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ABSTRACT
Sketches have successfully provided accurate and fine-grained mea-

surements (e.g., flow size and heavy hitters) which are imperative

for network management. In particular, Count-Min (CM) sketch is

widely utilized in many applications due to its simple design and

ease of implementation. There have been many efforts to build mon-

itoring frameworks based on Count-Min sketch. However, these

frameworks either support very specific measurement tasks or they

cannot be implemented on high-speed programmable hardware

(PISA).

In this work, we propose FCM, a framework that is designed to

support generic network measurement with high accuracy. Our key

contribution is FCM-Sketch, a data structure that has a lightweight

implementation on the emerging PISA programmable switches.

FCM-Sketch can also be used as a substitute for CM-Sketch in ap-

plications that use CM-Sketch. We have implemented FCM-Sketch

on a commodity programmable switch (Barefoot Tofino) using the

P4 language. Our evaluation shows that FCM-Sketch can reduce

the errors in many measurement tasks by 50% to 80% compared to

CM-Sketch and other state-of-the-art approaches.
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1 INTRODUCTION
Network measurement is indispensable for efficient network man-

agement such as load balancing, congestion control, quality of
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service, scheduling, and anomaly detection [13, 46, 47, 50, 57, 63].

To assist in-network management, fine-grained measurements such

as per-flow size [22], heavy hitter detection [54], cardinality [58],

etc. are needed.

With the abundance of memory and availability of parallel pro-

cessing (e.g., SIMD and multi-core), software switches have been

used as platforms for network measurement [31, 51, 62]. However,

with network link speeds reaching 400Gbps and switching capacity

exceeding tens of Tbps [1], it is challenging for software process-

ing speed to scale accordingly [43]. Techniques like sampling (e.g.,

NetFlow [3]) are often utilized to reduce measurement overhead.

However, it cannot provide accurate and fine-grained statistics.

Often, there is an inevitable loss in measurement resolution and

accuracy if network monitoring is performed solely in software

without hardware (data-plane) support.

To overcome this challenge, sketch, in particular, Count-Min

(CM) sketch [22] is often used to support network measurement

and queries [20, 21, 34, 37, 42, 53] in the data-plane. However, while

Count-Min sketch incurs low computational overhead and has

compact memory footprint, it has poor accuracy.

Recently, many network monitoring frameworks [12, 32, 33, 44,

54, 55, 59] have been proposed to operate entirely in the network

data-plane by leveraging data-plane programmability [8]. While

some of the frameworks [12, 33, 55] are designed to be implemented

on programmable switches, they do not support a general set of

network measurement tasks with a single data structure. On the

other hand, solutions that support generic queries either require

substantial hardware resources [32] or cannot be implemented on

the switching hardware without significant loss of accuracy [44, 59].

Clearly, what we need is a system that can support high resolu-

tion, generality and scaling with the switching fabric throughput

at the same time. To this end, we propose the FCM (Feed-forward
Count-Min sketch) framework. The FCM framework operates at

both switch data-plane and control-plane. In the data-plane, we

propose a novel data structure, FCM-Sketch, that supports fine-
grained measurement, such as per-flow size, cardinality and heavy

hitter detection, entirely in the data plane at line-rate. In the control-

plane, FCM leverages the CPU and DRAMs to enable complex mea-

surement tasks (e.g. flow size distribution and entropy [13, 15, 23])

using the data collected by FCM-Sketch in the data-plane.

One can think of FCM-Sketch as a better Count-Min sketch that

is more memory efficient and accurate. FCM-Sketch can directly

replace Count-Min sketch in existing systems that require queries

and statistics in the data-plane. The design of FCM-Sketch is based

on the following ideas. First, FCM-Sketch has a tree-based feed-

forward design that leverages the multi-stage processing pipeline

of PISA [5] and distributes the computation along the pipeline.

Second, FCM-Sketch uses counters of different sizes at different
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levels of the tree. Compared to Count-Min sketch, FCM-Sketch

uses a larger number of small-size counters at leaves and a smaller

number of large-size counters at the core. In FCM-Sketch, counts

of incoming flows are first accumulated in the leaf counters that

overflow to the next level (parent) counters upon saturation at the

lower levels. Since, in practice, traffic flows are highly skewed with

large number of small flows [14], memory of the small size counters

at the leaf nodes is utilized more efficiently. This design addresses

the inefficiency in the Count-Min sketch design where a uniform

counter size is used to record counts for all flow sizes.

To summarize, our contributions are as follow:

• We propose FCM-Sketch, a novel data structure that can be used

as a substitute for Count-Min sketch to achieve higher accuracy.

FCM-Sketch can be used in a broad class of applications, in-

cluding network measurements [32, 51, 59, 61], online network

control [24, 41, 53, 56], data-plane queries [20, 21, 34, 37, 42]

and data streaming [25, 48].

• FCM-Sketch can take advantage of the multi-stage switching

pipeline of PISA and can be accurately implemented in data-

plane running at line-rate. Also, its compact design reduces

data-plane resources (SRAM, N(Stages), etc.) consumption. Our

evaluation shows that FCM consumes fewer hardware resources

compared to other state-of-the-art measurement frameworks.

• We have designed and implemented the FCM framework on

both a software simulator and Barefoot Tofino [8] switches.

FCM is resource efficient in the data-plane and supports general

measurement tasks with high accuracy.

Our evaluation shows that FCM-Sketch outperforms Count-Min

sketch significantly, achieving a 88% reduction in the error for flow

size estimation. We have also compared the performance of FCM,

ElasticSketch, UnivMon, and FCM+TopK (an implementation of

FCM-Sketch coupled with the Top-K algorithm of ElasticSketch).

Our evaluation shows that the errors of FCM+TopK is at least 90%

less than UnivMon [44] and at least 50% less than ElasticSketch [59]

across almost all measurement tasks.

The paper is organized as follows. We introduce the background

and motivation in §2. Then, we present the measurement frame-

work of FCM in §3 and §4. Accuracy analysis is presented in §5

and a design to improve CM-based application (FCM+TopK) in §6.

The evaluation on software simulator is presented in §7 and the

evaluation on Tofino hardware in §8. Finally, we present a related

work in §9 and conclusion in §10.

2 BACKGROUND AND MOTIVATION
Traditionally, network monitoring has relied on techniques like

NetFlow [3], sFlow [6], etc. Due to memory constraints, these tech-

niques perform sampling on the incoming packets to collect sta-

tistics. As a result of their extremely low sampling rates, they do

not capture an accurate picture of the network. To overcome this

memory-accuracy tradeoff, probabilistic hash-based data-structures

called sketch are used in the network devices to get approximate

statistics. Predominantly, Count-Min sketch is used to estimate the

flow counts due to its simplicity.

Count-Min sketch: The Count-Min (CM) sketch data structure

consists of 𝑑 counter arrays {𝐶1, ...,𝐶𝑑 }. Upon an flow’s arrival, a set

of (𝑑) independent hash functions are applied on the flow id to select
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Figure 1: FCM Overview: Simple measurement tasks are
available in the data plane, and the control plane calculates
more generic statistics from the reported sketches.

𝑑 counters (one from each counter array) and the value of each

counter is incremented. To estimate a flow’s frequency, the same set

of independent hash functions are applied and the minimum value

among the corresponding counters is obtained. This value provides

an estimate of the flow’s frequency. Due to its simplicity, CM-Sketch

enables a flow’s statistics to be accessed at line-rate in the data-

plane. This feature has enabled several applications like scheduling,

caching, load-balancing, etc to maintain statistics without incurring

too much resources. Even though CM-Sketch provides a reasonable

performance for a fixed memory footprint, it has the following

problems : 1) Memory inefficiency : Since all the counters are of

the same size, skewness in traffic with higher number of smaller

flows leads to low utilization of allocated memory in a counter. 2)

Performance bound: For a given memory size, there is an upper-

bound in the accuracy and increasing the computational capabilities

(e.g., hashes) does not directly increase the performance [28].

Programmable Switches: The emergence of programmable switches

(PISA [5]) have triggered renewed interests in addressing the short-

falls in network monitoring. Recently, approaches such as OpenS-

ketch [61], ElasticSketch, etc. have proposed data-structures using

CM-Sketch to perform generic measurements. While they perform

much better than the basic CM-Sketch, they cannot be directly im-

plemented on PISA due to complex arithmetic and memory access

patterns. To run these algorithms on PISA, approximate implemen-

tations are needed and these approximations result in significant

loss of accuracy [44, 54, 59].

In this paper, we ask the following question : "Can we leverage the
PISA architecture to design a simple data-structure that can outper-
form Count-Min and at the same time support generic measurements.".

FCM-Sketch: We propose Feed-forward Count-Min sketch, a tree-
based feed-forward scheme to record traffic statistics in multiple

stages. The initial stage composes of many small size counters (e.g.

4/8-bit), while the later stages use fewer but larger counters (e.g.

16/32-bit). The main intuition behind the design of the FCM-Sketch

is as follows: (1) As the number of small flows tend to dominate in

most traffic patterns [14], FCM-Sketch’s approach keeps counting of

(most) small flows in the leaf nodes and reduces hash collisions for
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Figure 2: Data structure of single-tree FCM-Sketch.
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Figure 3: Data structure of a single node with b bits. Count
value ranges from 0 to 2

𝑏 − 2. The value of 2𝑏 − 1 is used to
indicate a count of at least 2𝑏 − 2 plus overflow.

larger flows later along the stages. This is particularly effective for

highly-skewed traffic distributions. (2) FCM-Sketch’s multi-stage

feed-forward data structure naturally fits the multi-stage pipeline

in PISA [5], thus enabling implementation that operates at line-rate.

The overall system, the FCM framework, is shown in Figure 1.

The framework comprises of : 1) FCM-Sketch in the data-plane

(§3) to aggregate statistics and support simple queries like flow

size, cardinality and heavy hitter detection at line-rate for appli-

cations like load balancing, traffic engineering, etc. 2) Algorithms

in the control-plane (§4) to aggregate data-plane statistics from

FCM-Sketch to support complex measurements like heavy change

detection, entropy and flow size distribution for applications like

anomaly detection, network fault diagnosis, etc.

3 DATA-PLANE: FCM-SKETCH
3.1 Data Structure
FCM-Sketch uses a k-ary tree-based data structure. We will first

present the case for a single tree and then briefly discuss the exten-

sion to multiple trees later.

Single-tree FCM-Sketch: As shown in Figure 2, a single-tree

FCM-Sketch consists of 𝐿 node arrays 𝐶𝑙 , 1 ≤ 𝑙 ≤ 𝐿, where 𝐿 is

the total number of stages. Each array 𝐶𝑙 is composed of𝑤𝑙 nodes

where each node is of size 𝑏𝑙 -bit at stage 𝑙 . The size of 𝐶𝑙 is𝑤𝑙 ∗ 𝑏𝑙 .
For a k-ary tree structure, 𝑤𝑙 decreases by a factor of 𝑘 from an

earlier to the later stage, i.e., 𝑤𝑙+1 =
𝑤𝑙

𝑘
. On the other hard, 𝑏𝑙

increases with each stage i.e 𝑏𝑙+1 > 𝑏𝑙 .

Node in FCM-Sketch: Consider a node in the FCM-Sketch with 𝑏

bits
1
. The node value is used to convey (1) the counter value and (2)

the overflow status. Initially, the counter value is 0 and the overflow

status is false. The counter value of a node ranges from 0 to 2
𝑏 − 2.

If the count value is larger than 2
𝑏 − 2, the node value is set to

2
𝑏 − 1 and the overflow status is true. Once a node’s counter is in

the overflow state, all increments have to be carried forward to the

next stage. The structure is shown in Figure 3.

In summary, if the node value is between 0 and 2
𝑏 − 2, the count

value is the same as the node value. If the node value is 2
𝑏 − 1, the

1
We ignore the subscript of 𝑏 for brevity

Algorithm 1 Increment(𝑙, 𝑖𝑙 )

1: if 0 ≤ 𝐶𝑙,𝑖𝑙
≤ 2

𝑏𝑙 − 2 then
2: 𝐶𝑙,𝑖𝑙

← 𝐶𝑙,𝑖𝑙
+ 1.

3: if 𝐶𝑙,𝑖𝑙
= 2

𝑏𝑙 − 1 and 𝑙 < 𝐿 then
4: Increment(𝑙 + 1, ⌊𝑖𝑙 /𝑘 ⌋ ).
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(b) Count-query of a flow key 𝑓1 and 𝑓2.
Figure 4: Example operations of FCM-Sketch.

node’s overflow status is true. Hence, the count value at this node

is 2
𝑏 − 2 and counts at later stages have to be taken into account.

Design Intuitions/Advantages: We highlight the various design

intuitions and advantages of FCM-Sketch as follows:

(1) Collision reduction: The multi-stage feed-forward design re-

stricts the counters of small flows in the earlier stages, thus

reducing collision errors in the later stages with heavy flows.

(2) Overflow indicator : An overflow indication using the maximum

value of a counter as opposed to a bit-indicator used by previous

approaches [19, 60] helps in efficient usage of bit-space as well

as minimizes memory accesses.

(3) Memory accesses: The multi-stage feed-forward design requires

a single memory access per-stage and fits well to the pipeline

architecture of PISA.

3.2 Update and Count-Query
Update: Given an incoming packet with flow key 𝑓 , we choose

the node at stage 1 with the hash index 𝑖 = ℎ(𝑓 ) mod𝑤1. Next, we

apply Algorithm 1 by invoking Increment(1, i). In the algorithm,

𝐶𝑙,𝑖𝑙 is the node value at stage 𝑙 with index 𝑖𝑙 . If the node in the

current stage 𝑙 is in overflow state, then the increment goes to the

next stage by invoking Increment(𝑙 + 1, ⌊𝑖𝑙/𝑘⌋). The algorithm stops

when encountering a node that is not in overflow state or the final

level is reached.

Count-query: To retrieve the count estimate for a flow key, the

sum of all corresponding counter values along one or more stages

are accumulated until the stage where the corresponding node is

not in the overflow state or until the last stage has been reached.

While we present the update and count query separately for

clarity, these two operations are performed at the same time in

practice for efficient memory accesses.
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Example - Update (Figure 4a): Consider an FCM-Sketch com-

posed of a binary tree with three stages and counter size𝑏 = [2, 4, 8]
bits respectively as in Figure 4. Suppose a flow key 𝑓1’s packet is

hashed into the third counter at stage 1. This counter’s value being

2 is already the maximum counting range (2
2 − 2). The value is

incremented to 3 to indicate that overflow has occurred and the

update then moves to the next stage. In the second stage, the flow

key is mapped to the second counter with a value of 4. Since the

counter is made up of 4 bits at stage 2, the maximum value is 14

(2
4−2). Hence, the counter is incremented to 5 and the update ends.

Example -Count-query (Figure 4b): Consider a query operation
on the same flow 𝑓1. With overflow in stage 1 and no overflow in

stage 2, the count for this flow will be 7 (sum of stage 1 (value of 2)

and stage 2 (value of 5)). Consider another flow 𝑓2 that is hashed to

the first counter in stage 1 and first counter in stage 2. Since both

the counters in stages 1 and 2 are in overflow, count for this flow

includes all three stages i.e. 2 + 14 + 9 = 25.

Extension to Multi-trees: A single-tree FCM-Sketch is synony-

mous to CM-Sketch with a single hash table. Hence, multiple trees

are a natural extension to a single tree FCM-Sketch to improve

accuracy. In the case of FCM-Sketch with multiple trees, multiple

independent hash function maps are used. The final count is the

minimum value over all the count in multiple trees similar to CM-

Sketch. Note that multiple trees can be operated upon in parallel in

the data-plane as they use independent memory units.

3.3 Data-Plane Queries
A data-plane query is a query which can be processed using infor-

mation maintained in the FCM-Sketch without additional process-

ing in the control-plane. FCM-Sketch can be used to answer the

following data-plane queries.

• Flow size estimation: FCM-Sketch estimates the flow size cor-

responding to the flow key using a count-query. Note the count

can be interpreted in different ways, e.g., bytes, packets, etc.

• Heavy hitter detection: FCM-Sketch’s flow size estimation can

in turn be used to classify flows as heavy hitters using configured

thresholds.

• Cardinality estimation: FCM-Sketch can be used to estimate

the cardinality (number of distinct flows) with respect to a flow

key using Linear Counting (LC) [58]. LC estimates the maximum

likelihood of the number of empty counters for a given cardinal-

ity. Formally, the cardinality estimator is 𝑛̂ = −𝑤1 log(𝑤0

1
/𝑤1),

where 𝑤0

1
is the average number of empty leaf nodes among

those at stage 1. This can be computed in the data plane using

lookup tables.

The above measurements have been extensively used for many

data-plane applications which are beyond traditional data-plane

functionality, such as load balancing of hot objects [34, 37, 42],

packet scheduling [53], queue measurement [21], and microburst

detection [20], etc.

4 CONTROL PLANE: ALGORITHMS
In this section, we explain the algorithms used in the control-plane

to aggregate the statistics from the data-plane and estimate vari-

ous statistics. The control-plane, equipped with substantially more

3
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Figure 5: Example of conversion algorithm in the control
plane.

processing capabilities, converts the FCM-Sketch to virtual coun-

ters (§4.1) and applies EM (Expectation Maximization) algorithm

(§4.2) to recover information loss in the data-plane caused by hash

collisions to obtain flow size distribution. Lastly, we explain the

methodology (§4.4) to estimate entropy and detect heavy change

that are useful for applications like anomaly detection, fault diag-

nosis, etc.

4.1 FCM-Sketch to Virtual Counters
The first step is to aggregate the counters of the FCM-Sketch from

the data-plane. Since FCM-Sketch is a probabilistic data structure,

inaccuracies due to hash collisions are common. Additionally, hash

collisions could happen at any stage. Hence, the challenge is to

untangle the hash collision. We address this by building a linear

counter array, which we call virtual counters. The desired prop-

erty of the virtual counter is that it needs to capture the relation-

ship among flows that encountered collision and shared the same

counters at different stages. Details of the Conversion Algorithm is

presented below.

Conversion Algorithm: The algorithm consists of two steps to

convert a single tree of FCM-Sketch into a virtual counter array.

(1) For each leaf node at level 1, trace the path starting from the

leaf node towards the top of the tree until a node that has not

overflown or the node at the final level is reached.

(2) All paths (sub-tree) that end at the same (highest level) node

are merged into a single virtual counter. The value of each
virtual counter is the sum of all node counters in the sub-tree.

Each virtual counter is also associated with a parameter called

the degree which is the number of paths merged to form the

virtual counter.

It is important to note that in the construction of a virtual counter,

the total count is preserved. Therefore, each virtual counter corre-

sponds to the exact count for the given sub-tree it represents.

Example: In Figure 5, we illustrate the conversion algorithm using

the previous example. The path of first leaf node 𝐶1,0 (the count

value is 2 and the node is in the overflow state) can be traced to

𝐶2,0 and ends at 𝐶3,0. The accumulated count is 2 + 14 + 9 = 25.

Since the path has no common leaf node with other paths leading

to 𝐶3,0, a degree of 1 is assigned. We denote this virtual counter as

𝑉 1

1
, the virtual counter with degree 1 and index 1. The process for

the second leaf (starting from 𝐶1,1) is similar, resulting in a virtual

counter value of 0 and a degree of 1. We denote this count as 𝑉 1

2
.

The paths from the third and fourth leaf nodes (𝐶1,2 and 𝐶1,3)

share the counter at 𝐶2,1 in stage 2. Both paths end at 𝐶2,1 as the

node is not in the overflow state. Hence, their virtual counters will

be combined with the merged count 2 + 2 + 5 = 9, and the virtual

counter has a degree 2. This virtual counter is denoted as 𝑉 2

1
.
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Each tree in the FCM-Sketch is converted to a virtual array using

the above method. A multi-tree FCM-sketch would be converted

into multiple virtual arrays.

4.2 Expectation-Maximization
Given the virtual counter arrays 𝑉 , the next step would be to accu-

rately estimate the flow size distribution 𝜙 and the total number

of flows 𝑛. We develop a Maximum Likelihood Estimator (MLE)

of 𝜙 and 𝑛 under the unobserved latent variables (i.e. hash col-

lisions between flows). We use Expectation-Maximization (EM)

algorithm [38], which is an iterative method to find the maximum

likelihood estimate of the parameters (𝜙 ,𝑛). Given two sets of un-

known ({𝜙 ,𝑛}, and latent variables), the EM algorithm consists of

two iterative steps: (1) guess the values of 𝜙, 𝑛 to estimate the (ex-

pected) latent variables, and (2) compute the better guess of 𝜙, 𝑛

by using the newly estimated latent variables. The output of step

2 can then be used in the next iteration of step 1. This process is

repeated either over a fixed time/iterations or till some threshold

(e.g. accuracy estimate) is reached.

EM for Single-tree FCM-Sketch: Suppose a single-tree FCM-

Sketch and its corresponding virtual counter array 𝑉 whose max-

imum degree and value are 𝐷 and 𝑧, respectively. We group the

virtual counters of the same degree 𝜉 , and denote the group and its

number of counters as 𝑉 𝜉
and𝑚𝜉

, respectively.

At each iteration 𝑠 , the EM algorithm updates the estimates 𝜙 (𝑠)

and 𝑛 (𝑠) . At iteration 𝑠+1, 𝜙 (𝑠+1) and 𝑛 (𝑠+1) are updated as: For any
possible flow size 𝑗 , 𝜙

(𝑠+1)
𝑗

= 𝑛
(𝑠+1)
𝑗
/𝑛 (𝑠+1) , 𝑛 (𝑠+1) = ∑𝑧

𝑗=1 𝑛
(𝑠+1)
𝑗

,

and

𝑛
(𝑠+1)
𝑗

=

𝐷∑
𝜉=1

𝑚𝜉∑
𝑖=1

∑
𝛽𝜉 ∈Ω (𝑉 𝜉

𝑖
,𝜉)

𝑝 (𝛽𝜉 |𝑉 𝜉

𝑖
, 𝜙 (𝑠) , 𝑛 (𝑠) ) ∗ 𝛽𝜉

𝑗
, (1)

where Ω(𝑉 𝜉

𝑖
, 𝜉) is the set of all possible combinations of collision

between flows that can build-up the 𝑖-th virtual counter of degree 𝜉 .
In Eqn. 1, the probability is calculated by Bayes’ rule:

𝑝 (𝛽𝜉 |𝑉 𝜉

𝑖
, 𝜙 (𝑠) , 𝑛 (𝑠) )=

𝑝 (𝛽𝜉 |𝜙 (𝑠) , 𝑛 (𝑠) )I{𝛽𝜉 ∈ Ω(𝑉 𝜉

𝑖
, 𝜉)}∑

𝛼𝜉 ∈Ω (𝑉 𝜉

𝑖
,𝜉) 𝑝 (𝛼

𝜉 |𝜙 (𝑠) , 𝑛 (𝑠) )
, (2)

where 𝑝 (𝛽𝜉 |𝜙, 𝑛) =
∏𝑧

𝑗=1 𝑝 (𝛽
𝜉

𝑗
|𝜙, 𝑛) and each (𝛽𝜉

𝑗
|𝜙, 𝑛) follows

Poisson(𝑛𝜙 𝑗 𝜉/𝑤1).
To understand the details of EM algorithm, we discuss the fol-

lowing in §4.3.

• 𝑝 (𝛽𝜉
𝑗
|𝜙, 𝑛) : probability modeling of latent variables,

• Ω(𝑉 𝜉

𝑖
, 𝜉) : possible combinations of collisions for 𝑉

𝜉

𝑖
,

• Initialization and complexity of EM algorithm.

We skip the derivation of estimates for 𝜙, 𝑛 due to space constraints.

More details of EM algorithm can be found in [38].

4.3 Details of EM Algorithm
Probability Modeling: Given the flow size distribution 𝜙 and the

total number of flows 𝑛, consider 𝑛𝜙 𝑗 number of size 𝑗 flows. Each

of them would be uniformly hashed into the total 𝑤1 number of

leaf nodes. As a virtual counter of degree 𝜉 includes 𝜉 leaf nodes,

the (prior) probability of each flow hashed into the virtual counter

Notation Definition
𝑛 Total number of flows

𝜙 𝑗/𝑛 𝑗 Fraction / Number of flows that are of size 𝑗 .

𝑉 A virtual counter array

𝐷 Maximum degree of counters in 𝑉

𝑧 Maximum value of counters in 𝑉

𝑉 𝜉
A group of virtual counters of degree 𝜉 in 𝑉

𝑚𝜉
Number of counters in 𝑉 𝜉

Ω(𝑉 𝜉

𝑖
, 𝜉)

A set of possible combinations of collisions

between flows that can build-up 𝑉
𝜉

𝑖

Table 1: Notations in EM for single-tree FCM-Sketch.

follows Bernoulli( 𝜉𝑤1

). Hence, the (prior) probability of the number

of size 𝑗 flows to be hashed into a virtual counter of degree 𝜉 (i.e.,

𝛽
𝜉

𝑗
) follows Binomial, and is approximated by Poisson distribution.

Formally,

𝛽
𝜉

𝑗
|𝜙, 𝑛 ∼ Poisson(

𝑛𝜙 𝑗 𝜉

𝑤1

).

Since we can assume the collision events for different sizes of flows

are independent by hashing, 𝑝 (𝛽𝜉 |𝜙, 𝑛) = ∏𝑧
𝑗=1 𝑝 (𝛽

𝜉

𝑗
|𝜙, 𝑛).

Note that the previous statement does not hold if conditioned

on a specific virtual counter value (data) since the value limits the

possible set of flows due to data-dependency. By Bayes’ rule, the

posterior probability of 𝛽𝜉 given the virtual counter value 𝑉
𝜉

𝑖
is

computed as :

𝑝 (𝛽𝜉 |𝑉 𝜉

𝑖
, 𝜙, 𝑛) =

𝑝 (𝛽𝜉 |𝜙, 𝑛)𝑝 (𝑉 𝜉

𝑖
|𝛽𝜉 , 𝜙, 𝑛)∑

𝛼𝜉 ∈Ω 𝑝 (𝑉
𝜉

𝑖
|𝛼𝜉 , 𝜙, 𝑛)𝑝 (𝛼𝜉 |𝜙, 𝑛)

=
𝑝 (𝛽𝜉 |𝜙, 𝑛)I{𝛽𝜉 ∈ Ω(𝑉 𝜉

𝑖
, 𝜉)}∑

𝛼𝜉 ∈Ω (𝑉 𝜉

𝑖
,𝜉) 𝑝 (𝛼

𝜉 |𝜙, 𝑛)

where I{·} is an indicator function, Ω is a set of all combinations

of flows, and Ω(𝑉 𝜉

𝑖
, 𝜉) is a set of all possible combinations of flows

for the virtual counter 𝑉
𝜉

𝑖
of degree 𝜉 .

Likelihood Estimation of Ω(𝑉 𝜉

𝑖
, 𝜉): Note that the possibility of

building-up the virtual counter of a specific value and degree is
data-dependent since it is determined by the occurrence of overflow
events. Hence, the possible set of combinations for a specific virtual

counter depends on how the virtual counter has been produced from
the collected FCM-Sketch.

Virtual counters with the same value and degree could have

different possible sets based on where their paths have met and

how they have been merged. In particular, there are two constraints

to consider. First, non-empty virtual counters of degree 𝜉 should

include at least 𝜉 flows, because it has 𝜉 paths and each path has

at least one flow hashed into its leaf node. Second, based on how

𝑉
𝜉

𝑖
is produced, the sum of the counts on each of 𝜉 paths should be

large enough to result in overflow.

For example, consider the virtual counter 𝑉 2

1
= 9 and the set

Ω(𝑉 2

1
, 2) in Figure 5. It has two paths which meet in stage 2. Hence,

there must be at least two flows and a solution of one flow of size 9

is not possible. Likewise, many such combinations could be ruled

out. For example, the combination of two flows with size 1 and 8 is
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not possible since a flow of size 1 is not large enough to cause an

overflow in the leaf node. With the above constraints, the possible

combinations of sizes for 2 flows are {3, 6} and {4 ,5}. Clearly, there

are many other combinations of 3 to 9 different flows that can

produce the observed value. However, these combinations with

more number of flows hashing into 2 leaf nodes are less likely.

Heuristic to Reduce Estimation Complexity: Note that enu-

merating all possible combinations of collision is impractical since

there are enormous number of combinations to consider. In order to

reduce the computation time, we use the following observations: (1)

There are very small number of (virtual) counters with large value

and/or degree as the real traffic flows have highly skewed distribu-

tion, and (2) collisions of large number of flows are rare. Similar

to MRAC [38], we truncate the set of possible combinations based

on the counter value and degree, and reduce the computational

complexity with very small impact on accuracy.

Initialization: In EM algorithm, each iteration uses the estimates

produced by the preceding iteration to refine the estimation. In the

beginning, it should set the initial guess 𝜙 (0) and 𝑛 (0) . We generate

the initial guess as the observed flow size distribution by count

queries of all hash index and the number of non-empty leaf nodes,

respectively.

EM forMulti-tree FCM-Sketch: The EM algorithm of single-tree

FCM-Sketch can be easily extended to multi-tree since the trees

operate independently. We present the result for multi-tree based

FCM-Sketch in Appendix §A and skip the details of derivation.

4.4 Measurement in the Control Plane
By periodically

2
collecting FCM-Sketch from the data plane and

converting the data into virtual counters, the control plane can

support complex measurement tasks such as:

• Flow size distribution: The distribution of flow sizes through

EM algorithm as described in §4.2.

• Entropy estimation: The flow size distribution can in turn be

used to estimate the entropy [40] by expressing it based on flow

size distribution. Formally, entropy 𝐻 = −∑𝑘 (𝑘 ∗ 𝑛𝑘
𝑚 log

𝑛𝑘
𝑚 )

where 𝑛𝑘 is the number of size-𝑘 flows.

• Heavy change detection: Flows whose sizes in two adjacent

time windows have changed over a predefined threshold can be

classified as heavy change. Note that if the change of flow size

is over the threshold, at least one of sizes for the time windows

should be over the threshold. This can be done by collecting the

candidate heavy flows over the threshold for both windows. Then

the next step would be to compare their count-queries from the

collected sketches, and report if the change is over the threshold.

Such measurements can be extended to support many other appli-

cations such as detecting security attacks [15, 23], flash crowds [36],

or understanding the properties of underlying network traffic [14].

5 ACCURACY ANALYSIS
Similar to CM-Sketch, FCM-Sketch always overestimates the flow

size upon hash collisions. In this section, we show the accuracy

guarantee of FCM-Sketch’s count-query. Let x = [𝑥1, . . . , 𝑥𝑛] be
2
The frequency of the control-plane is controlled by the user. It can be periodic, or

event-driven.

a vector of flow size in data streaming where 𝑥𝑖 is the size of the

𝑖-th flow. Typically, the accuracy analysis of sketch is configured

in terms of two parameters: error fraction (𝜖) and error probability

(𝛿). In the following theorem, we present the accuracy guarantee

of FCM-Sketch in terms of the total number of incoming packets

(∥x∥1).

Theorem 5.1. Suppose the virtual counters converted from FCM-
Sketch (§4.1) has a finite maximum degree 𝐷 . Denote the number of
leaf nodes of each tree in the FCM-Sketch as 𝑤1 = ⌈ 𝑒𝜖 ⌉ (𝑒 is Euler’s
number), the number of trees as 𝑑 = ⌈ln 1

𝛿
⌉, and the accuracy pa-

rameters 𝜖, 𝛿 > 0. Given 𝑑 pairwise independent hash functions, the
count-query 𝑥𝑖 for flow 𝑖 is bounded by

𝑥𝑖 ≤ 𝑥𝑖 + 𝜖 ∥x∥1 + 𝜖 (𝐷−1) (∥x∥1−𝑤1𝜃1)I{∥x∥1 >𝑤1𝜃1} (3)

with probability at least 1 − 𝛿 , where ∥ · ∥1 is 1-norm, 𝜃1 is the
maximum counter value at stage 1 (2𝑏1 − 2 with 𝑏1-bit), and I{·} is
an indicator function.

Note that, if only a single level of tree is used, with the same

number of counters, the error bounds for FCM-Sketch and CM-

Sketch [22] are the same. Additionally, the accuracy parameter 𝜖 is

inversely proportional to the number of leaf counters by definition.

In Theorem 5.1, the only assumption we make for the analysis is

the finite maximum degree 𝐷 which obviously holds; D is bounded

by the number of leaf nodes of a tree. Note that the dependency

on 𝐷 disappears if the total number of packets is less than𝑤1𝜃1. In

particular, the condition translates to; For 1.3MB memory,𝑤1𝜃1 is

about 133𝑀 using two 8-ary trees with 8, 16, 32-bit counters in each

stage. This corresponds to 992Gb traffic with 1000-byte packets.

If the above condition holds true, barring parameter 𝜖 , the error

bound of FCM-Sketch takes the exact same form as that of CM-

Sketch. The intuition behind FCM-Sketch’s advantage over CM-

Sketch is as follows. CM-Sketch uses counters of uniform size and

thus requires large counters (e.g., 32-bit) to record large flows. On

the other hand, FCM-Sketch utilizes smaller counters (e.g., 8-bit)

at the earlier stage, while larger counters are used only for later

stages and the number of large counters decreases with the number

of stages. For the same amount of memory, we can thus provision

for many more (small) counters at the earlier stages. Therefore, the

accuracy parameter 𝜖 for FCM-Sketch is much smaller than that of

CM-Sketch with the same memory.

On the other hand, if the condition does not hold, the error bound

in Eqn. 3 increases with the maximum degree 𝐷 . This matches with

our intuition in that𝐷 tends to increase with the number of overflow
nodes increases which may additionally result in more collision

error for count-query. Specifically, the condition would be violated

if flow sizes are uniformly large. In this case, the accuracy may drop

due to their collisions in the later stages.

Lastly, the error bound in Theorem 5.1 focuses on describing

the overflow events at stage 1 as in the last term of Eqn. 3. In

Appendix §B, we present its general form with considerations for

all stages.

6 APPLICATION STUDY: FCM+TOPK
Many existing network monitoring frameworks for generic mea-

surement tasks rely on the design of CM-Sketch (e.g., ElasticS-

ketch [59], SketchLearn [32], OpenSketch [61]). In this section, we
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show how FCM-Sketch can replace CM-Sketch and be integrated

into ElasticSketch as a representative application and analyze the

accuracy improvement.

ElasticSketch [59] consists of two main components: 1) a Top-K

algorithm that filters candidate heavy flows andmaintains their key-

values in multiple hash tables, and 2) a CM-Sketch that maintains

statistics for the residual packets after the Top-K algorithm. Since

heavy flows have been filtered, the residual flows ideally can be

tracked with small size counters. Hence, more number of small size

(e.g. 8-bit) counters could be used in CM-Sketch compared to the

use of larger (e.g. 32-bit) counters.

While the intuition behind ElasticSketch is effective on highly

skewed traffic flows, it requires the Top-K algorithm tominimize the

likelihood of the 8-bit counters in the CM-Sketch from overflowing.

Thus, ElasticSketch needs to allocate sufficient memory to the Top-

K algorithm’s tables, resulting in less memory for the CM-Sketch

and reducing the overall accuracy.

To overcome this drawback, we could use FCM-Sketch instead of

CM-Sketch in ElasticSketch. Lets call this combination FCM+TopK.
Since FCM-Sketch can handle different flow sizes more efficiently

(by allowing overflow to higher level stages), amuch smaller amount

of memory can be allocated to the Top-K algorithm. As a result,

FCM-Sketch can be allocated even larger amount of the available

memory to further improve accuracy of the non-heavy flows.

We present the error bound of FCM+TopK as follows:

Theorem 6.1. The count-query 𝑥𝑖 of FCM+TopK for flow 𝑖 is
bounded by

𝑥𝑖 ≤𝑥𝑖 +𝜖 ∥xL∥1+𝜖 (𝐷−1) (∥xL∥1−𝑤1𝜃1)I{∥xL∥1>𝑤1𝜃1} (4)

with probability at least 1−𝛿 , where ∥xL∥1 denotes the sum of counts
passed after the Top-K algorithm.

Note that if only a single level tree is used, the error bound is

same as that of ElasticSketch. Thus, FCM+TopK can have a tighter

error bound than ElasticSketch using the same Top-K algorithm.

We present the proof in Appendix §B.

7 EVALUATION ON SOFTWARE
In this section, we evaluate the accuracy of the software imple-

mentation of FCM compared to existing frameworks. First, we

describe the software implementation of FCM-Sketch and other

frameworks in §7.1 and the evaluation setup in §7.2. Next, we com-

pare the accuracy of FCM-Sketch and FCM+TopK with CM-Sketch,

CU-Sketch [26]
3
, Hashpipe [54], MRAC, Hyperloglog [27], and

PyramidSketch [60] for specific measurement task in §7.3. In §7.4,

we look at how parameters of FCM should be selected for different

traffic distribution skewness. Finally, we compare the performance

of FCM and FCM+TopK with frameworks such as UnivMon [44]

and ElasticSketch [59] across generic measurement tasks in §7.5.

We defer the evaluation on PISA hardware (Barefoot Tofino) to §8.

7.1 Implementation
We have implemented FCM-Sketch and all the other measurement

frameworks in C++. We conducted evaluations on a server with

64 cores (Intel Xeon E5-2683V4@2.1GHZ) and 256GB DRAM. We

3
CM-Sketch with Conservative Update

Measurement tasks Metrics Benchmark solutions
Flow size estimation ARE, AAE Count-Min (CM), CU, PCM

Heavy hitter detection F1-score UnivMon, Hashpipe (HP)

Cardinality estimation RE UnivMon, Hyperloglog (HLL)

Flow size distribution WMRE MRAC

Entropy estimation RE UnivMon, MRAC

Support-All - ElasticSketch

Table 2:Measurements, evaluationmetrics and benchmarks.

use BobHash by default as recommended [30]. We implement CM-

Sketch, CU-Sketch, Hashpipe, and MRAC using 32-bit counter ar-

rays where counters are uniformly chosen by hash functions. Hy-

perloglog (HLL) is implemented using a 8-bit counter array and Uni-

vMon is implemented based on multi-level sampling-and-sketching

to extract statistics for generic monitoring capability. We use the

open source implementation of PyramidSketch with CM-Sketch

(PCM) [9]. Since Conservative-Update (CU) can improve the count-

query of both FCM and PyramidSketch in a similar degree, we skip

the implementation of CU for both. Finally, for ElasticSketch, we

use its P4-version platform based on the published source code [10].

We explain the parameters of each algorithm in §7.2.

7.2 Evaluation Setup
Traffic Traces: We use 32 non-overlapping traces from the CAIDA

Equinix-NYC data monitor [2] collected on 19th January, 2019. We

use source-IP as the flow key. We did not use finer classification

such as the 5 IP tuples because that would result in many more

short flows and even higher skewness in the data trace. Each trace

contains about 20M packets and 0.5M distinct flows in a 15s window.

Parameters Configurations: FCM-Sketch is composed using two

trees which have 8, 16, and 32-bit counters in each stage by de-

fault. We use byte-aligned counters for ease of implementation,

which is crucial for execution on the programmable hardware. For

FCM+TopK, we use a single level of Top-K algorithmwith 4K entries

and use the rest of the memory for the FCM-Sketch. CM-Sketch

and CU-Sketch are composed using three counter arrays which

have been reported to have the best accuracy [28]. Similarly, MRAC

uses a single counter array for the best accuracy. Hashpipe uses

6 hash tables, and PyramidSketch is combined with CM-sketch

(called PCM) using 4 hashes, 4-bit counter size, and 64-bit machine

word. The parameters for Hashpipe and PCM are the same as those

used in the published version. Univmon uses 16 levels, where each

level records 2K heavy hitters using a heap and use the rest of the

memory for the sketch. Finally, for ElasticSketch, we use 4 levels

for Top-K algorithm where each level has 8K key-value entries and

the rest of the memory for the sketch. Unless stated otherwise, we

follow the above-stated configurations in the rest of the evaluation.

Task, Metric and Benchmark: We perform different measure-

ment tasks (refer to Table 2) and report the performance metrics

corresponding to each tasks
4
. We additionally highlight the current

benchmark solution for each of the task in Table 2. We explain how

the metrics are derived as follows:

• ARE (Average Relative Error): 1

𝑁

∑𝑁
𝑖=1
|𝑥𝑖−𝑥𝑖 |
𝑥𝑖

, where 𝑁 is the

number of flows, 𝑥𝑖 and 𝑥𝑖 are true and estimated flow sizes.

4
We will not show the result for heavy change detection as it is very close to that of

heavy hitter detection.
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(b) AAE of flow size.
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(d) Cardinality.
Figure 6: Accuracy comparison of data-plane queries for dif-
ferent k-ary trees compared to CM, CU, PCM, HP and HLL.

• AAE (Average Absolute Error): 1

𝑁

∑𝑁
𝑖=1 |𝑥𝑖 −𝑥𝑖 |, where there is no

normalization.

• F1-score: 2×𝑃𝑅×𝑅𝑅
𝑃𝑅+𝑅𝑅 where PR (Precision Rate) is the ratio of true

instances reported and RR (Recall Rate) is the ratio of reported

true instances.

• WMRE (Weighted Mean Relative Error) [38]:
∑𝑧

𝑖=1 |𝑛𝑖−𝑛̂𝑖 |∑𝑧
𝑖=1

𝑛𝑖+𝑛̂𝑖
2

, where

𝑧 is the maximum flow size, 𝑛𝑖 and 𝑛̂𝑖 are true and estimated

numbers of flows with size 𝑖 , respectively.

• RE (Relative Error): |𝑥−𝑥 |𝑥 , where 𝑥 and 𝑥 are true and estimated

statistics, respectively.

In our experiments, we set the prefixed threshold of heavy hitter

detection as 10𝐾 packets. This threshold is about 0.05% of the total

number of packets in one trace.

7.3 Accuracy of FCM and FCM+TopK
The accuracy of FCM-Sketch depends on its configuration, i.e., k-
ary tree structure. In this section, we investigate the impact of

this configuration on the measurement accuracy of FCM-Sketch

and FCM+TopK by varying 𝑘 from 2 to 32 for a fixed 1.5MB of

memory. In our settings, configurations with higher k values will

result in more leaf nodes and fewer root nodes. We do not evaluate

configurations of 𝑘 ≥ 64 as this results in too few counters in the

later stages.

7.3.1 Query Accuracy. We evaluate the accuracy of both FCM-

Sketch and FCM+TopK compared to the baseline such as CM, CU,

PyramidSketch with CM (PCM), Hashpipe (HP), and Hyperloglog

(HLL) for data-plane queries and MRAC for control-plane queries.

Data-Plane Queries:We show the results in Figure 6 with error

bars of 10% to 90%. We observe that FCM-Sketch and FCM+TopK

perform significantly better than CM-Sketch and CU-Sketch in

terms of flow-size estimation. Specifically, in Figure 6a, using 16-

ary trees, the relative errors (AREs) of FCM-Sketch and FCM+TopK

are both 88% lower than CM-Sketch. Similarly, in Figure 6b, the

absolute errors (AAEs) of FCM-Sketch and FCM+TopK are 84% and

86% lower than CM-Sketch, respectively. Compared to PCM, both

achieve 53% lower AREs, and 53% and 60% lower AAEs, respectively.
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(a) Flow size distribution.
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(b) Entropy.
Figure 7: Accuracy comparison of control-plane queries for
different k-ary trees compared to MRAC.
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Figure 8: Histogram of non-empty virtual counters from
FCM (left) and FCM+TopK (right) for different k-ary trees.

Next, for heavy-hitter detection and cardinality, FCM-Sketch

and FCM+TopK show comparable performance with task-specific

solutions, e.g., Hashpipe and Hyperloglog for the data set used.
5
For

heavy-hitter detection (Figure 6c), we observe thatwhile FCM+TopK

performs better than FCM-Sketch at all configurations, there is a sig-

nificant improvement of FCM+TopK over FCM-Sketch at𝑘 = 32 due

to increase in hash collisions. In the case of cardinality (Figure 6d),

we observe that the relative error decreases for both FCM-Sketch

and FCM+TopK with increase in 𝑘 .

Control-Plane Queries: We show the accuracy for control-plane

queries (flow-size distribution and entropy) using the EM algorithm

of FCM-Sketch and FCM+TopK against MRAC in Figure 7. For 𝑘 ≥ 4

(k-ary trees), compared toMRAC, FCM-Sketch and FCM+TopK have

smaller errors. Specifically when using 16-ary trees, both have 59%

and 62% smaller errors (WMRE) for flow size distribution (Figure 7a)

and 52% and 80% lower relative errors (RE) for entropy estimation

(Figure 7b). MRAC performs better than FCM and FCM+TopK for

the 2-ary trees due to higher hash collisions at 𝑘 = 2. This shows

that the ability to have more counters at the lower level of trees by

using higher 𝑘 improves the memory utilization and thus achieves

better performance.

Note that while the errors of FCM-Sketch, except heavy hitter

detection, tend to decrease with increasing 𝑘 , the AAE of flow

size (Figure 6b) and RE of entropy estimation (Figure 7b) increase

when 𝑘 is 32. This is because collisions of flows are more likely to

occur at later stages with only a small number of counters, and the

flows at later stages are heavy. The same reason explains why the

accuracy (F1-score) for heavy hitter detection (Figure 6c) decreases

at 𝑘 = 32 due to the increase of collisions between heavy flows.

On the contrary, FCM+TopK always achieves high accuracy for

all configurations. This is because its Top-K algorithm isolates

candidate heavy flows from FCM-Sketch thus reduces possible

collisions in counters at later stages.

5
Hyperloglog can perform better than FCM-Sketch, which uses linear counting, for

data set with much larger flow cardinality.
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Figure 9: Actual runtime (per-iteration) and convergence of
EM algorithm.

7.3.2 Effectiveness of Complexity Reduction Heuristic. We portray

the effect of applying the heuristic based on degree to reduce the

complexity of the EM algorithm (§4.3). We express the complexity

in terms of number of non-empty virtual counters, since small num-

ber of counters reduce the estimation complexity. In Figure 8, we

depict the average number of non-empty virtual counters for dif-

ferent degrees of FCM by generating the counters with 100 random

seeds of hashing. We observe that the numbers of virtual counters

tend to exponentially decrease with the increase in degree (§4.1).

In particular, the number of counters for degree higher than 2 is

less than 100 and 50 for 16-ary of FCM-Sketch and FCM+TopK,

respectively. Recall that the computation overhead of EM increases

rapidly with the number of counters with high degree. The small

number of higher degree counters allows us to effectively reduce

the estimation complexity with very small accuracy loss.

Figure 9a illustrates the per-iteration runtime of EM. In the run-

time evaluation, we use 8-ary trees for FCM-Sketch with a single-

thread (called FCM(s)) and amulti-threaded (called FCM(m)) version.

As the EM processing for different degrees and trees are indepen-

dent and can be computed in parallel, multi-thread processing can

provide significant speedup. We observe that FCM(m) performs

3-4 times faster than the corresponding single-threaded version,

but still takes slightly longer time than MRAC. Note that, by using

the complexity reduction technique, EM loops for higher degrees

are much efficient. Therefore, the major part of the runtime of the

multi-threaded FCM is governed by that of the degree 1 counters.

Note that each MRAC’s counter is equivalent to a virtual counter

with a single path. Hence, the complexity of EM for MRAC and for

FCM with degree 1 is similar.

Figure 9b shows WMRE varies with the number of EM iterations.

We observe that the error for FCM stabilizes within 5 iterations.

Also, FCM achieves lower error for the same number of iterations

than MRAC. Therefore, in spite of consuming a slightly longer

per-iteration runtime, FCM can achieve better performance than

MRAC for an fixed running time budget.

7.4 Parameterization of FCM
The key parameters of FCM-Sketch are (1)𝑘 , the number of branches

in the 𝑘-ary tree, (2) the number of trees, and (3) counter size at each

level of the tree. For ease of implementation, we use byte-aligned

counter sizes (e.g., 8, 16, 32-bit) at each level of the tree. In this

section, we look at how the number of branches (𝑘) and number

of trees should be selected based on how their performance varies

with different traffic mixture (i.e., flow size distribution).

7.4.1 Parameter 𝑘 . The key parameter of FCM is 𝑘 (number of

branches of the 𝑘-ary trees) as a sub-optimal choice for 𝑘 may lead
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Figure 10: Comparison of FCM and FCM+TopK for various
traffic distribution using different parameter (k-ary) nor-
malized to CM-Sketch.
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Figure 11: Comparison of FCM and FCM+TopK for various
traffic distribution using different parameter (k-ary) nor-
malized to MRAC.

to memory under-utilization and deterioration of accuracy (§7.3).

Since the traffic distribution can vary dynamically, it is hard to

determine the optimal parameter. While it is possible to vary 𝑘

dynamically depending on the counter values at different levels,

such dynamic reconfiguration is difficult to implement in practice,

especially on the actual hardware. Instead, we investigate how a

static 𝑘 parameter can be selected to provide the best trade-off

on diverse traffic mixture. We generate synthetic traces following

Zipf (𝛼) distribution [49] with different skewness 𝛼 (between 1.1

to 1.7). Each trace has a fixed total volume of 20M packets and

an average flow size of about 50 packets (similar to the CAIDA

trace). The maximum flow size in each trace varies between 400 to

100K packets. The memory size is set to 1.5MB. We vary 𝑘 between

4 to 32, and normalize the accuracy of FCM and FCM+TopK to

CM-Sketch and MRAC for flow size and its distribution estimation,

respectively. The results are shown in Figure 10 and 11.

We observe that all configurations of FCM and FCM+TopK out-

perform CM-Sketch and MRAC for all traffic distributions. Specif-

ically, it is notable that higher 𝑘 does not always provide better

performance. For instance, when 𝛼 is 1.3 or 1.5, FCM-Sketch using

32-ary shows nearly 2x higher AAE than the corresponding 4-ary,

and slightly higher WMRE than the corresponding 8-ary. This is

because of the likelihood of flows to overflow the leaf nodes and end

up with collision at later stages of FCM. In contrast, for FCM+TopK,

the performance using higher 𝑘 becomes less sensitive to the traffic

skewness because a Top-K algorithm filters out the heavy flows.
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Task (Metric) FCM-Sketch FCM+TopK
2 3 4 2 3 4

Flow size (ARE) 0.961 0.625 0.622 0.723 0.487 0.471
Flow size (AAE) 2.233 1.422 1.394 1.803 1.216 1.170
Flow size dist. (WMRE) 0.030 0.053 0.097 0.024 0.040 0.069

Entropy (RE) 0.0016 0.0031 0.0050 0.0005 0.0015 0.0027

Cardinality (RE) 0.0006 0.0009 0.0005 0.0006 0.0006 0.0005

Table 3: Comparison of FCM and FCM+TopK for different
number of trees. The lower value is better.

Take-away: For a static parameter setting, 𝑘 should be able to

achieve good performance for a majority of the traffic distributions.

Our evaluation shows that 8-ary for FCM-Sketch and 16-ary for

FCM+TopK achieve good accuracy trade-off for different tasks and

traffic skewness.

7.4.2 Number of Trees. Table 3 shows the performance comparison

of FCM and FCM+TopK using different number of trees (between 2

to 4). We use 8-ary for FCM and 16-ary for FCM+TopK in the evalu-

ation. We observe that more trees provide higher accuracy for flow

size estimation but lower accuracy for flow size distribution and

entropy. However, since the computation and resource overhead

of FCM significantly increases with the number of trees used (e.g.,

hash, arithmetic, etc), we choose to use 2 tree configuration of FCM

in the rest of the evaluation.

7.5 Comparison with State-of-the-Art
Approaches

In the previous evaluation, the comparison focuses on baseline such

as CM-Sketch and MRAC. In this section, we evaluate the accuracy

of FCM and FCM+TopK as general measurement platforms and

compare them with existing state-of-the-art approaches, namely

UnivMon and ElasticSketch. We compare all 4 frameworks given

the same amount of memory. We do not evaluate the performance

of UnivMon for flow size and flow size distribution as these mea-

surement tasks were not evaluated in the original paper. Based on

the previous results, we use 8-ary trees for FCM-Sketch and 16-ary

trees for FCM+TopK.

Flow Size Estimation (Figure 12a-12b): FCM and FCM+TopK

achieve better accuracy/memory trade-off than ElasticSketch.When

using 1.5MB of memory, the ARE and AAE of FCM are 50% and 54%

lower than ElasticSketch respectively. FCM+TopK achieves even

better performance. The ARE and AAE are both 63% lower than

ElasticSketch.

Heavy Hitter Detection (Figure 12c): FCM and FCM+TopK

achieve F1-scores of above 99.4% and 99.7% respectively. All three

frameworks are significantly better than UnivMon and can achieve

F1-score of at least 99.9% when using 1.0MB or more of memory.

Cardinality Estimation (Figure 12d): FCM and FCM+TopK out-

perform the other solutions more than 10× in all memory sizes. The

key reason comes from having more (leaf) counters to cater to the

large number of small flows.

Flow Size Distribution (Figure 12e): All three algorithms per-

form well for flow size distribution. ElasticSketch’s use of the Top-K

algorithm helps the EM algorithm to minimize the estimation error

for heavy flows. Nevertheless, we observe that FCM+TopK always

achieves the lowest error.
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Figure 12: Accuracy comparison for fivemeasurement tasks.

Entropy Estimation (Figure 12f): We observe that FCM is more

accurate than the other solutions for all memory sizes. When using

1.5MB of memory, the RE of FCM is 34% and 80% lower than Elas-

ticSketch and UnivMon on the average respectively. FCM+TopK

achieves even better performance, having 69% lower RE than FCM

on the average.

Take-away: In summary, we observe that FCM-Sketch is able

to achieve equal or better accuracy than the state-of-the-art for

all measurement tasks. When combined with a Top-K algorithm,

FCM+TopK improves the performance futher and achieves the best

performance for all measurement tasks.

8 EVALUATION ON PISA HARDWARE
In this section, we describe how FCM-Sketch and FCM+TopK are

implemented on PISA programmable switches in §8.1. We evaluate

their accuracy on commodity Barefoot Tofino [7] switches in §8.2

and hardware resource utilization in §8.3.

8.1 Hardware Implementation
Data-Plane - FCM-Sketch: The design of FCM-Sketch takes ad-

vantage of the feed-forwarding multi-stage pipeline of PISA and

can be easily implemented in the hardware. We implement FCM-

Sketch in P4 [16] using ≈350 lines of code. Each layer of the tree

(counter array) is implemented by a register array in SRAM. For

multi-tree based FCM-Sketch, each tree operates on independent

memory units in parallel. We leverage the Stateful Arithmetic-logic

Units (stateful ALUs) which allow write-and-return of a register

value with user-defined conditions within a single stage. Each state-

ful ALU updates a register at each stage, and a decision to move

on to the next stage of FCM-Sketch is taken based on the output
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Figure 13: Accuracy comparison for implementations on our
testbed and Tofino using same memory size.

register value as shown in Algorithm 1. The data-plane supports

count-query and heavy hitter detection using the output values. For

cardinality estimation, we pre-install a variable-estimate lookup

table using TCAM matching rules using P4 [16]. The source-code

of FCM-Sketch is available at [11].

Data-Plane - FCM+TopK: While the design of FCM-Sketch can

be faithfully implemented on PISA, this does not hold true for

FCM+TopK. The challenges of implementing FCM+TopK on PISA,

which also apply to other approaches such as ElasticSketch and

Hashpipe [54], are as follows. First, similar to Hashpipe [54], the

high-level idea of ElasticSketch’s Top-K algorithm is to compare-

and-evict small flows in multi-stage key-value hash tables with

incoming (possibly heavy) flows. Unfortunately, such a "multi-stage

rolling" process requires memory access patterns that is prohibitive

in today’s commodity PISA switches (see [12] for more details).

Second, it needs to swap a key-value pair stored in registers with

metadata (or PHV) fields during eviction. However, existing stateful

ALUs can modify only a limited number of fields in a single stage.

For these reasons, the algorithms can only be implemented on the

actual hardware with approximations that can result in significant

loss of accuracy.

We implement FCM+TopK using a modified version of ElasticS-

ketch’s Top-K algorithm based on duplicate hash tables and stateful

ALUs. Instead of multi-level, we use one level of hash table to filter

heavy flows.

Control-Plane: We implement the control-plane in C. The control-

plane runs the EM algorithm and answers generic measurement

queries. To access sketch data in the data-plane, we read FCM-

Sketch registers from the data plane in batch using runtime APIs.

8.2 Accuracy Comparison
8.2.1 Software vs Hardware Implementation. We evaluate the accu-

racy of FCM-Sketch and FCM+TopK implemented on the Barefoot

Tofino switch compared to the BMv2 versions for two representa-

tive measurements (flow size and its distribution) in Figure 13. Note

that the "software versions" for FCM-Sketch and FCM+TopK shown

here are the same implementations as the ones in §7.5. The same

configurations are used, except that we allocate about 1.3MB mem-

ory size to comply with the hardware configuration limits (e.g., the

size of register array in a stage). With a different Top-K implemen-

tation, we observe that the FCM+TopK implementation on Tofino

shows a small increase in error compared to the BMv2 implemen-

tation. As expected, there is no difference in performance between

the software and hardware implementations of FCM-Sketch. Note

that while the use of duplicate hash tables and stateful ALUs to

approximate the Top-K algorithm (§8.1) does not have significant

impact on the accuracy of FCM+TopK, this approximation will not
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Figure 14: Normalized resource consumption and accuracy
comparison for FCM, FCM+TopK, and CM+TopK on Tofino.

work well for ElasticSketch. This is because the simplified Top-K al-

gorithm would allow too many heavy flows to go to the CM-Sketch,

resulting in a large increase in error.

8.2.2 Performance Comparison. We compare the performance of

FCM, FCM+TopK and CM+TopK on the Barefoot switch. CM+TopK

emulates the performance of ElasticSketch. Due to hardware lim-

itations, the TopK algorithms of FCM+TopK and CM+TopK use

only one level of hash table. The same configurations for FCM

and FCM+TopK as stated in §7.5 are used. For CM+TopK, we use

𝑑 arrays of 8-bit registers (called CM(d)+TopK) and allocate 16K

entries for one level of Top-K algorithm. As it is not possible to

configure these algorithms to use the same amount of hardware

resources because the algorithms and data structures are different,

we compare the normalized hardware resource consumption of the

different algorithms using FCM as the baseline. Figure 14a depicts

the relative amount of resources (SRAM, Stateful ALUs, Hashbits

and physical stages) used by the different algorithms on Tofino.

Our evaluation shows that FCM and FCM+TopK achieve at least

50% lower error than any CM+TopK for overall measurement tasks

(Figure 14b-e), while using similar amount of hardware resources.

Specifically, we observe that the error of CM+TopK mainly comes

from large flows. This is because large flows are not sufficiently

filtered by the TopK algorithm and these flows cause the 8-bit regis-

ters to overflow. Unfortunately, neither allocating more memory on

Top-K nor using 16-bit registers improve the accuracy. On the con-

trary, FCM-Sketch achieves higher accuracy and its performance is

further improved with the Top-K algorithm.

8.3 Resource Overhead
Hardware Resource Utilization: Table 4 shows the hardware

resource overhead of FCM-Sketch, FCM+TopK and switch.p4 [4] on

Tofino. The sketch configuration for FCM-Sketch and FCM+TopK
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Resource switch.p4 FCM-Sketch FCM+TopK
SRAM 30.52% 9.38% 9.48%

Match Crossbar 37.50% 2.28% 5.40%

TCAM 28.12% 0.0% 0.0%

Stateful ALUs 22.92% 12.50% 20.83%

Hash Bits 33.43% 2.02 % 2.54%

VLIW Actions 36.98% 1.30% 2.60%

Physical Stages 12 4 8

Table 4: Comparison of hardware resource consumption on
Tofino with 1.3MB memory

Solutions Measurement No. Stages Stateful ALUs
FCM-Sketch Generic 4 12.50%
FCM+TopK Generic 8 20.83%
SketchLearn [32] Generic 9 68.75%

QPipe [33] Quantile 12 45.83%

SpreadSketch [55] Superspreader 6 12.50%

HashPipe [54] Heavy hitter BMv2 Implementation

ElasticSketch [59] Generic BMv2 Implementation

UnivMon [44] Generic BMV2 Implementation

Table 5: Comparison of resource consumption for existing
solutions on Tofino.

are the same as those used in the evaluation (§7.5). The baseline

switch.p4 [4] implements various common networking features

applicable to a typical datacenter switch.

We observe that FCM-Sketch consumes only 4 stages and a small

amount of resources, while FCM+TopK consumes four additional

stages. Both FCM and FCM+TopK consume a relatively higher

proportion of stateful ALUs compared to switch.p4. Nevertheless,

FCM-Sketch can fit easily into existing switch.p4 for data-center

switches and still have sufficient resources left to allow additional

applications (e.g. scheduling, load-balancing) to be implemented.

ComparisonwithExisting Solutions: Wehighlight the resource

consumption of existing measurement solutions implemented in

Barefoot Tofino switches in Table 5. Note that the solutions for a

specific measurement task (QPipe [33], SpreadSketch [55]) as well

as for generic measurement tasks (SketchLearn [32]) consumemuch

more resources (stages and stateful ALUs) than FCM-Sketch. For

frameworks such as Hashpipe, ElasticSketch and UnivMon, only the

BMv2 versions are available. Implementations of these framework

on the Tofino switches would involve non-trivial changes.

Resources forData-planeQueries: To support data-plane queries
such as cardinality estimation, FCM-Sketch requires additional re-

sources. These resources include a small number (< 10) of TCAM

entries, 10.42% of stateful ALUs, and one extra stage to calculate a

final result of count-query. For cardinality estimation, the stateful

ALUs track the number of empty leaf counters 𝑤0

1
and TCAM is

used to implement lookup tables for its corresponding estimator 𝑛̂

(§3.3). Detailed discussion about TCAM-based implementation is

presented in Appendix §C.

Accuracy-Complexity Tradeoff: FCM-Sketch needs more pro-

cessing time than CM-Sketch using sequential, single-threaded

processing. However, as the data structure of FCM is easily fitted to

the PISA switching pipeline and hardware constraints, processing

remains at line-rate and the impact of more physical stages over CM

on latency remains very small in the range of tens of nanoseconds.

9 RELATEDWORK
Measurement on Programmable Switches: With the flexibility

of programmable data plane [5, 8, 16, 18], networkmeasurement has

been extensively studied in various applications [20, 35, 42, 52, 53].

There have been many efforts to accurately estimate measurements

such as flow size [22], quantile [33], heavy hitter [12, 29, 54], cardi-

nality [52, 55], or entropy [39]. Unfortunately, to concurrently meet

the requirements of diverse applications, significant processing

resources, which are at a premium in switching ASICs, have to be

consumed. Therefore, it is imperative that an unified data structure

can provide accurate results for these general measurement tasks.

Sketches with Generality: UnivMon [44] leverages recursive

sampling-and-sketching based on universal streaming theory [17].

However, its heavy hitter collection at each step is non-trivial to

implement on hardware. SketchLearn [32] reduces user-burden of

configuration-tuning through statistical inferences, but incurs loss

of information for the versatility. It is less accurate than Count-Min

sketch in practice. ElasticSketch [59] encodes non-heavy flows into

Count-Min sketch with small-size (e.g., 8-bit) counters after filter-

ing heavy flows with key-value hash tables. Specifically, it proposes

a novel Top-K algorithm which achieves a higher accuracy than

a recent proposal (Hashpipe [54]). Unfortunately, both Hashpipe

and ElasticSketch cannot be implemented on current commodity

programmable switches without significant accuracy loss [12].

Counter-sharing: One effective way to improve memory effi-

ciency is to share underutilized bits between counters, called counter-

sharing. Counter Braids [45] is one of the earliest work that apply

counter-sharing. Cold Filter [62] proposes a novel meta-framework

by filtering small flows at the first stage and running additional

algorithms separately on the residual large flows. Although Cold

Filter shares some similarity with FCM-Sketch’s design, it uses

entirely different algorithms and data structures and cannot be

easily implemented in the data-plane. To the best of our knowledge,

FCM-Sketch is the first counter-sharing work that runs efficiently

on PISA and supports generic measurements with high accuracy.

10 CONCLUSION
We present FCM, a framework supporting accurate and various

network measurement tasks by leveraging a sketch design of feed-

forwarding counters called FCM-Sketch. FCM-Sketch’s design fits

well with programmable switch architecture (PISA) and can be

implemented on PISA efficiently, consuming only a small percent-

age of hardware resources. Additionally, FCM-Sketch can be used

to improve the performance of Count-Min Sketch based applica-

tions. Our evaluation shows that FCM achieves at least 50% lower

error rates than other state-of-the-art sketches across almost all

measurement tasks.
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A EXPECTATION-MAXIMIZATION FOR
MULTI-TREE BASED FCM-SKETCH

Along with the conversion algorithm in §4, multi-tree based FCM-

Sketch is converted intomulti-array virtual counters. Denote {𝑉𝑘 }𝑑𝑘=1
as 𝑑 virtual counter arrays from 𝑑 distinct trees, and {𝑉 𝜉

𝑘
}𝐷𝑘

𝜉=1
each

as virtual counters of degree 𝜉 in𝑉𝑘 , and 𝐷𝑘 is the maximum degree
in 𝑉𝑘 . Let the number of counters in 𝑉

𝜉

𝑘
as𝑚

𝜉

𝑘
. At iteration 𝑠 + 1

of EM algorithm, the parameters are similarly updated with the

case of single-tree based FCM-Sketch (§4.2) where number of size

𝑗 flows is updated by

𝑛
(𝑠+1)
𝑗

=
1

𝑑

𝑑∑
𝑘=1

𝐷𝑘∑
𝜉=1

𝑚
𝜉

𝑘∑
𝑖=1

∑
𝛽
𝜉

𝑘
∈Ω (𝑉 𝜉

𝑘,𝑖
,𝜉)

𝑝
(𝑠)
𝑘,𝑖,𝜉
∗ 𝛽𝜉

𝑘,𝑗
(5)

where Ω(𝑉 𝜉

𝑘,𝑖
) is the possible set of collisions that can produce 𝑉

𝜉

𝑘,𝑖
,

and 𝑝
(𝑠)
𝑘,𝑖,𝜉

= 𝑝 (𝛽𝜉
𝑘
|𝑉 𝜉

𝑘,𝑖
, 𝜙 (𝑠) , 𝑛 (𝑠) ) is computed similarly to Eqn. 2.

Note that the processes for different degree and virtual arrays can

be performed in parallel since they use independent memory units

and hash functions.

B PROOF OF ACCURACY ANALYSIS
In this section, we derive a general form of FCM-Sketch’s error

bound and then prove Theorem 5.1 and 6.1. As defined in §5, we

use the size vector x.

Lemma B.1 (Error Bound of FCM-Sketch). Suppose the virtual
counters converted from FCM-Sketch (§4.1) has a finite maximum
degree 𝐷 . Denote the number of leaf nodes of each tree in the FCM-
Sketch as 𝑤1 = ⌈ 𝑒𝜖 ⌉ (𝑒 is Euler’s number), the number of trees as
𝑑 = ⌈ln 1

𝛿
⌉, and the accuracy parameters 𝜖, 𝛿 > 0. Given 𝑑 pairwise

independent hash functions, the count-query 𝑥𝑖 for flow 𝑖 is bounded
by

𝑥𝑖 ≤ 𝑥𝑖 ≤ 𝑥𝑖 + 𝜖 max

1≤𝜉≤𝐷
(𝜉 ∥x∥1 −𝑤1𝜂𝜉 ) (6)

with probability at least 1 − 𝛿 , where ∥ · ∥1 is 1-norm, 𝜃 𝑗 is the
maximum counter value at stage 𝑗 (2𝑏 𝑗 − 2 with 𝑏 𝑗 -bit), and

𝜂𝜉 =

⌈log𝑘 𝜉 ⌉∑
𝑗=1

(⌈ 𝜉

𝑘 𝑗−1
⌉
−1

)
𝜃 𝑗 . (7)

B.1 Proof of Lemma B.1
For simplicity, we first prove the singe-tree FCM-Sketch and then

extend the result to the multi-tree case.

Clearly, the count-query of 𝑖-th flow is sum of the true flow

size and error from hash collisions with other flows, i.e., 𝑥𝑖 = 𝑥𝑖 +
𝐸𝑖 . Our key idea is to decompose the error 𝐸𝑖 into (1) the error

when using the virtual counter value as the query estimate instead

of the original count-query, and (2) the overestimation from the

replacement compared to the original query. Formally, if we denote

the corresponding virtual counter’s value of 𝑖-th flow as 𝑥𝑉
𝑖
,

𝐸𝑖 = 𝑥𝑖 − 𝑥𝑖 = (𝑥𝑉𝑖 − 𝑥𝑖 ) − (𝑥
𝑉
𝑖 − 𝑥𝑖 ) . (8)

Let us denote𝑚𝜉
as the number of non-empty virtual counters of

degree 𝜉 , and𝑤0

1
,𝑤1 as the number of empty and total leaf nodes at

stage 1 of FCM-Sketch, respectively. Also, denote the degree of the
virtual counter corresponding to 𝑖-th flow as 𝑑𝑒𝑔𝑟𝑒𝑒 (𝑖). It is crucial
that𝑚𝜉

and𝑤0

1
are random variables whereas𝑤1 is a constant.

Nowwe introduce two indicators. First, define 𝐼𝑖,𝜉 as an indicator

when the arbitrary chosen 𝑖-th flow has a virtual counter of degree
𝜉 , formally, 𝐼𝑖,𝜉 = I{𝑑𝑒𝑔𝑟𝑒𝑒 (𝑖) = 𝜉}. By the definition of degree,
flows are likely to be hashed to a virtual counter proportional to

its degree. Therefore, given the random variables𝑚𝜉
and 𝑤0

1
, the

conditional expectation of indicator 𝐼𝑖,𝜉 is

E[𝐼𝑖,𝜉 |𝑚𝜉 ,𝑤0

1
] = 𝑝 (𝑑𝑒𝑔𝑟𝑒𝑒 (𝑖) = 𝜉 |𝑚𝜉 ,𝑤0

1
) = 𝜉𝑚𝜉∑𝐷

𝑘=1
𝑘𝑚𝑘

where the equality is by uniformity of hash
6
. Moreover, note that∑𝐷

𝑘=1
𝑘𝑚𝑘 = 𝑤1 − 𝑤0

1
. This is because each non-empty virtual

counter of degree 𝑘 contains 𝑘 non-empty leaf nodes, and their

total number in virtual counters is always same with the number

of non-empty leaf nodes. Lastly, by law of total expectation,

E[𝐼𝑖,𝜉 ] = E
[
E[𝐼𝑖,𝜉 |𝑚𝜉 ,𝑤0

1
]
]
= E

[ 𝜉𝑚𝜉

𝑤1 −𝑤0

1

]
.

Next, we define an indicator of hash collision 𝐼𝑖, 𝑗,𝜉 for different

𝑖-th and 𝑗-th flows where 𝑖-th flow has degree 𝜉 and 𝑗-th flow

is hashed to one of leaf nodes that will be merged to the virtual

counter of 𝑖-th flow. Formally,

𝐼𝑖, 𝑗,𝜉 = I
{
(ℎ( 𝑗) ∈ 𝐺 (ℎ(𝑖)) ∧ (𝑖 ≠ 𝑗) ∧ (𝑑𝑒𝑔𝑟𝑒𝑒 (𝑖) = 𝜉)

}
where 𝐺 (ℎ(𝑖)) is the set of indices of leaf nodes merged to the

virtual counter of 𝑖-th flow. Note that the size of 𝐺 (ℎ(𝑖)) is same

with its degree. By the pairwise independent hashing and definition
of degree,

𝑝
(
ℎ( 𝑗) ∈ 𝐺 (ℎ(𝑖)), 𝑖 ≠ 𝑗 | 𝑑𝑒𝑔𝑟𝑒𝑒 (𝑖) = 𝜉,𝑚𝜉 ,𝑤0

1

)
≤ 𝜉

𝑤1

By law of total expectation,

E[𝐼𝑖, 𝑗,𝜉 ] = E
[
E[𝐼𝑖, 𝑗,𝜉 |𝑚𝜉 ,𝑤0

1
]
]

= E
[
𝑝
(
ℎ( 𝑗) ∈𝐺 (ℎ(𝑖)), 𝑖 ≠ 𝑗, 𝑑𝑒𝑔𝑟𝑒𝑒 (𝑖)=𝜉 |𝑚𝜉 ,𝑤0

1

) ]
≤ E

[
𝑝 (𝑑𝑒𝑔𝑟𝑒𝑒 (𝑖)=𝜉 |𝑚𝜉 ,𝑤0

1
) · 𝜉
𝑤1

]
≤ 𝜉

𝑤1

E
[ 𝜉𝑚𝜉

𝑤1 −𝑤0

1

]
where the first inequality is by conditional probability. Lastly, the

intermediate error is represented as the sum of flows except 𝑖-

th flow that are hashed into the virtual counter of 𝑖-th flow, i.e.,

𝑥𝑉
𝑖
− 𝑥𝑖 =

∑𝐷
𝜉=1

∑𝑛
𝑗=1 𝑥 𝑗 𝐼𝑖, 𝑗,𝜉 ,

Next, in Eqn. 8, we derive the lower bound 𝜂𝜉 of 𝑥𝑉
𝑖
− 𝑥𝑖 , the

overestimation error of the virtual counter value atop the original

count-query. Consider the case where the virtual counter of 𝑖-th

flow has degree 𝜉 . Our key observation is that regardless of the

counter value, the smallest possible error of 𝑥𝑉
𝑖
− 𝑥𝑖 occurs when

its 𝜉 paths meet at the earliest possible stage. Otherwise, the paths

except one for 𝑖-th flow pass through more number of nodes and

they would be merged to the virtual counter. This would result in a

higher overestimation error.

Tracking the smallest possible error 𝜂𝜉 is simple; Accumulate all

the counts of 𝜉 paths and subtract the counts for a path of 𝑖-th flow.

6
Pairwise independent hash does imply uniformity.
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For example, consider the binary tree and the virtual counter of

degree 3. Obviously, the earliest possible stage that 3 paths can meet

is stage 3. In this case, all nodes that 3 paths pass through are three

nodes at stage 1, two nodes at stage 2, and a last node at stage 3.

On the other hand, the path of 𝑖-th flow goes through each node of

stages until the stage 3. After subtracting the counts, 𝜂3 = 2𝜃1 + 𝜃2
where 𝜃𝑖 is the maximum counter value at stage 𝑖 . Similarly, 𝜂1 = 0,

𝜂2 = 𝜃1, 𝜂4 = 3𝜃1 + 𝜃2, 𝜂5 = 4𝜃1 + 2𝜃2 + 𝜃3, and so on. We can

recursively derive the lower bound 𝜂𝜉 for arbitrary degree, and the

general form of 𝜂𝜉 for k-ary trees is written as Eqn. 7. At the end,

with combining with the probability of 𝑑𝑒𝑔𝑟𝑒𝑒 (𝑖) = 𝜉 , we get the
lower bound of the error as 𝑥𝑉

𝑖
− 𝑥𝑖 ≥

∑𝐷
𝜉=1

𝜂𝜉 𝐼𝑖,𝜉 .

Consequently, by linearity of expectation and using the previous

results,

E[𝐸𝑖 ] ≤
𝐷∑
𝜉=1

( 𝑛∑
𝑗=1

𝑥 𝑗E[𝐼𝑖, 𝑗,𝜉 ] − 𝜂𝜉E[𝐼𝑖,𝜉 ]
)

≤
𝐷∑
𝜉=1

( 𝑛∑
𝑗=1

𝑥 𝑗E
[ 𝜉𝑚𝜉

𝑤1 −𝑤0

1

]
· 𝜉
𝑤1

− 𝜂𝜉E
[ 𝜉𝑚𝜉

𝑤1 −𝑤0

1

] )
=

1

𝑤1

𝐷∑
𝜉=1

(
E
[ 𝜉𝑚𝜉

𝑤1 −𝑤0

1

]
·
(
𝜉 ∥x∥1 −𝑤1𝜂𝜉

) )
≤ 1

𝑤1

E
[∑𝐷

𝜉=1
𝜉𝑚𝜉

𝑤1 −𝑤0

1

]
·
(
max

1≤𝜉≤𝐷

(
𝜉 ∥x∥1 −𝑤1𝜂𝜉

) )
=

1

𝑤1

max

1≤𝜉≤𝐷

(
𝜉 ∥x∥1 −𝑤1𝜂𝜉

)
≤ 𝜖
𝑒
· max

1≤𝜉≤𝐷
(𝜉 ∥x∥1 −𝑤1𝜂𝜉 ) .

Finally, by applying Markov inequality,

𝑝 (𝑥𝑖−𝑥𝑖 > 𝜖 max

1≤𝜉≤𝐷
(𝜉 ∥x∥1−𝑤1𝜂𝜉 )) ≤ 𝑝 (𝐸𝑖 >𝑒E[𝐸𝑖 ]) < 𝑒−1 .

Extension the result to 𝑑 virtual arrays for multi-tree based FCM-

Sketch is trivial because the trees are all independent (similarly with

Count-Min sketch [22]). As a result, the last inequality becomes

𝑒−𝑑 ≤ 𝛿 , and this completes the proof.

B.2 Proof of Theorem 5.1 and 6.1
In the upper bound of Eqn. 6, the term 𝜉 ∥x∥1 − 𝑤1𝜂𝜉 inside the

maximum can be written as ∥x∥1 +𝑔(𝜉) where 𝑔(𝜉) = (𝜉 −1)∥x∥1−
𝑤1𝜂𝜉 . Note that for 𝜉 ≥ 2, 𝜂𝜉 is lower bounded by taking only one

term for 𝑗 = 1 in the summation of 𝜂𝜉 . Formally,

𝜂𝜉 =

⌈log𝑘 𝜉 ⌉∑
𝑗=1

(⌈ 𝜉

𝑘 𝑗−1
⌉
−1

)
𝜃 𝑗 ≥ (𝜉 − 1)𝜃1 .

This inequality obviously holds for 𝜉 = 1. Therefore, 𝑔(𝜉) is always
bounded as

𝑔(𝜉) ≤ (𝜉 − 1)∥x∥1 −𝑤1 (𝜉 − 1)𝜃1 = (𝜉 − 1) (∥x1∥ −𝑤1𝜃1) .

Consequently, the upper bound in Eqn. 6 is bounded by

max

1≤𝜉≤𝐷
(∥x∥1 + 𝑔(𝜉)) ≤ max

1≤𝜉≤𝐷
(∥x∥1 + (𝜉 − 1) (∥x∥1 −𝑤1𝜃1)).

When 𝑤1𝜃1 ≥ ∥x∥1, the maximum is obviously ∥x∥1. Otherwise,
the maximum becomes ∥x∥1 + (𝐷 − 1) (∥x∥1 −𝑤1𝜃1). This results
in Eqn. 3.

The proof of Eqn. 4 is straightforward from Theorem 3.1 in

ElasticSketch [59]. Denote 𝑥ℎ,𝑖 , 𝑥𝐿,𝑖 as the partial counts of 𝑥𝑖 kept

in Top-K algorithm and sketch, respectively. The key intuition

is that the estimator 𝑥𝑖 is decomposed into values 𝑥ℎ,𝑖 in Top-K

algorithm and residuals 𝑥𝐿,𝑖 in FCM-Sketch. As Top-K algorithm

counts each flow exactly, 𝑥ℎ,𝑖 = 𝑥ℎ,𝑖 . Also, the estimate in FCM-

Sketch, 𝑥𝐿,𝑖 , follows its error bound. Then combining the results

completes the proof.

C CARDINALITY USING TCAM
In cardinality estimation, a scalability issue of TCAM entries may

arise because𝑤0

1
can vary from 0 to the number of leaf nodes. To

overcome, we can give some space after each entry of 𝑤0

1
in the

tables at a cost of additional error. For query, we lookup the nearest

estimate on one side with longest prefix matching. For example,

suppose we installed two TCAM entries of estimates for𝑤1

0
= 1000

and 1200. When querying for 𝑤1

0
= 1000, we achieve its exact

LC estimate 𝑛̂ |
𝑤0

1
=1000

. On the contrary, if 𝑤1

0
is between 1001 to

1200, we use 𝑛̂ |
𝑤0

1
=1200

instead of its correct estimate. To control

the additional error, we use the sensitivity of cardinality estimator

𝜕𝑛̂

𝜕𝑤0

1

and determine the spaces between entries. In our experiments,

this allows us to save the table size by two orders while bounding

the additional error by only 0.2%.
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