/2
d)

M ≥ ln(δJ)

ln(1− V (x⃗∗N , r)/2
d)

=
− ln(δJ)

− ln(1− V (x⃗∗N , r)/2
d)

= ln(1/δJ)
/
ln

[
1

1− πd/2r
Γ(d/2+1)2d

]

≥ ln(1/δJ)
/
ln

[
1

1− πd/2εJ
Γ(d/2+1)2d2L

]
.

Note that the volume of the d-sphere is V (x⃗∗N , r) = (πd/2r)/Γ(d/2 + 1). The last inequality uses r ≤ εJ/(2L).

Lemma 7 (Maximiser Approximation in an r-Ball). For a search space S = [0, 1]d and an L-Lipschitz continuous
function J : ∀x⃗N , x⃗′N ∈ S, |J(x⃗N ) − J(x⃗′N )| ≤ L∥x⃗N − x⃗′N∥. For a uniformly randomly sampled subset S ′ ⊆ S
s.t., M = |S ′|, and denote the approximate maximiser x⃗N,M := argmaxx⃗∈S′ J(x⃗). Then, J(x⃗∗N ) − J(x⃗N,M ) ≤ 2Lr
w.p. ≥ 1− [1− (V (x⃗∗N , r)/2

d)]M where V (x, r′) is the volume of the d-sphere Br′(x) centered at x with radius r.

Proof. The probability of a uniformly randomly sampled x⃗ ∼ S being in the d-sphere Br(x⃗
∗
N ) with radius r ≤ 1 centered

at x⃗∗N ,

Prx⃗∼S [x⃗ ∈ Br(x⃗
∗
N )] = Vol(Br(x⃗

∗
N ) ∩ [0, 1]d)/Vol([0, 1]d)

≥ Vol(Br(x⃗
∗
N ))× (1/2)d .

The inequality is when x⃗∗N is lies on the corner of [0, 1]d so the volume of the intersection is the smallest (imagine in the for
d = 2, x⃗∗N = (0, 0) or x⃗∗N = (0, 1)). In particular, Vol([0, 1]d) = 1.

Hence,

Pr[x⃗ /∈ Br(x⃗
∗
N ),∀x⃗ ∈ S ′] ≤ [1− (Vol(Br(x⃗

∗
N )× (1/2)d)]M .

Take the compliment,

Pr[x⃗ ∈ Br(x⃗
∗
N ),∃x⃗ ∈ S ′] ≥ 1− [1− (Vol(Br(x⃗

∗
N )× (1/2)d)]M .

Denote such observation with x⃗′, and apply the Lipschitz condition,

J(x⃗∗N )− J(x⃗N,M ) ≤ J(x⃗∗N )− J(x⃗′) ≤ L∥x⃗∗N − x⃗′∥ ≤ L(∥x⃗∗N∥+ ∥x⃗′∥) ≤ L2r .

B.3 Additional Empirical Results

Learning performance and fairness for Synthetic-1D and DED-SDE. Table 7 and Table 8 show that our method
performs, in general, the best or most competitive for the Synthetic-1D dataset and the DED-SDE dataset. While for
DED-SDE, our method does not perform the best in terms of fairness (i.e., stdIG or stdMSE), it (dynamic β) performs second
best, which is consistent with the trade-off demonstrated in previous results that dynamic β trades-off some performance for
better fairness.
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Table 7: IGm and stdm for Synthetic-1D.

Baselines IGm stdIG

ind 20.537 (4.777) N.A.

rand 68.963 (0.413) 0.008 (0.006)
entropy 32.536 (1.088) 0.047 (0.033)
joint 71.093 (0.621) 0.012 (0.009)

greedy_1 81.847 (3.171) 0.055 (0.039)
greedy_2 81.884 (3.035) 0.052 (0.037)
greedy_3 82.423 (1.371) 0.024 (0.017)
greedy_4 83.346 (0.402) 0.007 (0.005)
dynamic β 81.876 (0.679) 0.012 (0.008)

Table 8: Learning performance (IG, MSE) and fairness evaluation (stds) for DED-SDE. Average (SE) over 5 independent
trials is reported (in brackets).

Baselines IGm stdIG MSE stdMSE

ind -6.703 (0.092) N.A. 5.179 (0.803) N.A.

rand 5.303 (0.237) 0.063 (0.045) 4.766 (0.319) 1.433 (0.252)
entropy 4.433 (0.359) 0.115 (0.081) 4.772 (0.423) 1.054 (0.076)
joint 6.351 (0.681) 0.152 (0.107) 4.604 (0.283) 1.361 (0.299)

greedy_1 6.372 (0.706) 0.157 (0.111) 4.668 (0.369) 1.421 (0.204)
greedy_2 6.373 (0.845) 0.187 (0.133) 4.330 (0.460) 1.280 (0.240)
greedy_3 6.321 (0.953) 0.213 (0.151) 4.753 (0.254) 1.278 (0.210)
greedy_4 6.445 (0.706) 0.155 (0.109) 4.556 (0.418) 1.327 (0.296)
dynamic β 6.279 (0.492) 0.111 (0.078) 4.654 (0.266) 1.082 (0.207)

Cumulative performance evaluation. As noted after the proof of Lemma 6 in Appendix A, it is practically motivated to
ensure an iterative data collection method has a high cumulative performance: the collected data XN,k lead to high IGs
over the iterations k, instead of only after the final iteration. For evaluation, we plot and compare (

∑
i IGi,k/βi) against the

iterations k.

Fig. 5 verifies the high cumulative performance of our method in that the IGs increase the most quickly over the iterations.
Moreover, Fig. 6 echos Fig. 5 and demonstrates that our method (in general) outperforms the batch AL method (i.e., joint in
green) in terms of cumulative performance over the iterations. Fig. 7 also shows our method clearly outperforms rand and
entropy while slightly outperforms joint. Lastly, the comparatively larger standard errors in Fig. 7 (than in Fig. 6) confirm
DED is a more challenging dataset/task than MD and DD.

Figure 5:
∑

i IGi,k/βi vs. iterations k on Synthetic-1D (left) Synthetic-2D mismatch (mid) & identical (right).

Vector field illustration of DED-VDP. Fig. 3 in Sec. 4 shows the comparison between the learning performance in
DED-VDP of agent 1 without collaboration and with collaboration w.r.t. the 1st dimension of the DE. Fig. 8 plots the
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Figure 6:
∑

i IGi,k/βi vs. iterations k on MD & DD.

Figure 7:
∑

i IGi,k/βi vs. iterations k on ODE & SDE.

comparison over the 2-dimensional vector field between agent 1 without collaboration (left) and with collaboration (right).
The left plot shows that due to the observational constraints of agent 1 (in terms of restricted time interval), agent 1 can only
collect data in a restricted region in the 2-dimensional vector field, which eventually results in the inability to recover the
full DE. In contrast, the right plot shows that, as collaboration enables the agent to collect and share data over the entire time
interval and hence more coverage of the 2-dimensional vector, the agents can eventually learn to recover the full DE. This is
evidenced by the sampled trajectories (orange) following closely to the lines connected by the collected data points (red).

Figure 8: The 2-dimensional vector field in DED-VDP for agent 1. Left (right) corresponds to ind (greedy_1).
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