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Abstract

Prospecting foin situ mineral resources is essential for establishing settlésram
the Moon and Mars. To reduce human effort and risk, it is dédérto build robotic
systems to perform this prospecting. An important issueesighing such systems is
thesampling strategyhow do the robots choose where to prospect next? This paper a
gues that a strategy call@dlaptive Cluster Samplind\CS) has a number of desirable
properties: compared to conventional strategies, (1)dtices the total mission time
and energy consumption of a team of robots, and (2) returrigreehmineral yield
and more information about the prospected region by divgatkploration towards ar-
eas of high mineral density, thus providing detailed mapthefboundaries of such
areas. Due to the adaptive nature of the sampling schensendtiimmediately obvi-
ous how the resulting sampled data can be used to provideldaseal, low-variance
estimate of the regional mineral density. This paper tlweeeinvestigates new min-
eral density estimators, which have lower error than piesligdeveloped estimators;
they are derived from the older estimators via a procese@Rho-Blackwellization
Since the efficiency of estimators depends on the type ofmaliogical population sam-
pled, the population characteristics that favor ACS esdtimsaare also analyzed. The
ACS scheme and our new estimators are evaluated empirinallgetailed simulation
of the prospecting task, and the quantitative results skhatvdur approach can yield
more minerals with less resources and provide more accomiatral density estimates
than previous methods.
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1 Introduction

The establishment of large, self-sufficient lunar and Martettlements will require an
extensive use ah situ mineral resources. Prospecting for these resources isftiier
crucial to planning these settlements [19] (e.g., sitecsiele, processing equipment,
and manufactured products). Although orbiting spacecaitremotely survey the lu-
nar surface for the distribution of minerals, their senglatp are limited in resolution
and the types of minerals/elements sensed [13]. Hencecguprospecting is neces-
sary to determine the specific regions of highest abundanga(ticular, geographi-
cally rare minerals and minerals not sensed by orbitersiniaing and to extract the
most geologically interesting samples for detailed anslgsd calibration of orbiters’
data [12].

Surface prospecting can be conducted by either robots oespied humans. The
benefits of robot prospectors include a wider range of sgreaabilities for mineral
identification, elimination of safety and life support issyoperation in harsh environ-
ments, and greater strength and endurance [6, 18]. Thdmydapnt may increase the
efficiency of sampling in large prospecting regions andexgithe humans for more
sophisticated tasks such as real-time perception and ipignand detailed geologic
field study.

Traditionally, conventional sampling methods suchRaster ScanningRS) [1],
Simple Random Sampli{RS) [14], and stratified random sampling [1] have been
used in prospecting with robots. The first approach acquiressurements at uniform
intervals, thus incurring high sampling and travel costa¢bieve adequate sampling
density. The second approach selects a random sample tiblezand makes mea-
surements at each of the selected locations. However,drégrthe fact that mineral
deposits are usually clustered [3, 20] and sometimes rteThis results in an impre-
cise estimate of the mineral density in the prospectingreie., large variance) [17].
Stratified random sampling requires prior knowledge of theemal distribution for al-
locating the appropriate sampling effort among strata.[Without such information,
its efficiency degrades to that of SRS. There is one otherardional sampling scheme
calledSystematic Sampli(@S) [20], which has not been utilized in robot prospecting.
It will be used as a method of comparison in our paper.

This paper presents adaptive sampling techniques for wigke @rospecting with
a team of robots (Fig. 1). Assume that the prospecting regfan 2a) is discretized
into a grid of N sampling units. Adaptive samplingefers to sampling strategies in
which the procedure for selecting units to be included ingample depends on the
mineral concentration observed during prospecting. Irrast, conventional sampling
has no such dependence. The main objective of adaptive isagpto exploit the pop-
ulation characteristics of mineral deposits (e.g., spalistering or patchiness shown
in Fig. 2b) to obtain more precise estimates of the regiorakily than conventional
strategies for a given sample size or cost.

This paper describes a specific adaptive sampling schemerkas ACS (Sec-
tion 3), which has a number of desirable benefits for mulbetavide area prospecting:
(1) it returns a higher mineral yield and more informatiooatithe prospected region
by directing robot exploration towards areas of high mihdemsity, thus providing
detailed maps of the boundaries of such areas, and (2) itesdbe total mission time



Figure 1: Multi-robot mineral prospecting task.

and energy consumption of the robot team (Section 7).

The adaptive nature of this scheme incurs a considerabdeibieonventional es-
timators due to a large proportion of high mineral contertadia the sample. Conse-
quently, two unbiased estimators are proposed in [20] o ABS strategy (Section 4).
This paper investigates how the error of these estimateorbeaeduced through a pro-
cess known aRao-Blackwellizationin which the outputs of the estimators are aver-
aged over several different ordered samples that are catesttby permuting the orig-
inal sampled data. The Rao-Blackwellization procedurdsibaated in Section 5; in
that section, its computational expense is also addreased;losed-form expressions
are provided for the Rao-Blackwellized estimators. Simeedfficiency of estimators
depends on the type of mineralogical population sampledptipulation characteris-
tics that favor ACS estimators are also analyzed (SectioB&fpre discussing the ACS
strategy and estimators, an overview of the multi-robohiéecture will be presented
first in the next section.

2 Robot Supervision Architecture

The mineral prospecting task demonstrates an applicatitheoRobot Supervision
Architecture (RSA) in our project called PROSPECT: PlaneRobots Organized for
Safety and Prospecting Efficiency via Cooperative Telestigon
(http://www.ri.cmu.edutprospect). This project is supported by NASA's Exploration
Systems Mission Directorate. Our primary goal is to develggneral architecture for
human supervision of an autonomous robot team in suppoustéimed, affordable,
and safe space exploration.

The RSA comprises the teleoperation base and robot praspethe teleoperation



28
12345678 91011121314151617181920

Figure 2: (a) Lunar Orbiter photograph 111-133-H2 of prosiieg region north of
Apollo 14 landing site (photograph courtesy of Lunar andnBtary Institute). (b)
Synthetic zirconium distribution (W&) in this region [19].

base maintains a plan of the robot tours to visit the selaaéd to be sampled, as well
as a list of sampled units and their corresponding mineraterd, while each robot
maintains an individual tour of its assigned units to be dachprhe base continuously
receives spectrometric data from the prospecting robetscts new sampling units
based on the ACS strategy (Section 3), and replans the rolst to visit the new and
current sampling units. After all selected units have beaned, it determines the
mineral density estimates of the prospected region (Secdand 5).

Our planning problem is an instance of théraveling salesman problem [5] where
k is the number of robots. The selected sampling units canh&dered as cities to be
visited. We consider two different optimality criteria: miinizing the (1) total energy
consumption of all robots, and the (2) maximum mission tifhany robot. In general,
this problem isN P-hard. So, our centralized planner at the base uses a modified
minimum spanning tree heuristic proposed in [11] to obtaiar®l Z:-competitive tour
allocation for the first and second criterion respectively.

3 Adaptive Cluster Sampling

The ACS [20] scheme proceeds as follows: an initial sampkazgfn, is taken using
SRS without replacement. If the observed mineral conteandhitially sampled unit
satisfies a certain conditiari (e.g., mineral content predefined threshold), the unit's
neighborhood is added to the sample. For every unit, itshieichood consists of the
unit and a set of “neighboring” units (e.g., top, bottomt,leind right units). If any
other units in that neighborhood satigfy their neighborhoods are also included in the
sample. This process is repeated until no more units thiafysét are encountered.



At this stage, clusters of units are obtained. Eelcistercontains units that satisfy
C and a boundary oédge units An edge unitis a unit that does not satisfy but is
in the neighborhood of a unit that does. The final sample efisizonsists of up ta,
clusters. These clusters are not necessarily distinctg $imo units in the initial sample
that satisfyC' could have been selected from the same cluster. If a unitdrinitial
sample does not satisfy, it is considered to be a cluster of size one.

Let the network A; that is generated by unitbe defined as a cluster generated
by that unit with its edge units removed. A selection of anyt im A; leads to the
selection of all units in4;. Any unit that does not satisf¢/' is a network of size one
since its selection does not lead to the inclusion of anyrathés. This implies that
any edge unit is also a network of size one. Hence, any clok&ze larger than 1 can
be decomposed into a network with units that satisfyand also networks (edge units)
of size one that do not satisty. Clusters may overlap on their edge units. In contrast,
networks are disjoint and form a partition of the entire pagian of units.

An example of an adaptive cluster sample is illustrated ibl&fd. The values
in this table are obtained in a simulation test run on the gosng region in Fig. 2,
which is discretized into 88 x 20 grid of square sampling units (thus, the total number
of units N = 560). The neighborhood of a unit is defined to be the top, bottom,
left, and right units. The condition for sampling a unit'sigigoorhood is defined as
C = (y > 1.0 wt%) wherey is the observed mineral content of a sampling unit. With
an initial sample size; of 80, the ACS scheme results in a final sample sizaf
150. The boxed values correspond to units from the initiaiga. The lightly and
darkly shaded units correspond to network and edge unigecgéisely. 3 networks of
size larger than 1 can be observed in the sample (Table 1)iceNibiat the leftmost
network is intersected 4 times by the initial sample while thher two networks are
each intersected once.

A noteworthy aspect of ACS is that given a fixedthe travel cost of adding a
cluster or network of “neighboring” units in ACS is usualtyter than that of adding
units selected at random using SRS in the prospecting redibis is demonstrated
empirically in Section 7.

Since the ACS scheme results in a large proportion of higheraincontent data
in the sample, it will incur a considerable bias with the camonal sample mean
estimatorz = v~ Y""_, y;. Kriging (or Gaussian process regression) [4] is a more
sophisticated alternative but will be similarly biasedr Egrample, the true population
meany is 0.648 for the zirconium distribution in Fig. 2b. Howevier, the ACS exam-
ple in Table 1 = 1.070 with var[z] = 0.004139 (i.e., standard error of 0.064), which
clearly overestimates. Hence, unbiased estimators are needed for the ACS scheme.
Two of these are presented in the next section.

4 Unbiased ACS Estimators

4.1 Modified Horvitz-Thompson Estimator

The first ACS estimator is modified from the Horvitz-ThompgbiT) estimator [8].
Let BB; be the set of units in th&h network andn; be the number of units i§;. Note



Table 1: ACS example. Please refer to Section 3 for its detsoni.
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that B; is defined in the same way as netwodk in Section 3 except that its index

refers to the network label rather than the unit label. Thabapbility that the initial

ny ni

sample intersects netwotk is

mineral contents of the individual networks. So, the averagneral content is

1 X
n= Nzyz*
i=1

wherey; is the total mineral content of thigh network andk is the total number of

distinct networks in the population.

).

The total mineral content of the prospecting region can bi#esras the sum of the

1

)

w cannot be computed directly due to the unknayjis for unsampled networks.
So, to form an unbiased estimator @f each term in the sum can be multiplied by

I, /m;, wherel, is an indicator variable of value 1 if the initial sample irstects3;, and



0 otherwise. The expected value Bf ; is 1 for sampled networks, so our estimator
is unbiased; sincé; is 0 for unsampled networks, information about these ndtsvor
are not needed to calculate our estimator. Applying thektyields themodified HT
estimatorof u:

HHT = Nm Z N; (2)
=1 1=
wherek is the number of distinct networks intersected by the ihiamnple.

For practical use of the HT estimator, it is important to béeao estimate its
variance from the sample. There is a simple closed-formdtarwhich can be used for
this purposemw; has been defined to be the probability that the initial sanmpérsects
theith network. Definer;;, to be the probability that the initial sample intersectbot
the jth andkth networks. Ifj = k, thenrw;;, = m;. Otherwise, to compute;;, notice

that the probability that the initial sample intersectsimei networkj nor networkk is

P £ 1N T #1) = (N_”:;_m’“)/(ivl)

So, the probability that the initial sample intersects @itfth or kth network is1—
P(I; #1 NI #1),and

ij:ﬂ'j-l-ﬂ'k—(l—P(Ij7élﬂfk7£1)).

Sincefig is a sum of several terms, its variance can be derived bydakimsum
of covariances between these terms:

X Yili yile
va = E E cov =
’[MHT] : [ N7 , N?Tk]

(3)

(3) cannot be computed from the sample data since not alldtveanks in the popula-
tion are necessarily sampled. So, to obtain an unbiasedatsti of the variance, we
can use a similar trick as before: each term is multiplied /7, (which has an
expected value of 1 for sampled networks) to get

K K
y? J yklk COV[Ij,Ik]
var
fori] gkz Nm; N7y, ik

yyk Tk
m S ()

7T] k

(4)

2\

The second equality follows because cvl] is 7, — ;.
For the ACS example in Table Ly = 0.665 andvar[i;r] = 0.001835 (i.e.,
standard error of 0.043) by using (2) and (4) respectively.



4.2 Modified Hansen-Hurwitz Estimator

The second ACS estimator is modified from the Hansen-Huriit#) estimator [7].
In the previous section, we mention that the total mineraktent of the prospecting
region is the sum of the mineral contents of the individudivoeks. The mineral
content of each network can be written as the average mineraént of all units in
this network summed over its number of network units. Soattezage mineral content
of the prospecting region can also be expressed as

1 N
H—N;wz

wherew; is the average mineral content of the netwgtkcontaining unit.

1 cannot be computed directly due to the unknawfs for unsampled networks.
Using the same trick as in the previous section, an unbiastehator of 4 can be
formed by multiplying each term in the sum wifi.J; /n,, whereJ; is an indicator
variable of value 1 if unit is included in the initial sample, and 0 otherwise. The
expected value olV J;/n, is 1 for initial sample units, so our estimator is unbiased;
since J; is O for units not in the initial sample, information abouée#e units is not
needed to calculate our estimator. Applying this trick ggthemodified HH estimator
of u:

) 1 & 1 &

HHH n ;wz 7 n ;wz (5)
Note thatizz can be interpreted as the conventional sample mean obtasieglSRS
of sizen; from a population ofv; values rather thap; values. So, using the theory of
SRS [20],

N
var[ﬂHH] = % Z(wz - ,LL)Q (6)
=1

with unbiased estimator

L N-n . 2
= P — . 7
varlfir r| N = 1) ;(w firim) (7)
For the ACS example in Table Lyy = 0.624 andvar[igg] = 0.002802 (i.e.,
standard error of 0.053) by using (5) and (7) respectively.

5 Improved Unbiased Rao-Blackwellized ACS Estima-
tors

An estimatort(D,) of a population characteristje is a functiont which maps our
observed datd), to an estimate of.. Saying thatu is a population characteristic
means there is a parameter ve@avhich completely describes the distribution of our
population, andi = 1(0) is a function of this parameter vector.



In our setting,D, is an ordered list of pair§, y;.) wherei, is the unit sampled
at steps andy;, is its mineral content. The population characteristic dgérastu
is the average mineral content of the sampling region. Thmuladion parameter is
6 = (y1,...,yn), which is the vector of true mineral contents for all unitstlire
population. The estimators pfthat we are interested in afg;r andjig g .

To evaluate an estimatofD,,), its distribution conditioned on a possible valuélof
can be examined. Good estimators have low mean-squared,eneg, the distribution
P@(Doy) — p|0) is concentrated around 0. In this section, we will descabeay to
reduce the mean-squared errors of the estimatgrsand/iy g .

Rao-Blackwellization is a procedure that allows us to redihe mean-squared er-
ror of an arbitrary estimata( D, ). The improved estimator is (D, )|D) whereD is
a reduced description of our data that omits some redundfmmtiation. In particular,
D is defined as atatisticif it is a function of our dataD,,, andD is defined as auffi-
cient statistidf it contains all relevant information i@, aboutd, i.e., PO,|D, 8) =
P(D,|D).

Given these definitions, Rao-Blackwellization is the pssoef computing B(D,)| D)
whenD is a sufficient statistic. In our casB,is set to be theinorderedset of distinct,
labeled observations, i.6D, = {(i,y;)| i € S} whereS is the set of distinct unit labels
in our data sample [20].

The following theorem, adapted from the Rao-Blackwell tie@o[2], justifies the
use of the Rao-Blackwellized (RB) estimator:

Theorem 1 Lett = ¢(D,) be a (not necessarily unbiased) estimator.of Define
tp = E[¢|D]. Then

(a) tp is an estimator;

(b) Eltp] = E[t];

(c) MSHtp] < MSH¢] with strict inequality for all§ such that B(t # tp) > 0.

Corollary 1 If ¢ is unbiased,

vartp] = varft] — EpE[(t — tp)?|D] ®)
= varlt] — Ep{vart|D]} .

The proofs of Theorem 1 and Corollary 1 are provided in AppesgiA and B respec-
tively. From (8), vaftp] < vart] since the variance reduction termp &varft| D]} > 0.

Rao-Blackwellization does nothing if(D,) is already a function oD. On the
other hand, it achieves the largest possible reductionrilwee wherD is aminimal
sufficient statistic A minimal sufficient statistic is one that reducBs as much as
possible without losing information abo@t

Definition 1 A sufficient statistic® = ¢(D,) is minimal sufficientfor @ if, for any
other sufficient statisti®’ = ¢’(D,,), D is a function ofD’.

In our caseD is minimal sufficient, andigr and gy are not functions oD;
they depend on the order of selection. To see this, consisieradl population of four
units with@ = [0.1,0.5,1,2]7. The condition isy > 1. The initial sample size, is
2. The initial samples(@, 0.5), (3, 1)) and (3, 1), (4, 2)) give the same final unordered



sampleD = {(2,0.5), (3,1), (4, 2)}. Note that the edge un{®, 0.5) is included in the
firstinitial sample but not the second one. This implies tthgeeunit will be involved in
computingigr or g only in the first sample. Hence, either estimator will progluc
different estimates for the two samples.

In order to Rao-Blackwelliz¢ gz and iz, we will need several notations. Let
G = (n ) be the number of combinations of distinct initial sample units from the
v units in the final sample and let these combinations be irtlbyehe labely where
g=12,...,G. Lett, be the value of an estimatowhen the initial sample consists
of combinationg, I, be an indicator variable of value 1 if thgh combination can
result inD (i.e., iscompatiblewith D), and 0 otherwise. The number of compatible
combinationsis thef = Zle I,. Itfollows that P¢ = 7,|D) = 1/¢ for all compatible
g. So, the improved RB estimator is

18 1S
tRB— t|D —Z :_ZTg- (9)
¢ pt 59:1

The variance of g5 is obtained using (8) whettg, = tgg. The unbiased estimator of
var[tgp] is then

3
vartrp] = vant] — vart| D] = vari] % 2:: —trp)?. (10)
Since (9) and (10) are based on samples compatibleMitiaively, the compat-
ible samples have to be identified from tecombinations and their correspondifig
estimators have to be evaluatedand G can be potentially large, which would ren-
der the RB method computationally infeasible. Howeverhmiext two subsections,
closed-form expressions for the RBHT and RBHH estimatos$ il be described.

5.1 Rao-Blackwellized HT Estimator

The reason that the HT estimator yields different valueb different compatible sam-
ples is each compatible sample intersects a different auatibn of the edge units in
the final samplé (in contrast, all networks other than the edge units musttleded
in every compatible sample). So, some of the indicator éewin (2) will have dif-
ferent values in different compatible samples.

The closed-form expression for the RBHT estimator is basethe observation
that we can analytically compute the expectation of eacheifrdicator variables in
(2) given a randomly selected compatible sample. This @afiea will be 1 for all
networks of size greater than 1 and for all networks of sizeat &re not edge units.
For networks that are edge units, the expectation will betltpositive and less than
1.

As we will see below, computing these expectations reqevakiating several bi-
nomial coefficients. The number of binomial coefficientsip@nential in the number
of networks of size greater than 1. So, computing the RBHifmasbr will be efficient
if relatively few networks of size larger than 1 are intetselcby the initial sample.



This assumption is reasonable because a prospecting riggically contains only a
few major mineral deposits.

Since the modified HT estimator is formulated based on nédsyats RB version
will be derived likewise. Le€ be the set of network labels in the sample. From (2),
i for the gth combination can be written as

X yi
i = 7o (11)

wherely; is an indicator variable of value 1 if thgh combination contains at least one
unit from B;, and 0 otherwise.
By substituting (11) into (9), we get the RBHT estimatonof

: Lo ¥ v Ly
ARBHT = EZZ ]\Zﬂ_.lgi = ; J\?m Z % 12)

g=1

wherezgz1 I, is the number of combinations containing at least one uaitfB,;.

Clearly,& andzgz1 14; in (12) have to be evaluated in order to obtain the closedtfor
expression ofir g . This can be achieved by evaluating them based on the differe
types of network in the sample.

The sampléD can be partitioned into three different types of networln@works
of size larger than 1, (b) networks that are edge units, anafwvorks of size one that
are not edge units. More formall§,= F; UF,UFs where (a)F; = {i € | m; > 1},
(b) 72 = {i € £] B, is an edge un}t, and (c)F3 = {i € £ — F1 — Fa}.

¢ can be determined as follows: every networkAp must be intersected by the
initial sample and is thus allocated one initial sample eaith. The remaining] =
n1 — |Fs] initial sample units can be chosen frath= v — | F3| final sample units in
(7’:1) ways. From thesé;:;) ways, combinations that are not compatible witthave
to be removed to g&t These incompatible combinations are the ones that contain
units from at least one of the networks’#. Formally, ifC; is the set of combinations
containing no units fron;, U;c £, C; is the set of incompatible combinations that con-
tain no units from at least one of the networks#n. Using the inclusion-exclusion
identity for the cardinality of set union,

U G|l = Ci| — C;NC; -1 |F1-1 n G
ey D MGI= D lenGl+.+ (-1 dLC
i€F, i,jJEF1
v —m; vV —m; —m;
- () ()
i€F, 1 1jEF 1
+m+(_1)|ﬁ—1|<y _Zi/ef1 mi) '
n

Then the number of compatible combinations is simply

52 (Z/) -
1

10

U Gl .

i€F1

(13)




Since all compatible combinations contain at least onefumib each network in
F1 U Fs, Zgzl I, = &fori € Fy U Fs. This takes care of the cases (a) and (c).
However, each edge unit ifiz is not necessarily included in every combination. To
include an edge unit in a combination, one initial samplé bas to be allocated to the
edge unit, which results in’ — 1 units inD andn} — 1 initial sample units. So, if we
let £&; be the number of combinations containing the edge Bnit.e., Zgzl Iy =&
fori € F3), & is similar to& except that both terms in every binomial coefficient are

reduced by one. Substitutiggandé; into (12),

ARBHT = E ui =+ b4 v (14)
. NTFZ‘ 5 A NTFZ‘ ’
i€ F1UF3 1€EF2

From (14),irpmT is Similar tofi g except that all edge units i, are now involved
but each edge unit term is weighted &y/¢. Hence,irppr is improved fromi g
by using all information from the edge units. This is also thatonale for improving
the variance estimate @fz 5z, which will be described next.

It is shown in Appendix C that

1

(n1€)2 (&€ — 5%) Z yf2 + 2(&& — 5%) Z Zy:‘y;‘ (15)

i€ F2 i€F2 j<i

varlfigr|D] =

where&, is the number of combinations containing any two edge unit&sj. Two
initial sample units are allocated to two edge units, résglin 2/ — 2 units inD and
nj —2 initial sample units. Sa; is similar to except that both terms in every binomial
coefficient are reduced by two. From (10), the unbiased estinof varfirg 7] is

varlirpur] = Valjigr]| — varjigr|D] (16)

wherevar[igr] and varfigr|D] are previously determined using (4) and (15) re-
spectively. It can be observed from ( 15) that the variandacton term vai 1| D]
depends solely on thevalues of the edge units. Hence, the improvement in the RBHT
estimator becomes smaller as thgalues of the edge units tend to zero. For the ACS
example in Table 1irprr = 0.656 andvar[irprr] = 0.001574 (i.e., standard er-
ror of 0.040) by using (14) and (16) respectively. The stati@aror is only reduced

by 0.003, which is expected since thealues of the edge units are less than 1.0 (Sec-
tion 3).

Note that¢, &, and&, each requireg!”! binomial coefficients to be evaluated.
Hence, the expressions far sy andvar[izsgr] are computationally efficient if
|F1] is small, i.e., relatively few networks of size larger thaarg intersected by the
initial sample.

5.2 Rao-Blackwellized HH Estimator

The derivation of the closed-form expression for the RBHtihastor follows the same
notion as before: we evaluate expectations of indicatdakes by counting how often

11



individual units are present in a compatible sample. In tB&IR estimator, the indi-
cator variables for networks ifi; U F3 are always 1, and we only need to calculate the
expectations for the networks jf,. The RBHH estimator, on the other hand, uses in-
dicator variables of individual units. As before, all unitsF; will be present in every
compatible sample and so, their indicator variables willegls be 1. But, the indicator
variables for the units in networks ifi; U F» will be strictly between 0 and 1: both
edge units and units in networks of size greater than 1 areemsssarily included in
all of the compatible samples.

Since the modified HH estimator is formulated based onthelue for each unit,
its RB version will be derived likewise. The sgtof unit labels in the sampl® can be
partitioned into three different types of units: (a) unitietworks of size larger than 1,
(b) edge units, and (c) non-edge units in networks of size 8oeS = H; U Hoy U Hs
where (a)H; = {i € S|uniti € B;,j € F1}, (b) He = {i € S| uniti € B;,j € Fa},
and (C)Hs = {i € S| uniti € B;,j € F3}. Note thatiHs| = | F2| and|Hs| = | F3].

Let J,; be an indicator variable of value 1 if thigh combination contains unig
and 0 otherwise. From (5),z g for the gth combination can be expressed as

nl sz gt — < Z wquz + Z wl) (17)

i€ES 1€EH1UH 1€H3

since all unit labels ir{3 must be in everyth combination. By substituting (17) into
(9), the RBHH estimator of. is

3
[ARBHH = %Z%( Z wiJgi+Zwi>

1!7:1 i€H1UH2 c 1€H3 (18)
ST (I OIS AR
1€EH1UH2 g=1 1€Hs3

whereZ£ Jgi = &; is the number of combinations containing ufit £ can be
determlned using (13) in the previous section. To obgaine initial sample unit is
allocated to unit and each unit i3, resulting inv’ — 1 = v — |H3| — 1 units inD
andnj — 1 = ny — |Hs| — 1 initial sample unitsé; is then(” _1) ways reduced by
the number of combinations that contain no unit label frofeast one of the networks
in Fy. Fori € Hy, & is similar to&; except that we ignore the binomial coefficients
involving j € F; where uniti € B;. Fori € Ho, & = &;. Substituting; into (18),

[lRBHH = nil (% > wi&i+ Y wz) : (19)

i€H1UH2 i€H3

From (19),irpr g differs from gy by involving all network units irf{; and edge
units, but each term with these units is weightedh¢. Henceigrpmp is improved
from i by using all information from the network units#é; and edge units, which
is also the case for improving the variance estimat@ ©f ;. Similar to deriving

12



var[iigr|D] in Appendix C,

i)~ (S (- "

2 Y (e - gty

1€EHIUHs j<t

where¢;; is the number of combinations containing uniendy in H; U Ha, that is,

(1 73) = S (0%) ifuniti € By Aunit € B,

+ Zm,y;ﬁk,l (U/_"T;’iz:";y—Q) k,l S Fl,
+.. 4 (=)l (v —gi:gr—z)

ij = (7':1:22) DI (’/;,:”jf) if (uniti € By, ke Fy (21)
+ 2 etk (”,72’51:72”“2) A j € Ha) V (unitsi,j € By,
+o A ()RR ke R,
&2 if i,7 € Ho

wherez,y € F;. From (10), the unbiased estimator of Vaglz ] is
vaiirpr | = Valljigx) — varjinm|D] (22)

wherevar[jiy z] and varfi i | D] are previously determined using (7) and (20) respec-
tively. By comparing (15) and (20), we can observe thativag |D] > var|iigr|D].

If the y-values of the edge units tend to zero, [iarz|D] depends more on the-
values of the network units ifi{;. Thus, the improvement of the RBHH estimator
is always greater than that of the RBHT estimator. For the A&&nple in Table 1,
firprr = 0.648 andvar[irzrr] = 0.000720 (i.e., standard error of 0.027) by us-
ing (19) and (22) respectively. The standard error is redige0.026, which is more
than the reduction of 0.003 for the RBHT estimator (Sectidr).5Similar to the com-
plexity analysis of RBHT estimator, the expressionsi@ls 7 andvar[izp ] are
computationally efficient if 71| is small.

6 Efficiency Analysis of ACS Estimators

The efficiency of ACS over SRS depends on the type of mineredbgopulation being
sampled. In particulaf;y i is more efficient than the conventional sample mgdor
SRS if vaffiy ] < var|j]. Using the theory of SRS [20],

N

varlji] = % ;(yi - p)? (23)

The total sum of squared difference betwegrmnd . in (23) can be partitioned into
within-network and between-network components:

N N N

Dwi—w? = (i —wi)?+ ) (wi — p)? (24)

i=1 i=1 i=1
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Using (6), (23), and (24), v§iy ] < varlj] if and only if

N N
1—2) i — 2<(1—ﬂ) i—wiQ 25
(1-2) 2t ) ot =) (25)

It can be observed from (25) thaj; i is more efficient tha if (1) the within-network
variance of the population (rightmost term) is sufficiertigh, (2) the final sample size
v is not much larger than the initial sample sizefor iy 5 S0 thatl — ny /v is small,
and (3)n; <« N so thatl — ny /N is large. However, conditions 2 and 3 can oppose
condition 1 because a small difference between initial andl sample size, and a
small initial sample size usually mean small within-netwaariance. So, ACS with
i works best with networks that are small enough to restrietfital sample size
but large enough for the within-network variance to repné$ige population variance
reasonably. This means even though drastically loweriagttteshold for conditiod
can increase the within-network variance and improve d@di, it also increases the
final sample size tremendously and violates condition 2yeasi

Although it is straightforward to compare Vakr] (3) and vafi], it cannot be
easily interpreted since V@] involves the intersection probabilities. However, em-
pirical results in Section 7 show thag;r is consistently more efficient than

7 Experiments and Discussion

This section presents quantitative evaluations of the A&®me and its estimators for
wide area prospecting with a team of four robots; this is tin@lper of robots that will
be fielded on NASA Ames Research Center’'s Moonscape for ajegis real-world
test and evaluation. The experiments were performed usielgot¥, a mobile robot
simulator (http://www.cyberbotics.com). 16 directeddise sensors with 0.3 m range
were modelled around its body 6f32 m (L) x 0.27 m (W) x 0.2 m (H). Each robot
could sense its global position through GP&hd communicate spectrometric and tour
data with the base. The robots used the potential fields rdg@jofor navigation
between sampling units and obstacle avoidance. Each rohtut move at a maximum
speed of 0.425 m/s and consumed about 28.2 J/m. It used thea Marticle X-Ray
Spectrometer (APXS) [15] (1.3 W) for sampling, which reedirabout 2 hours to
obtain a high-quality x-ray spectrum of the mineral conte®b, sampling each unit
would use about 9.5 kJ. The 6.46 knd.61 km prospecting region is discretized into
a28x 20 grid of sampling units such that each unit’s width is about &8 The robots
were placed at a sampling unit in the center of the region addd rendezvous at this
same unit after all selected units were sampled.

To compare the performance of the estimators, the RMSFHiornités used to mea-
sure their quality:
1
2

RMSE{] =

1 & )
E;(Ti—ﬂ)]

1Deployment of space exploration infrastructure wouldntiely result in GPS or similar localization
capability on the Moon and Mars. If this is absent, the curtechnique of a sun-seeking sensor combined
with local inertial navigation can be used.
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where R = 20 is the number of test runs; is the mean mineral content estimate
obtained in test run

Using this measure, a quantitative test was conducted tgamerthe estimators
described above. For ACS, the initial sample sizewas 40, 80 or 240 sampling
units. After 20 test runs for eaofly, it resulted in an average final sample size|E[
of approximately 95, 145, and 288 units, which corresportdeti7.1%, 25.7%, and
51.4% of the 560 total sampling units. The SRS and SS scheeresoonducted using
the same sample sizes as’E|[

Test results (Fig. 3a) show that the ACS estimators perfattebthan the non-ACS
estimators. Among the ACS estimators, the Rao-Blackvesllizstimators achieved
lower RMSE. In particular, the differences in performaneteen the estimators were
the most significant at the sample size of 145 units. Thisigsphat the ACS estima-
tors, especially the Rao-Blackwellized ones, are pratficaore appealing because
more accurate mineral density estimates can be obtainedawéasonably small sam-
ple size. If the sample size decreases too much below 17HEfpdrformance of all
estimators will converge since their behavior will be mand enore alike. If the sample
size increases too much beyond 51.4%, their performantaladl converge due to in-
creasing similarity in information from the prospectingian. Usingt-tests & = 0.1),
the differences in RMSEs between the estimators have be#ieddo be statistically
significant if these differences are more than 0.006 for #mepde sizes of 95 and 145
units, and more than 0.004 for the sample size of 288 unigsAppendix D). Note that
the biased sample mean estimgtainder the ACS scheme is not included in Fig. 3a;
it has extremely large RMSEs of 0.525, 0.406, and 0.143 spaeding to 17.1%,
25.7%, and 51.4% of the total sampling units.

To compare the system performance of the sampling scheheesptimality cri-
teria mentioned in Section 2 are considered: minimizing@igl energy consumption
of all robots, and (2) maximum mission time of any robot. Bh.and c show the re-
sults after 20 test runs for the first and second criteriopeetively; the mineral yield,
energy consumption, and mission time recorded for the uarsampling strategies are
given as a percentage of the corresponding values for RSdamplete sampling of
560 units). Note that each strategy (other than RS) has tlifieeeent records in its
plot, which correspond to k] of 95, 145, and 288 units; a smaller sample size gives a
smaller mineral yield. The line for RS shows a constant mtienergy consumption or
mission time to mineral yield. We observe that the ACS stpatgelds more minerals
than SRS and SS with less energy and mission time. The diffessin mineral yield,
energy consumption or mission time between ACS and the oweestrategies have
been verified using-tests & = 0.1) to be statistically significant except for that of
energy consumption between ACS and SS with a sample sizebafrdits.

Furthermore, in contrastto SRS and SS, we observe that A®&ow the dotted
line of RS, which implies it achieves a lower ratio of energymsumption or mission
time to mineral yield than RS. Hence, it is both energy ane tifficient to utilize ACS
for prospecting in place of RS. We also expect the advantB§€8 to increase when
the sampling cost increases. For example, the alpha mod®X¥BA15] requires at
least 8 hours of sampling time, while thedssbauer spectrometer [10] runs at 2 W and
needs at least 6 hours. In our experiments for ACS, the spaetry incurs 45% of the
total energy consumption and 83% of the overall mission fiona typical sample size

15



RMSE] 1] — e — ACS+RBHT
X~ —+— ACS+RBHH

0.05 ~.. - -v - ACS+HT
0.04 —a— ACS+HH
__—%-SRS
0.03 X _ oSS
0.02 =~
~ —
0.01 ¢ =8 Ry ()
20 30 40 50
(@)
Energy consumption (%) —@—ACS
100—_ — % -SRS
80 —o-SS
60—_ /,./Xf/ - @ RS
40- i
20-'&’—%’> -0
o] . Mineral
15 25 35 45 55 65Yield (%)
(b)
%\gé)s_sion time (%) _e—_ACS
20 ] —x--SRS
60- B
] K@ RS
07 /4/ -
20 %" @ :
0. Mineral

15 25 35 45 55 65 vield (%)
(©)

Figure 3: Comparison of (a) RMSEs of different estimatordsampling strategies, (b)
energy consumption of different sampling strategies, ahdhfssion time of different
sampling schemes.
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of 288 units. These figures will increase substantiallyéf kibssbauer spectrometer is
used instead.

8 Conclusion and Future Work

This paper describes the derivation of new low-error estinsavithin the ACS scheme
and its application to multi-robot wide area prospectinga@titative experimental re-
sults in the prospecting task simulation have shown thatG& scheme can yield

more minerals with less resources and the Rao-Blackwdli£eS estimators can pro-
vide more precise mineral density estimates than previcethads. For our future

work, we will apply these techniques on a larger robot teathraal robots. Our plan-

ner will be improved using other minimum spanning tree haios or stochastic search
strategies to reduce the tour lengths so that ACS can be ewemefficient than RS.

We will also consider the effect of noisy and multivariatenerial content data on our
scheme and estimators. Lastly, adaptive systematic sagnplll be examined.
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A Proof of Theorem 1

(a) SinceD is minimally sufficient ford, E[t|D] does not depend o Hencetp does
not depend o® and can be regarded as an estimator;

(b) Eltp] = EpE[t|D] = E[t];

(¢) MSE[t] = E[(t — )2] = E[(t — tp + tp — 1)?]

— E[(t - tp)?] + MSEltp] (26)
since
E[(t —tp)(tp — w)] = EpE[(t —tp)(tp — p)|D]
= Ep(tp — pE[(t — tp)|D] @7)

Ep(tp — p)(E[t|D] — tp)
= 0.

It follows from (26) that MSEtp] < MSE[t] with equality if and only if B(t —tp)?] =

0 (i.e.,t = tp with probability 1). Strict inequality will occur it is different fromip
over a set of nonzero probability.
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B Proof of Corollary 1
Given thatt is unbiased, B] = u. Then

MSEJt] = E[(t — 1)?]

= Ellt~ElY + El] = )"
= var] + (Elf - ? )
= vaft].

Sincetp is also unbiased (Theorem 1),t] = p. Corollary 1 follows from (26) by
using (28) to replace MSE[and MSE}p] with var[t] and varfp] respectively.

C Derivation: var[ jigr | D]

gt (2) for thegth combination can be expressed as

r= Yl Y g Y b 29)

€€ 7:6]:1U.7:3 1€Fa

sincem; = nl/N for networks of size one. Note thaj = I, Z 1 1gi = & for

i € Fa, 1i1y; = 1 if the gth combination contains at least one unit each fiBm
andB;, andl,;I,; = 0 otherwise. Since networksandj in 7, are each of size 1,
Zgzl 14145 = &, i.e., the number of combinations containing any two edgesum

F». By substituting (14) and (29) into the second term of (10),

vatjisr[Dl = ¢ 3 (ifyr ~ iinpir)
)
3 *
_ lz(zyilgi Zy>
6g:l i€EFo ™ 167:2 )
= Z Z y’L 6191 51
TL 9: 1€EF2
= 3 Z Z y 6191 -
16 g= 116.7-'2

e Z SNy (L — €)(Elyy — &)

g=1 zefz j<i

= 3 Z *22 5‘[‘]1 51

1€Fo g=1

3227;1%2 — &)y — &)

1€F2 j<i g=1
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& Z *QZ &+ 817 — 266 1)

i€F2 g=1

+—3 SN iy Z (E1gily; — €11y — €611 g5 + &7)

icFa j<i g=1 ) .
e =Y <Z£%+€2Zlgi—2§flzfgi>
i€F2 Eg:l g=1
3 Z Zyz y] <§QZIQZIQJ
16]-"2 j<i

—&& Z Igi = &6 Z Tgj + Z 51)

MgZy 515 &)

i€EF2

nlg e 2 2 V(@ - &)’

1€Fo j<i

CN3E 5) (sls &) > v

1€F2

266 —&)° Y Zyyj>

i€Fo j<t
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D Significance levels fromi-tests on similarity in
RMSESs between estimators

E[v] =95 SS SRS ACS+HH ACS+HT ACS+RBHH
ACS+RBHT | 0.01 0.00 0.07 0.05 0.16
ACS+RBHH | 0.05 0.00 0.25 0.24

ACS+HT | 0.16 0.00 0.48

ACS+HH | 0.20 0.00

SRS 0.01
E[v] =145 | SS SRS ACS+HH ACS+HT ACS+RBHH
ACS+RBHT | 0.00 0.00 0.02 0.02 0.01
ACS+RBHH | 0.00 0.01 0.17 0.16

ACS+HT | 0.10 0.04 0.46
ACS+HH | 0.07 0.03

SRS 0.10
E[L] =288 | SS SRS ACS+HH ACS+HT ACS+RBHH
ACS+RBHT | 0.00 0.00  0.10 0.48 0.25
ACS+RBHH | 0.01 0.00  0.20 0.25

ACS+HT 0.00 0.01 0.10
ACS+HH 0.16 0.01
SRS 0.02
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