
FCM-Sketch: Generic Network Measurements
with Data Plane Support

Cha Hwan Song, Pravein Govindan Kannan, Bryan Kian Hsiang Low, Mun Choon Chan

{songch,pravein,lowkh,chanmc}@comp.nus.edu.sg

School of Computing, National University of Singapore

ABSTRACT
Sketches have successfully provided accurate and fine-grained mea-

surements (e.g., flow size and heavy hitters) which are imperative

for network management. In particular, Count-Min (CM) sketch is

widely utilized in many applications due to its simple design and

ease of implementation. There have been many efforts to build mon-

itoring frameworks based on Count-Min sketch. However, these

frameworks either support very specific measurement tasks or they

cannot be implemented on high-speed programmable hardware

(PISA).

In this work, we propose FCM, a framework that is designed to

support generic network measurement with high accuracy. Our key

contribution is FCM-Sketch, a data structure that has a lightweight

implementation on the emerging PISA programmable switches.

FCM-Sketch can also be used as a substitute for CM-Sketch in ap-

plications that use CM-Sketch. We have implemented FCM-Sketch

on a commodity programmable switch (Barefoot Tofino) using the

P4 language. Our evaluation shows that FCM-Sketch can reduce

the errors in many measurement tasks by 50% to 80% compared to

CM-Sketch and other state-of-the-art approaches.

CCS CONCEPTS
• Networks → Network measurement; Programmable net-
works.

KEYWORDS
Streaming Algorithm, Sketches, Network Measurement, Generic,

Data Plane, Programmable Switch, PISA, P4

ACM Reference Format:
Cha Hwan Song, Pravein Govindan Kannan, Bryan Kian Hsiang Low, Mun

Choon Chan. 2020. FCM-Sketch: Generic Network Measurements with Data

Plane Support. In The 16th International Conference on emerging Networking
EXperiments and Technologies (CoNEXT ’20), December 1–4, 2020, Barcelona,
Spain. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3386367.

3432729

1 INTRODUCTION
Network measurement is indispensable for efficient network man-

agement such as load balancing, congestion control, quality of

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7948-9/20/12. . . $15.00

https://doi.org/10.1145/3386367.3432729

service, scheduling, and anomaly detection [13, 46, 47, 50, 57, 63].

To assist in-network management, fine-grained measurements such

as per-flow size [22], heavy hitter detection [54], cardinality [58],

etc. are needed.

With the abundance of memory and availability of parallel pro-

cessing (e.g., SIMD and multi-core), software switches have been

used as platforms for network measurement [31, 51, 62]. However,

with network link speeds reaching 400Gbps and switching capacity

exceeding tens of Tbps [1], it is challenging for software process-

ing speed to scale accordingly [43]. Techniques like sampling (e.g.,

NetFlow [3]) are often utilized to reduce measurement overhead.

However, it cannot provide accurate and fine-grained statistics.

Often, there is an inevitable loss in measurement resolution and

accuracy if network monitoring is performed solely in software

without hardware (data-plane) support.

To overcome this challenge, sketch, in particular, Count-Min

(CM) sketch [22] is often used to support network measurement

and queries [20, 21, 34, 37, 42, 53] in the data-plane. However, while

Count-Min sketch incurs low computational overhead and has

compact memory footprint, it has poor accuracy.

Recently, many network monitoring frameworks [12, 32, 33, 44,

54, 55, 59] have been proposed to operate entirely in the network

data-plane by leveraging data-plane programmability [8]. While

some of the frameworks [12, 33, 55] are designed to be implemented

on programmable switches, they do not support a general set of

network measurement tasks with a single data structure. On the

other hand, solutions that support generic queries either require

substantial hardware resources [32] or cannot be implemented on

the switching hardware without significant loss of accuracy [44, 59].

Clearly, what we need is a system that can support high resolu-

tion, generality and scaling with the switching fabric throughput

at the same time. To this end, we propose the FCM (Feed-forward
Count-Min sketch) framework. The FCM framework operates at

both switch data-plane and control-plane. In the data-plane, we

propose a novel data structure, FCM-Sketch, that supports fine-
grained measurement, such as per-flow size, cardinality and heavy

hitter detection, entirely in the data plane at line-rate. In the control-

plane, FCM leverages the CPU and DRAMs to enable complex mea-

surement tasks (e.g. flow size distribution and entropy [13, 15, 23])

using the data collected by FCM-Sketch in the data-plane.

One can think of FCM-Sketch as a better Count-Min sketch that

is more memory efficient and accurate. FCM-Sketch can directly

replace Count-Min sketch in existing systems that require queries

and statistics in the data-plane. The design of FCM-Sketch is based

on the following ideas. First, FCM-Sketch has a tree-based feed-

forward design that leverages the multi-stage processing pipeline

of PISA [5] and distributes the computation along the pipeline.

Second, FCM-Sketch uses counters of different sizes at different

https://doi.org/10.1145/3386367.3432729
https://doi.org/10.1145/3386367.3432729
https://doi.org/10.1145/3386367.3432729

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain C. Song et al.

levels of the tree. Compared to Count-Min sketch, FCM-Sketch

uses a larger number of small-size counters at leaves and a smaller

number of large-size counters at the core. In FCM-Sketch, counts

of incoming flows are first accumulated in the leaf counters that

overflow to the next level (parent) counters upon saturation at the

lower levels. Since, in practice, traffic flows are highly skewed with

large number of small flows [14], memory of the small size counters

at the leaf nodes is utilized more efficiently. This design addresses

the inefficiency in the Count-Min sketch design where a uniform

counter size is used to record counts for all flow sizes.

To summarize, our contributions are as follow:

• We propose FCM-Sketch, a novel data structure that can be used

as a substitute for Count-Min sketch to achieve higher accuracy.

FCM-Sketch can be used in a broad class of applications, in-

cluding network measurements [32, 51, 59, 61], online network

control [24, 41, 53, 56], data-plane queries [20, 21, 34, 37, 42]

and data streaming [25, 48].

• FCM-Sketch can take advantage of the multi-stage switching

pipeline of PISA and can be accurately implemented in data-

plane running at line-rate. Also, its compact design reduces

data-plane resources (SRAM, N(Stages), etc.) consumption. Our

evaluation shows that FCM consumes fewer hardware resources

compared to other state-of-the-art measurement frameworks.

• We have designed and implemented the FCM framework on

both a software simulator and Barefoot Tofino [8] switches.

FCM is resource efficient in the data-plane and supports general

measurement tasks with high accuracy.

Our evaluation shows that FCM-Sketch outperforms Count-Min

sketch significantly, achieving a 88% reduction in the error for flow

size estimation. We have also compared the performance of FCM,

ElasticSketch, UnivMon, and FCM+TopK (an implementation of

FCM-Sketch coupled with the Top-K algorithm of ElasticSketch).

Our evaluation shows that the errors of FCM+TopK is at least 90%

less than UnivMon [44] and at least 50% less than ElasticSketch [59]

across almost all measurement tasks.

The paper is organized as follows. We introduce the background

and motivation in §2. Then, we present the measurement frame-

work of FCM in §3 and §4. Accuracy analysis is presented in §5

and a design to improve CM-based application (FCM+TopK) in §6.

The evaluation on software simulator is presented in §7 and the

evaluation on Tofino hardware in §8. Finally, we present a related

work in §9 and conclusion in §10.

2 BACKGROUND AND MOTIVATION
Traditionally, network monitoring has relied on techniques like

NetFlow [3], sFlow [6], etc. Due to memory constraints, these tech-

niques perform sampling on the incoming packets to collect sta-

tistics. As a result of their extremely low sampling rates, they do

not capture an accurate picture of the network. To overcome this

memory-accuracy tradeoff, probabilistic hash-based data-structures

called sketch are used in the network devices to get approximate

statistics. Predominantly, Count-Min sketch is used to estimate the

flow counts due to its simplicity.

Count-Min sketch: The Count-Min (CM) sketch data structure

consists of 3 counter arrays {�1, ...,�3 }. Upon an flow’s arrival, a set

of (3) independent hash functions are applied on the flow id to select

Packet in Packet out

FCM-Sketch

Data Plane Query

Heavy Hitter

Data Plane

Control Plane Generic Measurement

Flow Size
Distribution

Entropy

Data Plane Apps

Load
Balancing

Traffic
Engineering

Anomaly
Detection

Fault
Diagnosis

Generic Apps

Heavy Change

Switching Pipeline

Flow Size

Cardinality

Co
lle

ct

Virtual counters

Figure 1: FCM Overview: Simple measurement tasks are
available in the data plane, and the control plane calculates
more generic statistics from the reported sketches.

3 counters (one from each counter array) and the value of each

counter is incremented. To estimate a flow’s frequency, the same set

of independent hash functions are applied and the minimum value

among the corresponding counters is obtained. This value provides

an estimate of the flow’s frequency. Due to its simplicity, CM-Sketch

enables a flow’s statistics to be accessed at line-rate in the data-

plane. This feature has enabled several applications like scheduling,

caching, load-balancing, etc to maintain statistics without incurring

too much resources. Even though CM-Sketch provides a reasonable

performance for a fixed memory footprint, it has the following

problems : 1) Memory inefficiency : Since all the counters are of

the same size, skewness in traffic with higher number of smaller

flows leads to low utilization of allocated memory in a counter. 2)

Performance bound: For a given memory size, there is an upper-

bound in the accuracy and increasing the computational capabilities

(e.g., hashes) does not directly increase the performance [28].

Programmable Switches: The emergence of programmable switches

(PISA [5]) have triggered renewed interests in addressing the short-

falls in network monitoring. Recently, approaches such as OpenS-

ketch [61], ElasticSketch, etc. have proposed data-structures using

CM-Sketch to perform generic measurements. While they perform

much better than the basic CM-Sketch, they cannot be directly im-

plemented on PISA due to complex arithmetic and memory access

patterns. To run these algorithms on PISA, approximate implemen-

tations are needed and these approximations result in significant

loss of accuracy [44, 54, 59].

In this paper, we ask the following question : "Can we leverage the
PISA architecture to design a simple data-structure that can outper-
form Count-Min and at the same time support generic measurements.".

FCM-Sketch: We propose Feed-forward Count-Min sketch, a tree-
based feed-forward scheme to record traffic statistics in multiple

stages. The initial stage composes of many small size counters (e.g.

4/8-bit), while the later stages use fewer but larger counters (e.g.

16/32-bit). The main intuition behind the design of the FCM-Sketch

is as follows: (1) As the number of small flows tend to dominate in

most traffic patterns [14], FCM-Sketch’s approach keeps counting of

(most) small flows in the leaf nodes and reduces hash collisions for

FCM-Sketch CoNEXT '20, December 1�4, 2020, Barcelona, Spain

Figure 2: Data structure of single-tree FCM-Sketch.

Figure 3: Data structure of a single node with b bits. Count
value ranges from 0 to 21 � 2. The value of 21 � 1 is used to
indicate a count of at least 21 � 2 plus over�ow.

larger �ows later along the stages. This is particularly e�ective for
highly-skewed tra�c distributions. (2) FCM-Sketch's multi-stage
feed-forward data structure naturally �ts the multi-stage pipeline
in PISA [5], thus enabling implementation that operates at line-rate.

The overall system, the FCM framework, is shown in Figure 1.
The framework comprises of : 1) FCM-Sketch in the data-plane
(Ÿ3) to aggregate statistics and support simple queries like �ow
size, cardinality and heavy hitter detection at line-rate for appli-
cations like load balancing, tra�c engineering, etc. 2) Algorithms
in the control-plane (Ÿ4) to aggregate data-plane statistics from
FCM-Sketch to support complex measurements like heavy change
detection, entropy and �ow size distribution for applications like
anomaly detection, network fault diagnosis, etc.

3 DATA-PLANE: FCM-SKETCH
3.1 Data Structure
FCM-Sketch uses ak-ary tree-based data structure. We will �rst
present the case for a single tree and then brie�y discuss the exten-
sion to multiple trees later.

Single-tree FCM-Sketch: As shown in Figure 2, a single-tree
FCM-Sketch consists of! node arrays� ; •1 � ; � ! , where! is
the total number of stages. Each array� ; is composed ofF ; nodes
where each node is of size1; -bit at stage;. The size of� ; is F ; � 1; .
For ak-ary tree structure,F ; decreases by a factor of: from an
earlier to the later stage, i.e.,F ; ¸ 1 = F ;

: . On the other hard,1;
increases with each stage i.e1; ¸ 1 ¡ 1; .

Node in FCM-Sketch: Consider a node in the FCM-Sketch with1
bits1. The node value is used to convey (1) the counter value and (2)
the over�ow status. Initially, the counter value is 0 and the over�ow
status is false. The counter value of a node ranges from 0 to21 � 2.
If the count value is larger than21 � 2, the node value is set to
21 � 1 and the over�ow status is true. Once a node's counter is in
the over�ow state, all increments have to be carried forward to the
next stage. The structure is shown in Figure 3.

In summary, if the node value is between 0 and21 � 2, the count
value is the same as the node value. If the node value is21 � 1, the

1We ignore the subscript of1 for brevity

Algorithm 1 Increment(;• 8;)

1: if 0 � � ;•8; � 21; � 2 then
2: � ;•8; � ;•8; ¸ 1.
3: if � ;•8; = 21; � 1 and; Ÿ ! then
4: Increment(; ¸ 1, b8; •: c).

(a) Update operation of a �ow key 51.

(b) Count-query of a �ow key 51 and 52.

Figure 4: Example operations of FCM-Sketch.

node's over�ow status is true. Hence, the count value at this node
is 21 � 2 and counts at later stages have to be taken into account.

Design Intuitions/Advantages: We highlight the various design
intuitions and advantages of FCM-Sketch as follows:
(1) Collision reduction: The multi-stage feed-forward design re-

stricts the counters of small �ows in the earlier stages, thus
reducing collision errors in the later stages with heavy �ows.

(2) Over�ow indicator: An over�ow indication using the maximum
value of a counter as opposed to a bit-indicator used by previous
approaches [19, 60] helps in e�cient usage of bit-space as well
as minimizes memory accesses.

(3) Memory accesses: The multi-stage feed-forward design requires
a single memory access per-stage and �ts well to the pipeline
architecture of PISA.

3.2 Update and Count-Query
Update: Given an incoming packet with �ow key5, we choose
the node at stage1 with the hash index8= � ¹5º modF 1. Next, we
apply Algorithm 1 by invokingIncrement(1, i). In the algorithm,
� ;•8; is the node value at stage; with index 8; . If the node in the
current stage; is in over�ow state, then the increment goes to the
next stage by invokingIncrement(; ¸ 1, b8; •: c). The algorithm stops
when encountering a node that is not inover�ow state or the �nal
level is reached.

Count-query: To retrieve the count estimate for a �ow key, the
sum of all corresponding counter values along one or more stages
are accumulated until the stage where the corresponding node is
not in the over�ow state or until the last stage has been reached.

While we present the update and count query separately for
clarity, these two operations are performed at the same time in
practice for e�cient memory accesses.

CoNEXT '20, December 1�4, 2020, Barcelona, Spain C. Song et al.

Example - Update (Figure 4a): Consider an FCM-Sketch com-
posed of a binary tree with three stages and counter size1 = »2•4•8¼
bits respectively as in Figure 4. Suppose a �ow key51's packet is
hashed into the third counter at stage 1. This counter's value being
2 is already the maximum counting range (22 � 2). The value is
incremented to 3 to indicate that over�ow has occurred and the
update then moves to the next stage. In the second stage, the �ow
key is mapped to the second counter with a value of 4. Since the
counter is made up of 4 bits at stage 2, the maximum value is 14
(24 � 2). Hence, the counter is incremented to 5 and the update ends.

Example - Count-query (Figure 4b): Consider a query operation
on the same �ow51. With over�ow in stage 1 and no over�ow in
stage 2, the count for this �ow will be 7 (sum of stage 1 (value of 2)
and stage 2 (value of 5)). Consider another �ow52 that is hashed to
the �rst counter in stage 1 and �rst counter in stage 2. Since both
the counters in stages 1 and 2 are in over�ow, count for this �ow
includes all three stages i.e. 2 + 14 + 9 = 25.

Extension to Multi-trees: A single-tree FCM-Sketch is synony-
mous to CM-Sketch with a single hash table. Hence, multiple trees
are a natural extension to a single tree FCM-Sketch to improve
accuracy. In the case of FCM-Sketch with multiple trees, multiple
independent hash function maps are used. The �nal count is the
minimum value over all the count in multiple trees similar to CM-
Sketch. Note that multiple trees can be operated upon in parallel in
the data-plane as they use independent memory units.

3.3 Data-Plane Queries
A data-plane query is a query which can be processed using infor-
mation maintained in the FCM-Sketch without additional process-
ing in the control-plane. FCM-Sketch can be used to answer the
following data-plane queries.

� Flow size estimation: FCM-Sketch estimates the �ow size cor-
responding to the �ow key using a count-query. Note the count
can be interpreted in di�erent ways, e.g., bytes, packets, etc.

� Heavy hitter detection: FCM-Sketch's �ow size estimation can
in turn be used to classify �ows as heavy hitters using con�gured
thresholds.

� Cardinality estimation: FCM-Sketch can be used to estimate
the cardinality (number of distinct �ows) with respect to a �ow
key using Linear Counting (LC) [58]. LC estimates the maximum
likelihood of the number of empty counters for a given cardinal-
ity. Formally, the cardinality estimator iŝ= = � F 1 log¹F 0

1•F 1º,
whereF 0

1 is the average number of empty leaf nodes among
those at stage 1. This can be computed in the data plane using
lookup tables.

The above measurements have been extensively used for many
data-plane applications which are beyond traditional data-plane
functionality, such as load balancing of hot objects [34, 37, 42],
packet scheduling [53], queue measurement [21], and microburst
detection [20], etc.

4 CONTROL PLANE: ALGORITHMS
In this section, we explain the algorithms used in the control-plane
to aggregate the statistics from the data-plane and estimate vari-
ous statistics. The control-plane, equipped with substantially more

Figure 5: Example of conversion algorithm in the control
plane.

processing capabilities, converts the FCM-Sketch to virtual coun-
ters (Ÿ4.1) and applies EM (Expectation Maximization) algorithm
(Ÿ4.2) to recover information loss in the data-plane caused by hash
collisions to obtain �ow size distribution. Lastly, we explain the
methodology (Ÿ4.4) to estimate entropy and detect heavy change
that are useful for applications like anomaly detection, fault diag-
nosis, etc.

4.1 FCM-Sketch to Virtual Counters
The �rst step is to aggregate the counters of the FCM-Sketch from
the data-plane. Since FCM-Sketch is a probabilistic data structure,
inaccuracies due to hash collisions are common. Additionally, hash
collisions could happen at any stage. Hence, the challenge is to
untangle the hash collision. We address this by building a linear
counter array, which we call virtual counters. The desired prop-
erty of the virtual counter is that it needs to capture the relation-
ship among �ows that encountered collision and shared the same
counters at di�erent stages. Details of theConversion Algorithmis
presented below.

Conversion Algorithm: The algorithm consists of two steps to
convert a single tree of FCM-Sketch into a virtual counter array.
(1) For each leaf node at level 1, trace the path starting from the

leaf node towards the top of the tree until a node that has not
over�own or the node at the �nal level is reached.

(2) All paths (sub-tree) that end at the same (highest level) node
are merged into a singlevirtual counter . The value of each
virtual counter is the sum of all node counters in the sub-tree.
Each virtual counter is also associated with a parameter called
the degreewhich is the number of paths merged to form the
virtual counter.

It is important to note that in the construction of a virtual counter,
the total count is preserved. Therefore, each virtual counter corre-
sponds to the exact count for the given sub-tree it represents.

Example: In Figure 5, we illustrate the conversion algorithm using
the previous example. The path of �rst leaf node� 1•0 (the count
value is 2 and the node is in the over�ow state) can be traced to
� 2•0 and ends at� 3•0. The accumulated count is2 ¸ 14¸ 9 = 25.
Since the path has no common leaf node with other paths leading
to � 3•0, adegreeof 1 is assigned. We denote this virtual counter as
+ 1

1 , the virtual counter with degree1 and index1. The process for
the second leaf (starting from� 1•1) is similar, resulting in a virtual
counter value of 0 and adegreeof 1. We denote this count as+ 1

2 .
The paths from the third and fourth leaf nodes (� 1•2 and� 1•3)

share the counter at� 2•1 in stage 2. Both paths end at� 2•1 as the
node is not in the over�ow state. Hence, their virtual counters will
be combined with the merged count2 ¸ 2 ¸ 5 = 9, and the virtual
counter has adegree2. This virtual counter is denoted as+ 2

1 .

FCM-Sketch CoNEXT '20, December 1�4, 2020, Barcelona, Spain

Each tree in the FCM-Sketch is converted to a virtual array using
the above method. A multi-tree FCM-sketch would be converted
into multiple virtual arrays.

4.2 Expectation-Maximization
Given the virtual counter arrays+ , the next step would be to accu-
rately estimate the �ow size distributionq and the total number
of �ows =. We develop a Maximum Likelihood Estimator (MLE)
of q and= under the unobserved latent variables (i.e. hash col-
lisions between �ows). We use Expectation-Maximization (EM)
algorithm [38], which is an iterative method to �nd the maximum
likelihood estimate of the parameters (q,=). Given two sets of un-
known (fq,=g, and latent variables), the EM algorithm consists of
two iterative steps: (1) guess the values ofq•=to estimate the (ex-
pected) latent variables, and (2) compute the better guess ofq•=
by using the newly estimated latent variables. The output of step
2 can then be used in the next iteration of step 1. This process is
repeated either over a �xed time/iterations or till some threshold
(e.g. accuracy estimate) is reached.

EM for Single-tree FCM-Sketch: Suppose a single-tree FCM-
Sketch and its corresponding virtual counter array+ whose max-
imum degree and value are� andI , respectively. We group the
virtual counters of the same degreeb, and denote the group and its
number of counters as+ b and< b, respectively.

At each iterationB, the EM algorithm updates the estimatesq ¹Bº

and=¹Bº . At iterationB̧ 1,q ¹B̧ 1º and=¹B̧ 1º are updated as: For any
possible �ow size9, q ¹B̧ 1º

9 = =¹B̧ 1º
9 •=¹B̧ 1º , =¹B̧ 1º =

Í I
9=1=¹B̧ 1º

9 ,
and

=¹B̧ 1º
9 =

�Õ

b=1

< bÕ

8=1

Õ

Vb 2
 ¹+ b
8 •bº

?¹Vb j+ b
8 • q¹Bº•=¹Bºº � Vb

9• (1)

where
 ¹+ b
8 • bº is the set of all possible combinations of collision

between �ows that can build-up the8-th virtual counter ofdegreeb.
In Eqn. 1, the probability is calculated by Bayes' rule:

?¹Vb j+ b
8 • q¹Bº•=¹Bºº=

?¹Vb jq ¹Bº•=¹BººIf Vb 2
 ¹+ b
8 • bºg

Í
Ub 2
 ¹+ b

8 •bº
?¹Ub jq ¹Bº•=¹Bºº

• (2)

where ?¹Vb jq•=º =
Î I

9=1 ?¹Vb
9jq•=º and each¹Vb

9jq•=º follows
Poisson¹=q9b•F 1º.

To understand the details of EM algorithm, we discuss the fol-
lowing in Ÿ4.3.

� ?¹Vb
9jq•=º : probability modeling of latent variables,

�
 ¹+ b
8 • bº : possible combinations of collisions for+ b

8 ,
� Initialization and complexity of EM algorithm.
We skip the derivation of estimates forq•=due to space constraints.
More details of EM algorithm can be found in [38].

4.3 Details of EM Algorithm
Probability Modeling: Given the �ow size distributionq and the
total number of �ows=, consider=q9 number of size9�ows. Each
of them would be uniformly hashed into the totalF 1 number of
leaf nodes. As a virtual counter of degreeb includesb leaf nodes,
the (prior) probability of each �ow hashed into the virtual counter

Notation De�nition
= Total number of �ows

q9•=9 Fraction / Number of �ows that are of size9.
+ A virtual counter array
� Maximum degree of counters in+
I Maximum value of counters in+

+ b A group of virtual counters of degreeb in +
< b Number of counters in+ b

 ¹+ b
8 • bº

A set of possible combinations of collisions

between �ows that can build-up+ b
8

Table 1: Notations in EM for single-tree FCM-Sketch.

follows Bernoulli¹ b
F1

º. Hence, the (prior) probability of the number
of size9�ows to be hashed into a virtual counter of degreeb (i.e.,

Vb
9) follows Binomial, and is approximated by Poisson distribution.

Formally,

Vb
9jq•=� Poisson¹

=q9b

F 1
º”

Since we can assume the collision events for di�erent sizes of �ows
are independent by hashing,?¹Vb jq•=º =

Î I
9=1 ?¹Vb

9jq•=º.
Note that the previous statement does not hold if conditioned

on a speci�c virtual counter value (data) since the value limits the
possible set of �ows due to data-dependency. By Bayes' rule, the

posterior probability ofVb given the virtual counter value+ b
8 is

computed as :

?¹Vb j+ b
8 • q•=º =

?¹Vb jq•=º?¹+ b
8 jVb• q•=º

Í
Ub 2
 ?¹+ b

8 jUb• q•=º?¹Ub jq•=º

=
?¹Vb jq•=ºIf Vb 2
 ¹+ b

8 • bºg
Í

Ub 2
 ¹+ b
8 •bº

?¹Ub jq•=º

whereIf�g is an indicator function,
 is a set of all combinations
of �ows, and
 ¹+ b

8 • bº is a set of all possible combinations of �ows

for the virtual counter+ b
8 of degreeb.

Likelihood Estimation of
 ¹+ b
8 • bº: Note that the possibility of

building-up the virtual counter of a speci�c value anddegreeis
data-dependent since it is determined by the occurrence ofover�ow
events. Hence, the possible set of combinations for a speci�c virtual
counter depends onhow the virtual counter has been produced from
the collected FCM-Sketch.

Virtual counters with the same value anddegreecould have
di�erent possible sets based on where their paths have met and
how they have been merged. In particular, there are two constraints
to consider. First, non-empty virtual counters of degreeb should
include at leastb �ows, because it hasb paths and each path has
at least one �ow hashed into its leaf node. Second, based on how
+ b

8 is produced, the sum of the counts on each ofb paths should be
large enough to result in over�ow.

For example, consider the virtual counter+ 2
1 = 9 and the set

 ¹+ 2
1 •2º in Figure 5. It has two paths which meet in stage 2. Hence,

there must be at least two �ows and a solution of one �ow of size 9
is not possible. Likewise, many such combinations could be ruled
out. For example, the combination of two �ows with size 1 and 8 is

CoNEXT '20, December 1�4, 2020, Barcelona, Spain C. Song et al.

not possible since a �ow of size 1 is not large enough to cause an
over�ow in the leaf node. With the above constraints, the possible
combinations of sizes for 2 �ows are {3, 6} and {4 ,5}. Clearly, there
are many other combinations of 3 to 9 di�erent �ows that can
produce the observed value. However, these combinations with
more number of �ows hashing into 2 leaf nodes are less likely.

Heuristic to Reduce Estimation Complexity: Note that enu-
merating all possible combinations of collision is impractical since
there are enormous number of combinations to consider. In order to
reduce the computation time, we use the following observations: (1)
There are very small number of (virtual) counters with large value
and/ordegreeas the real tra�c �ows have highly skewed distribu-
tion, and (2) collisions of large number of �ows are rare. Similar
to MRAC [38], we truncate the set of possible combinations based
on the counter value anddegree, and reduce the computational
complexity with very small impact on accuracy.

Initialization: In EM algorithm, each iteration uses the estimates
produced by the preceding iteration to re�ne the estimation. In the
beginning, it should set the initial guessq ¹0º and=¹0º . We generate
the initial guess as the observed �ow size distribution by count
queries of all hash index and the number of non-empty leaf nodes,
respectively.

EM for Multi-tree FCM-Sketch: The EM algorithm of single-tree
FCM-Sketch can be easily extended to multi-tree since the trees
operate independently. We present the result for multi-tree based
FCM-Sketch in Appendix ŸA and skip the details of derivation.

4.4 Measurement in the Control Plane
By periodically2 collecting FCM-Sketch from the data plane and
converting the data into virtual counters, the control plane can
support complex measurement tasks such as:

� Flow size distribution: The distribution of �ow sizes through
EM algorithm as described in Ÿ4.2.

� Entropy estimation: The �ow size distribution can in turn be
used to estimate the entropy [40] by expressing it based on �ow
size distribution. Formally, entropy� = �

Í
: ¹: � =:

< log =:
< º

where=: is the number of size-: �ows.
� Heavy change detection: Flows whose sizes in two adjacent

time windows have changed over a prede�ned threshold can be
classi�ed as heavy change. Note that if the change of �ow size
is over the threshold, at least one of sizes for the time windows
should be over the threshold. This can be done by collecting the
candidate heavy �ows over the threshold for both windows. Then
the next step would be to compare their count-queries from the
collected sketches, and report if the change is over the threshold.

Such measurements can be extended to support many other appli-
cations such as detecting security attacks [15, 23], �ash crowds [36],
or understanding the properties of underlying network tra�c [14].

5 ACCURACY ANALYSIS
Similar to CM-Sketch, FCM-Sketch always overestimates the �ow
size upon hash collisions. In this section, we show the accuracy
guarantee of FCM-Sketch's count-query. Letx = »G1• ” ” ” • G=¼be

2The frequency of the control-plane is controlled by the user. It can be periodic, or
event-driven.

a vector of �ow size in data streaming whereG8 is the size of the
8-th �ow. Typically, the accuracy analysis of sketch is con�gured
in terms of two parameters: error fraction (n) and error probability
(X). In the following theorem, we present the accuracy guarantee
of FCM-Sketch in terms of the total number of incoming packets
(kxk1).

Theorem 5.1.Suppose the virtual counters converted from FCM-
Sketch (Ÿ4.1) has a �nite maximum degree� . Denote the number of
leaf nodes of each tree in the FCM-Sketch asF 1 = d4

ne (4 is Euler's
number), the number of trees as3 = dln 1

Xe, and the accuracy pa-
rametersn• X¡ 0. Given3 pairwise independent hash functions, the
count-querŷG8 for �ow 8is bounded by

Ĝ8 � G8 ¸ nkxk1 ¸ n¹� � 1º¹kxk1� F 1\ 1ºIfkxk1 ¡ F 1\ 1g (3)

with probability at least1 � X, wherek � k1 is 1-norm,\ 1 is the
maximum counter value at stage1 (211 � 2 with 11-bit), andIf�g is
an indicator function.

Note that, if only a single level of tree is used, with the same
number of counters, the error bounds for FCM-Sketch and CM-
Sketch [22] are the same. Additionally, the accuracy parametern is
inversely proportional to the number of leaf counters by de�nition.

In Theorem 5.1, the only assumption we make for the analysis is
the �nite maximum degree� which obviously holds; D is bounded
by the number of leaf nodes of a tree. Note that the dependency
on � disappears if the total number of packets is less thanF 1\ 1. In
particular, the condition translates to; For 1.3 MB memory,F 1\ 1 is
about133" using two 8-ary trees with 8, 16, 32-bit counters in each
stage. This corresponds to 992 Gb tra�c with 1000-byte packets.

If the above condition holds true, barring parametern, the error
bound of FCM-Sketch takes the exact same form as that of CM-
Sketch. The intuition behind FCM-Sketch's advantage over CM-
Sketch is as follows. CM-Sketch uses counters of uniform size and
thus requires large counters (e.g., 32-bit) to record large �ows. On
the other hand, FCM-Sketch utilizes smaller counters (e.g., 8-bit)
at the earlier stage, while larger counters are used only for later
stages and the number of large counters decreases with the number
of stages. For the same amount of memory, we can thus provision
for many more (small) counters at the earlier stages. Therefore, the
accuracy parametern for FCM-Sketch is much smaller than that of
CM-Sketch with the same memory.

On the other hand, if the condition does not hold, the error bound
in Eqn. 3 increases with the maximumdegree� . This matches with
our intuition in that � tends to increase with the number ofover�ow
nodes increases which may additionally result in more collision
error for count-query. Speci�cally, the condition would be violated
if �ow sizes are uniformly large. In this case, the accuracy may drop
due to their collisions in the later stages.

Lastly, the error bound in Theorem 5.1 focuses on describing
the over�ow events at stage 1 as in the last term of Eqn. 3. In
Appendix ŸB, we present its general form with considerations for
all stages.

6 APPLICATION STUDY: FCM+TOPK
Many existing network monitoring frameworks for generic mea-
surement tasks rely on the design of CM-Sketch (e.g., ElasticS-
ketch [59], SketchLearn [32], OpenSketch [61]). In this section, we

FCM-Sketch CoNEXT '20, December 1�4, 2020, Barcelona, Spain

show how FCM-Sketch can replace CM-Sketch and be integrated
into ElasticSketch as a representative application and analyze the
accuracy improvement.

ElasticSketch [59] consists of two main components: 1) a Top-K
algorithm that �lters candidate heavy �ows and maintains their key-
values in multiple hash tables, and 2) a CM-Sketch that maintains
statistics for the residual packets after the Top-K algorithm. Since
heavy �ows have been �ltered, the residual �ows ideally can be
tracked with small size counters. Hence, more number of small size
(e.g. 8-bit) counters could be used in CM-Sketch compared to the
use of larger (e.g. 32-bit) counters.

While the intuition behind ElasticSketch is e�ective on highly
skewed tra�c �ows, it requires the Top-K algorithm to minimize the
likelihood of the 8-bit counters in the CM-Sketch from over�owing.
Thus, ElasticSketch needs to allocate su�cient memory to the Top-
K algorithm's tables, resulting in less memory for the CM-Sketch
and reducing the overall accuracy.

To overcome this drawback, we could use FCM-Sketch instead of
CM-Sketch in ElasticSketch. Lets call this combinationFCM+TopK.
Since FCM-Sketch can handle di�erent �ow sizes more e�ciently
(by allowing over�ow to higher level stages), a much smaller amount
of memory can be allocated to the Top-K algorithm. As a result,
FCM-Sketch can be allocated even larger amount of the available
memory to further improve accuracy of the non-heavy �ows.

We present the error bound of FCM+TopK as follows:

Theorem 6.1.The count-querŷG8 of FCM+TopK for �ow8 is
bounded by

Ĝ8� G8¸ nkxLk1¸ n¹� � 1º¹kxLk1� F 1\ 1ºIfkxLk1¡ F 1\ 1g (4)

with probability at least1� X, wherekxLk1 denotes the sum of counts
passed after the Top-K algorithm.

Note that if only a single level tree is used, the error bound is
same as that of ElasticSketch. Thus, FCM+TopK can have a tighter
error bound than ElasticSketch using the same Top-K algorithm.
We present the proof in Appendix ŸB.

7 EVALUATION ON SOFTWARE
In this section, we evaluate the accuracy of the software imple-
mentation of FCM compared to existing frameworks. First, we
describe the software implementation of FCM-Sketch and other
frameworks in Ÿ7.1 and the evaluation setup in Ÿ7.2. Next, we com-
pare the accuracy of FCM-Sketch and FCM+TopK with CM-Sketch,
CU-Sketch [26]3, Hashpipe [54], MRAC, Hyperloglog [27], and
PyramidSketch [60] for speci�c measurement task in Ÿ7.3. In Ÿ7.4,
we look at how parameters of FCM should be selected for di�erent
tra�c distribution skewness. Finally, we compare the performance
of FCM and FCM+TopK with frameworks such as UnivMon [44]
and ElasticSketch [59] across generic measurement tasks in Ÿ7.5.
We defer the evaluation on PISA hardware (Barefoot To�no) to Ÿ8.

7.1 Implementation
We have implemented FCM-Sketch and all the other measurement
frameworks in C++. We conducted evaluations on a server with
64 cores (Intel Xeon E5-2683V4@2.1GHZ) and 256GB DRAM. We

3CM-Sketch with Conservative Update

Measurement tasks Metrics Benchmark solutions

Flow size estimation ARE, AAE Count-Min (CM), CU, PCM
Heavy hitter detection F1-score UnivMon, Hashpipe (HP)
Cardinality estimation RE UnivMon, Hyperloglog (HLL)
Flow size distribution WMRE MRAC
Entropy estimation RE UnivMon, MRAC
Support-All - ElasticSketch

Table 2: Measurements, evaluation metrics and benchmarks.

use BobHash by default as recommended [30]. We implement CM-
Sketch, CU-Sketch, Hashpipe, and MRAC using 32-bit counter ar-
rays where counters are uniformly chosen by hash functions. Hy-
perloglog (HLL) is implemented using a 8-bit counter array and Uni-
vMon is implemented based on multi-level sampling-and-sketching
to extract statistics for generic monitoring capability. We use the
open source implementation of PyramidSketch with CM-Sketch
(PCM) [9]. Since Conservative-Update (CU) can improve the count-
query of both FCM and PyramidSketch in a similar degree, we skip
the implementation of CU for both. Finally, for ElasticSketch, we
use its P4-version platform based on the published source code [10].
We explain the parameters of each algorithm in Ÿ7.2.

7.2 Evaluation Setup
Tra�c Traces: We use 32 non-overlapping traces from the CAIDA
Equinix-NYC data monitor [2] collected on 19th January, 2019. We
use source-IP as the �ow key. We did not use �ner classi�cation
such as the 5 IP tuples because that would result in many more
short �ows and even higher skewness in the data trace. Each trace
contains about 20M packets and 0.5M distinct �ows in a 15s window.

Parameters Con�gurations: FCM-Sketch is composed using two
trees which have 8, 16, and 32-bit counters in each stage by de-
fault. We use byte-aligned counters for ease of implementation,
which is crucial for execution on the programmable hardware. For
FCM+TopK, we use a single level of Top-K algorithm with 4K entries
and use the rest of the memory for the FCM-Sketch. CM-Sketch
and CU-Sketch are composed using three counter arrays which
have been reported to have the best accuracy [28]. Similarly, MRAC
uses a single counter array for the best accuracy. Hashpipe uses
6 hash tables, and PyramidSketch is combined with CM-sketch
(called PCM) using 4 hashes, 4-bit counter size, and 64-bit machine
word. The parameters for Hashpipe and PCM are the same as those
used in the published version. Univmon uses 16 levels, where each
level records 2K heavy hitters using a heap and use the rest of the
memory for the sketch. Finally, for ElasticSketch, we use 4 levels
for Top-K algorithm where each level has 8K key-value entries and
the rest of the memory for the sketch. Unless stated otherwise, we
follow the above-stated con�gurations in the rest of the evaluation.

Task, Metric and Benchmark: We perform di�erent measure-
ment tasks (refer to Table 2) and report the performance metrics
corresponding to each tasks4. We additionally highlight the current
benchmark solution for each of the task in Table 2. We explain how
the metrics are derived as follows:

� ARE (Average Relative Error): 1
#

Í #
8=1

jG8� Ĝ8 j
G8

, where # is the
number of �ows,G8 andĜ8 are true and estimated �ow sizes.

4We will not show the result for heavy change detection as it is very close to that of
heavy hitter detection.

CoNEXT '20, December 1�4, 2020, Barcelona, Spain C. Song et al.

(a) ARE of �ow size. (b) AAE of �ow size.

(c) Heavy hitter. (d) Cardinality.

Figure 6: Accuracy comparison of data-plane queries for dif-
ferent k-ary trees compared to CM, CU, PCM, HP and HLL.

� AAE (Average Absolute Error): 1
#

Í #
8=1 jG8 � Ĝ8j, where there is no

normalization.
� F1-score: 2� %' � ''

%' ¸ '' where PR (Precision Rate) is the ratio of true
instances reported and RR (Recall Rate) is the ratio of reported
true instances.

� WMRE (Weighted Mean Relative Error)[38]:
Í I

8=1 j=8� =̂8 j
Í I

8=1
=8¸ =̂8

2

, where

I is the maximum �ow size,=8 and=̂8 are true and estimated
numbers of �ows with size8, respectively.

� RE (Relative Error): jĜ� Gj
G , whereGandĜare true and estimated

statistics, respectively.

In our experiments, we set the pre�xed threshold of heavy hitter
detection as10 packets. This threshold is about0”05%of the total
number of packets in one trace.

7.3 Accuracy of FCM and FCM+TopK
The accuracy of FCM-Sketch depends on its con�guration, i.e.,k-
ary tree structure. In this section, we investigate the impact of
this con�guration on the measurement accuracy of FCM-Sketch
and FCM+TopK by varying: from 2 to 32 for a �xed 1.5 MB of
memory. In our settings, con�gurations with higher k values will
result in more leaf nodes and fewer root nodes. We do not evaluate
con�gurations of : � 64as this results in too few counters in the
later stages.

7.3.1 �ery Accuracy. We evaluate the accuracy of both FCM-
Sketch and FCM+TopK compared to the baseline such as CM, CU,
PyramidSketch with CM (PCM), Hashpipe (HP), and Hyperloglog
(HLL) for data-plane queries and MRAC for control-plane queries.
Data-Plane Queries: We show the results in Figure 6 with error
bars of 10% to 90%. We observe that FCM-Sketch and FCM+TopK
perform signi�cantly better than CM-Sketch and CU-Sketch in
terms of �ow-size estimation. Speci�cally, in Figure 6a, using 16-
ary trees, the relative errors (AREs) of FCM-Sketch and FCM+TopK
are both 88% lower than CM-Sketch. Similarly, in Figure 6b, the
absolute errors (AAEs) of FCM-Sketch and FCM+TopK are 84% and
86% lower than CM-Sketch, respectively. Compared to PCM, both
achieve 53% lower AREs, and 53% and 60% lower AAEs, respectively.

(a) Flow size distribution. (b) Entropy.

Figure 7: Accuracy comparison of control-plane queries for
di�erent k-ary trees compared to MRAC.

Figure 8: Histogram of non-empty virtual counters from
FCM (left) and FCM+TopK (right) for di�erent k-ary trees.

Next, for heavy-hitter detection and cardinality, FCM-Sketch
and FCM+TopK show comparable performance with task-speci�c
solutions, e.g., Hashpipe and Hyperloglog for the data set used.5 For
heavy-hitter detection (Figure 6c), we observe that while FCM+TopK
performs better than FCM-Sketch at all con�gurations, there is a sig-
ni�cant improvement of FCM+TopK over FCM-Sketch at: = 32due
to increase in hash collisions. In the case of cardinality (Figure 6d),
we observe that the relative error decreases for both FCM-Sketch
and FCM+TopK with increase in: .
Control-Plane Queries: We show the accuracy for control-plane
queries (�ow-size distribution and entropy) using the EM algorithm
of FCM-Sketch and FCM+TopK against MRAC in Figure 7. For: � 4
(k-ary trees), compared to MRAC, FCM-Sketch and FCM+TopK have
smaller errors. Speci�cally when using 16-ary trees, both have 59%
and 62% smaller errors (WMRE) for �ow size distribution (Figure 7a)
and 52% and 80% lower relative errors (RE) for entropy estimation
(Figure 7b). MRAC performs better than FCM and FCM+TopK for
the 2-ary trees due to higher hash collisions at: = 2. This shows
that the ability to have more counters at the lower level of trees by
using higher: improves the memory utilization and thus achieves
better performance.

Note that while the errors of FCM-Sketch, except heavy hitter
detection, tend to decrease with increasing: , the AAE of �ow
size (Figure 6b) and RE of entropy estimation (Figure 7b) increase
when: is 32. This is because collisions of �ows are more likely to
occur at later stages with only a small number of counters, and the
�ows at later stages are heavy. The same reason explains why the
accuracy (F1-score) for heavy hitter detection (Figure 6c) decreases
at : = 32due to the increase of collisions between heavy �ows.
On the contrary, FCM+TopK always achieves high accuracy for
all con�gurations. This is because its Top-K algorithm isolates
candidate heavy �ows from FCM-Sketch thus reduces possible
collisions in counters at later stages.

5Hyperloglog can perform better than FCM-Sketch, which uses linear counting, for
data set with much larger �ow cardinality.

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Data-Plane: FCM-Sketch
	3.1 Data Structure
	3.2 Update and Count-Query
	3.3 Data-Plane Queries

	4 Control plane: Algorithms
	4.1 FCM-Sketch to Virtual Counters
	4.2 Expectation-Maximization
	4.3 Details of EM Algorithm
	4.4 Measurement in the Control Plane

	5 Accuracy Analysis
	6 Application Study: FCM+TopK
	7 Evaluation on Software
	7.1 Implementation
	7.2 Evaluation Setup
	7.3 Accuracy of FCM and FCM+TopK
	7.4 Parameterization of FCM
	7.5 Comparison with State-of-the-Art Approaches

	8 Evaluation on PISA Hardware
	8.1 Hardware Implementation
	8.2 Accuracy Comparison
	8.3 Resource Overhead

	9 Related Work
	10 Conclusion
	Acknowledgments
	References
	A Expectation-Maximization for multi-tree based FCM-Sketch
	B Proof of accuracy analysis
	B.1 Proof of Lemma B.1
	B.2 Proof of Theorem 5.1 and 6.1

	C Cardinality using TCAM

