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Abstract

Prospecting forin situmineral resources is essential for establishing settlements on
the Moon and Mars. To reduce human effort and risk, it is desirable to build robotic
systems to perform this prospecting. An important issue in designing such systems is
thesampling strategy: how do the robots choose where to prospect next? This paper ar-
gues that a strategy calledAdaptive Cluster Sampling(ACS) has a number of desirable
properties: compared to conventional strategies, (1) it reduces the total mission time
and energy consumption of a team of robots, and (2) returns a higher mineral yield
and more information about the prospected region by directing exploration towards ar-
eas of high mineral density, thus providing detailed maps ofthe boundaries of such
areas. Due to the adaptive nature of the sampling scheme, it is not immediately obvi-
ous how the resulting sampled data can be used to provide an unbiased, low-variance
estimate of the regional mineral density. This paper therefore investigates new min-
eral density estimators, which have lower error than previously-developed estimators;
they are derived from the older estimators via a process calledRao-Blackwellization.
Since the efficiency of estimators depends on the type of mineralogical population sam-
pled, the population characteristics that favor ACS estimators are also analyzed. The
ACS scheme and our new estimators are evaluated empiricallyin a detailed simulation
of the prospecting task, and the quantitative results show that our approach can yield
more minerals with less resources and provide more accuratemineral density estimates
than previous methods.
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1 Introduction

The establishment of large, self-sufficient lunar and Martian settlements will require an
extensive use ofin situ mineral resources. Prospecting for these resources is therefore
crucial to planning these settlements [19] (e.g., site selection, processing equipment,
and manufactured products). Although orbiting spacecraftcan remotely survey the lu-
nar surface for the distribution of minerals, their sensingdata are limited in resolution
and the types of minerals/elements sensed [13]. Hence, surface prospecting is neces-
sary to determine the specific regions of highest abundance (in particular, geographi-
cally rare minerals and minerals not sensed by orbiters) formining and to extract the
most geologically interesting samples for detailed analysis and calibration of orbiters’
data [12].

Surface prospecting can be conducted by either robots or spacesuited humans. The
benefits of robot prospectors include a wider range of sensory capabilities for mineral
identification, elimination of safety and life support issues, operation in harsh environ-
ments, and greater strength and endurance [6, 18]. Their deployment may increase the
efficiency of sampling in large prospecting regions and relieve the humans for more
sophisticated tasks such as real-time perception and planning, and detailed geologic
field study.

Traditionally, conventional sampling methods such asRaster Scanning(RS) [1],
Simple Random Sampling(SRS) [14], and stratified random sampling [1] have been
used in prospecting with robots. The first approach acquiresmeasurements at uniform
intervals, thus incurring high sampling and travel costs toachieve adequate sampling
density. The second approach selects a random sample of locations and makes mea-
surements at each of the selected locations. However, it ignores the fact that mineral
deposits are usually clustered [3, 20] and sometimes rare [19]. This results in an impre-
cise estimate of the mineral density in the prospecting region (i.e., large variance) [17].
Stratified random sampling requires prior knowledge of the mineral distribution for al-
locating the appropriate sampling effort among strata [17]. Without such information,
its efficiency degrades to that of SRS. There is one other conventional sampling scheme
calledSystematic Sampling(SS) [20], which has not been utilized in robot prospecting.
It will be used as a method of comparison in our paper.

This paper presents adaptive sampling techniques for wide area prospecting with
a team of robots (Fig. 1). Assume that the prospecting region(Fig. 2a) is discretized
into a grid ofN sampling units.Adaptive samplingrefers to sampling strategies in
which the procedure for selecting units to be included in thesample depends on the
mineral concentration observed during prospecting. In contrast, conventional sampling
has no such dependence. The main objective of adaptive sampling is to exploit the pop-
ulation characteristics of mineral deposits (e.g., spatial clustering or patchiness shown
in Fig. 2b) to obtain more precise estimates of the regional density than conventional
strategies for a given sample size or cost.

This paper describes a specific adaptive sampling scheme known as ACS (Sec-
tion 3), which has a number of desirable benefits for multi-robot wide area prospecting:
(1) it returns a higher mineral yield and more information about the prospected region
by directing robot exploration towards areas of high mineral density, thus providing
detailed maps of the boundaries of such areas, and (2) it reduces the total mission time
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Figure 1: Multi-robot mineral prospecting task.

and energy consumption of the robot team (Section 7).
The adaptive nature of this scheme incurs a considerable bias in conventional es-

timators due to a large proportion of high mineral content data in the sample. Conse-
quently, two unbiased estimators are proposed in [20] for the ACS strategy (Section 4).
This paper investigates how the error of these estimators can be reduced through a pro-
cess known asRao-Blackwellization, in which the outputs of the estimators are aver-
aged over several different ordered samples that are constructed by permuting the orig-
inal sampled data. The Rao-Blackwellization procedure is elaborated in Section 5; in
that section, its computational expense is also addressed,and closed-form expressions
are provided for the Rao-Blackwellized estimators. Since the efficiency of estimators
depends on the type of mineralogical population sampled, the population characteris-
tics that favor ACS estimators are also analyzed (Section 6). Before discussing the ACS
strategy and estimators, an overview of the multi-robot architecture will be presented
first in the next section.

2 Robot Supervision Architecture

The mineral prospecting task demonstrates an application of the Robot Supervision
Architecture (RSA) in our project called PROSPECT: Planetary Robots Organized for
Safety and Prospecting Efficiency via Cooperative Telesupervision
(http://www.ri.cmu.edu/∼prospect). This project is supported by NASA’s Exploration
Systems Mission Directorate. Our primary goal is to developa general architecture for
human supervision of an autonomous robot team in support of sustained, affordable,
and safe space exploration.

The RSA comprises the teleoperation base and robot prospectors. The teleoperation
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Figure 2: (a) Lunar Orbiter photograph III-133-H2 of prospecting region north of
Apollo 14 landing site (photograph courtesy of Lunar and Planetary Institute). (b)
Synthetic zirconium distribution (wt%) in this region [19].

base maintains a plan of the robot tours to visit the selectedunits to be sampled, as well
as a list of sampled units and their corresponding mineral content, while each robot
maintains an individual tour of its assigned units to be sampled. The base continuously
receives spectrometric data from the prospecting robots, selects new sampling units
based on the ACS strategy (Section 3), and replans the robot tours to visit the new and
current sampling units. After all selected units have been sampled, it determines the
mineral density estimates of the prospected region (Sections 4 and 5).

Our planning problem is an instance of thek-traveling salesman problem [5] where
k is the number of robots. The selected sampling units can be considered as cities to be
visited. We consider two different optimality criteria: minimizing the (1) total energy
consumption of all robots, and the (2) maximum mission time of any robot. In general,
this problem isNP -hard. So, our centralized planner at the base uses a modified
minimum spanning tree heuristic proposed in [11] to obtain 2- and 2k-competitive tour
allocation for the first and second criterion respectively.

3 Adaptive Cluster Sampling

The ACS [20] scheme proceeds as follows: an initial sample ofsizen1 is taken using
SRS without replacement. If the observed mineral content ofan initially sampled unit
satisfies a certain conditionC (e.g., mineral content≥ predefined threshold), the unit’s
neighborhood is added to the sample. For every unit, its neighborhood consists of the
unit and a set of “neighboring” units (e.g., top, bottom, left, and right units). If any
other units in that neighborhood satisfyC, their neighborhoods are also included in the
sample. This process is repeated until no more units that satisfy C are encountered.
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At this stage, clusters of units are obtained. Eachclustercontains units that satisfy
C and a boundary ofedge units. An edge unitis a unit that does not satisfyC but is
in the neighborhood of a unit that does. The final sample of sizeν consists of up ton1

clusters. These clusters are not necessarily distinct, since two units in the initial sample
that satisfyC could have been selected from the same cluster. If a unit in the initial
sample does not satisfyC, it is considered to be a cluster of size one.

Let thenetworkAi that is generated by uniti be defined as a cluster generated
by that unit with its edge units removed. A selection of any unit in Ai leads to the
selection of all units inAi. Any unit that does not satisfyC is a network of size one
since its selection does not lead to the inclusion of any other units. This implies that
any edge unit is also a network of size one. Hence, any clusterof size larger than 1 can
be decomposed into a network with units that satisfyC, and also networks (edge units)
of size one that do not satisfyC. Clusters may overlap on their edge units. In contrast,
networks are disjoint and form a partition of the entire population of units.

An example of an adaptive cluster sample is illustrated in Table 1. The values
in this table are obtained in a simulation test run on the prospecting region in Fig. 2,
which is discretized into a28×20 grid of square sampling units (thus, the total number
of units N = 560). The neighborhood of a unit is defined to be the top, bottom,
left, and right units. The condition for sampling a unit’s neighborhood is defined as
C = (y ≥ 1.0 wt%) wherey is the observed mineral content of a sampling unit. With
an initial sample sizen1 of 80, the ACS scheme results in a final sample sizeν of
150. The boxed values correspond to units from the initial sample. The lightly and
darkly shaded units correspond to network and edge units respectively. 3 networks of
size larger than 1 can be observed in the sample (Table 1). Notice that the leftmost
network is intersected 4 times by the initial sample while the other two networks are
each intersected once.

A noteworthy aspect of ACS is that given a fixedν, the travel cost of adding a
cluster or network of “neighboring” units in ACS is usually lower than that of adding
units selected at random using SRS in the prospecting region. This is demonstrated
empirically in Section 7.

Since the ACS scheme results in a large proportion of high mineral content data
in the sample, it will incur a considerable bias with the conventional sample mean
estimatorµ̄ = ν−1

∑ν

i=1
yi. Kriging (or Gaussian process regression) [4] is a more

sophisticated alternative but will be similarly biased. For example, the true population
meanµ is 0.648 for the zirconium distribution in Fig. 2b. However,for the ACS exam-
ple in Table 1,̄µ = 1.070 with v̂ar[µ̄] = 0.004139 (i.e., standard error of 0.064), which
clearly overestimatesµ. Hence, unbiased estimators are needed for the ACS scheme.
Two of these are presented in the next section.

4 Unbiased ACS Estimators

4.1 Modified Horvitz-Thompson Estimator

The first ACS estimator is modified from the Horvitz-Thompson(HT) estimator [8].
LetBi be the set of units in theith network andmi be the number of units inBi. Note
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Table 1: ACS example. Please refer to Section 3 for its description.
0.85 1.83 2.35 1.31 0.90 0.85

0.00 0.80 1.31 3.50 3.50 3.21 1.16 1.00 0.90 0.70

0.10 0.82 1.83 3.50 3.50 3.50 1.25 1.00 0.96

0.00 0.81 1.80 3.45 3.50 3.18 1.13 1.00 0.96 0.84 0.80

0.00 0.85 1.75 2.30 1.30 1.00 0.96 0.86

0.00 0.00 0.00 0.76 0.80 0.85 0.87 0.87 0.86 0.64

0.59 0.74

0.00 0.49 0.58 0.63 0.68

0.00 0.29 0.48 0.50

0.02 0.76

0.22 0.06 0.56

0.60 0.81 0.76 0.31

0.80 1.00 0.98 0.86 0.20

0.98 2.88 3.03 1.31 0.90 0.83 0.81 0.20

0.79 1.01 3.40 3.50 1.50 0.99 0.80 0.86 0.94 2.25 3.19 1.12

0.88 1.21 1.63 1.01 0.90 0.64 0.60 0.95 2.67 3.50 2.70

0.73 0.74 0.74 0.75 0.20 0.00 0.93 1.10 2.20 1.84

0.74 0.84 0.90 0.99 0.98

0.67 0.00 0.00 0.53

0.77 0.85 0.87 0.00

0.68 0.62 0.10 0.25

0.79 0.86 0.70 0.00

0.79 0.70 0.52 0.80

0.70 0.57

0.42 0.45

0.44

thatBi is defined in the same way as networkAi in Section 3 except that its indexi
refers to the network label rather than the unit label. The probability that the initial
sample intersects networkBi is

πi
def
= 1 −

(
N − mi

n1

)/(
N

n1

)
. (1)

The total mineral content of the prospecting region can be written as the sum of the
mineral contents of the individual networks. So, the average mineral content is

µ =
1

N

K∑

i=1

y∗
i

wherey∗
i is the total mineral content of theith network andK is the total number of

distinct networks in the population.
µ cannot be computed directly due to the unknowny∗

i ’s for unsampled networks.
So, to form an unbiased estimator ofµ, each term in the sum can be multiplied by
Ii/πi, whereIi is an indicator variable of value 1 if the initial sample intersectsBi, and
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0 otherwise. The expected value ofIi/πi is 1 for sampled networks, so our estimator
is unbiased; sinceIi is 0 for unsampled networks, information about these networks
are not needed to calculate our estimator. Applying this trick yields themodified HT
estimatorof µ:

µ̂HT =

K∑

i=1

y∗
i Ii

Nπi

=

κ∑

i=1

y∗
i

Nπi

(2)

whereκ is the number of distinct networks intersected by the initial sample.
For practical use of the HT estimator, it is important to be able to estimate its

variance from the sample. There is a simple closed-form formula which can be used for
this purpose.πi has been defined to be the probability that the initial sampleintersects
theith network. Defineπjk to be the probability that the initial sample intersects both
thejth andkth networks. Ifj = k, thenπjk = πj . Otherwise, to computeπjk, notice
that the probability that the initial sample intersects neither networkj nor networkk is

P(Ij 6= 1 ∩ Ik 6= 1) =

(
N − mj − mk

n1

)/(
N

n1

)
.

So, the probability that the initial sample intersects either jth or kth network is1−
P(Ij 6= 1 ∩ Ik 6= 1), and

πjk = πj + πk − (1 − P(Ij 6= 1 ∩ Ik 6= 1)) .

Sinceµ̂HT is a sum of several terms, its variance can be derived by taking the sum
of covariances between these terms:

var[µ̂HT ] =

K∑

j=1

K∑

k=1

cov[
y∗

j Ij

Nπj

,
y∗

kIk

Nπk

]

=

K∑

j=1

K∑

k=1

y∗
j

Nπj

y∗
k

Nπk

cov[Ij , Ik] .

(3)

(3) cannot be computed from the sample data since not all the networks in the popula-
tion are necessarily sampled. So, to obtain an unbiased estimator of the variance, we
can use a similar trick as before: each term is multiplied byIjIk/πjk (which has an
expected value of 1 for sampled networks) to get

v̂ar[µ̂HT ] =

K∑

j=1

K∑

k=1

y∗
j Ij

Nπj

y∗
kIk

Nπk

cov[Ij , Ik]

πjk

=
1

N2




κ∑

j=1

κ∑

k=1

y∗
j y∗

k

πjk

(
πjk

πjπk

− 1

)

 .

(4)

The second equality follows because cov[Ij, Ik] is πjk − πjπk.
For the ACS example in Table 1,̂µHT = 0.665 andv̂ar[µ̂HT ] = 0.001835 (i.e.,

standard error of 0.043) by using (2) and (4) respectively.
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4.2 Modified Hansen-Hurwitz Estimator

The second ACS estimator is modified from the Hansen-Hurwitz(HH) estimator [7].
In the previous section, we mention that the total mineral content of the prospecting
region is the sum of the mineral contents of the individual networks. The mineral
content of each network can be written as the average mineralcontent of all units in
this network summed over its number of network units. So, theaverage mineral content
of the prospecting region can also be expressed as

µ =
1

N

N∑

i=1

wi

wherewi is the average mineral content of the networkAi containing uniti.
µ cannot be computed directly due to the unknownwi’s for unsampled networks.

Using the same trick as in the previous section, an unbiased estimator ofµ can be
formed by multiplying each term in the sum withNJi/n1, whereJi is an indicator
variable of value 1 if uniti is included in the initial sample, and 0 otherwise. The
expected value ofNJi/n1 is 1 for initial sample units, so our estimator is unbiased;
sinceJi is 0 for units not in the initial sample, information about these units is not
needed to calculate our estimator. Applying this trick yields themodified HH estimator
of µ:

µ̂HH =
1

n1

N∑

i=1

wiJi =
1

n1

n1∑

i=1

wi (5)

Note that̂µHH can be interpreted as the conventional sample mean obtainedusing SRS
of sizen1 from a population ofwi values rather thanyi values. So, using the theory of
SRS [20],

var[µ̂HH ] =
N − n1

Nn1(N − 1)

N∑

i=1

(wi − µ)2 (6)

with unbiased estimator

v̂ar[µ̂HH ] =
N − n1

Nn1(n1 − 1)

n1∑

i=1

(wi − µ̂HH)2 . (7)

For the ACS example in Table 1,̂µHH = 0.624 andv̂ar[µ̂HH ] = 0.002802 (i.e.,
standard error of 0.053) by using (5) and (7) respectively.

5 Improved Unbiased Rao-Blackwellized ACS Estima-
tors

An estimatort(Do) of a population characteristicµ is a functiont which maps our
observed dataDo to an estimate ofµ. Saying thatµ is a population characteristic
means there is a parameter vectorθ which completely describes the distribution of our
population, andµ = µ(θ) is a function of this parameter vector.
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In our setting,Do is an ordered list of pairs〈is, yis
〉 whereis is the unit sampled

at steps and yis
is its mineral content. The population characteristic of interestµ

is the average mineral content of the sampling region. The population parameter is
θ = 〈y1, . . . , yN 〉, which is the vector of true mineral contents for all units inthe
population. The estimators ofµ that we are interested in arêµHT andµ̂HH .

To evaluate an estimatort(Do), its distribution conditioned on a possible value ofθ
can be examined. Good estimators have low mean-squared errors, i.e., the distribution
P(t(D0) − µ|θ) is concentrated around 0. In this section, we will describea way to
reduce the mean-squared errors of the estimatorsµ̂HT andµ̂HH .

Rao-Blackwellization is a procedure that allows us to reduce the mean-squared er-
ror of an arbitrary estimatort(Do). The improved estimator is E(t(Do)|D) whereD is
a reduced description of our data that omits some redundant information. In particular,
D is defined as astatisticif it is a function of our dataDo, andD is defined as asuffi-
cient statisticif it contains all relevant information inDo aboutθ, i.e., P(Do|D, θ) =
P(Do|D).

Given these definitions, Rao-Blackwellization is the process of computing E(t(Do)|D)
whenD is a sufficient statistic. In our case,D is set to be theunorderedset of distinct,
labeled observations, i.e.,D = {〈i, yi〉| i ∈ S} whereS is the set of distinct unit labels
in our data sample [20].

The following theorem, adapted from the Rao-Blackwell theorem [2], justifies the
use of the Rao-Blackwellized (RB) estimator:

Theorem 1 Let t = t(Do) be a (not necessarily unbiased) estimator ofµ. Define
tD = E[t|D]. Then
(a) tD is an estimator;
(b) E[tD] = E[t];
(c) MSE[tD] ≤ MSE[t] with strict inequality for allθ such that Pθ(t 6= tD) > 0.

Corollary 1 If t is unbiased,

var[tD] = var[t] − EDE[(t − tD)2|D]
= var[t] − ED{var[t|D]} .

(8)

The proofs of Theorem 1 and Corollary 1 are provided in Appendices A and B respec-
tively. From (8), var[tD] ≤ var[t] since the variance reduction term ED{var[t|D]} ≥ 0.

Rao-Blackwellization does nothing ifg(Do) is already a function ofD. On the
other hand, it achieves the largest possible reduction in variance whenD is aminimal
sufficient statistic. A minimal sufficient statistic is one that reducesDo as much as
possible without losing information aboutθ:

Definition 1 A sufficient statisticD = g(Do) is minimal sufficientfor θ if, for any
other sufficient statisticD′ = g′(Do), D is a function ofD′.

In our case,D is minimal sufficient, and̂µHT and µ̂HH are not functions ofD;
they depend on the order of selection. To see this, consider asmall population of four
units withθ = [0.1, 0.5, 1, 2]T . The condition isy ≥ 1. The initial sample sizen1 is
2. The initial samples (〈2, 0.5〉, 〈3, 1〉) and (〈3, 1〉, 〈4, 2〉) give the same final unordered
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sampleD = {〈2, 0.5〉, 〈3, 1〉, 〈4, 2〉}. Note that the edge unit〈2, 0.5〉 is included in the
first initial sample but not the second one. This implies the edge unit will be involved in
computingµ̂HT or µ̂HH only in the first sample. Hence, either estimator will produce
different estimates for the two samples.

In order to Rao-BlackwellizêµHT andµ̂HH , we will need several notations. Let
G =

(
ν
n1

)
be the number of combinations ofn1 distinct initial sample units from the

ν units in the final sample and let these combinations be indexed by the labelg where
g = 1, 2, . . . , G. Let τg be the value of an estimatort when the initial sample consists
of combinationg, Ig be an indicator variable of value 1 if thegth combination can
result inD (i.e., iscompatiblewith D), and 0 otherwise. The number of compatible
combinations is thenξ =

∑G

g=1
Ig. It follows that P(t = τg|D) = 1/ξ for all compatible

g. So, the improved RB estimator is

tRB = E[t|D] =
1

ξ

G∑

g=1

τgIg =
1

ξ

ξ∑

g=1

τg . (9)

The variance oftRB is obtained using (8) wheretD = tRB . The unbiased estimator of
var[tRB] is then

v̂ar[tRB ] = v̂ar[t] − var[t|D] = v̂ar[t] −
1

ξ

ξ∑

g=1

(τg − tRB)2 . (10)

Since (9) and (10) are based on samples compatible withD, naively, theξ compat-
ible samples have to be identified from theG combinations and their correspondingξ
estimators have to be evaluated.ξ andG can be potentially large, which would ren-
der the RB method computationally infeasible. However, in the next two subsections,
closed-form expressions for the RBHT and RBHH estimators [16] will be described.

5.1 Rao-Blackwellized HT Estimator

The reason that the HT estimator yields different values with different compatible sam-
ples is each compatible sample intersects a different combination of the edge units in
the final sampleD (in contrast, all networks other than the edge units must be included
in every compatible sample). So, some of the indicator variables in (2) will have dif-
ferent values in different compatible samples.

The closed-form expression for the RBHT estimator is based on the observation
that we can analytically compute the expectation of each of the indicator variables in
(2) given a randomly selected compatible sample. This expectation will be 1 for all
networks of size greater than 1 and for all networks of size 1 that are not edge units.
For networks that are edge units, the expectation will be strictly positive and less than
1.

As we will see below, computing these expectations requiresevaluating several bi-
nomial coefficients. The number of binomial coefficients is exponential in the number
of networks of size greater than 1. So, computing the RBHT estimator will be efficient
if relatively few networks of size larger than 1 are intersected by the initial sample.
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This assumption is reasonable because a prospecting regiontypically contains only a
few major mineral deposits.

Since the modified HT estimator is formulated based on networks, its RB version
will be derived likewise. LetE be the set of network labels in the sample. From (2),
µ̂HT for thegth combination can be written as

µ̂g
HT =

∑

i∈E

y∗
i

Nπi

Igi (11)

whereIgi is an indicator variable of value 1 if thegth combination contains at least one
unit fromBi, and 0 otherwise.

By substituting (11) into (9), we get the RBHT estimator ofµ:

µ̂RBHT =
1

ξ

ξ∑

g=1

∑

i∈E

y∗
i

Nπi

Igi =
∑

i∈E

y∗
i

Nπi

ξ∑

g=1

Igi

ξ
(12)

where
∑ξ

g=1
Igi is the number of combinations containing at least one unit fromBi.

Clearly,ξ and
∑ξ

g=1
Igi in (12) have to be evaluated in order to obtain the closed-form

expression of̂µRBHT . This can be achieved by evaluating them based on the different
types of network in the sample.

The sampleD can be partitioned into three different types of network: (a) networks
of size larger than 1, (b) networks that are edge units, and (c) networks of size one that
are not edge units. More formally,E = F1∪F2∪F3 where (a)F1 = {i ∈ E| mi > 1},
(b)F2 = {i ∈ E| Bi is an edge unit}, and (c)F3 = {i ∈ E − F1 −F2}.

ξ can be determined as follows: every network inF3 must be intersected by the
initial sample and is thus allocated one initial sample uniteach. The remainingn′

1 =
n1 − |F3| initial sample units can be chosen fromν′ = ν − |F3| final sample units in(

ν′

n′

1

)
ways. From these

(
ν′

n′

1

)
ways, combinations that are not compatible withD have

to be removed to getξ. These incompatible combinations are the ones that containno
units from at least one of the networks inF1. Formally, ifCi is the set of combinations
containing no units fromBi, ∪i∈F1

Ci is the set of incompatible combinations that con-
tain no units from at least one of the networks inF1. Using the inclusion-exclusion
identity for the cardinality of set union,

∣∣∣∣ ∪
i∈F1

Ci

∣∣∣∣ =
∑

i∈F1

|Ci| −
∑

i,j∈F1

|Ci ∩ Cj | + . . . + (−1)|F1−1|

∣∣∣∣ ∩
i∈F1

Ci

∣∣∣∣

=
∑

i∈F1

(
ν′ − mi

n′
1

)
−
∑

i,j∈F1

(
ν′ − mi − mj

n′
1

)

+ . . . + (−1)|F1−1|

(
ν′ −

∑
i∈F1

mi

n′
1

)
.

Then the number of compatible combinations is simply

ξ =

(
ν′

n′
1

)
−

∣∣∣∣ ∪
i∈F1

Ci

∣∣∣∣ . (13)
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Since all compatible combinations contain at least one unitfrom each network in
F1 ∪ F3,

∑ξ

g=1
Igi = ξ for i ∈ F1 ∪ F3. This takes care of the cases (a) and (c).

However, each edge unit inF2 is not necessarily included in every combination. To
include an edge unit in a combination, one initial sample unit has to be allocated to the
edge unit, which results inν′ − 1 units inD andn′

1 − 1 initial sample units. So, if we
let ξ1 be the number of combinations containing the edge unitBi (i.e.,

∑ξ

g=1
Igi = ξ1

for i ∈ F2), ξ1 is similar toξ except that both terms in every binomial coefficient are
reduced by one. Substitutingξ andξ1 into (12),

µ̂RBHT =
∑

i∈F1∪F3

y∗
i

Nπi

+
ξ1

ξ

∑

i∈F2

y∗
i

Nπi

. (14)

From (14),µ̂RBHT is similar toµ̂HT except that all edge units inF2 are now involved
but each edge unit term is weighted byξ1/ξ. Hence,µ̂RBHT is improved fromµ̂HT

by using all information from the edge units. This is also therationale for improving
the variance estimate of̂µRBHT , which will be described next.

It is shown in Appendix C that

var[µ̂HT |D] =
1

(n1ξ)2



(ξ1ξ − ξ2

1)
∑

i∈F2

y∗2
i + 2(ξ2ξ − ξ2

1)
∑

i∈F2

∑

j<i

y∗
i y∗

j



 (15)

whereξ2 is the number of combinations containing any two edge units in F2. Two
initial sample units are allocated to two edge units, resulting in ν′ − 2 units inD and
n′

1−2 initial sample units. So,ξ2 is similar toξ except that both terms in every binomial
coefficient are reduced by two. From (10), the unbiased estimator of var[̂µRBHT ] is

v̂ar[µ̂RBHT ] = v̂ar[µ̂HT ] − var[µ̂HT |D] (16)

wherev̂ar[µ̂HT ] and var[̂µHT |D] are previously determined using (4) and (15) re-
spectively. It can be observed from ( 15) that the variance reduction term var[µ̂HT |D]
depends solely on they-values of the edge units. Hence, the improvement in the RBHT
estimator becomes smaller as they-values of the edge units tend to zero. For the ACS
example in Table 1,̂µRBHT = 0.656 andv̂ar[µ̂RBHT ] = 0.001574 (i.e., standard er-
ror of 0.040) by using (14) and (16) respectively. The standard error is only reduced
by 0.003, which is expected since they-values of the edge units are less than 1.0 (Sec-
tion 3).

Note thatξ, ξ1, andξ2 each requires2|F1| binomial coefficients to be evaluated.
Hence, the expressions forµ̂RBHT andv̂ar[µ̂RBHT ] are computationally efficient if
|F1| is small, i.e., relatively few networks of size larger than 1are intersected by the
initial sample.

5.2 Rao-Blackwellized HH Estimator

The derivation of the closed-form expression for the RBHH estimator follows the same
notion as before: we evaluate expectations of indicator variables by counting how often

11



individual units are present in a compatible sample. In the RBHT estimator, the indi-
cator variables for networks inF1∪F3 are always 1, and we only need to calculate the
expectations for the networks inF2. The RBHH estimator, on the other hand, uses in-
dicator variables of individual units. As before, all unitsin F3 will be present in every
compatible sample and so, their indicator variables will always be 1. But, the indicator
variables for the units in networks inF1 ∪ F2 will be strictly between 0 and 1: both
edge units and units in networks of size greater than 1 are notnecessarily included in
all of the compatible samples.

Since the modified HH estimator is formulated based on thew-value for each unit,
its RB version will be derived likewise. The setS of unit labels in the sampleD can be
partitioned into three different types of units: (a) units in networks of size larger than 1,
(b) edge units, and (c) non-edge units in networks of size one. So,S = H1 ∪H2 ∪H3

where (a)H1 = {i ∈ S| unit i ∈ Bj , j ∈ F1}, (b)H2 = {i ∈ S| unit i ∈ Bj , j ∈ F2},
and (c)H3 = {i ∈ S| unit i ∈ Bj , j ∈ F3}. Note that|H2| = |F2| and|H3| = |F3|.

Let Jgi be an indicator variable of value 1 if thegth combination contains uniti,
and 0 otherwise. From (5),̂µHH for thegth combination can be expressed as

µ̂g
HH =

1

n1

∑

i∈S

wiJgi =
1

n1

(
∑

i∈H1∪H2

wiJgi +
∑

i∈H3

wi

)
(17)

since all unit labels inH3 must be in everygth combination. By substituting (17) into
(9), the RBHH estimator ofµ is

µ̂RBHH =
1

ξ

ξ∑

g=1

1

n1

(
∑

i∈H1∪H2

wiJgi +
∑

i∈H3

wi

)

=
1

n1

(
1

ξ

∑

i∈H1∪H2

wi

ξ∑

g=1

Jgi +
∑

i∈H3

wi

) (18)

where
∑ξ

g=1
Jgi = ξi is the number of combinations containing uniti. ξ can be

determined using (13) in the previous section. To obtainξi, one initial sample unit is
allocated to uniti and each unit inH3, resulting inν′ − 1 = ν − |H3| − 1 units inD
andn′

1 − 1 = n1 − |H3| − 1 initial sample units.ξi is then
(

ν′−1

n′

1
−1

)
ways reduced by

the number of combinations that contain no unit label from atleast one of the networks
in F1. For i ∈ H1, ξi is similar toξ1 except that we ignore the binomial coefficients
involving j ∈ F1 where uniti ∈ Bj. Fori ∈ H2, ξi = ξ1. Substitutingξi into (18),

µ̂RBHH =
1

n1

(
1

ξ

∑

i∈H1∪H2

wiξi +
∑

i∈H3

wi

)
. (19)

From (19),µ̂RBHH differs from µ̂HH by involving all network units inH1 and edge
units, but each term with these units is weighted byξi/ξ. Hence,̂µRBHH is improved
from µ̂HH by using all information from the network units inH1 and edge units, which
is also the case for improving the variance estimate ofµ̂RBHH . Similar to deriving

12



var[µ̂HT |D] in Appendix C,

var[µ̂HH |D] =
1

(n1ξ)2

( ∑

i∈H1∪H2

(ξiξ − ξ2

i )w2

i

+2
∑

i∈H1∪H2

∑

j<i

(ξijξ − ξiξj)wiwj

) (20)

whereξij is the number of combinations containing unitsi andj in H1 ∪H2, that is,

ξij =






(
ν′−2

n′

1
−2

)
−
∑

x 6=k,l

(
ν′−mx−2

n′

1
−2

)
if unit i ∈ Bk ∧ unit j ∈ Bl,

+
∑

x,y 6=k,l

(
ν′−mx−my−2

n′

1
−2

)
k, l ∈ F1,

+ . . . + (−1)|F1|
(
ν′−

P

mx−2

n′

1
−2

)
(

ν′−2

n′

1
−2

)
−
∑

x 6=k

(
ν′−mx−2

n′

1
−2

)
if (unit i ∈ Bk, k ∈ F1

+
∑

x,y 6=k

(
ν′−mx−my−2

n′

1
−2

)
∧ j ∈ H2) ∨ (unitsi, j ∈ Bk,

+ . . . + (−1)|F1|
(
ν′−

P

mx−2

n′

1
−2

)
k ∈ F1),

ξ2 if i, j ∈ H2

(21)

wherex, y ∈ F1. From (10), the unbiased estimator of var[µ̂RBHH ] is

v̂ar[µ̂RBHH ] = v̂ar[µ̂HH ] − var[µ̂HH |D] (22)

wherev̂ar[µ̂HH ] and var[̂µHH |D] are previously determined using (7) and (20) respec-
tively. By comparing (15) and (20), we can observe that var[µ̂HH |D] > var[µ̂HT |D].
If the y-values of the edge units tend to zero, var[µ̂HH |D] depends more on thew-
values of the network units inH1. Thus, the improvement of the RBHH estimator
is always greater than that of the RBHT estimator. For the ACSexample in Table 1,
µ̂RBHH = 0.648 andv̂ar[µ̂RBHT ] = 0.000720 (i.e., standard error of 0.027) by us-
ing (19) and (22) respectively. The standard error is reduced by 0.026, which is more
than the reduction of 0.003 for the RBHT estimator (Section 5.1). Similar to the com-
plexity analysis of RBHT estimator, the expressions forµ̂RBHH andv̂ar[µ̂RBHH ] are
computationally efficient if|F1| is small.

6 Efficiency Analysis of ACS Estimators

The efficiency of ACS over SRS depends on the type of mineralogical population being
sampled. In particular,̂µHH is more efficient than the conventional sample meanµ̂ for
SRS if var[µ̂HH ] < var[µ̂]. Using the theory of SRS [20],

var[µ̂] =
N − ν

Nν(N − 1)

N∑

i=1

(yi − µ)2 (23)

The total sum of squared difference betweenyi andµ in (23) can be partitioned into
within-network and between-network components:

N∑

i=1

(yi − µ)2 =
N∑

i=1

(yi − wi)
2 +

N∑

i=1

(wi − µ)2 (24)
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Using (6), (23), and (24), var[µ̂HH ] < var[µ̂] if and only if

(
1 −

n1

ν

) N∑

i=1

(yi − µ)2 <
(
1 −

n1

N

) N∑

i=1

(yi − wi)
2 (25)

It can be observed from (25) thatµ̂HH is more efficient than̂µ if (1) the within-network
variance of the population (rightmost term) is sufficientlyhigh, (2) the final sample size
ν is not much larger than the initial sample sizen1 for µ̂HH so that1 − n1/ν is small,
and (3)n1 � N so that1 − n1/N is large. However, conditions 2 and 3 can oppose
condition 1 because a small difference between initial and final sample size, and a
small initial sample size usually mean small within-network variance. So, ACS with
µ̂HH works best with networks that are small enough to restrict the final sample size
but large enough for the within-network variance to represent the population variance
reasonably. This means even though drastically lowering the threshold for conditionC
can increase the within-network variance and improve condition 1, it also increases the
final sample size tremendously and violates condition 2 easily.

Although it is straightforward to compare var[µ̂HT ] (3) and var[µ̂], it cannot be
easily interpreted since var[µ̂HT ] involves the intersection probabilities. However, em-
pirical results in Section 7 show thatµ̂HT is consistently more efficient than̂µ.

7 Experiments and Discussion

This section presents quantitative evaluations of the ACS scheme and its estimators for
wide area prospecting with a team of four robots; this is the number of robots that will
be fielded on NASA Ames Research Center’s Moonscape for our project’s real-world
test and evaluation. The experiments were performed using Webots, a mobile robot
simulator (http://www.cyberbotics.com). 16 directed distance sensors with 0.3 m range
were modelled around its body of0.32 m (L)×0.27 m (W)×0.2 m (H). Each robot
could sense its global position through GPS1, and communicate spectrometric and tour
data with the base. The robots used the potential fields method [9] for navigation
between sampling units and obstacle avoidance. Each robot could move at a maximum
speed of 0.425 m/s and consumed about 28.2 J/m. It used the Alpha Particle X-Ray
Spectrometer (APXS) [15] (1.3 W) for sampling, which required about 2 hours to
obtain a high-quality x-ray spectrum of the mineral content. So, sampling each unit
would use about 9.5 kJ. The 6.46 km×4.61 km prospecting region is discretized into
a28×20 grid of sampling units such that each unit’s width is about 231 m. The robots
were placed at a sampling unit in the center of the region and had to rendezvous at this
same unit after all selected units were sampled.

To compare the performance of the estimators, the RMSE criterion is used to mea-
sure their quality:

RMSE[t] =

[
1

R

R∑

i=1

(τi − µ)2

] 1

2

1Deployment of space exploration infrastructure would ultimately result in GPS or similar localization
capability on the Moon and Mars. If this is absent, the current technique of a sun-seeking sensor combined
with local inertial navigation can be used.

14



whereR = 20 is the number of test runs,τi is the mean mineral content estimate
obtained in test runi.

Using this measure, a quantitative test was conducted to compare the estimators
described above. For ACS, the initial sample sizen1 was 40, 80 or 240 sampling
units. After 20 test runs for eachn1, it resulted in an average final sample size E[ν]
of approximately 95, 145, and 288 units, which correspondedto 17.1%, 25.7%, and
51.4% of the 560 total sampling units. The SRS and SS schemes were conducted using
the same sample sizes as E[ν].

Test results (Fig. 3a) show that the ACS estimators perform better than the non-ACS
estimators. Among the ACS estimators, the Rao-Blackwellized estimators achieved
lower RMSE. In particular, the differences in performance between the estimators were
the most significant at the sample size of 145 units. This implies that the ACS estima-
tors, especially the Rao-Blackwellized ones, are practically more appealing because
more accurate mineral density estimates can be obtained with a reasonably small sam-
ple size. If the sample size decreases too much below 17.1%, the performance of all
estimators will converge since their behavior will be more and more alike. If the sample
size increases too much beyond 51.4%, their performance will also converge due to in-
creasing similarity in information from the prospecting region. Usingt-tests (α = 0.1),
the differences in RMSEs between the estimators have been verified to be statistically
significant if these differences are more than 0.006 for the sample sizes of 95 and 145
units, and more than 0.004 for the sample size of 288 units (see Appendix D). Note that
the biased sample mean estimatorµ̄ under the ACS scheme is not included in Fig. 3a;
it has extremely large RMSEs of 0.525, 0.406, and 0.143 corresponding to 17.1%,
25.7%, and 51.4% of the total sampling units.

To compare the system performance of the sampling schemes, the optimality cri-
teria mentioned in Section 2 are considered: minimizing (1)total energy consumption
of all robots, and (2) maximum mission time of any robot. Fig.3b and c show the re-
sults after 20 test runs for the first and second criterion respectively; the mineral yield,
energy consumption, and mission time recorded for the various sampling strategies are
given as a percentage of the corresponding values for RS (i.e., complete sampling of
560 units). Note that each strategy (other than RS) has threedifferent records in its
plot, which correspond to E[ν] of 95, 145, and 288 units; a smaller sample size gives a
smaller mineral yield. The line for RS shows a constant ratioof energy consumption or
mission time to mineral yield. We observe that the ACS strategy yields more minerals
than SRS and SS with less energy and mission time. The differences in mineral yield,
energy consumption or mission time between ACS and the othertwo strategies have
been verified usingt-tests (α = 0.1) to be statistically significant except for that of
energy consumption between ACS and SS with a sample size of 145 units.

Furthermore, in contrast to SRS and SS, we observe that ACS falls below the dotted
line of RS, which implies it achieves a lower ratio of energy consumption or mission
time to mineral yield than RS. Hence, it is both energy and time efficient to utilize ACS
for prospecting in place of RS. We also expect the advantage of ACS to increase when
the sampling cost increases. For example, the alpha mode of APXS [15] requires at
least 8 hours of sampling time, while the Mössbauer spectrometer [10] runs at 2 W and
needs at least 6 hours. In our experiments for ACS, the spectrometry incurs 45% of the
total energy consumption and 83% of the overall mission timefor a typical sample size
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Figure 3: Comparison of (a) RMSEs of different estimators and sampling strategies, (b)
energy consumption of different sampling strategies, and (c) mission time of different
sampling schemes.
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of 288 units. These figures will increase substantially if the Mössbauer spectrometer is
used instead.

8 Conclusion and Future Work

This paper describes the derivation of new low-error estimators within the ACS scheme
and its application to multi-robot wide area prospecting. Quantitative experimental re-
sults in the prospecting task simulation have shown that theACS scheme can yield
more minerals with less resources and the Rao-Blackwellized ACS estimators can pro-
vide more precise mineral density estimates than previous methods. For our future
work, we will apply these techniques on a larger robot team and real robots. Our plan-
ner will be improved using other minimum spanning tree heuristics or stochastic search
strategies to reduce the tour lengths so that ACS can be even more efficient than RS.
We will also consider the effect of noisy and multivariate mineral content data on our
scheme and estimators. Lastly, adaptive systematic sampling will be examined.
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A Proof of Theorem 1

(a) SinceD is minimally sufficient forθ, E[t|D] does not depend onθ. HencetD does
not depend onθ and can be regarded as an estimator;
(b) E[tD] = EDE[t|D] = E[t];

(c) MSE[t] = E[(t − µ)2] = E[(t − tD + tD − µ)2]
= E[(t − tD)2] + MSE[tD]

(26)

since

E[(t − tD)(tD − µ)] = EDE[(t − tD)(tD − µ)|D]
= ED(tD − µ)E[(t − tD)|D]
= ED(tD − µ)(E[t|D] − tD)
= 0 .

(27)

It follows from (26) that MSE[tD] ≤ MSE[t] with equality if and only if E[(t−tD)2] =
0 (i.e., t = tD with probability 1). Strict inequality will occur ift is different fromtD
over a set of nonzero probability.

18



B Proof of Corollary 1

Given thatt is unbiased, E[t] = µ. Then

MSE[t] = E[(t − µ)2]
= E[(t − E[t] + E[t] − µ)2]
= var[t] + (E[t] − µ)2

= var[t] .

(28)

SincetD is also unbiased (Theorem 1), E[tD] = µ. Corollary 1 follows from (26) by
using (28) to replace MSE[t] and MSE[tD] with var[t] and var[tD] respectively.

C Derivation: var[ µ̂HT | D]

µ̂HT (2) for thegth combination can be expressed as

µ̂g
HT =

∑

i∈E

y∗
i

Nπi

Igi =
∑

i∈F1∪F3

y∗
i

Nπi

+
∑

i∈F2

y∗
i

n1

Igi (29)

sinceπi = n1/N for networks of size one. Note thatI2
gi = Igi,

∑ξ

g=1
Igi = ξ1 for

i ∈ F2, IgiIgj = 1 if the gth combination contains at least one unit each fromBi

andBj, andIgiIgj = 0 otherwise. Since networksi andj in F2 are each of size 1,∑ξ

g=1
IgiIgj = ξ2, i.e., the number of combinations containing any two edge units in

F2. By substituting (14) and (29) into the second term of (10),

var[µ̂HT |D] =
1

ξ

∑

g

(µ̂g
HT − µ̂RBHT )2

=
1

ξ

ξ∑

g=1

(
∑

i∈F2

y∗
i

n1

Igi −
ξ1

ξ

∑

i∈F2

y∗
i

n1

)2

=
1

n2
1
ξ
3

ξ∑

g=1

(
∑

i∈F2

y∗
i (ξIgi − ξ1)

)2

=
1

n2
1
ξ
3

ξ∑

g=1

∑

i∈F2

y∗2
i (ξIgi − ξ1)

2

+
2

n2
1
ξ
3

ξ∑

g=1

∑

i∈F2

∑

j<i

y∗
i y∗

j (ξIgi − ξ1)(ξIgj − ξ1)

=
1

n2
1
ξ
3

∑

i∈F2

y∗2
i

ξ∑

g=1

(ξIgi − ξ1)
2

+
2

n2
1
ξ
3

∑

i∈F2

∑

j<i

y∗
i y∗

j

ξ∑

g=1

(ξIgi − ξ1)(ξIgj − ξ1)
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=
1

n2
1
ξ
3

∑

i∈F2

y∗2
i

ξ∑

g=1

(ξ2

1 + ξ2I2

gi − 2ξξ1Igi)

+
2

n2
1
ξ
3

∑

i∈F2

∑

j<i

y∗
i y∗

j

ξ∑

g=1

(ξ2IgiIgj − ξξ1Igi − ξξ1Igj + ξ2

1)

=
1

n2
1
ξ
3

∑

i∈F2

y∗2
i

(
ξ∑

g=1

ξ2

1 + ξ2

ξ∑

g=1

Igi − 2ξξ1

ξ∑

g=1

Igi

)

+
2

n2
1
ξ
3

∑

i∈F2

∑

j<i

y∗
i y∗

j

(
ξ2

ξ∑

g=1

IgiIgj

−ξξ1

ξ∑

g=1

Igi − ξξ1

ξ∑

g=1

Igj +

ξ∑

g=1

ξ2

1

)

=
1

(n1ξ)2

∑

i∈F2

y∗2
i (ξ1ξ − ξ2

1)

+
2

(n1ξ)2

∑

i∈F2

∑

j<i

y∗
i y∗

j (ξ2ξ − ξ1)
2

=
1

(n1ξ)2

(
(ξ1ξ − ξ2

1)
∑

i∈F2

y∗2
i

+2(ξ2ξ − ξ1)
2
∑

i∈F2

∑

j<i

y∗
i y∗

j

)
.
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D Significance levels fromt-tests on similarity in
RMSEs between estimators

E[ν] = 95 SS SRS ACS+HH ACS+HT ACS+RBHH
ACS+RBHT 0.01 0.00 0.07 0.05 0.16
ACS+RBHH 0.05 0.00 0.25 0.24

ACS+HT 0.16 0.00 0.48
ACS+HH 0.20 0.00

SRS 0.01

E[ν] = 145 SS SRS ACS+HH ACS+HT ACS+RBHH
ACS+RBHT 0.00 0.00 0.02 0.02 0.01
ACS+RBHH 0.00 0.01 0.17 0.16

ACS+HT 0.10 0.04 0.46
ACS+HH 0.07 0.03

SRS 0.10

E[ν] = 288 SS SRS ACS+HH ACS+HT ACS+RBHH
ACS+RBHT 0.00 0.00 0.10 0.48 0.25
ACS+RBHH 0.01 0.00 0.20 0.25

ACS+HT 0.00 0.01 0.10
ACS+HH 0.16 0.01

SRS 0.02
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