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Abstract

Recent research in robot exploration and mapping has focused on sampling hotspot fields, which often

arise in environmental and ecological sensing applications. Such a hotspot field is characterized by continuous,

positively skewed, spatially correlated measurements with the hotspots exhibiting extreme measurements and

much higher spatial variability than the rest of the field.

To map a hotspot field of the above characterization, we assume that it is realized from non-parametric

probabilistic models such as the Gaussian and log-Gaussian processes (respectively, GP and `GP), which

can provide formal measures of map uncertainty. To learn a hotspot field map, the exploration strategy of a

robot team then has to plan resource-constrained observation paths that minimize the uncertainty of a spatial

model of the hotspot field. This exploration problem is formalized in a sequential decision-theoretic planning

under uncertainty framework called the multi-robot adaptive sampling problem (MASP). So, MASP can be

viewed as a sequential, non-myopic version of active learning. In contrast to finite-state Markov decision

problems, MASP adopts a more complex but realistic continuous-state, non-Markovian problem structure

so that its induced exploration policy can be informed by the complete history of continuous, spatially

correlated observations for selecting paths. It is unique in unifying formulations of non-myopic exploration

problems along the entire adaptivity spectrum, thus subsuming existing non-adaptive formulations and

allowing the performance advantage of a more adaptive policy to be theoretically realized. Through MASP,

it is demonstrated that a more adaptive strategy can exploit clustering phenomena in a hotspot field to

produce lower expected map uncertainty. By measuring map uncertainty using the mean-squared error

criterion, a MASP-based exploration strategy consequently plans adaptive observation paths that minimize

the expected posterior map error or equivalently, maximize the expected map error reduction.

The time complexity of solving MASP (approximately) depends on the map resolution, which limits its

practical use in large-scale, high-resolution exploration and mapping. This computational difficulty is allevi-

ated through an information-theoretic approach to MASP (iMASP), which measures map uncertainty based

on the entropy criterion instead. As a result, an iMASP-based exploration strategy plans adaptive observa-

tion paths that minimize the expected posterior map entropy or equivalently, maximize the expected entropy

of observation paths. Unlike MASP, reformulating the cost-minimizing iMASP as a reward-maximizing dual

problem causes its time complexity of being solved approximately to be independent of the map resolution

and less sensitive to larger robot team size as demonstrated both analytically and empirically. Furthermore,

this reward-maximizing dual transforms the widely-used non-adaptive maximum entropy sampling problem

into a novel adaptive variant, thus improving the performance of the induced exploration policy.
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One advantage stemming from the reward-maximizing dual formulations of MASP and iMASP is that

they allow observation selection properties of the induced exploration policies to be realized for sampling the

hotspot field. These properties include adaptivity, hotspot sampling, and wide-area coverage. We show that

existing GP-based exploration strategies may not explore and map the hotspot field well with the selected

observations because they are non-adaptive and perform only wide-area coverage. In contrast, the `GP-based

exploration policies can learn a high-quality hotspot field map because they are adaptive and perform both

wide-area coverage and hotspot sampling.

The other advantage is that even though MASP and iMASP are non-trivial to solve due to their con-

tinuous state components, the convexity of their reward-maximizing duals can be exploited to derive, in

a computationally tractable manner, discrete-state monotone-bounding approximations and subsequently,

approximately optimal exploration policies with theoretical performance guarantees. Anytime algorithms

based on approximate MASP and iMASP are then proposed to alleviate the computational difficulty that

arises from their non-Markovian structure.

It is of practical interest to be able to quantitatively characterize the “hotspotness” of an environmental

field. We propose a novel “hotspotness” index, which is defined in terms of the spatial correlation properties

of the hotspot field. As a result, this index can be related to the intensity, size, and diffuseness of the

hotspots in the field.

We also investigate how the spatial correlation properties of the hotspot field affect the performance

advantage of adaptivity. In particular, we derive sufficient and necessary conditions of the spatial correlation

properties for adaptive exploration to yield no performance advantage.

Lastly, we develop computationally efficient approximately optimal exploration strategies for sampling

the GP by assuming the Markov property in iMASP planning. We provide theoretical guarantees on the

performance of the Markov-based policies, which improve with decreasing spatial correlation. We evaluate

empirically the effects of varying spatial correlations on the mapping performance of the Markov-based

policies as well as whether these Markov-based path planners are time-efficient for the transect sampling

task.

Through the abovementioned work, this thesis establishes the following two claims: (1) adaptive, non-

myopic exploration strategies can exploit clustering phenomena to plan observation paths that produce

lower map uncertainty than non-adaptive, greedy methods; and (2) Markov-based exploration strategies can

exploit small spatial correlation to plan observation paths which achieve map uncertainty comparable to

that of non-Markovian policies using significantly less planning time.
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Chapter 1

Introduction

1.1 Motivation

The problem of exploring and mapping an unknown environmental field is a central issue

in mobile robotics. Typically, it requires sampling the entire terrain (Burgard et al., 2005;

Choset, 2001). With limited (e.g., point-based) robot sensing range, a complete coverage be-

comes impractical in terms of resource costs (e.g., energy consumption) if the environmental

field to be explored is large with only a few small-scale features of interest, or hotspots. Such

a hotspot field (see, for example, Fig. 1.1) characterizes two real-world application domains:

• planetary exploration such as antarctic meteorite search (Apostolopoulos et al., 2000),

geologic site survey (Castano et al., 2003; Glass and Briggs, 2003; Estlin et al., 1999,

2005), and prospecting for mineral deposits (Low et al., 2007) or localized methane

sources on Mars (Formisano et al., 2004; Krasnopolsky et al., 2004), and

• environmental and ecological sensing such as precision agriculture (Pedersen et al.,

2006), monitoring of ocean phenomena (plankton bloom, upwelling) (Fiorelli et al.,

2006; Leonard et al., 2007), forest ecosystems (Batalin et al., 2004; Rahimi et al.,

1
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Figure 1.1: Plankton density (chlorophyll-a) field of Chesapeake Bay showing hotspots to the
left.
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2004), rare species (Thompson, 2004), pollution (Chang et al., 2007; Long and Wilson,

1997), or contamination (Englund and Heravi, 1994).

In particular, the hotspot field is characterized by continuous, positively skewed, spatially cor-

related measurements with the hotspots exhibiting extreme measurements and much higher

spatial variability than the rest of the field. So, to accurately map the field, the hotspots

have to be sampled at a higher resolution.

The hotspot field discourages static sensor placement (Guestrin et al., 2005) because a

large number of sensors has to be positioned to detect and refine the sampling of hotspots.

If these static sensors are not placed in any hotspot initially, they cannot reposition by

themselves to locate one. Furthermore, these static sensors are not capable of sample return

or withdrawal from harsh environmental conditions, and they possess limited sensory, com-

putational, and communication capabilities. In contrast, a small robot team is capable of

performing high-resolution sampling of the hotspots due to its mobility. Hence, it is desirable

to build a mobile robot team that can actively explore to map a hotspot field.

1.2 Objective

An important issue in designing such a robot team is the exploration strategy for learning a

hotspot field map. This thesis aims to address this issue:

How does a robot team plan resource-constrained observation paths to minimize the

map uncertainty of a hotspot field?

The related work pertaining to this objective will be discussed in Chapter 2. To achieve this

objective, we believe that such an exploration strategy should be designed to

• exploit the environmental structure: the large hotspot field is characterized by contin-

uous, positively skewed, spatially correlated measurements, and contains a few small-

scale hotspots with extreme, highly-varying measurements;
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• maximize science return: the environmental scientist deploying the robot team expects

the scientific exploration to yield a high-quality map that, in particular, identifies and

represents the localized features of interest (i.e., hotspots) well.

These two factors are considered in the development of our proposed exploration strategies

as described next.

1.3 Contributions

The work in this thesis makes the following two claims:

Adaptive, non-myopic exploration strategies can exploit clustering phenomena to plan

observation paths that produce lower map uncertainty than non-adaptive, greedy

methods.

Markov-based exploration strategies can exploit small spatial correlation to plan ob-

servation paths which achieve map uncertainty comparable to that of non-Markovian

policies using significantly less planning time.

Both claims are substantiated by the following novel contributions listed in Sections 1.3.1

to 1.3.6 and Section 1.3.7, respectively.

1.3.1 Formalization of multi-robot adaptive sampling problem

We cast the exploration task as a sequential (i.e., stagewise) decision-theoretic planning

problem and call it the multi-robot adaptive sampling problem (MASP) (Section 3.2). That

is, the robot team’s goal is to minimize the map uncertainty over a given finite planning

horizon (e.g., task duration or observation path length). Hence, MASP can be viewed as

a generalization of active learning (Cohn et al., 1996; Roy and McCallum, 2001) due to its
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sequential nature. Very often, a sequential decision-theoretic planning problem is framed as

a finite-state Markov decision process (MDP). To learn an accurate map of the hotspot field,

the MDP-based exploration problem has to exploit its environmental structure (Section 1.2).

However, it cannot do this because its discrete-state, Markov assumptions are violated by

the continuous, spatially correlated field measurements. To fully exploit the environmental

structure, MASP adopts a more complex but realistic continuous-state1, non-Markovian

problem structure so that (a) its induced exploration policy can be informed by the complete

history of continuous, spatially correlated observations for selecting observation paths, and

(b) theoretical bounds can be established for the expected map uncertainty achieved by

solving MASP, as explained further in Section 1.3.4.

In particular, we endow the induced exploration policy from solving MASP with non-

myopic and adaptive observation selection properties to improve its performance. Intuitively,

the choice of next immediate observation(s) under a non-myopic policy looks beyond the

next immediate observation selection(s) while the choice of new observation(s) under an

adaptive policy depends on past observation selections. By looking ahead, a non-myopic

policy can potentially perform better than a greedy one as explained in Section 2.4. On the

other hand, a more adaptive policy can be obtained not by depending on a longer history

of observations2 but by increasing its frequency of observation selection. Given a fixed

observation path length for each robot, this then can be achieved by refining the sequential

(i.e., stagewise) observation selection to fewer number of new observations per stage but over

a longer planning horizon (i.e., greater number of stages) (Section 3.1). If the frequency of

observation selection is reduced to a single stage instead, a non-adaptive policy results. In

this case, all observations have to be chosen in a single stage and therefore cannot depend

1In this thesis, each observation path is assumed to be a finite collection of continuous-valued field
measurements sampled at discrete locations. In practice, this assumption is reasonable because the sampling
rate of a sensor is usually finite. Without loss of generality, we assume that the locations to be selected by
the observation paths correspond to that of a discretized grid (Section 3.1).

2This implies it is “more” non-Markovian instead.
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on past observation selections. As shown later in Section 3.2, the seemingly contrasting non-

myopic and adaptive properties cannot be treated exclusively or decoupled in an exploration

problem because the degree of adaptivity in a policy dictates how a non-myopic exploration

problem is to be formulated.

The formalization of MASP is unique in its unification of formulations of non-myopic

exploration problems with varying adaptivity. As a result, this unifying framework cov-

ers the entire adaptivity spectrum, thus subsuming various existing non-adaptive problem

formulations (Chapter 2). It is useful in allowing the performance of induced exploration

policies of varying adaptivity to be theoretically analyzed; the performance advantage of a

more adaptive exploration policy can thus be realized (Section 3.3). Through MASP, it is

demonstrated that a more adaptive policy can exploit clustering phenomena in a hotspot

field to produce lower expected map uncertainty.

For MASP, the map uncertainty is measured using the mean-squared error criterion. Con-

sequently, solving MASP involves planning observation paths that produce the least expected

posterior map error/uncertainty; the original MASP is therefore a cost-minimizing problem.

We then provide a reward-maximizing dual formulation of MASP that, when solved, achieves

the largest possible expected reduction in map error/uncertainty (Section 3.4). We show that

the exploration objectives of these two problem formulations are equivalent. That is, the in-

duced optimal exploration policies from solving the cost-minimizing and reward-maximizing

MASPs coincide.

1.3.2 Formalization of information-theoretic multi-robot adaptive sam-

pling problem

The MASP is beset by a serious computational drawback due to its measure of map uncer-

tainty using the mean-squared error criterion. Consequently, the time complexity of solving
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MASP approximately3 depends on the map resolution, which limits the practical use of

MASP-based approximation algorithms in large-scale, high-resolution exploration and map-

ping (Chapter 5).

This computational difficulty is alleviated through an information-theoretic approach

to MASP (iMASP) (Section 4.1), which measures map uncertainty based on the entropy

criterion instead. Unlike MASP, reformulating the cost-minimizing iMASP as a reward-

maximizing problem (Section 4.2) causes its time complexity of being solved approximately4

to be independent of the map resolution and less sensitive to larger robot team size as

demonstrated both analytically (Section 5.5.2) and empirically (Chapter 6). We also show

the equivalence between the cost-minimizing and reward-maximizing iMASPs (Section 4.2).

That is, their induced optimal exploration policies coincide. Beyond its computational gain,

iMASP retains the beneficial properties of MASP.

Additional contributions stemming from this reward-maximizing formulation include (a)

transforming the commonly-used non-adaptive maximum entropy sampling problem (Shewry

and Wynn, 1987) into a novel adaptive variant, thus improving the performance of the

induced exploration policy (Section 4.2); and (b) given an assumed environment model (e.g.,

occupancy grid map), establishing sufficient conditions that, when met, guarantee adaptivity

provides no benefit (Section 4.3.1).

1.3.3 Exploration strategies for learning hotspot field maps

Non-parametric probabilistic models such as Gaussian and log-Gaussian processes (respec-

tively, GP and `GP) are commonly used to map environmental fields (Cressie, 1993). These

models offer the advantage of providing formal measures of map uncertainty. By reformulat-

ing the cost-minimizing MASP and iMASP as reward-maximizing problems, observation se-

3See Section 1.3.4 to understand why it is computationally intractable to solve MASP exactly.
4See Section 1.3.4 to understand why it is computationally intractable to solve iMASP exactly.
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lection properties of the induced exploration policies can be realized when they are applied to

sampling GP and `GP. These properties include adaptivity, wide-area coverage, and hotspot

sampling. In particular, wide-area coverage and hotspot sampling assess highly uncertain

map regions differently: the former considers sparsely sampled areas to be of high uncertainty

while the latter expects areas of high uncertainty to contain extreme, highly-varying mea-

surements. These two, at times contrasting, properties trigger the exploration-exploitation

dilemma where wide-area coverage parallels exploration of uncharted terrain to locate pre-

viously undetected hotspots and hotspot sampling coincides with exploitation to maximize

the sampling at hotspots. Hence, they are both necessary for learning a high-quality hotspot

field map.

Existing exploration strategies (Alvarez et al., 2007; Meliou et al., 2007; Singh et al.,

2007) have used GP to model environmental fields and are devised to select observations for

reducing the uncertainty of the GP model. Using the reward-maximizing MASP and iMASP,

we can show that they are, however, non-adaptive and perform only wide-area coverage

(Sections 3.5.1 and 4.3.1). So, a hotspot field may not be reconstructed well with the selected

observations from wide-area coverage because the under-sampled hotspots with extreme,

highly-varying measurements can contribute considerably to the map uncertainty. If `GP is

used to model the hotspot field instead, it can be shown using the reward-maximizing MASP

and iMASP that the induced exploration policies are adaptive, and perform both wide-area

coverage and hotspot sampling (Sections 3.5.2 and 4.3.2). As demonstrated empirically

(Chapter 6), the adaptive exploration policies for sampling `GP select observation paths

through hotspots to produce lower map uncertainty.
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1.3.4 Approximately optimal exploration strategies with performance

guarantees

Sequential decision-theoretic planning problems such as MASP and iMASP are generally

non-trivial to solve. Although MASP and iMASP can be solved exactly via dynamic pro-

gramming, this is computationally intractable due to their (a) continuous state components

and (b) non-Markovian structure (Section 1.3.1). As elaborated below, we exploit the prob-

lem structure for sampling `GP to derive approximately optimal exploration policies in a

computationally tractable manner.

Recent solution techniques of continuous-state, reward-maximizing MDPs (Boyan and

Littman, 2001; Feng et al., 2004; Li and Littman, 2005; Marecki et al., 2007; Kveton and

Hauskrecht, 2006; Kveton et al., 2006) constrain the transition, reward, and optimal value

functions to specific function families (e.g., discrete, piecewise-constant and linear, etc). In

contrast, we assume the reward function merely to be convex, and do not restrict the form

of transition function. Consequently, the optimal value functions are convex.

To handle continuous states, we show that the reward-maximizing MASP and iMASP

are convex, which allows discrete-state monotone-bounding approximations to be developed

(Section 5.3). Consequently, we can provide theoretical guarantees on the performance of

approximately optimal vs. optimal adaptive policies (Section 5.3), and establish theoreti-

cal bounds quantifying the performance advantage of optimal adaptive over non-adaptive

policies (Section 5.4).

Although it is computationally tractable to solve the approximate MASP and iMASP

exactly, their non-Markovian structure causes the state size to grow exponentially with the

number of stages. To alleviate this computational difficulty, anytime algorithms are proposed

based on the approximate MASP and iMASP, which can guarantee their policy performance

in real time (Section 5.5). As demonstrated analytically, the time complexity of the iMASP-

based anytime algorithm is independent of map resolution and less sensitive to increasing
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robot team size as compared to the MASP-based algorithm.

1.3.5 Quantifying “hotspotness”

It is of practical interest to be able to quantitatively characterize the “hotspotness” of an

environmental field. In this manner, environmental fields of varying degrees of “hotspotness”

can be prescribed accordingly, that is, by assigning high degrees of “hotspotness” to fields

with pronounced hotspots and low degrees of “hotspotness” to smoothly-varying fields.

We propose a novel “hotspotness” measure, which is defined in terms of the spatial

correlation properties of the hotspot field (Section 7.1). Specifically, by assuming the hotspot

field to vary as a realization of the `GP (Sections 3.5.2 and 4.3.2), its spatial correlation

properties can be represented by the hyperparameters of the `GP covariance structure. This

then allows the proposed “hotspotness” index to be defined using the hyperparameters.

Through the use of the hyperparameters, we discuss how the “hotspotness” index can be

related to the intensity, size, and diffuseness of the hotspots in the environmental field

(Section 7.2). The “hotspotness” index is applied to a real-world phosphorus distribution

field (Section 7.3).

1.3.6 Effects of spatial correlation on performance advantage of adap-

tivity

We investigate how the spatial correlation properties of the hotspot field (in particular,

the length-scale hyperparameter of the `GP covariance structure) affect the performance

advantage of adaptive exploration. We first show that for white-noise process fields or

constant fields, multi-stage adaptive MASP and iMASP provide no performance advantage

under the mean-squared error or entropy criterion, respectively (Section 8.1). Then, we

show that the performance advantage of the 2-stage adaptive iMASP is zero if and only if
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the field is constant or a white-noise process (Section 8.2). Note that the contrapositive of

this second result implies the performance advantage is positive if and only if the length-

scale is non-extreme. Lastly, we illustrate that the performance advantage of the 2-stage

adaptive iMASP improves with decreasing noise-to-signal variance ratio and peaks at some

intermediate length-scale.

1.3.7 Exploiting small spatial correlation with fast Markov-based ex-

ploration strategies

The iMASP for sampling GP can be reduced to a non-Markovian, deterministic planning

problem (Section 9.1). Due to its non-Markovian structure, the state size grows exponen-

tially with the number of stages. Furthermore, the time complexity of evaluating each

entropy-based stagewise reward in iMASP depends cubically on the length of the history of

observations, which limits the practical use of its approximation algorithm in in situ real-

time, high-resolution active sampling. This latter computational difficulty also plagues the

widely-used non-Markovian greedy algorithm as it is a single-staged variant of iMASP.

We develop computationally efficient exploration strategies for sampling the GP by as-

suming the Markov property in iMASP planning. The resulting information-theoretic path

planning problem can be cast as a deterministic Markov decision process (DMDP) (Sec-

tion 9.3). We analyze the time complexity of solving the DMDP-based path planning prob-

lem, and show analytically that it scales better than the non-Markovian greedy algorithm

with increasing number of planning stages. We also provide a theoretical guarantee on the

performance of the DMDP-based policy for the case of a single robot, which, in particular,

improves with decreasing spatial correlation.

Unfortunately, the performance guarantee of the DMDP-based policy cannot be general-

ized to the case of multiple robots unless we impose more restrictive assumptions on the GP

covariance structure. However, we can obtain a similar form of performance guarantee by
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factoring the stagewise reward (Section 9.4), which essentially imposes a conditional inde-

pendence assumption. The resulting path planning problem is therefore framed as a DMDP

with factored reward (DMDP+FR). In terms of time complexity, we show analytically that

it scales better than the DMDP-based algorithm with increasing number of robots.

Through the transect sampling task (Section 9.2), we investigate empirically the effects

of varying spatial correlations on the mapping performance of the Markov-based policies as

well as whether these Markov-based path planners are time-efficient for in situ real-time,

high-resolution active sampling (Section 9.5).

1.3.8 Summary of contributions

To summarize, the work in this thesis provides the following novel contributions and is

organized as follows:

1. Formalization of MASP (Chapter 3). MASP formalizes the exploration problem in a

sequential decision-theoretic planning under uncertainty framework. It is unique in

unifying formulations of non-myopic exploration problems along the entire adaptivity

spectrum, thus allowing it to subsume various existing non-adaptive problem formu-

lations. Consequently, it allows the performance of induced exploration policies of

varying adaptivity to be theoretically analyzed and the performance advantage of a

more adaptive policy to be realized. Through MASP, it is demonstrated that a more

adaptive policy can exploit clustering phenomena in a hotspot field to produce lower ex-

pected map uncertainty. MASP measures the map uncertainty using the mean-squared

error criterion. Consequently, solving MASP involves planning observation paths that

produce the least expected posterior map error, and is therefore cost-minimizing. We

provide a reward-maximizing dual formulation of MASP that, when solved, achieves

the largest possible expected reduction in map error. We show that the exploration

objectives of these two problem formulations are equivalent.
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2. Formalization of iMASP (Chapter 4). The time complexity of solving MASP (approx-

imately) depends on the map resolution due to its measure of map uncertainty using

the mean-squared error criterion, which limits its practical use in large-scale, high-

resolution exploration and mapping. This computational difficulty is alleviated through

iMASP, which measures map uncertainty based on the entropy criterion instead. Un-

like MASP, reformulating the cost-minimizing iMASP as a reward-maximizing problem

causes its time complexity of being solved approximately to be independent of the map

resolution and less sensitive to larger robot team size as demonstrated both analytically

(Section 5.5.2) and empirically (Chapter 6). Furthermore, this reward-maximizing dual

transforms the widely-used non-adaptive maximum entropy sampling problem into a

novel adaptive variant, thus improving the performance of the induced exploration

policy.

3. Exploration strategies for learning hotspot field maps (Chapters 3 and 4). The reward-

maximizing MASP and iMASP allow observation selection properties of the induced

exploration policies to be realized for sampling GP and `GP. For example, we can show

that existing exploration strategies utilizing GP may not reconstruct the hotspot field

well with the selected observations because they are non-adaptive and perform only

wide-area coverage (Sections 3.5.1 and 4.3.1, and Chapter 6). By modeling with `GP,

the induced exploration policies can learn a high-quality hotspot field map because they

are adaptive and perform both wide-area coverage and hotspot sampling (Sections 3.5.2

and 4.3.2, and Chapter 6).

4. Approximately optimal exploration strategies with performance guarantees (Chapter 5).

We exploit the problem structure for sampling `GP to derive approximately optimal

exploration policies in a computationally tractable manner. To handle continuous

states, the convexity of reward-maximizing MASP and iMASP allows discrete-state

monotone-bounding approximations to be developed. Consequently, we can provide
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theoretical guarantees on the performance of the approximately optimal vs. the op-

timal adaptive policies, and establish theoretical bounds quantifying the performance

advantage of optimal adaptive over non-adaptive policies. We then propose anytime

algorithms based on approximate MASP and iMASP to alleviate the computational

difficulty that arises from their non-Markovian structure.

5. Quantifying “hotspotness” (Chapter 7). We propose a “hotspotness” measure, which is

defined in terms of the spatial correlation properties of the hotspot field. We discuss

how the “hotspotness” index can be related to the intensity, size, and diffuseness of

the hotspots in the field.

6. Effects of spatial correlation on performance advantage of adaptivity (Chapter 8). We

investigate how the spatial correlation properties of the hotspot field affect the perfor-

mance advantage of adaptive exploration, and obtain the following three results: (a) for

white-noise process fields or constant fields, multi-stage adaptive MASP and iMASP

provide no performance advantage under the mean-squared error and entropy criteria,

respectively; (b) the 2-stage adaptive iMASP yields no performance advantage if and

only if the field is constant or a white-noise process; (c) the performance advantage

of the 2-stage adaptive iMASP improves with decreasing noise-to-signal variance ratio

and peaks at some intermediate length-scale.

7. Exploiting small spatial correlation with fast Markov-based exploration strategies (Chap-

ter 9). We develop computationally efficient exploration strategies for sampling the GP

by assuming the Markov property in iMASP planning. The resulting path planning

problem can be cast as a DMDP. In terms of time complexity, it scales better than

the non-Markovian greedy algorithm with increasing number of planning stages. We

provide a theoretical guarantee on the performance of the DMDP-based policy for the

single-robot case, which improves with decreasing spatial correlation. To generalize the
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performance guarantee to the multi-robot case, we have to factor the entropy-based

stagewise reward. In terms of time complexity, the DMDP+FR-based algorithm scales

better than the DMDP-based one with increasing number of robots.
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Chapter 2

Related Work on Exploration Strategies

Our proposed exploration strategies (Low et al., 2008, 2009) are the first in the class of model-

based strategies to perform both wide-area coverage and hotspot sampling, and cover the

entire adaptivity spectrum. In contrast, all other model-based strategies are non-adaptive

and achieve only wide-area coverage (Table 2.1). Our strategies can also plan non-myopic

multi-robot paths, which are more desirable than greedy or single-robot paths. These char-

acteristics distinguish our approach from the existing robot exploration strategies and are

discussed in greater detail with the related work below.

2.1 Wide-area coverage vs. feature sampling

In contrast to random exploration of the environmental field (McCartney and Sun, 2000),

directed exploration selects robot paths to observe regions of high uncertainty. One such

class of strategies emphasizes wide-area coverage (Alvarez et al., 2007; Leonard et al., 2007;

Meliou et al., 2007; Popa et al., 2006; Popa and Lewis, 2008; Singh et al., 2007; Zhang and

Sukhatme, 2007), which considers sparsely sampled (i.e., largely unexplored) areas to be of

high uncertainty. On the other hand, directed exploration strategies (Batalin et al., 2004;

Low et al., 2007; Rahimi et al., 2004; Singh et al., 2006) that focus on feature sampling

17
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Table 2.1: Qualitative comparison of directed exploration strategies (WC: Wide-area Coverage,
FS: Feature Sampling, DB: Design-Based, MB: Model-Based, SA: Strictly Adaptive, PA: Partially
Adaptive, NA: Non-Adaptive, GR: Greedy, NM: Non-Myopic, NO: Non-Optimized, SR: Single-
Robot, MR: Multi-Robot).
hhhhhhhhhhhhhhhhhhExploration Strategy

Characteristic
WC FS DB MB SA PA NA GR NM NO SR MR

(Low et al., 2007) × × × × ×
(Singh et al., 2006) × × × × ×
(Batalin et al., 2004; Rahimi et al., 2004) × × × × ×
(Leonard et al., 2007) × × × × ×
(Meliou et al., 2007) × × × × ×
(Popa et al., 2006; Popa and Lewis, 2008) × × × × ×
(Singh et al., 2007) × × × × ×
(Alvarez et al., 2007) × × × × ×
(Zhang and Sukhatme, 2007) × × × × ×
MASP (Low et al., 2008) × × × × × × × ×
iMASP (Low et al., 2009) × × × × × × × ×

(e.g., hotspots) expect areas of high uncertainty to contain highly-varying measurements.

As a result, they tend to produce clustered observations, while the former strategies tend

to spread the observations evenly across the environmental field. In contrast, we propose

a formal, principled approach that can tackle both tasks simultaneously (i.e., by directing

exploration towards sparsely sampled areas and hotspots).

2.2 Design-based vs. model-based strategies

In design-based strategies (Batalin et al., 2004; Low et al., 2007; McCartney and Sun, 2000;

Rahimi et al., 2004; Singh et al., 2006), the selection of sampling locations for exploration

is constrained by the sampling design, which is not devised to consider resource costs. As a

result, the locations have to be chosen by the strategy first before minimizing the resource

costs to sample them. This entails “sunk” costs in motion; the exploration paths have to

traverse terrain that does not require sampling to reach the selected locations. Furthermore,

some of these strategies (Batalin et al., 2004; Rahimi et al., 2004; Singh et al., 2006) require

multiple “passes” through the region of interest such that new locations are adaptively
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selected and sampled in each pass. Note that the cost efficiency of these strategies improves

when the cost of sampling/sensing each selected location significantly outweighs the cost of

moving to this location (e.g., mineral prospecting task of Low et al. (2007)). Modifying the

strategy to involve resource costs may invalidate the estimators associated with the strategy.

For example, in simple random sampling, if the selection of sampling locations is subject to

costs, the associated sample mean estimator becomes biased.

We instead use model-based strategies (Alvarez et al., 2007; Leonard et al., 2007; Me-

liou et al., 2007; Popa et al., 2006; Popa and Lewis, 2008; Singh et al., 2007; Zhang and

Sukhatme, 2007), which assume a certain model for the environmental field and select obser-

vations to reduce its uncertainty. Resource cost minimization or constraints may be applied

to the selection process and the resulting exploration strategy is optimal subject to these

constraints. In contrast to the strategies in (Leonard et al., 2007; Popa et al., 2006; Popa and

Lewis, 2008) that use a parametric model, our approach utilizes a non-parametric model,

which does not require any assumptions on the distribution underlying the observed sam-

pling data. In particular, we model the environmental field as a stochastic spatial process

(i.e., Gaussian process (Alvarez et al., 2007; Meliou et al., 2007; Singh et al., 2007) and

log-Gaussian process), which contrasts with the use of local models (e.g., locally weighted

linear regression) to estimate the field in (Zhang and Sukhatme, 2007).

2.3 Adaptive vs. non-adaptive sampling strategies

Adaptive sampling refers to sampling strategies (Batalin et al., 2004; Low et al., 2007; Rahimi

et al., 2004; Singh et al., 2006) in which the sequential policy for selecting new locations to be

included in the robot paths depends on the past observations taken during exploration. On

the other hand, non-adaptive sampling strategies (Alvarez et al., 2007; Leonard et al., 2007;

McCartney and Sun, 2000; Meliou et al., 2007; Popa et al., 2006; Popa and Lewis, 2008; Singh
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et al., 2007; Zhang and Sukhatme, 2007) have no such dependence and can therefore select

the robot paths prior to exploration. When the environmental field is smoothly varying, non-

adaptive sampling strategies are known to perform well (Singh et al., 2006). However, if the

environment contains hotspots, adaptive sampling can exploit the clustering phenomena to

map the environmental field with lower uncertainty than non-adaptive sampling. In contrast

to the abovementioned schemes, the adaptivity of our proposed strategies can be varied; a

more adaptive strategy decreases expected map uncertainty of the environmental field.

2.4 Greedy vs. non-myopic path planning strategies

In contrast to greedy strategies (Meliou et al., 2007; Popa et al., 2006; Popa and Lewis,

2008; Singh et al., 2007), our strategies generate non-myopic observation paths (Alvarez

et al., 2007; Zhang and Sukhatme, 2007). Existing myopic/greedy strategies for reducing

map uncertainty pose the following problem for the exploration task: to minimize the map

uncertainty, a greedy strategy only considers the next immediate observation(s) to make

and ignores future/subsequent observation selections. Greedy observation paths can thus

be obtained by executing this strategy repeatedly. But, the choice of the next immediate

observation(s) may influence how much the map uncertainty can be reduced by future obser-

vation selections, which a greedy strategy fails to take into account. This is especially true

for robot path planning because the previously selected observations in the paths constrain

the possible choices of subsequent observations. As a result, greedy observation paths may

incur higher map uncertainty than optimal non-myopic paths.

In general, non-myopic paths approximate the optimal trajectories better, but incur

higher computational cost. To reduce computational expense, the non-myopic strategy of Al-

varez et al. (2007) utilizes a heuristic search technique to derive approximately optimal paths

without guarantees on the path quality. The non-myopic strategy of Zhang and Sukhatme
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(2007) assumes that the uncertainty reduction from observing a new location is independent

of other observations in the robot path. As a result, the uncertainty reduction due to an ob-

servation path is just the sum of uncertainty reductions from observing individual locations

in the path and can be computed using breadth-first search. This assumption is violated by

the presence of spatially correlated measurements in an environmental field, which severely

limits its real-world use.

The design-based strategies (Batalin et al., 2004; Low et al., 2007; McCartney and Sun,

2000; Rahimi et al., 2004; Singh et al., 2006) are not devised to generate paths that directly

minimize the map uncertainty. Hence, they cannot be considered greedy or non-myopic.

This is also the case for the strategy of Leonard et al. (2007), which simplifies the path

planning problem by restricting the robot observation paths to ellipses and optimizing with

respect to the elliptical path parameters.

2.5 Single- vs. multi-robot strategies

A team of robots can potentially complete the task faster than a single robot. It is also

more robust to failures by providing redundancy, and can reduce the hardware, energy,

and payload requirements of each robot. But its performance may be adversely affected by

physical interference between robots.

In contrast to single-robot exploration strategies (Batalin et al., 2004; Meliou et al., 2007;

Popa et al., 2006; Popa and Lewis, 2008; Rahimi et al., 2004; Zhang and Sukhatme, 2007), our

strategies have to coordinate the exploration of multiple robots like those in (Alvarez et al.,

2007; Leonard et al., 2007; Low et al., 2007; McCartney and Sun, 2000; Singh et al., 2006,

2007). Using multiple robots, our proposed exploration strategies can potentially achieve

lower map uncertainty than a single robot that expends the same amount of resources.
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Chapter 3

Multi-Robot Adaptive Sampling Problem

(MASP)

The main contribution of this chapter is to formalize the exploration problem in a sequential

decision-theoretic planning under uncertainty framework called MASP. This unique formal-

ization has a general form that unifies formulations of exploration problems with varying

adaptivity. As a result, this unifying framework covers the entire adaptivity spectrum, thus

subsuming various existing non-adaptive problem formulations.

We begin by formalizing the exploration problems at the two extremes of the spectrum

with details of how they are to be constructed (Section 3.2). Exploration problems residing

within the spectrum can be formalized in a similar manner. Readers who wish to skip the

construction process can refer directly to the end of Sections 3.2.3 and 3.2.4 for the resulting

problem formulations.

This unifying MASP framework is useful in allowing the performance of induced ex-

ploration policies of varying adaptivity to be theoretically analyzed and the performance

advantage of a more adaptive policy to be realized (Section 3.3).

In the MASP framework, the map uncertainty is measured using the mean-squared er-

ror criterion (Section 3.2.1). Consequently, solving MASP involves planning observation

23
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paths that produce the least expected posterior map error/uncertainty; the original MASP

is therefore a cost-minimizing problem. We then provide a reward-maximizing dual for-

mulation of MASP that, when solved, achieves the largest possible expected reduction in

map error/uncertainty (Section 3.4). We show that the exploration objectives of these two

problem formulations are equivalent.

The reward-maximizing MASP allows observation selection properties of the induced

exploration policy to be realized for sampling the Gaussian and log-Gaussian processes (Sec-

tion 3.5), namely, adaptivity, hotspot sampling, and wide-area coverage. We show that

existing GP-based exploration strategies may not explore and map the hotspot field well

because they are non-adaptive and do not exploit clustering phenomena (Section 3.5.1). On

the other hand, the `GP-based exploration policy can learn a high-quality hotspot field map

because it is adaptive and exploits clustering phenomena (Section 3.5.2).

3.1 Terminology and Notation

Let X be the domain of the hotspot field corresponding to a finite, discretized set of grid

cell locations (e.g., cell centers). An observation taken (e.g., by a single robot) at stage i

comprises a pair of location xi ∈ X and its corresponding measurement zxi . More generally,

k observations taken (e.g., by k robots or 1 robot taking k observations) at stage i can be

represented by a pair of vectors xi of k locations and zxi of the corresponding measurements.

Definition 3.1.1 (Posterior Data). The posterior data di at stage i > 0 comprises

• the prior data d0 = 〈x0, zx0〉 available at stage 0, and

• a complete history of observations x1, zx1 , . . . ,xi, zxi induced by k observations per

stage over stages 1 to i.
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Location # 1 2 3 4 5 6 7 8 9 10

strictly adaptive
k = 1

10 stages
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

decreasing

adaptivity

k = 2

5 stages
x1 x2 x3 x4 x5

k = 5

2 stages
x1 x2

non-adaptive
k = 10

1 stage
x1

Figure 3.1: Illustration of strictly adaptive (k = 1), partially adaptive (k = 2, k = 5), and
non-adaptive (k = 10) exploration strategies: the number of new locations n to be explored is
10. Each box denotes a stage consisting of the k locations aligned above it. For example, the
strictly adaptive strategy spans 10 stages and selects 1 new location per stage. On the other
hand, the non-adaptive strategy selects all 10 new locations in a single stage. Please refer to
Definition 3.1.2 for a formal characterization of adaptive and non-adaptive exploration strategies.

Let x0:i and zx0:i
denote vectors comprising the location and measurement components of

the posterior data di (i.e., concatenations of x0,x1, . . . ,xi and zx0 , zx1 , . . . , zxi), respectively.

More generally, let xu:v and zxu:v denote, respectively, vectors concatenating xu, . . . ,xv and

zxu , . . . , zxv obtained from stages u to v where 0 ≤ u ≤ v. Let Zxi , Zxi , Zx0:i
, and Zxu:v

be the random measurements corresponding to the respective realizations zxi , zxi , zx0:i
, and

zxu:v .

To be more precise in our definition of adaptivity, we provide a characterization of adap-

tive and non-adaptive exploration strategies:

Definition 3.1.2 (Characterizing Adaptivity). Suppose that the prior data d0 are

available and n new locations are to be explored. Then, an exploration strategy is (see, for

example, Fig. 3.1)
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• adaptive if its policy to select each vector xi+1 of k new locations depends on the

previously sampled data di for stage i = 0, . . . , n/k − 1. This strategy thus selects k

observations per stage over n/k stages. When k = 1, the strategy is strictly adaptive

(Low et al., 2008). Increasing k makes the strategy partially adaptive (Batalin et al.,

2004; Low et al., 2007; Rahimi et al., 2004; Singh et al., 2006). When k = n, the

strategy becomes non-adaptive as defined next;

• non-adaptive (Alvarez et al., 2007; Leonard et al., 2007; Meliou et al., 2007; Popa

et al., 2004; Popa and Lewis, 2008; Singh et al., 2007; Zhang and Sukhatme, 2007) if

its policy to select each new location xi+1 for i = 0, . . . , n − 1 is independent of the

measurements zx1 , . . . , zxn . As a result, all n new locations x1, . . . , xn can be selected

prior to exploration. That is, this strategy selects all n observations in a single stage.

3.2 Problem Formulations

3.2.1 Objective function

From Section 1.2, the exploration objective is to plan observation paths that minimize the

uncertainty of mapping the hotspot field. To achieve this, we use the mean-squared error

criterion as a measure of the map uncertainty. Supposing the posterior data dn are available,

a predictor Ẑx(dn) of the measurement zx at the unobserved location x incurs the mean-

squared error loss of

E{[Zx − Ẑx(dn)]2 | dn} . (3.1)
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Then, the posterior map error of domain X with predictor Ẑx(dn) can be represented by the

sum of mean-squared errors over all locations in X , that is,

∑
x∈X

E{[Zx − Ẑx(dn)]2 | dn} . (3.2)

Using the best unbiased predictor

Ẑx(dn)
4
= E[Zx | dn]

(i.e., the posterior mean achieves the lowest mean-squared error among all unbiased pre-

dictors), the mean-squared error (3.1) at each location x can be reduced to the posterior

variance

σ2
Zx|dn

4
= var[Zx | dn] .

As a result, the posterior map error (3.2) can be reduced to

∑
x∈X

σ2
Zx|dn , (3.3)

which will be used as the minimizing criterion in the MASP formulation below.

3.2.2 Value function

If only the prior data d0 are available, an exploration strategy has to produce a policy for

selecting observation paths that minimize the expected posterior map error instead. This

policy is therefore responsible for directing a robot team to collect the optimal observations

x1, zx1 , . . . ,xn, zxn during exploration to form the posterior data dn. Given the prior data

d0, the value under an exploration policy π is defined to be the expected posterior map error
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(i.e., expectation of (3.3)) when starting in d0 and following π thereafter:

V π
0 (d0)

4
= E

{∑
x∈X

σ2
Zx|dn | d0, π

}
=

∫
f(zx1:n | d0, π)

∑
x∈X

σ2
Zx|dn dzx1:n

(3.4)

where f denotes a probability density function.

In the next two subsections, we will describe how the adaptive and non-adaptive explo-

ration policies can be derived to minimize the expected posterior map error (3.4).

3.2.3 Adaptive exploration

The adaptive exploration policy π for directing a team of k robots is structured to collect

k observations per stage over a finite planning horizon of n stages. This implies each robot

observes one location per stage and is therefore constrained to explore at most n new locations

over the n-stage horizon. Formally, π
4
= 〈π0(d0), . . . , πn−1(dn−1)〉 where πi(di) maps the data

state di to a vector of robot actions ai ∈ A(xi) at stage i = 0, . . . , n− 1, that is,

πi : di → ai ,

and A(xi) is the action space of the robots (i.e., a finite set of joint actions) given their

current locations xi. We assume that the transition function τ(xi, ai) maps the current robot

locations xi and actions ai at stage i to the next locations xi+1 at stage i+1 deterministically,

that is,

τ : xi × ai → xi+1 .

By putting the two functions πi and τ together, the assignment xi+1 ← τ(xi, πi(di)) can

be obtained. We can observe from this assignment that the sequential selection of k new
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locations xi+1 to be included in the observation paths depends only on the previously sampled

data di along the paths for stage i = 0, . . . , n− 1. Hence, by Definition 3.1.2, the policy π is

adaptive.

When the adaptive policy π is plugged into the value function of (3.4), the following

n-stage recursive formulation results:

V π
i (di) =

∫
f(zxi+1

| di, πi) V π
i+1(di+1) dzxi+1

=

∫
f(zτ(xi,πi(di)) | di) V π

i+1(di+1) dzτ(xi,πi(di))

V π
n (dn) =

∑
x∈X

σ2
Zx|dn

(3.5)

for stage i = 0, . . . , n − 1. The first and second equalities follow from f(zx1:n | d0, π
1) =

Πn−1
i=0 f(zxi+1

| di, π1
i ) and xi+1 ← τ(xi, π

1
i (di)), respectively.

Finally, solving the adaptive exploration problem MASP(1) involves choosing the adap-

tive policy π to minimize V π
0 (d0) (3.5), which we call the optimal adaptive policy denoted by

π1. That is, π1 is induced by the optimal value function

V π1

0 (d0) = min
π
V π

0 (d0) . (3.6)

By plugging π1 into the value functions of (3.5), this optimal value function (3.6) evolves

into the following n-stage dynamic programming equations:

V π1

i (di) = min
ai∈A(xi)

∫
f(zτ(xi,ai) | di) V π1

i+1(di+1) dzτ(xi,ai)

V π1

n (dn) =
∑
x∈X

σ2
Zx|dn

(3.7)

for stage i = 0, . . . , n− 1. The optimal adaptive policy π1 = 〈π1
0(d0), . . . , π

1
n−1(dn−1)〉, which
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is induced by solving MASP(1), can therefore be determined in a stagewise manner by

π1
i (di) = arg min

ai∈A(xi)

∫
f(zτ(xi,ai) | di) V π1

i+1(di+1) dzτ(xi,ai) . (3.8)

From (3.8), the optimal action π1
0(d0) at stage 0 can be determined prior to exploration since

the prior data d0 are available. However, each action rule π1
i (di) at stage i = 1, . . . , n− 1 de-

fines the optimal action to take in response to the data di, part of which (i.e., x1, zx1 , . . . ,xi, zxi)

will only be observed during exploration.

3.2.4 Non-adaptive exploration

The non-adaptive exploration policy π is structured to collect, in a single stage, n obser-

vations per robot with a team of k robots. This means each robot is also constrained to

explore at most n new locations, but all of them have to do this within a single stage. For-

mally, π
4
= π0(d0) where, at stage 0, π0(d0) maps the data state d0 to a vector a0:n−1 of

action components concatenating a sequence of robot actions a0, . . . , an−1 (ai ∈ A(xi) for

i = 0, . . . , n− 1), that is,

π0 : d0 → a0:n−1 .

By putting the two functions π0 and τ together, the assignment x1:n ← τ(x0:n−1, π0(d0))

can be obtained. We can observe from this assignment that the selection of k×n new locations

x1, . . . ,xn to form the observation paths are independent of the measurements zx1 , . . . , zxn

obtained along the paths during the exploration phase. Hence, by Definition 3.1.2, the policy

π is non-adaptive and all new locations can be selected in a single stage prior to exploration.

When the non-adaptive policy π is plugged into the value function of (3.4), the following



3.2. Problem Formulations 31

single-staged formulation results:

V π
0 (d0) =

∫
f(zx1:n | d0, π0) V

π
1 (dn) dzx1:n

=

∫
f(zτ(x0:n−1,π0(d0)) | d0) V

π
1 (dn) dzτ(x0:n−1,π0(d0))

V π
1 (dn) =

∑
x∈X

σ2
Zx|dn .

(3.9)

The second equality follows from the assignment x1:n ← τ(x0:n−1, π0(d0)).

Finally, solving the non-adaptive exploration problem MASP(n) involves choosing the

non-adaptive policy π to minimize V π
0 (d0) (3.9), which we call the optimal non-adaptive

policy denoted by πn. That is, πn is induced by the optimal value function

V πn

0 (d0) = min
π
V π

0 (d0) . (3.10)

By plugging πn into the value functions of (3.9), this optimal value function (3.10) evolves

into the following single-staged dynamic programming equation:

V πn

0 (d0) = min
a0:n−1

∫
f(zτ(x0:n−1,a0:n−1) | d0) V

πn

1 (dn) dzτ(x0:n−1,a0:n−1)

V πn

1 (dn) =
∑
x∈X

σ2
Zx|dn .

(3.11)

The optimal non-adaptive policy πn = πn0 (d0), which is induced by solving MASP(n), can

therefore be determined in a single stage:

πn0 (d0) = arg min
a0:n−1

∫
f(zτ(x0:n−1,a0:n−1) | d0) V

πn

1 (dn) dzτ(x0:n−1,a0:n−1) . (3.12)
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3.3 Performance Advantage of Adaptive Exploration

In Section 3.2, we have introduced two exploration strategies for minimizing the expected

posterior map error: (i) the induced optimal adaptive policy π1 from solving MASP(1) selects

the new observations sequentially over n stages, and (ii) the induced optimal non-adaptive

policy πn from solving MASP(n) selects all new observations in a single stage. This section

addresses the issue of whether the adaptive strategy performs better than the non-adaptive

one.

More specifically, does the optimal adaptive policy π1 provide a lower expected posterior

map error than the optimal non-adaptive policy πn? To know this, we can compare the

induced optimal values from solving MASP(1) and MASP(n) (i.e., respectively, V π1

0 (d0)

(3.7) and V πn

0 (d0) (3.11)), which reflect the expected posterior map error achieved by their

corresponding optimal policies π1 and πn. It is shown in Appendix A.1 that

V π1

0 (d0) ≤ V πn

0 (d0) . (3.13)

This implies the optimal adaptive policy π1 performs better than or at least as well as the

optimal non-adaptive policy πn in terms of the achieved expected posterior map error.

In addition, it is not computationally more expensive to solve for the optimal adaptive

policy π1 than the optimal non-adaptive policy πn. To see this, we have to compare the

amount of computation needed to solve the dynamic programming equations of MASP(1)

(3.7) and MASP(n) (3.11). This can be done by keeping track of how frequently the posterior

map error (i.e.,
∑

x∈X σ
2
Zx|dn) in V π1

n (dn) (3.7) and V πn

1 (dn) (3.11) is evaluated. This frequency

can be determined by the enumerations of different posterior data dn, which is caused, at

each stage, by

• the space of different possible actions under the minimum: if we let A = A(x0) =

. . . = A(xn−1), the action space under the minimum is |A| and |A|n for MASP(1) and
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MASP(n), respectively;

• the space of different possible measurements under the integration: the integration

for MASP(1) and MASP(n) is subject to a k- and kn-dimensional probability density

function, respectively. If the integration cannot be evaluated in closed form, it has to

be approximated using a numerical technique such as Monte-Carlo sampling. Suppose

that we draw ν samples for the Monte-Carlo integration of MASP(1). Since the in-

tegration of MASP(n) has a probability density function of higher dimensionality, a

larger number of samples (in particular, νn samples) has to be drawn for the numerical

approximation to be effective (Press et al., 2002).

Since MASP(1) spans n stages, it produces |A|×ν× . . .×|A|×ν = (|A|ν)n enumerations of

different posterior data dn. Although MASP(n) only involves a single stage, it also produces

|A|nνn enumerations of different posterior data. Hence, no computational advantage is

gained by using the optimal non-adaptive policy πn.

Equation 3.13 establishes the performance advantage of the optimal adaptive policy π1

over the optimal non-adaptive policy πn. This result can be generalized to cover the entire

adaptivity spectrum. But first, a suitable adaptivity index has to be identified in order

to specify exploration problems of varying adaptivity. We will use the length of action

sequence per stage (i.e., under the minimum), denoted by λ, as the adaptivity index. For

example, the action sequences of MASP(1) and MASP(n) per stage are of length 1 and n,

respectively. Hence, a shorter action sequence per stage (i.e., smaller λ) produces a more

adaptive exploration problem MASP(λ). As a result, we can form exploration problems of

different adaptivity (i.e., MASP(1), . . ., MASP(n)) by varying λ from 1 to n.

The generalized result (Theorem 3.3.1) indicates that in terms of the achieved expected

posterior map error V πλ

0 (d0), the performance of the induced optimal policy πλ from solving

MASP(λ) improves monotonically with higher adaptivity (i.e., decreasing λ):
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Theorem 3.3.1. Suppose 1 ≤ λ1 < λ2 ≤ n and n is divisible by λ1, λ2. Then, V πλ1

0 (d0) ≤

V πλ2

0 (d0).

The proof of the above result is in Appendix A.1. It can be observed from the proof

that, for this result to hold, it does not rely on the choice of the optimizing criterion. Hence,

Theorem 3.3.1 will still be valid when we switch to the entropy criterion in Chapter 4.

3.4 Dual Formulations

In this section, we reformulate the cost-minimizing MASP(λ) as a reward-maximizing prob-

lem that lends itself to a different interpretation as described below. More importantly,

the reward-maximizing problem formulation can be subject to convex analysis, which allows

monotone-bounding approximations to be developed (Section 5.3).

The reward-maximizing MASP(1) comprises the following n-stage dynamic programming

equations:

Uπ1

i (di) = max
ai∈A(xi)

Rπ1

(τ(xi, ai), di) +

∫
f(zτ(xi,ai) | di) Uπ1

i+1(di+1) dzτ(xi,ai)

Uπ1

t (dt) = max
at∈A(xt)

Rπ1

(τ(xt, at), dt)
(3.14)

for stage i = 0, . . . , t−1 where t = n−1, and the reward functions Rπ1
(xi+1, di) for i = 0, . . . , t

are defined as follows:

Rπ1
(xi+1, di)

4
=

∑
x∈X

σ2
Zx|di −

∫
f(zxi+1

| di) σ2
Zx|di+1

dzxi+1

=
∑
x∈X

σ2
Zx|di − E[σ2

Zx|di+1
| di]

=
∑
x∈X

var[µZx|di+1
| di]

(3.15)
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with µZx|di+1

4
= E[Zx | di+1]. The last equality follows from the well-known variance de-

composition formula. If we consider the expression under the second equality, the stagewise

reward reflects the expected map error reduction by selecting the k new locations xi+1 to be

included in the observation paths. Therefore, by maximizing the sum of expected rewards

in (3.14) over the n-stage horizon, the reward-maximizing MASP(1) maximizes the total

expected map error reduction with the selected observation paths.

This reformulation procedure is not limited to MASP(1), but can also be applied to

MASP(λ) for 1 ≤ λ ≤ n, resulting in a similar interpretation to the above. For example, the

reward-maximizing MASP(n) resolves to the following single-staged equation:

Uπn

0 (d0) = max
a0:n−1

Rπn(τ(x0:n−1, a0:n−1), d0) (3.16)

where

Rπn(x1:n, d0)
4
=

∑
x∈X

σ2
Zx|d0 −

∫
f(zx1:n | d0) σ

2
Zx|dn dzx1:n

=
∑
x∈X

σ2
Zx|d0 − E[σ2

Zx|dn | d0] .

From (3.16), the reward-maximizing MASP(n) selects k × n new locations x1, . . . ,xn with

maximum expected map error reduction to form the observation paths.

The equivalence result below (Theorem 3.4.1) relates the cost-minimizing (3.7) and

reward-maximizing (3.14) MASP(1) problem formulations in the adaptive exploration set-

ting:

Theorem 3.4.1. The optimal value functions of the cost-minimizing (3.7) and reward-

maximizing (3.14) MASP(1)’s are related by

V π1

i (di) =
∑
x∈X

σ2
Zx|di − U

π1

i (di) (3.17)
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for stage i = 0, . . . , n− 1 and their respective optimal adaptive policies coincide.

The proof of the above result is in Appendix A.2. In particular, when i = 0, Theorem 3.4.1

(3.17) reveals that the original exploration objective of minimizing the expected posterior

map error (i.e., V π1

0 (d0) (3.7)) is equivalent to that of applying the largest possible expected

map error reduction (i.e., Uπ1

0 (d0) (3.14)) to the prior map error (i.e.,
∑

x∈X σ
2
Zx|d0).

Theorem 3.4.1 can be generalized to cater to MASP(λ) for 1 ≤ λ ≤ n with a similar

interpretation to the above. For example, the following equivalence result relates the cost-

minimizing (3.11) and reward-maximizing (3.16) MASP(n) problem formulations in the non-

adaptive exploration setting:

V πn

0 (d0) =
∑
x∈X

σ2
Zx|d0 − U

πn

0 (d0) . (3.18)

The performance advantage of adaptive exploration can also be realized using the in-

duced optimal values from solving the reward-maximizing MASP(λ)’s. For example, if the

performance advantage of the optimal adaptive policy π1 over the non-adaptive one πn is

quantified by the difference of their corresponding optimal values, this difference is the same

for either the original or dual formulation as derived from (3.17) and (3.18):

V πn

0 (d0)− V π1

0 (d0) = Uπ1

0 (d0)− Uπn

0 (d0) .

Consequently, the previously established result V π1

0 (d0) ≤ V πn

0 (d0) (3.13) implies

Uπ1

0 (d0) ≥ Uπn

0 (d0) .

This means the optimal adaptive policy π1 achieves greater or, if not, at least equal expected

map error reduction as the optimal non-adaptive policy πn.
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In the next two sections, we will show how the reward-maximizing MASP(1) (3.14) can be

applied to sampling the Gaussian and log-Gaussian processes, both of which are commonly

used to map environmental fields.

3.5 Learning the Hotspot Field Map

Traditionally, a hotspot is defined as a location where its measurement exceeds a pre-defined

extreme. But, hotspot locations do not usually occur in isolation but in clusters. So, it is

useful to characterize hotspots with spatial correlation properties. Accordingly, we define a

hotspot field to vary as a realization of a spatial random field {Yx > 0}x∈X such that putting

together the observed measurements of the realization {yx}x∈X gives a positively skewed 1D

sample frequency distribution (e.g., Figs. 3.2a and 3.3a). In this section, we will highlight

the problem with modeling the hotspot field directly using the GP and explain how the `GP

remedies this. We will also show analytically that the MASP-based policy for sampling the

`GP is adaptive and exploits clustering phenomena but that for sampling the GP lacks these

properties.

3.5.1 Gaussian process (GP)

A widely-used random field to model environmental phenomena is the GP (Alvarez et al.,

2007; Meliou et al., 2007; Singh et al., 2007). The stationary assumption on the GP covari-

ance structure is very sensitive to strong positive skewness of hotspot field measurements

(e.g., Figs. 3.2a and 3.3a) and is easily violated by a few extreme ones (Webster and Oliver,

2007). In practice, this can cause reconstructed fields to display large hotspots centered

about a few extreme observations and prediction variances to be unrealistically small in

hotspots (Hohn, 1998), which are undesirable. So, if the GP is used to model a hotspot

field directly, it may not map well. To remedy this, a standard statistical practice is to take
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the log of the measurements (i.e., Zx = log Yx and zx = log yx). Then, zx denotes the log-

measurement at each location x ∈ X with the corresponding original measurement exp{zx}.

As shown in Fig. 3.2b, this removes a significant amount of skewness1 and extremity from

the plankton density field depicted in Fig. 1.1, resulting in an approximately symmetric

1D sample frequency distribution/histogram. As such, the GP will be used to model/map

the log-measurements of the hotspot field instead. Consequently, the mean-squared error

criterion (3.2) has to be optimized in the transformed log-scale.

We will apply MASP(1) to sampling the GP and determine if the induced exploration pol-

icy π1 exhibits adaptive, hotspot sampling, and wide-area coverage properties. Let {Zx}x∈X
denote a GP defined on the domain X , that is, the joint distribution over any finite subset of

{Zx}x∈X is Gaussian (Rasmussen and Williams, 2006). The GP can be completely specified

by its (prior) mean and covariance functions

µZx
4
= E[Zx] ,

σZxZu
4
= cov[Zx, Zu]

for x, u ∈ X . We adopt a commonly used assumption that the GP is second-order stationary

(Cressie, 1993; Rasmussen and Williams, 2006). That is, it has a constant mean and a

stationary covariance structure (i.e., σZxZu is a function of x − u for all x, u ∈ X ). If the

posterior data dn are available, the distribution of Zx remains a Gaussian with the posterior

1The skewness of the measurements can be determined using the measure m3/(m2
√
m2) (Webster and

Oliver, 2007) where mi
4
= |X |−1

∑
x∈X (yx − µ̄)i and µ̄

4
= |X |−1

∑
x∈X yx. Here, we use yx to denote the

measurement at location x. A symmetric distribution has a skewness of 0. Before taking log, the original
measurements of the plankton density field depicted in Fig. 1.1 show strong positive skewness of 1.447 as
illustrated in Fig. 3.2b. It is recommended in (Webster and Oliver, 2007) to apply the log to the measurements
when the skewness is greater than 1. After taking log, the skewness becomes −0.317, which shows a decrease
in the magnitude of skewness.
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mean and variance

µZx|dn
2 4= E[Zx | dn] = µZx + Σxx0:nΣ−1

x0:nx0:n

{
z>x0:n

− µZx0:n

}
(3.19)

σ2
Zx|dn

4
= var[Zx | dn] = σZxZx − Σxx0:nΣ−1

x0:nx0:n
Σx0:nx (3.20)

where µZx0:n
is a column vector with mean components µZv for every location v of x0:n,

Σxx0:n is a covariance vector with components σZxZv for every location v of x0:n, Σx0:nx is the

transpose of Σxx0:n , and Σx0:nx0:n is a covariance matrix with components σZvZw for every pair

of locations v, w of x0:n. If we want to predict the original measurement at an unobserved

location, say u, using the posterior data dn, it may seem appropriate to use the best unbiased

predictor, µZu|dn (3.19), of the log-measurement zu to compose the predictor exp{µZu|dn}3 for

predicting the original measurement. This predictor is, however, biased as it underestimates

the expected value of the original measurement. We will defer the description of an unbiased

predictor to the next subsection (specifically, equation (3.23)). An important property of

the Gaussian posterior variance σ2
Zx|dn (3.20) is its independence of zx1:n .

For sampling GP, the induced optimal adaptive policy π1 from solving MASP(1) can be

reduced to be non-adaptive. By Definition 3.1.2 of a non-adaptive policy, we have to show

that the selection of new sampling locations xi+1 is independent of zx1:n for i = 0, . . . , n −

1. Since the assignment xi+1 ← τ(xi, π
1
i (di)) (Section 3.2.3) reveals τ(xi, π

1
i (di)) can only

depend on zx1:n through π1
i (di), it suffices to show that π1

i (di) is independent of zx1:n for

i = 0, . . . , n− 1. This is a direct consequence of the following lemma:

Lemma 3.5.1. Rπ1
(xi+1, di) (3.15) is independent of zx1:n for i = 0, . . . , n− 1.

To establish the above result, note from (3.20) that the posterior variances σ2
Zx|di and

2Recall from Section 3.2.1 that µZx|dn
is the best unbiased predictor of zx.

3If no posterior data dn is available, the predictor exp{µZu|dn
} reduces to exp{µZu

}.
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Figure 3.2: 1D sample frequency distributions/histograms of the plankton density field (Fig. 1.1)
measurements (a) before taking log, and (b) after taking log.

σ2
Zx|di+1

in the reward function Rπ1
(xi+1, di) (3.15) are independent of zx1:n . The expectation

in the reward function can then be integrated out to give

Rπ1

(xi+1, di) =
∑
x∈X

σ2
Zx|di − σ

2
Zx|di+1

, (3.21)

which is independent of zx1:n . For an alternative proof, please refer to Appendix A.3.

The next theorem follows from Lemma 3.5.1 and (3.14):

Theorem 3.5.1. Uπ1

i (di) and π1
i (di) are independent of zx1:n for i = 0, . . . , n− 1.

Hence, the optimal policy π1 is non-adaptive. Furthermore, Theorem 3.5.1 allows the

expectation in the optimal value functions of MASP(1) (3.14) to be integrated out. As a

result, MASP(1) for sampling GP can be reduced to a single-staged (i.e., non-sequential)
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deterministic planning problem

Uπ1

0 (d0) =
n−1∑
i=0

max
ai

Rπ1

(τ(xi, ai), di)

=
n−1∑
i=0

max
ai

(∑
x∈X

σ2
Zx|di − σ

2
Zx|di+1

)
= max

a0,...,an−1

∑
x∈X

σ2
Zx|d0 − σ

2
Zx|dn

= max
a0:n−1

Rπn(τ(x0:n−1, a0:n−1), d0)

= Uπn

0 (d0) .

(3.22)

The last equality indicates that the induced optimal values from solving MASP(1) and

MASP(n) are equal. So, the optimal policy π1 does not offer any performance advantage

over πn.

For sampling GP, the induced optimal policy π1 from solving MASP(1) performs wide-

area coverage only. To see why, recall from (3.22) that the optimal policy π1 selects obser-

vation paths to maximize the map error reduction (i.e., sum of variance reductions over all

unobserved locations
∑

x∈X σ
2
Zx|d0−σ

2
Zx|dn). If we assume isotropic covariance structure (i.e.,

the covariance σZxZu decreases monotonically with ||x−u||) (Rasmussen and Williams, 2006),

the prior data d0 provide the least amount of information on unobserved locations that are

far away from the locations x0 observed a priori. As a result, the variances of the unobserved

locations in sparsely sampled regions remain largely unreduced by the prior data d0 collected

from the observed locations x0. Hence, by exploring the sparsely sampled areas, a large map

error reduction can be effected. Realize that the map error reduction does not account for

maximization of hotspot sampling. Using the observations selected from wide-area cover-

age, the field of original measurements may not be mapped well because the under-sampled

hotspots with extreme, highly-varying measurements can contribute considerably to the map

error in the original scale, as discussed below.
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3.5.2 Log-Gaussian process (`GP)

To map the original, rather than the log-, measurements directly, it is a conventional practice

in geostatistics to use the non-parametric probabilistic model called the log-Gaussian process

(`GP). Consequently, the mean-squared error criterion (3.2) is optimized in the original scale.

We will show that for sampling `GP, π1 is adaptive and performs both wide-area coverage

and hotspot sampling.

Let {Yx}x∈X denote a `GP defined on the domain X . That is, if we let Zx = log Yx, then

{Zx}x∈X is a GP (Section 3.5.1). So, the positive-valued yx = exp{zx} denotes the original

measurement at each location x. The `GP has the (prior) mean and covariance function

µYx
4
= E[Yx] = exp{µZx + σZxZx/2} ,

σYxYu
4
= cov[Yx, Yu] = µYxµYu(exp{σZxZu} − 1)

for x, u ∈ X .

A `GP can model a field with hotspots that exhibit much higher spatial variability than

the rest of the field: Figs. 3.3a and 3.3b illustrate and compare the realizations of the `GP

and the GP; the GP realization can be obtained by taking the log of the measurements in

the `GP realization4. As observed in Fig. 3.3, applying the log to the `GP realization has the

effect of not just dampening the extreme measurements, but also dampening the difference

between extreme measurements and amplifying the difference between small measurements,

thus removing the positive skew (compare the 1D sample frequency distributions/histograms

in Fig. 3.3). Compared to the GP realization, the `GP realization therefore exhibits higher

4To simulate a realization of the `GP, one has to (1) simulate a realization of the GP by drawing a random
sample from a multivariate normal distribution N (µ,Σ) where µ is a vector with mean components µZx

for
x ∈ X , and Σ is a covariance matrix with components σZxZu

for x, u ∈ X , and (2) apply the exponential
to the measurements in the GP realization. For example, the `GP realization in Fig. 3.3a is obtained by
(1) simulating a GP realization in Fig. 3.3b with X being a 9 × 9 grid of sampling units, µZx = 0, and
σZxZu

= exp{−||x − u||2/2(3)2} (i.e., squared exponential covariance function with a length-scale of 3) for
x, u ∈ X , and (2) applying the exponential to the measurements in the GP realization.
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Figure 3.3: Hotspot field simulation via the (a) `GP, and (b) GP with their respective 1D sample
frequency distributions/histograms.
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spatial variability within hotspots but lower spatial variability in the rest of the field. This

intuitively explains why wide-area coverage suffices for the GP but hotspot sampling is

further needed for the `GP.

From Section 3.5.1, we know that the distribution of Zx given the posterior data dn is

Gaussian. Since the transformation from zx0:n to yx0:n is invertible, the distribution of Yx

given the posterior data dn is log-Gaussian with the posterior mean and variance

µYx|dn
4
= E[Yx | dn] = E[exp{Zx} | dn] = exp{µZx|dn + σ2

Zx|dn/2} (3.23)

σ2
Yx|dn

4
= var[Yx | dn] = µ2

Yx|dn(exp{σ2
Zx|dn} − 1) (3.24)

where µZx|dn and σ2
Zx|dn are the Gaussian posterior mean (3.19) and variance (3.20) respec-

tively. Note that the log-Gaussian posterior mean µYx|dn (3.23) is the best unbiased predictor

for predicting the original measurement yx = exp{zx} at the unobserved location x5.

For sampling `GP, the induced optimal policy π1 from solving MASP(1) is adaptive. By

Definition 3.1.2 of an adaptive policy, we have to show that the selection of new sampling

locations xi+1 depends on the previously sampled data di for i = 0, . . . , n − 1. Again, it

suffices to show that π1
i (di) depends on di for i = 0, . . . , n− 1. This is a direct consequence

of the following lemma:

Lemma 3.5.2. Rπ1
(xi+1, di) (3.15) depends on di for i = 0, . . . , n− 1.

To obtain the above result, it is shown in Appendix A.4 that the reward function

5As mentioned in the previous subsection, exp{µZx|dn
} is a biased predictor of the original measurement

yx = exp{zx}. This can be observed from (3.23) that µYx|dn
≥ exp{µZx|dn

}.
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Rπ1
(xi+1, di) (3.15) can be reduced to

Rπ1
(xi+1, di)

4
=

∑
x∈X

σ2
Yx|di − E[σ2

Yx|di+1
| di]

=
∑
x∈X

µ2
Yx|di(exp{σ2

Zx|di − σ
2
Zx|di+1

} − 1) .
(3.25)

Since µYx|di depends on previously sampled data di by (3.19) and (3.23), the lemma follows.

The next theorem follows from Lemma 3.5.2 and (3.14):

Theorem 3.5.2. Uπ1

i (di) and π1
i (di) depend on di for i = 0, . . . , n− 1.

Hence, the optimal policy π1 is adaptive.

For sampling `GP, the induced optimal adaptive policy π1 from solving MASP(1) per-

forms both hotspot sampling and wide-area coverage. To see this, note from the above reward

function expression that the expected log-Gaussian variance reduction σ2
Yx|di−E[σ2

Yx|di+1
| di]

at each unobserved location x is controlled by two terms: (a) log-Gaussian posterior mean

µYx|di (3.23), and (b) Gaussian variance reduction σ2
Zx|di − σ

2
Zx|di+1

. A large reward can be

obtained by selecting new locations xi+1 that maximize the expected log-Gaussian variance

reduction at unobserved locations, in particular, those locations with (a) large log-Gaussian

posterior mean (i.e., high predicted original measurement), and (b) large Gaussian variance

reduction. The optimal adaptive policy π1 therefore directs exploration towards (a) hotspots

and (b) sparsely sampled areas (Section 3.5.1).
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Chapter 4

Information-Theoretic Multi-Robot Adaptive

Sampling Problem (iMASP)

The MASP is beset by a serious computational drawback due to its measure of map uncer-

tainty using the mean-squared error criterion. Consequently, the time complexity of solving

MASP (approximately) depends on the map resolution, which limits the practical use of

MASP-based approximation algorithms in large-scale, high-resolution exploration and map-

ping (Chapter 5).

The principal contribution of this chapter is to alleviate this computational difficulty

through an information-theoretic approach to MASP (iMASP) for efficient adaptive path

planning (Section 4.1), which measures map uncertainty based on the entropy criterion (Sec-

tion 4.1.1) instead. Unlike MASP, reformulating the cost-minimizing iMASP as a reward-

maximizing problem (Section 4.2) causes its time complexity of being solved approximately

to be independent of the map resolution and less sensitive to larger robot team size as demon-

strated both analytically and empirically. In Section 4.2, we also show the equivalence be-

tween the cost-minimizing and reward-maximizing iMASPs. Beyond its computational gain,

iMASP retains the beneficial properties of MASP.

Additional contributions stemming from this reward-maximizing formulation include:

47
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• transforming the commonly-used non-adaptive maximum entropy sampling problem

(Shewry and Wynn, 1987) into a novel adaptive variant, thus improving the perfor-

mance of the induced exploration policy (Section 4.2);

• given an assumed environment model (e.g., occupancy grid map), establishing sufficient

conditions that, when met, guarantee adaptivity provides no benefit (Section 4.3.1);

• showing analytically and empirically the superior performance of iMASP-based policies

for sampling the log-Gaussian process (`GP) to that of policies for the widely-used

Gaussian process (GP) (Guestrin et al., 2005; Shewry and Wynn, 1987; Singh et al.,

2007) in mapping the hotspot field (Section 4.3); and

• comparing qualitatively the observation selection properties (in particular, adaptivity,

hotspot sampling, and wide-area coverage) between iMASP- and MASP-based policies

for sampling the GP and `GP (Section 4.3).

4.1 Problem Formulations

4.1.1 Objective function

From Section 1.2, the exploration objective is to plan observation paths that minimize the

uncertainty of mapping the hotspot field. To achieve this, we use the entropy criterion as a

measure of the map uncertainty. Let x0:i denote the vector comprising locations of domain X

not observed in di, and zx0:i
be the vector comprising the corresponding measurements. Also,

let Zx0:i
be the random measurements corresponding to the realization zx0:i

. Supposing the

posterior data dn are available, the posterior map entropy of domain X can be represented

by the posterior joint entropy of the measurements Zx0:n at the unobserved locations x0:n:

H[Zx0:n | dn]
4
= −

∫
f(zx0:n | dn) log f(zx0:n | dn) dzx0:n . (4.1)
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4.1.2 Value function

If only the prior data d0 are available, an exploration strategy has to produce a policy for

selecting observation paths that minimize the expected posterior map entropy instead. This

policy must then collect the optimal observations x1, zx1 , . . . ,xn, zxn during exploration to

form the posterior data dn. The value under an exploration policy π is defined to be the

expected posterior map entropy (i.e., expectation of (4.1)) when starting in d0 and following

π thereafter:

V π
0 (d0)

4
= E{H[Zx0:n | dn] | d0, π}

=

∫
f(zx1:n | d0, π) H[Zx0:n | dn] dzx1:n .

(4.2)

The strategies of Guestrin et al. (2005) and Singh et al. (2007) have optimized a closely

related mutual information criterion that measures the expected entropy reduction of unob-

served locations x0:n by observing x1:n (i.e., H[Zx0:n|d0]−E{H[Zx0:n|dn]|d0}). This is deficient

for the exploration objective because mutual information may be maximized by a choice of

x1:n inducing a very large prior entropy H[Zx0:n|d0] but not necessarily the smallest expected

posterior map entropy E{H[Zx0:n|dn]|d0}.

In the next subsection, we will describe how the adaptive and non-adaptive exploration

policies can be derived to minimize the expected posterior map entropy (4.2).

4.1.3 Adaptive and non-adaptive exploration

The process of constructing the information-theoretic exploration problems is similar to that

of formulating the MASPs (Section 3.2). As shown below, the resulting cost-minimizing

adaptive iMASP(1) and non-adaptive iMASP(n) differ, respectively, from MASP(1) (3.7)

and MASP(n) (3.11) by only the entropy criterion. The cost-minimizing adaptive iMASP(1)
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comprises the following n-stage dynamic programming equations:

V π1

i (di) = min
ai∈A(xi)

∫
f(zτ(xi,ai) | di) V π1

i+1(di+1) dzτ(xi,ai)

V π1

n (dn) = H[Zx0:n | dn]

(4.3)

for stage i = 0, . . . , n− 1.

On the other hand, the cost-minimizing non-adaptive iMASP(n) evolves into the follow-

ing single-staged equation:

V πn

0 (d0) = min
a0:n−1

∫
f(zτ(x0:n−1,a0:n−1) | d0) V

πn

1 (dn) dzτ(x0:n−1,a0:n−1)

V πn

1 (dn) = H[Zx0:n | dn] .
(4.4)

The optimal adaptive and non-adaptive policies are also similar to that of MASP(1) (3.8)

and MASP(n) (3.12), respectively.

4.2 Dual Formulations

In this section, we transform the cost-minimizing iMASP(1) (4.3) and iMASP(n) (4.4) into

reward-maximizing problems and show their equivalence. As we shall see below, though

the reward-maximizing iMASP(1) and iMASP(n) differ, respectively, from MASP(1) (3.14)

and MASP(n) (3.16) by only the entropy-based reward functions, the reward-maximizing

iMASPs become significantly different from the MASPs in terms of interpretation and com-

putational complexity.

The reward-maximizing iMASP(n) turns out to be the well-known maximum entropy

sampling (MES) problem (Shewry and Wynn, 1987):

Uπn

0 (d0) = max
a0:n−1

Rπn(τ(x0:n−1, a0:n−1), d0) (4.5)
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where

Rπn(x1:n, d0)
4
= H[Zx1:n | d0] ,

which is a single-staged problem of selecting k × n new locations x1, . . . ,xn with maximum

entropy to form the observation paths. This dual ensues from the equivalence result

V πn

0 (d0) = H[Zx0 | d0]− Uπn

0 (d0)

relating cost-minimizing and reward-maximizing iMASP(n)’s in the non-adaptive explo-

ration setting, which follows from the chain rule of entropy. This result says the original

objective of minimizing expected posterior map entropy (i.e., V πn

0 (d0) (4.4)) is equivalent to

that of discharging from prior map entropy H[Zx0 | d0] the largest possible entropy into the

selected paths (i.e., Uπn

0 (d0) (4.5)). Hence, their optimal non-adaptive policies coincide.

Our reward-maximizing iMASP(1) is a novel adaptive variant of MES. Unlike the cost-

minimizing iMASP(1), it can be subject to convex analysis, which allows monotone-bounding

approximations to be developed (Section 5.3). It comprises the following n-stage dynamic

programming equations:

Uπ1

i (di) = max
ai∈A(xi)

Rπ1

(τ(xi, ai), di) +

∫
f(zτ(xi,ai) | di) Uπ1

i+1(di+1) dzτ(xi,ai)

Uπ1

t (dt) = max
at∈A(xt)

Rπ1

(τ(xt, at), dt)
(4.6)

for stage i = 0, . . . , t−1 where t = n−1, and the reward functions Rπ1
(xi+1, di) for i = 0, . . . , t

are defined as follows:

Rπ1

(xi+1, di)
4
= H[Zxi+1

| di] . (4.7)

Each stagewise reward reflects the entropy of k new locations xi+1 to be potentially selected

into the paths. By maximizing the sum of expected rewards over n stages in (4.6), the

reward-maximizing iMASP(1) absorbs the largest expected entropy into the selected paths.



Chapter 4. Information-Theoretic Multi-Robot Adaptive Sampling Problem (iMASP) 52

In the adaptive exploration setting, the cost-minimizing and reward-maximizing iMASP(1)’s

are also equivalent (i.e., their optimal adaptive policies coincide):

Theorem 4.2.1. The optimal value functions of the cost-minimizing (4.3) and reward-

maximizing (4.6) iMASP(1)’s are related by

V π1

i (di) = H[Zx0:i
| di]− Uπ1

i (di)

for stage i = 0, . . . , n− 1 and their respective optimal adaptive policies coincide.

Theorem 3.4.1 has also provided an equivalence result to relate the cost-minimizing and

reward-maximizing MASP(1)’s through the use of the variance decomposition formula in its

induction proof. In contrast, the induction proof to Theorem 4.2.1 (see Appendix A.5) uses

the chain rule of entropy, which entails a computational complexity reduction (not available

to MASP(1)) as described next.

In cost-minimizing iMASP(1), the time complexity of evaluating the cost (i.e., posterior

map entropy (4.1)) depends on the domain size |X | for the environment models described in

the next subsection. By transforming into the dual, the time complexity of evaluating each

stagewise reward (4.7) becomes independent of |X | because it reflects only the uncertainty

of the new locations to be potentially selected into the observation paths. As a result, the

runtime of the approximation algorithm proposed in Chapter 5 does not depend on the

map resolution, which is clearly advantageous in large-scale, high-resolution exploration and

mapping. In contrast, the reward-maximizing MASP(1) (3.14) utilizing the mean-squared

error criterion does not share this computational advantage, as the time needed to evaluate

each stagewise reward (3.15) still depends on |X |. We will evaluate this computational

advantage using time complexity analysis in Section 5.5.
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4.3 Learning the Hotspot Field Map

4.3.1 Gaussian process (GP)

We will apply iMASP(1) to sampling the GP and determine if the induced exploration policy

π1 exhibits adaptive, hotspot sampling, and wide-area coverage properties.

For sampling GP, the induced optimal adaptive policy π1 from solving iMASP(1) can

be reduced to be non-adaptive: observe from Appendix A.6 that each stagewise reward

Rπ1
(xi+1, di) (4.7) is independent of the measurements

Rπ1

(xi+1, di)
4
= H[Zxi+1

| di] = log
√

(2πe)k |ΣZxi+1 |di | (4.8)

where ΣZxi+1 |di is a covariance matrix with components σZxZu|di (i.e., for every pair of loca-

tions x, u of xi+1) that are independent of zx1:n . Hence, Lemma 3.5.1 holds. As a result,

it follows from (4.6) that Uπ1

i (di) and π1
i (di) are independent of zx1:n for i = 0, . . . , n − 1.

So, Theorem 3.5.1 also holds. The expectations in iMASP(1) (3.14) can then be integrated

out. As a result, iMASP(1) for sampling GP can be reduced to a single-staged deterministic

planning problem

Uπ1

0 (d0) =
n−1∑
i=0

max
ai

Rπ1

(τ(xi, ai), di)

=
n−1∑
i=0

max
ai

H[Zτ(xi,ai) | di]

= max
a0,...,an−1

n−1∑
i=0

H[Zτ(xi,ai) | di]

= max
a0:n−1

H[Zτ(x0:n−1,a0:n−1) | d0]

= max
a0:n−1

Rπn(τ(x0:n−1, a0:n−1), d0)

= Uπn

0 (d0) .

(4.9)

This indicates the induced optimal values from solving iMASP(1) and iMASP(n) are equal.
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So, π1 offers no performance advantage over πn.

Based on the analyses of (4.9) above and (3.22) in Section 3.5.1, the following sufficient

conditions, when met, guarantee that adaptivity has no benefit under an assumed environ-

mental model:

Theorem 4.3.1. If Rπ1
(xi+1, di) is independent of zx1:n for stage i = 0, . . . , n − 1,

iMASP(1) and π1 can be reduced to be single-staged and non-adaptive, respectively.

For example, Theorem 4.3.1 also holds for the simple case of an occupancy grid map

modeling an obstacle-ridden environment, which typically assumes zx for x ∈ X to be inde-

pendent. As a result, Rπ1
(xi+1, di)

4
= H[Zxi+1

| di] can be reduced to a sum of prior entropies

over the unobserved locations xi+1, which are independent of zx1:n .

For sampling GP, the induced optimal policy π1 from solving iMASP(1) performs wide-

area coverage only: to maximize stagewise rewards (4.8), policy π1 selects new locations

with large posterior variance for observation. If we assume isotropic covariance structure

(i.e., the covariance σZxZu decreases monotonically with ||x−u||) (Rasmussen and Williams,

2006), the posterior data di provide the least amount of information on unobserved locations

that are far away from the observed locations xi. As a result, the variances of unobserved

locations in sparsely sampled regions are still largely unreduced by the posterior data di

collected from the observed locations xi. Hence, by exploring the sparsely sampled areas, a

large expected entropy can be absorbed into the selected observation paths.

Recall from Section 3.5.1 that, for sampling GP, the induced optimal policy π1 from solv-

ing MASP(1) also displays non-adaptive and wide-area coverage properties. Compared to

the iMASP(1)-based policy, it is expected to explore areas that are more sparsely sampled

(i.e., better wide-area coverage): (a) while the iMASP(1)-based policy only considers the

variances of locations to be visited by its selected paths (4.8), the MASP(1)-based policy
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further considers how much its selected paths reduce the variances of unobserved locations

(3.21); (b) the iMASP(1)-based policy penalizes locations of extremely high variances (i.e.,

by the logarithm in the reward function expression (4.8)), which typically reside in more

sparsely-sampled areas. Consequently, the MASP(1)-based policy is capable of exploring re-

gions that are more sparsely sampled. These also intuitively explain why the MASP(1)-based

policy can achieve better mapping in terms of the mean-squared error criterion. However, we

expect the wide-area coverage behavior and mapping performance (i.e., in the mean-squared

error sense) of the MASP(1)-based policy to be more similar to that of iMASP(1)-based

policy as the length-scale hyperparameter of the GP decreases.

Using the observations selected from wide-area coverage, the field of original measure-

ments may not be mapped well because the under-sampled hotspots with extreme, highly-

varying measurements contribute considerably to map entropy in the original scale, as dis-

cussed below.

4.3.2 Log-Gaussian process (`GP)

For sampling `GP, the induced optimal policy π1 from solving MASP(1) is adaptive: observe

from Appendix A.7 that each stagewise reward Rπ1
(xi+1, di) (4.7) depends on the previously

sampled data di:

Rπ1

(xi+1, di)
4
= H[Yxi+1

| di] = log
√

(2πe)k | ΣZxi+1 |di |+ µZxi+1 |di1
> (4.10)

where µZxi+1 |di is a mean vector with components µZx|di for every location x of xi+1. Since

µZx|di depends on di by (3.19), H[Yxi+1
| di] depends on di. So, Lemma 3.5.2 holds. Con-

sequently, it follows from (3.14) that Uπ1

i (di) and π1
i (di) depend on di for i = 0, . . . , n − 1.

Hence, Theorem 3.5.2 holds, thus indicating that the optimal policy π1 is adaptive.

For sampling `GP, the induced optimal adaptive policy π1 from solving MASP(1) per-
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forms both hotspot sampling and wide-area coverage: to maximize the stagewise rewards

(4.10), π1 selects new locations with (a) large Gaussian posterior variance and (b) large

Gaussian posterior mean for observation. So, it directs exploration towards (a) sparsely

sampled areas (Section 4.3.1) and (b) hotspots.

Recall from Section 3.5.2 that, for sampling `GP, the induced optimal policy π1 from

solving MASP(1) also displays adaptive, hotspot sampling, and wide-area coverage proper-

ties. Using a similar reasoning as that in Section 4.3.1, it is expected to explore areas that

are more sparsely sampled (i.e., better wide-area coverage) than the iMASP(1)-based policy.

The MASP(1)-based policy is also expected to sample hotspots with more extreme, highly-

varying measurements (i.e., better hotspot sampling) as it favors locations of high predicted

original measurements (i.e., large log-Gaussian posterior mean1) (3.25). In contrast, the

iMASP(1)-based policy only considers locations of high predicted log-measurements (i.e.,

large Gaussian posterior mean) (4.10). Unlike the iMASP(1)-based policy, the MASP(1)-

based policy takes into account the predicted measurements of unobserved locations (3.25),

thus enabling it to sample potentially wider hotspots. Though the iMASP(1)-based policy

is less effective in these observation selection properties, it bears a considerable computa-

tional gain over the MASP(1)-based policy as described previously in Section 4.2 and shown

analytically in Section 5.5. We shall see later in Section 6 that, on two real-world datasets,

the iMASP-based policy can empirically achieve mapping performance comparable to the

MASP-based policy using significantly less time, and its incurred planning time is also less

sensitive to larger robot team size. This makes the iMASP-based planner more practical for

real-time deployment.

1Recall from (3.23) that a large log-Gaussian posterior mean can be achieved by large Gaussian posterior
mean and variance.



Chapter 5

Value-Function Approximations

In this chapter, we will exploit the problem structure of strictly adaptive MASP and iMASP

(Section 5.1) for sampling the `GP to derive approximately optimal exploration policies in

a computationally tractable manner. To handle continuous states, the convexity of reward-

maximizing MASP and iMASP allows discrete-state monotone-bounding approximations to

be developed (Section 5.3). Consequently, we can provide theoretical guarantees on the

performance of approximately optimal vs. optimal adaptive policies (Section 5.3), and es-

tablish theoretical bounds quantifying the performance advantage of optimal adaptive over

non-adaptive policies (Section 5.4). We then propose anytime algorithms (Section 5.5) based

on the approximate MASP and iMASP to alleviate the computational difficulty that arises

from their non-Markovian structure. As demonstrated analytically in Section 5.5.2, the time

complexity of the iMASP-based anytime algorithm is independent of map resolution and

less sensitive to increasing robot team size as compared to the MASP-based algorithm.

5.1 Strictly Adaptive Exploration

We have described in Sections 3.4 and 4.2 how the optimal adaptive policy π1 can be pro-

duced by solving the reward-maximizing MASP(1) (3.15) (iMASP(1) (4.7)). However, if the

57
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robot team has more than 1 robot (i.e., k > 1), this optimal policy π1 becomes partially

adaptive because it collects more than 1 observation (i.e., k observations) per stage (see Def-

inition 3.1.2). In this section, we will focus on deriving the optimal strictly adaptive policy

(in particular, for sampling `GP), which, among policies of all adaptivity, (a) achieves the

largest expected map error reduction when the mean-squared error criterion (Section 3.2.1)

is being optimized or (b) absorbs the largest expected entropy into observation paths when

the entropy criterion (Section 4.1.1) is being optimized.

By Definition 3.1.2, a strictly adaptive policy has to be structured to collect only 1

observation per stage. The reward-maximizing MASP(1) (3.14) (iMASP(1) (4.6)) can be

revised in the following ways to impose strict adaptivity:

1. The space A(xi) of simultaneous joint actions is reduced to a constrained set A′(xi) of

joint actions that, in each stage i, allows one robot to move to observe a new location

and the other robots stay put. This tradeoff for strict adaptivity allows the constrained

action set A′(xi) to grow linearly, rather than exponentially, with the number of robots;

2. We constrain each robot to explore a path of at most n new adjacent locations; this can

be viewed as an energy consumption constraint on each robot. The planning horizon

then spans k × n stages, rather than n, stages, which reflects the additional time of

exploration incurred by strict adaptivity;

3. If the robot actions ai can only be chosen from the constrained action set A′(xi), the

assignment xi+1 ← τ(xi, ai) moves one chosen robot to a new location xi+1 while the

other unselected robots stay put at their current locations. Then, only one component

in the current robot locations xi is changed to the new location xi+1 to form the next

locations xi+1; the other components in xi+1 are unchanged from xi. Formally, xi+1

is the component in xi+1 with the same index as the only non-zero component in

xi+1−xi. Hence, there is only one unobserved random component Yxi+1
in the random
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measurements Yxi+1
; the other components in Yxi+1

have already been observed in the

previous stages and can be found in the known data di. As a result, the probability

distribution of the random measurements Yxi+1
can be simplified to a uni-variate

random measurement Yxi+1
, which reduces the computational burden of solving the

problem numerically.

These revisions of MASP(1) (iMASP(1)) yield the strictly adaptive exploration problem

called MASP( 1
k
)1 (iMASP( 1

k
)). Since the MASP(1) and iMASP(1) share a common reward-

maximizing problem structure, the MASP( 1
k
) and iMASP( 1

k
) also share a similar problem

structure consisting of the following optimal value functions:

Ui(di) = max
ai∈A′(xi)

R(xi+1, di) +

∫
f(yxi+1

| di) Ui+1(di+1) dyxi+1

= max
ai∈A′(xi)

R(xi+1, di) + E[Ui+1(di, xi+1, Yxi+1
) | di]

Ut(dt) = max
at∈A′(xt)

R(xt+1, dt)

(5.1)

for stage i = 0, . . . , t − 1 where t = kn − 1. For stage i = 0, . . . , t, the reward functions

R(xi+1, di) of MASP( 1
k
) (iMASP( 1

k
)) are defined in a similar manner as the reward functions

Rπ1
(xi+1, di) of the reward-maximizing MASP(1) (3.15) (iMASP(1) (4.7)). Without ambi-

guity, we have omitted the superscript π
1
k from the reward and value functions above. The

optimal strictly adaptive policy π
1
k = 〈π

1
k
0 (d0), . . . , π

1
k
t (dt)〉 is produced by solving MASP( 1

k
)

(iMASP( 1
k
)).

Since the random measurement Yxi+1
is continuous, it entails an infinite number of state

transitions. So, the conditional expectation E[Ui+1(di, xi+1, Yxi+1
) | di] for stage i = 0, . . . , t−

1Recall from Section 3.3 that the length of action sequence per stage is used as the adaptivity index.
However, the action sequences of MASP(1) and MASP( 1

k ) are of the same length. Hence, we need an
adaptivity index of finer resolution but consistent with the existing index being used. We will use the
relative batch size per stage (i.e., number of observations per stage weighted by 1

k ) as the adaptivity index.
Since a strictly adaptive policy collects 1 observation per stage, the adaptivity index of the strictly adaptive
exploration problem is 1

k . On the other hand, the optimal partially adaptive policy of MASP(1) collects k
observations per stage and still evaluates to the adaptivity index of 1.
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1 has to be evaluated in closed form for MASP( 1
k
) (iMASP( 1

k
)) to be solved exactly. This

can be performed for MASP( 1
k
) (iMASP( 1

k
)) with t = 1 , which can consequently be solved

exactly (Section 8.2.1). At this moment, we are not aware of any computationally feasible

methods to solve MASP( 1
k
) (iMASP( 1

k
)) with t > 1 exactly because the expectation of the

optimal value function results in an integral that is too complex to be evaluated. Hence,

we will resort to approximating MASP( 1
k
) (iMASP( 1

k
)) as described below. For ease of

exposition, we will revert to using the Zxi+1
= log Yxi+1

variable for the `GP in the rest of

this chapter.

5.2 Related Work on Sequential Decision-Theoretic Plan-

ning with Continuous States

The difficulty of solving MASP( 1
k
) (iMASP( 1

k
)) lies exactly in evaluating the conditional

expectation with respect to the continuous-state random measurement Yxi+1
. This intricate

issue of handling continuous states is faced by the following related classes of sequential

decision-theoretic planning problems, which have resolved it by constructing approximate

problems:

1. Markov decision processes (MDPs). The conventional approach of generalizing to con-

tinuous states in an MDP is to approximate the value function with a parameterized

model; the resulting solution is usually hard to analyze and may diverge (Bertsekas and

Tsitsiklis, 1996; Sutton, 1998). Another commonly used technique is to approximate

the conditional expectation using Monte-Carlo sampling (Rust, 1997), which suffers

from an exponential blow-up in the state size with an increasing number of stages.

The issue of generalizing to continuous states has been a recent focus of time-dependent

MDPs (Boyan and Littman, 2001; Feng et al., 2004; Li and Littman, 2005; Marecki

et al., 2007), and factored MDPs (Guestrin et al., 2004; Hauskrecht and Kveton, 2004;
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Table 5.1: Comparison of structural constraints on time-dependent MDPs with respect to
the continuous state.

````````````MDP
Function

Transition Function Reward Function Value Function

(Boyan and Littman, 2001) discrete piecewise-linear piecewise-linear
(Feng et al., 2004) discrete piecewise-constant/linear piecewise-constant/linear
(Li and Littman, 2005) piecewise-constant piecewise-constant piecewise-constant
(Marecki et al., 2007) exponential constant piecewise-gamma

Kveton and Hauskrecht, 2006; Kveton et al., 2006). A time-dependent MDP is gener-

alized by augmenting its discrete state components with a continuous time component.

To make it computationally feasible to solve, it has to be approximated by constrain-

ing its transition, reward, and value functions to certain function families as shown in

Table 5.1. For the time-dependent MDPs in (Boyan and Littman, 2001; Feng et al.,

2004; Li and Littman, 2005), the approximation can be improved by refining the dis-

cretization or increasing the number of piecewise functions. However, this will result in

an exponential blow-up with an increasing number of stages, which restricts applicabil-

ity to problems of only a few stages. Although the time-dependent MDP in (Marecki

et al., 2007) can be solved in closed form, the number of breakpoints to be numerically

determined can grow exponentially, which entails an exponential number of disjoint in-

tervals and value function evaluations for these intervals. Furthermore, the structural

assumptions are extremely restrictive: (a) similar to the MDP in (Boyan and Littman,

2001), the transition function (i.e., probability distribution of the time component)

does not depend on any continuous state in the previous stages, which simplifies the

identification of breakpoints, (b) if the transition function does not adhere to the expo-

nential distribution, an approximation error results, but is not captured in the policy

performance guarantee, and (c) the reward does not depend on the continuous time

component.
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In a factored MDP, the value function is approximated by a linear combination of basis

functions and optimized via linear programming. For the factored MDPs in (Guestrin

et al., 2004; Hauskrecht and Kveton, 2004; Kveton and Hauskrecht, 2006), the con-

tinuous state is bounded on the [0, 1] interval, the transition function is restricted to

a mixture of beta distributions, and the basis functions can be piecewise-linear, poly-

nomials or beta distributions. The factored MDP in (Kveton et al., 2006) restricts

the transition and basis functions to exponential-family distributions. These restric-

tions on the transition and basis functions allow the conditional expectation to be

evaluated to a closed-form solution. A serious drawback with this approach is that a

continuous-state MDP will induce infinitely many constraints in the linear program-

ming formulation. As a result, the constraint space has to be approximated (e.g.,

through Monte-Carlo sampling of constraints (Hauskrecht and Kveton, 2004)), which

reduces the policy performance.

In contrast to MDPs, MASP and iMASP adopt a more complex but realistic non-

Markovian structure: the state transitions and rewards are conditioned on the entire

history of actions and continuous states. More importantly, by assuming the reward

and value functions to be convex, piecewise-linear functions can be constructed to

monotonically lower- and upper-bound the value function (Section 5.3). Note that the

form of transition function is not restricted.

2. Non-Markov problems. Bayes sequential design problems (Brockwell and Kadane, 2003;

Müller et al., 2007) and stochastic programs (Birge and Wets, 1986; Casey and Sen,

2005; Dupačová et al., 2000; Edirisinghe, 1999; Frauendorfer, 1996; Frauendorfer and

Haarbrücker, 2003; Frauendorfer and Schürle, 2000; Shapiro, 2006) can be modeled as

non-Markov dynamic programming problems. In contrast to MASP and iMASP, they

have a simple structure: (a) their transition functions do not depend on past actions,

(b) for Bayes sequential design, the entire history of continuous states can be reduced
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to a summary (not necessarily sufficient) statistic, and (c) for stochastic programs,

the reward function is often assumed to be linear in the action variable (Birge and

Wets, 1986; Casey and Sen, 2005; Edirisinghe, 1999; Frauendorfer and Haarbrücker,

2003). To make them computationally feasible to solve, the conditional expectation is

approximated using Monte-Carlo sampling for both problems (Brockwell and Kadane,

2003; Dupačová et al., 2000; Müller et al., 2007; Shapiro, 2006) and bounding methods

(Birge and Wets, 1986; Casey and Sen, 2005; Edirisinghe, 1999; Frauendorfer, 1996;

Frauendorfer and Haarbrücker, 2003; Frauendorfer and Schürle, 2000) for stochastic

programs. The latter technique further assumes the value function to be linear or con-

vex in the continuous state and action variables. The resulting approximate problems

suffer from an exponential blow-up in the state size as the number of stages increases.

Our proposed bounding approximation technique (Section 5.3) utilizes the results on

generalized Jensen and Edmundsen-Madansky bounds for convex functions (Huang

et al., 1977) from the field of stochastic programming.

5.3 Approximately Optimal Exploration

Our technique of approximating MASP( 1
k
) (iMASP( 1

k
)) is to construct approximate problems

from the original problem MASP( 1
k
) (iMASP( 1

k
)), and use the induced optimal policy from

solving an approximate problem as an approximately optimal policy in the original problem.

This section describes how the approximate problems are constructed and then provides a

theoretical guarantee on the policy quality for use in the original problem.

Recall from Sections 5.1 and 5.2 that the difficulty of solving MASP( 1
k
) (iMASP( 1

k
))

lies exactly in evaluating the conditional expectation E[Ui+1(di, xi+1, Zxi+1
) | di] (5.1) with

respect to the continuous-state random measurement Zxi+1
for stage i = 0, . . . , t− 1, which

cannot be evaluated in closed form. So, to approximate MASP( 1
k
) (iMASP( 1

k
)), we should
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examine how the conditional expectation can be approximated. To do this, we claim that

the optimal value function Ui+1(di, xi+1, zxi+1
) is convex in zxi+1

, which will be proven later

in Lemma 5.3.1.

Let the support of Zxi+1
given the posterior data di be Zνxi+1

that is partitioned into ν

non-empty, disjoint intervals Z [j]
xi+1

4
= [z[j−1]

xi+1
, z[j]

xi+1
] for j = 1, . . . , ν. Then, the conditional

expectation can be approximated from below and above using the ν-fold generalized Jensen

and Edmundsen-Madansky (EM) bounds (Huang et al., 1977), respectively, that is,

ν∑
j=1

p[j]

xi+1
Ui+1(di, xi+1, z

[j]
xi+1

) ≤ E[Ui+1(di, xi+1, Zxi+1
) | di] ≤

ν∑
j=0

p[j]
xi+1

Ui+1(di, xi+1, z
[j]
xi+1

)

(5.2)

where

p[j]

xi+1

4
=

∫
Z [j]
xi+1

f(zxi+1
|di) dzxi+1

and z[j]
xi+1

4
=

1

p[j]
xi+1

∫
Z [j]
xi+1

zxi+1
f(zxi+1

|di) dzxi+1

for j = 1, . . . , ν,

p[j]
xi+1

4
= p[j]

xi+1

(
z

[j]
xi+1 − z[j−1]

xi+1

z[j]
xi+1
− z[j−1]

xi+1

)
+ p[j+1]

xi+1

(
z[j+1]
xi+1
− z[j+1]

xi+1

z[j+1]
xi+1
− z[j]

xi+1

)

for j = 0, . . . , ν, and p[0]
xi+1

:= p[ν+1]
xi+1

:= z
[0]
xi+1 := z

[ν+1]
xi+1 := z[−1]

xi+1
:= 0. For example, when ν = 1,

the 1-fold generalized Jensen bound (5.2) reduces to the Jensen’s inequality (5.3), that is,

p[1]
xi+1

= 1 and z
[1]
xi+1 = E[Zxi+1

| di]. Then, the conditional expectation can be approximated

from below using Jensen’s inequality:

Ui+1(di, xi+1,E[Zxi+1
| di]) ≤ E[Ui+1(di, xi+1, Zxi+1

) | di] . (5.3)

By increasing ν to refine the partition, the generalized Jensen and EM bounds can be im-

proved. In Appendix A.8, we show that the generalized Jensen and EM bounds (5.2) can
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be obtained by constructing piecewise-linear functions to lower- and upper-bound a convex

function, respectively. The generalized Jensen bounds can also be viewed as approximating

the continuous state variable Zxi+1
using a discrete one with a distribution at points z

[j]
xi+1

of probability p[j]
xi+1

> 0 for j = 1, . . . , ν where
∑ν

j=1 p
[j]
xi+1

= 1. This is similarly true for the

generalized EM bounds.

To construct the lower approximate strictly adaptive exploration problem denoted by

MASP( 1
k
) (iMASP( 1

k
)), the conditional expectation in MASP( 1

k
) (iMASP( 1

k
)) (5.1) is re-

placed by the lower ν-fold generalized Jensen bound (5.2). This yields the following optimal

value functions of MASP( 1
k
) (iMASP( 1

k
)):

Uν
i (di) = max

ai∈A′(xi)
R(xi+1, di) +

ν∑
j=1

p[j]

xi+1
Uν
i+1(di, xi+1, z

[j]
xi+1

)

Uν
t (dt) = max

at∈A′(xt)
R(xt+1, dt)

(5.4)

for stage i = 0, . . . , t− 1 where p[j]
xi+1

and z
[j]
xi+1 correspond to those of the generalized Jensen

bound (5.2). The induced optimal policy π
1
k = 〈π

1
k
0 (d0), . . . , π

1
k
t (dt)〉 is produced by solving

MASP( 1
k
) (iMASP( 1

k
)) and is used as an approximately optimal policy in the original prob-

lem. In the same way, the upper approximate problem denoted by MASP( 1
k
) (iMASP( 1

k
))

can be constructed from MASP( 1
k
) (iMASP( 1

k
)) (5.1) by replacing the conditional expecta-

tion with the upper ν-fold generalized EM bound (5.2), which results in a problem structure

similar to that of (5.4) with the optimal value functions U
ν

i (di) for i = 0, . . . , t.

We will now show that (a) when the mean-squared error criterion (Section 3.2.1) is being

optimized, the largest expected map error reduction U0(d0) achieved by the optimal strictly

adaptive policy π
1
k can be approximated from below and above using the induced optimal

values Uν
0(d0) and U

ν

i (di) from solving MASP( 1
k
) (5.4) and MASP( 1

k
), respectively; and (b)

when the entropy criterion (Section 4.1.1) is being optimized, the largest expected entropy

of observation paths U0(d0) achieved by policy π
1
k can be approximated from below and
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above using the induced optimal values Uν
0(d0) and U

ν

i (di) from solving iMASP( 1
k
) (5.4)

and iMASP( 1
k
), respectively. To do this, we make use of a stronger convexity result for the

optimal value functions of MASP( 1
k
) (iMASP( 1

k
)):

Lemma 5.3.1. Ui(di) is convex in zx0:i
for i = 0, . . . , t.

The proof of Lemma 5.3.1 is provided in Appendix A.9.

The following result uses the induced optimal values Uν
0(d0) and U

ν

i (di) from, respectively,

solving the lower and upper approximate problems to monotonically bound the (a) largest

expected map error reduction U0(d0) achieved by the induced optimal strictly adaptive policy

π
1
k from solving MASP( 1

k
); and the (b) largest expected entropy of observation paths U0(d0)

achieved by policy π
1
k from solving iMASP( 1

k
). By increasing ν to refine the partition,

these bounds can be improved. But, this increases the computational burden of solving the

approximate problems.

Theorem 5.3.1. If Zν+1
xi+1

is obtained by splitting one of the intervals in Zνxi+1
, Uν

i (di) ≤

Uν+1
i (di) ≤ Ui(di) ≤ U

ν+1

i (di) ≤ U
ν

i (di) for i = 0, . . . , t.

The proof of Theorem 5.3.1 is provided in Appendix A.10.

The next result provides pessimistic estimates of the (a) minimum expected posterior

map error V0(d0) (i.e., induced optimal value from solving the cost-minimizing MASP( 1
k
));

and the (b) minimum expected posterior map entropy V0(d0) (i.e., induced optimal value

from solving the cost-minimizing iMASP( 1
k
)). It follows directly from Theorems 3.4.1, 4.2.1,

and 5.3.1:
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Corollary 5.3.1. For MASP( 1
k
) and iMASP( 1

k
), V0(d0) ≤

∑
x∈X

σ2
Zx|d0−U

ν
0(d0) and V0(d0) ≤

H[Zx0:i
| di]− Uν

0(d0), respectively.

The following result tells us how the approximately optimal policy π
1
k performs against

the optimal strictly adaptive policy π
1
k in terms of the achieved expected map error reduction

(expected entropy of observation paths). Clearly, it does not perform better than policy π
1
k .

But, we guarantee that policy π
1
k can achieve an expected map error reduction (expected

entropy of observation paths) not worse than Uν
i (di):

Theorem 5.3.2. Define the expected map error reduction (expected entropy of observa-

tion paths) achieved by an adaptive exploration policy π with the following value functions

Uπ
i (di) = R(τ(xi, πi(di)), di) +

∫
f(zτ(xi,πi(di)) | di) Uπ

i+1(di+1) dzτ(xi,πi(di))

Uπ
t (dt) = R(τ(xt, πt(dt)), dt)

for stage i = 0, . . . , t− 1. Then, U ν
i (di) ≤ Uπ

1
k

i (di) ≤ Ui(di) for stage i = 0, . . . , t.

The proof of Theorem 5.3.2 is provided in Appendix A.11.

The above result does not account for how much the expected map error reduction

Uπ
1
k

0 (d0) (expected entropy of observation paths) achieved by the policy π
1
k differs from that

(i.e., U0(d0)) achieved by the optimal policy π
1
k . With the upper bound of Theorem 5.3.1,

this error difference U0(d0)− Uπ
1
k

0 (d0) can be bounded:
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Corollary 5.3.2. Let ε
4
= U

ν

0(d0)−Uν
0(d0). Then, policy π

1
k is ε-optimal for achieving the

mean-squared error (entropy) criterion. That is, U0(d0)− Uπ
1
k

0 (d0) ≤ ε.

In other words, policy π
1
k is guaranteed to achieve an expected map error reduction

Uπ
1
k

0 (d0) (expected entropy of observation paths) that is not more than U
ν

0(d0) − Uν
0(d0)

from the largest expected map error reduction (expected entropy of observation paths) U0(d0)

achieved by π
1
k .

5.4 Bounds on Performance Advantage of Adaptive Explo-

ration

Previously, we have established the performance advantage of optimal adaptive over non-

adaptive policies (Section 3.3). Realizing the extent of such an advantage is important if

adaptivity incurs a cost (e.g., additional time of exploration incurred by strict adaptivity

in Section 5.1). In particular, we are interested in quantifying the performance difference

between the strictly adaptive π
1
k and the non-adaptive πn. This performance advantage of

π
1
k over πn is defined as the difference of their achieved expected map error reduction or

expected entropy of observation paths U0(d0) − Uπn

0 (d0). Using the induced optimal values

from solving the approximate problems (Theorem 5.3.1), the advantage U0(d0) − Uπn

0 (d0)

can be bounded between U ν
0(d0) − Uπn

0 (d0) and U
ν

0(d0) − Uπn

0 (d0). A large lower bound

Uν
0(d0)−Uπn

0 (d0) implies that π
1
k is to be preferred. A small upper bound U

ν

0(d0)−Uπn

0 (d0)

implies that πn performs close to that of π
1
k and should be preferred if it is more costly

to deploy π
1
k . For GP, note that this advantage is zero because π

1
k can be reduced to be

non-adaptive as shown previously.
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5.5 Real-Time Dynamic Programming

For the bounding approximation scheme in Section 5.3, the state size grows exponentially

with the number of stages. This is due to the nature of dynamic programming problems (e.g.,

MASP( 1
k
) (iMASP( 1

k
)) (5.4)), which take into account all possible states. To alleviate this

computational difficulty, we propose an anytime algorithm based on MASP( 1
k
) (iMASP( 1

k
)),

which can guarantee their policy performance in real time.

Our proposed anytime algorithm is adapted from the Real-Time Dynamic Programming

(RTDP) (Barto et al., 1995) technique, which is a well-known heuristic search algorithm for

discrete-state MDPs. RTDP essentially simulates greedy exploration paths through a large

state space. This results in the following desirable properties: (a) the search is focused, that

is, it does not have to evaluate the entire state space to obtain the optimal policy, and (b) it

has a good anytime behavior, that is, it produces a good policy fast and this policy improves

over time. The disadvantage of RTDP is its slow convergence due to the focused search.

A non-trivial issue arises with generalizing RTDP to handle the non-Markovian problem

structure of MASP( 1
k
) (iMASP( 1

k
)) (5.4): the state space of the MDP is often assumed

to be tractable. Based on this assumption, the RTDP has been enhanced in (Bonet and

Geffner, 2003a,b) with additional procedures to improve convergence whose computation

time is linear in the state size. More importantly, improvements of RTDP (Bonet and

Geffner, 2003a,b; McMahan et al., 2005; Smith and Simmons, 2006) emphasize the use of

informed heuristic bounds, which are preprocessed with time complexity linear in the state

size. This is clearly unacceptable for our anytime algorithms, since the state size of MASP( 1
k
)

(iMASP( 1
k
)) (5.4) grows exponentially with the number of stages. In the next subsection,

we will derive informed heuristic bounds that are computationally efficient.
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5.5.1 Preprocessing of heuristic bounds

The greedy exploration in RTDP is guided by heuristic bounds, which are used to prune

unnecessary, bad searches of the state space while still guaranteeing policy optimality. In

particular, when the initial bounds are more informed or tighter (as opposed to non-informed,

loose bounds used in (Barto et al., 1995)), the anytime and convergence performance can

be improved (Bonet and Geffner, 2003a,b; McMahan et al., 2005). However, this usually

entails a higher computational complexity in processing the bounds. For example, in a

reward-maximizing MDP with discrete states, the greedy search is guided by admissible

upper bounds, which can be obtained through deterministic relaxation of the problem (Bonet

and Geffner, 2003a,b; McMahan et al., 2005; Smith and Simmons, 2006). One such form of

relaxation is to choose the best possible outcome/next state of any action, which is illustrated

below for MASP( 1
k
) (iMASP( 1

k
)) (5.4):

Uν
i (di) = max

ai∈A′(xi)
R(xi+1, di) + max

j∈{1,...,ν}
Uν
i+1(di, xi+1, z

[j]
xi+1

)

Uν
t (dt) = max

at∈A′(xt)
R(xt+1, dt)

(5.5)

for stage i = 0, . . . , t− 1. Clearly, the induced optimal values from solving the deterministic

relaxation (5.5) upper-bound that of MASP( 1
k
) (iMASP( 1

k
)) (5.4) over all stages. The state

space (i.e., the set of all possible data episodes), however, grows exponentially with the

number of stages t (i.e., O(νtΠt
i=0|A′(xi)|)), thus implying exponential time complexity to

enumerate all data episodes for computing the upper bound. In the paragraphs below, we

will derive informed initial bounds that are computationally efficient.

Before doing so, it is noteworthy to point out that similar to the improved RTDP tech-

niques in (McMahan et al., 2005; Smith and Simmons, 2006), our anytime algorithms main-

tain both lower and upper bounds, and the approximately optimal policy is induced from

the lower bounds. This is in contrast to RTDP (Barto et al., 1995) and its other variants
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(Bonet and Geffner, 2003a,b), which maintain and use only upper bounds to generate the

action policy. By keeping two-sided bounds for each encountered state, the uncertainty of its

corresponding optimal value function can be derived and exploited to guide future searches

in a more informed manner. More importantly, this design choice accounts for the real-time

guarantee on the policy performance.

To derive informed initial lower bounds, we can try to perform a deterministic relaxation

of MASP( 1
k
) (iMASP( 1

k
)) (5.1). By assuming the optimal value functions of MASP( 1

k
)

(iMASP( 1
k
)) to be convex (Lemma 5.3.1), this relaxation can be achieved through MASP( 1

k
)

(iMASP( 1
k
)) (5.4) with ν = 1:

U1
i (di) = max

ai∈A′(xi)
R(xi+1, di) + U1

i+1(di, xi+1,E[Zxi+1
| di])

U1
t (dt) = max

at∈A′(xt)
R(xt+1, dt)

(5.6)

for stage i = 0, . . . , t − 1. As shown in Theorem 5.3.1, the induced optimal values from

solving the deterministic relaxation (5.6) lower-bound that of MASP( 1
k
) (iMASP( 1

k
)) (5.4)

over all stages. Note that the state size still grows exponentially with the number of stages

t (i.e., O(|A′|t) if A′(xi) = A′ for i = 0, . . . , t).

To obtain computationally efficient informed lower bounds, (5.6) can be relaxed further

by choosing the best action to maximize the immediate reward at each stage:

H i(di) = R(x∗i+1, di) +H i+1(di, x
∗
i+1,E[Zx∗i+1

| di])

H t(dt) = R(x∗t+1, dt)
(5.7)

for i = 0, . . . , t−1 where R(x∗i+1, di) = maxai∈A′(xi)R(xi+1, di). It is easy to see that H i(di) ≤

U1
i (di) and therefore lower-bounds the induced optimal values from solving MASP( 1

k
) (iMASP( 1

k
))
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(5.4). It is shown in Appendix A.12 that

H i(di) ≤ max
ai∈A′(xi)

R(xi+1, di) +
ν∑
j=1

p[j]

xi+1
H i+1(di, xi+1, z

[j]
xi+1

)

with p[j]
xi+1

and z
[j]
xi+1 defined according to that of MASP( 1

k
) (iMASP( 1

k
)) (5.4). In this case,

we say that the lower heuristic bound is monotonic. However, the state size only grows

linearly with the number of stages t (i.e., O(t)), thus requiring linear time complexity to

enumerate all data episodes for computing the lower bound.

To derive computationally efficient informed upper bounds for MASP( 1
k
) (5.4), Theo-

rem 3.4.1 can be exploited to give

H i(di) =
∑

x∈X σ
2
Yx|di

H t(dt) = max
at∈A′(xt)

R(xt+1, dt)
(5.8)

for stage i = 0, . . . , t− 1. It can be observed from Theorem 3.4.1 that H i(di) upper-bounds

Ui(di) for stage i = 0, . . . , t since Vi(di) ≥ 0. Therefore, they upper-bound the induced

optimal values from solving MASP( 1
k
). The time complexity of evaluating this upper bound

is constant in the number of stages. It is shown in Appendix A.13 that

H i(di) ≥ max
ai∈A′(xi)

R(xi+1, di) +
ν∑
j=1

p[j]

xi+1
H i+1(di, xi+1, z

[j]
xi+1

)

with p[j]
xi+1

and z
[j]
xi+1 defined according to that of MASP( 1

k
) (5.4). In this case, we say that

the upper heuristic bound is monotonic.

For iMASP( 1
k
) (5.4), since Vi(di) may be negative, we cannot do likewise. If it can be
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assumed that Vi(di) ≥ 0, Theorem 4.2.1 can then be exploited to give

H i(di) = H[Yx0:i
| di]

H t(dt) = max
at∈A′(xt)

R(xt+1, dt)
(5.9)

for stage i = 0, . . . , t− 1 such that H i(di) upper-bounds Ui(di) for stage i = 0, . . . , t. There-

fore, they upper-bound the induced optimal values from solving iMASP( 1
k
).

5.5.2 Anytime algorithms

The anytime algorithm (Algorithm 1) is inspired by uncertainty-based RTDP (URTDP) tech-

niques (McMahan et al., 2005; Smith and Simmons, 2006). To elaborate, each simulated ex-

ploration path involves an alternating selection of actions and their corresponding outcomes

until the last stage is reached. Each action is selected based on the upper bound (line 3).

For each encountered state, the algorithm maintains both lower and upper bounds, which

are used to derive the uncertainty of its corresponding optimal value function. It exploits

them to guide future searches in an informed manner: it explores the next state/outcome

with the greatest amount of uncertainty (lines 4-5). Then, the algorithm backtracks up the

path to update the upper heuristic bounds using maxai Qi(ai, di) (line 12) where

Qi(ai, di)
4
= R(xi+1, di) +

ν∑
j=1

p[j]

xi+1
U i+1(di, xi+1, z

[j]
xi+1

)

and the lower bounds via maxai Qi
(ai, di) (line 13) where

Q
i
(ai, di)

4
= R(xi+1, di) +

ν∑
j=1

p[j]

xi+1
U i+1(di, xi+1, z

[j]
xi+1

) .
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We assume that whenever a new state is encountered, it is initialized with the computation-

ally efficient informed lower and upper bounds derived in Section 5.5.1. When an exploration

policy is requested at any time during the algorithm’s execution, we provide the greedy pol-

icy that is induced by the lower bound. The policy performance has a similar guarantee to

Theorem 5.3.2: the URTDP algorithm for solving MASP( 1
k
) (iMASP( 1

k
)) provides a greedy

policy that can achieve an expected map error reduction (expected entropy of observation

paths) not worse than U0(d0).

URTDP(d0, t):

while U0(d0)− U0(d0) > α do SIMULATED-PATH(d0, t)

SIMULATED-PATH(d0, t):

1: i← 0
2: while i < t do
3: a∗i ← arg maxai Qi(ai, di)

4: ∀j, Ξj ← p[j]
x∗i+1

{U i+1(di, x
∗
i+1, z

[j]
x∗i+1

)− U i+1(di, x
∗
i+1, z

[j]
x∗i+1

)}

5: z ← sample from distribution at points z
[j]
x∗i+1

of probability Ξj/
∑

k Ξk

6: di+1 ← di, x
∗
i+1, z

7: i← i+ 1
8: U i(di)← maxai R(xi+1, di)
9: U i(di)← maxai R(xi+1, di)

10: while i > 0 do
11: i← i− 1
12: U i(di) ← maxai Qi(ai, di)
13: U i(di) ← maxai Qi

(ai, di)

Algorithm 1: URTDP (α is user-specified bound).

We will show that the time complexity of running the SIMULATED-PATH(d0, t) pro-

cedure is independent of map resolution for the iMASP( 1
k
)-based URTDP algorithm but

the time complexity of running the same procedure for the MASP( 1
k
)-based URTDP al-

gorithm is not. It is also less sensitive to increasing robot team size. Assuming no prior

data and A′ = A′(x0) = . . . = A′(xt), the time needed to evaluate the stagewise rewards
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R(xi+1, di)
4
= H[Yxi+1

| di] for all |A′| new locations xi+1 (i.e., using Cholesky factoriza-

tion) is O(t3 + |A′|t2), which is independent of |X | and results in O(t(t3 + |A′|(t2 + ν)))

time to run the SIMULATED-PATH(d0, t) procedure for the iMASP( 1
k
)-based URTDP al-

gorithm. In contrast, the time needed to evaluate the stagewise rewards R(xi+1, di)
4
=∑

x∈X µ
2
Yx|di(exp{σ2

Zx|di − σ2
Zx|di+1

} − 1) is O(t3 + |A′|(t2 + |X |t) + |X |t2), which depends

on |X | and entails O(t(t3 + |A′|(t2 + |X |t + ν) + |X |t2)) time to run the same procedure

for the MASP( 1
k
)-based URTDP algorithm. When the joint action set size |A′| increases

with larger robot team size, the time to run the SIMULATED-PATH(d0, t) procedure for

the MASP( 1
k
)-based URTDP algorithm increases faster than that for the iMASP( 1

k
)-based

URTDP algorithm due to the gradient factor |X |t involving large domain size. In the next

chapter, we will report the time taken to run this procedure empirically.
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Chapter 6

Experiments and Discussion

This chapter evaluates, empirically, the induced approximately optimal strictly adaptive

policy π
1
k from solving iMASP( 1

k
) on 2 real-world datasets exhibiting positive skew: (a)

June 2006 plankton density data (Fig. 6.1a) of Chesapeake Bay bounded within latitude

38.481 − 38.591N and longitude 76.487 − 76.335W, and (b) potassium distribution data

(Fig. 6.1d) of Broom’s Barn farm spanning 520m by 440m. Each region is discretized into

a 14 × 12 grid of sampling units. Each unit x is, respectively, associated with (a) plankton

density yx (chl-a) in mg m−3, and (b) potassium level yx (K) in mg l−1. Each region comprises,

respectively, (a) |X | = 148 and (b) |X | = 156 such units. Using a team of 2 robots, each

robot is tasked to explore 9 adjacent units in its path including its starting unit. If only 1

robot is used, it is placed, respectively, in (a) top and (b) bottom starting unit, and samples

all 18 units. Each robot’s actions are restricted to move to the front, left, or right unit.

We use the data of 20 randomly selected units to learn the hyperparameters (i.e., mean and

covariance structure) of GP and `GP through maximum likelihood estimation (Rasmussen

and Williams, 2006). So, the prior data d0 comprise the randomly selected and robot starting

units.

The performance of π
1
k is compared to the policies produced by four state-of-the-art

exploration strategies: The optimal non-adaptive policy πn for GP (Shewry and Wynn,

77
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(d) (f)

Figure 6.1: (a) chl-a field with prediction error maps for (b) strictly adaptive π
1
k and (c) non-

adaptive πn: 20 units (white circles) are randomly selected as prior data. The robots start at

locations marked by ‘×’s. The black and gray robot paths are produced by π
1
k and πn respectively.

(d-f) K field with prediction error maps for π
1
k and πn.
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1987) is produced by solving iMASP(n) (3.16). Similar to Theorem 3.4.1, it can be shown

to be equivalent to the strictly adaptive π
1
k for GP. Although iMASP( 1

k
) and iMASP(n)

can be solved exactly, their state size grows exponentially with the number of stages. To

alleviate this computational difficulty, we use anytime heuristic search algorithms URTDP

(Algorithm 1) and Learning Real-Time A∗ (Korf, 1990) to, respectively, solve iMASP( 1
k
)

and iMASP(n) approximately. The adaptive greedy policy for `GP repeatedly chooses a

reward-maximizing action (i.e., by repeatedly solving iMASP( 1
k
) with t = 0 in (5.1)) to

form the observation paths. The non-adaptive greedy policy for GP performs likewise but

does it in the log-scale. In contrast to the above policies that optimize the entropy criterion

(4.1), a non-adaptive greedy policy is proposed by Guestrin et al. (2005) to approximately

maximize the mutual information (MI) criterion for the GP; it repeatedly selects a new

sampling location that maximizes the increase in MI. We call this the MI-based policy.

6.1 Performance Metrics

Two metrics are used to evaluate the above policies: (a) Posterior map entropy (ENT)

H[Yx0:t|dt] of domain X is the criterion being optimized (4.1) that measures the posterior

joint entropy of the original measurements Yx0:t at the unobserved locations x0:t given the

posterior data dt. For the case of 2 (1) robots, t = 16 (17). A smaller ENT implies lower

uncertainty of the map or higher degree of information captured by the map; (b) Mean-

squared relative error (ERR) |X |−1
∑

x∈X{(yx − µYx|dt)/µ̄}2 measures the squared relative

differences between the prediction µYx|dt (i.e., using the `GP posterior mean) and the ground

truth measurement yx averaged over all locations in X . Although this criterion is not the

one being optimized, it allows the use of ground truth measurements {yx}x∈X to evaluate if

the field is being mapped accurately. A smaller ERR implies higher mapping accuracy.
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6.2 Test Results

Table 6.1 shows the results of various policies with different assumed models and robot

team sizes for chl-a and K fields. For iMASP( 1
k
) and iMASP(n), the results are obtained

using the policies provided by the anytime algorithms after running 120000 simulated paths.

The differences in results between policies have been verified using t-tests (α = 0.1) to be

statistically significant.

6.2.1 Plankton density data

The results show that the strictly adaptive π
1
k achieves lowest ENT and ERR as compared

to the tested policies. From Fig. 6.1a, π
1
k moves the robots to sample the hotspots show-

ing higher spatial variability whereas πn moves them to sparsely sampled areas. Figs. 6.1b

and 6.1c show, respectively, the prediction error maps resulting from π
1
k and πn; the pre-

diction error at each location x is measured using |yx − µYx|dt |/µ̄. Locations with large

prediction errors are mostly concentrated in the left region where the field is highly-varying

and contains higher measurements. Compared to π
1
k , πn incurs large prediction errors at

more locations in or close to hotspots, thus resulting in higher ERR.

We also compare the time needed to run the first 10000 SIMULATED-PATH(d0, t)’s of

the iMASP( 1
k
)-based URTDP algorithm to that of the MASP( 1

k
)-based URTDP algorithm,

which are 115s and 10340s respectively for 2 robots (i.e., 90× faster). They, respectively, take

66s and 2835s for 1 robot (i.e., 43× faster). So, scaling to 2 robots incurs 1.73× and 3.65×

more time for the respective algorithms. The induced policy π
1
k from solving iMASP( 1

k
) can

already achieve the performance reported in Table 6.1 for 2 robots, and ENT of 389.23 and

ERR of 0.231 for 1 robot. In contrast, the induced policy π
1
k from solving MASP( 1

k
) only

improves to ENT of 377.82 (391.85) and ERR of 0.233 (0.252) for 2 (1) robots, which are

slightly worse off.
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Table 6.1: Performance comparison of information-theoretic policies for chl-a and K fields: 1R
(2R) denotes 1 (2) robots.

Plankton density (chl-a) field ENT ERR
Exploration policy Model 1R 2R 1R 2R

Adaptive π1/k `GP 381.37 376.19 0.1827 0.2319
Adaptive greedy `GP 382.97 383.55 0.2919 0.2579
Non-adaptive πn GP 390.62 399.63 0.4145 0.3194
Non-adaptive greedy GP 392.35 392.51 0.2994 0.3356
MI-based GP 395.37 397.02 0.2764 0.2706

Potassium (K) field ENT ERR
Exploration policy Model 1R 2R 1R 2R

Adaptive π1/k `GP 47.330 48.287 0.0299 0.0213
Adaptive greedy `GP 61.080 56.181 0.0457 0.0302
Non-adaptive πn GP 67.084 59.318 0.0434 0.0358
Non-adaptive greedy GP 58.704 64.186 0.0431 0.0335
MI-based GP 59.058 67.390 0.0435 0.0343

6.2.2 Potassium distribution data

The results show again that π
1
k achieves lowest ENT and ERR. From Fig. 6.1d, π

1
k again

moves the robots to sample the hotspots showing higher spatial variability whereas πn moves

them to sparsely sampled areas. Compared to π
1
k , πn incurs large prediction errors at a

greater number of locations in or close to hotspots as shown in Figs. 6.1e and 6.1f, thus

resulting in higher ERR.

To run 10000 SIMULATED-PATH(d0, t)’s, the iMASP( 1
k
)-based URTDP algorithm is

84× (48×) faster than that of the MASP( 1
k
)-based URTDP algorithm for 2 (1) robots.

Scaling to 2 robots incurs 1.93× and 3.37× more time for the respective algorithms. The

induced policy π
1
k from solving iMASP( 1

k
) can already achieve the performance reported in

Table 6.1 for 1 and 2 robots. In contrast, the induced policy π
1
k from solving MASP( 1

k
)

achieves worse ENT of 67.132 (55.015) for 2 (1) robots. It achieves worse ERR of 0.032 for

2 robots but better ERR of 0.025 for 1 robot.
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6.2.3 Summary of test results

The above results show that the strictly adaptive π
1
k can learn the highest-quality hotspot

field map (i.e., lowest ENT and ERR) among the tested state-of-the-art strategies. After

evaluating whether MASP- vs. iMASP-based anytime planners are time-efficient for real-

time deployment, we observe that the induced policy π
1
k from solving iMASP( 1

k
) can achieve

mapping performance comparable to the induced policy π
1
k from solving MASP( 1

k
) using

significantly less time, and the incurred planning time is also less sensitive to larger robot

team size. Lastly, we see in Fig. 6.1 that the strictly adaptive π
1
k has exploited clustering

phenomena (i.e., hotspots) to achieve lower ENT and ERR than that of the non-adaptive

πn.



Chapter 7

Quantifying “Hotspotness”

It is of practical interest to be able to quantitatively characterize the “hotspotness” of an

environmental field. In this manner, environmental fields of varying degrees of “hotspotness”

can be prescribed accordingly, that is, by assigning high degrees of “hotspotness” to fields

with pronounced hotspots and low degrees of “hotspotness” to smoothly-varying fields. This

“hotspotness” measure can then be used, for example, in environmental sensing applications

(e.g., monitoring of algal bloom or pollution) to (a) indicate the severity and extent of

contamination and the subsequent remediation action or (b) rank a list of potential regions

sampled at low resolution (e.g., via remote sensing) and select the region with the highest

degree of “hotspotness” to perform in situ high-resolution adaptive sampling.

In this chapter, we propose a novel “hotspotness” measure, which is defined in terms

of the spatial correlation properties of the hotspot field (Section 7.1). Specifically, by as-

suming the hotspot field to vary as a realization of the `GP (Sections 3.5.2 and 4.3.2), its

spatial correlation properties can be represented by the hyperparameters of the `GP co-

variance structure. This then allows the proposed “hotspotness” index to be defined using

the hyperparameters. Through the use of the hyperparameters, we will discuss how the

“hotspotness” index can be related to the intensity, size, and diffuseness of the hotspots in

the environmental field (Section 7.2). In Section 7.3, we apply the “hotspotness” index to

83
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a real-world phosphorus distribution field. The “hotspotness” index is generalized in Sec-

tion 7.4 to include a parameter that can be calibrated to penalize a certain class of fields

with “subjectively” higher than expected degrees of “hotspotness”.

7.1 Index of “Hotspotness”

Traditionally, a hotspot is defined as a location in which its corresponding measurement

exceeds a pre-defined threshold (De Oliveira and Ecker, 2002; Long and Wilson, 1997). This

threshold is expected to be considerably higher than the mean of the field measurements.

However, hotspot locations do not usually occur in isolation; the neighboring locations of a

hotspot are also likely to be hotspots. So, it will be useful to, instead, consider a hotspot

as a cluster of spatially connected locations with measurements exceeding the pre-defined

threshold and consequently characterize a hotspot field with spatial correlation properties.

As assumed in Sections 3.5.2 and 4.3.2, we define a hotspot field to vary as a realization

of the `GP. Then, the spatial correlation properties of a hotspot field can be represented by

that of the `GP, in particular, its covariance structure. Specifically, we define the covariance

structure using the squared exponential covariance function

σZxZu
4
= σ2

s exp

{
−||x− u||

2

2`2

}
+ σ2

nδxu (7.1)

for x, u ∈ X with the signal variance σ2
s , the noise variance σ2

n, and the length-scale ` acting

as hyperparameters, and δxu is a Kronecker delta of value 1 if x = u, and 0 otherwise. Since

the covariance function is isotropic, σZxZu is a function of r
4
= ||x− u|| and can therefore be

written as a function of just a single argument, i.e., σ(r):

σ(r)
4
= σ2

s exp

{
− r2

2`2

}
+ σ2

nδr (7.2)
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where δr is a Kronecker delta of value 1 if r = 0, and 0 otherwise.

Definition 7.1.1 (“Hotspotness” Index). The degree of “hotspotness”, denoted by Hθ,

of an environmental field is defined as

Hθ
4
=

∫ `
q

2 ln 1
ρθ

0

σ(r)

σ2
s + σ2

n

− θ dr

= `

{√
0.5π

ρ
erf

(√
ln

1

ρθ

)
− θ
√

2 ln
1

ρθ

}

where ρ = 1 +
σ2
n

σ2
s

and 0 ≤ θ ≤ 1

ρ
.

Remarks.

1. Hθ measures the area bounded below the normalized squared exponential curve
σ(r)

σ2
s + σ2

n

, above the horizontal line of value θ, and to the right of the vertical axis

as depicted in Fig. 7.1;

2. Hθ ≥ 0;

3. H0 ∝
`

ρ
; and

4. θ1 > θ2 ⇔ Hθ1 < Hθ2 .

For the case of θ = 0, we can observe from Remark 3 of Definition 7.1.1 that a high

degree of “hotspotness” H0 is achieved with a large length-scale ` and a small ρ (i.e., small

noise-to-signal ratio σ2
n/σ

2
s).

Using the “hotspotness” index H0, it is possible for a hotspot field with both length-scale

` and noise-to-signal ratio σ2
n/σ

2
s larger than that of another field to achieve the same degree

of “hotspotness”. For example, a slowly-varying field with high degree of noise is described
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Figure 7.1: Graphical interpretation of the degree of “hotspotness” Hθ measuring the bounded
area covered with ‘+’s. Refer to definition 7.1.1 for more details.
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Figure 7.2: Hotspot field simulations via `GP with varying hyperparameters producing different
characteristics of hotspots and degrees of “hotspotness” H0. See text for explanation.
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by very large length-scale ` and noise-to-signal ratio σ2
n/σ

2
s while a rapidly-varying field with

low degree of noise is characterized by very small length-scale ` and noise-to-signal ratio

σ2
n/σ

2
s , both of which may produce similarly low degrees of “hotspotness”.

7.2 Effects of Spatial Correlation on Hotspot Characteris-

tics and “Hotspotness”

Fig. 7.2 illustrates how the hyperparameters (i.e., length-scale, signal variance, and noise vari-

ance) can be varied to produce different characteristics of hotspots and degrees of “hotspot-

ness” H0. Fig. 7.2a shows a simulated `GP field with unperturbed hyperparameters. In-

creasing the signal variance σ2
s amplifies the intensity of hotspots (Fig. 7.2b), which conse-

quently become more pronounced. Raising the length-scale ` increases the size of hotspots

(Fig. 7.2c), thus widening them. Lastly, increasing the noise variance σ2
n makes the hotspots

more diffuse (Fig. 7.2d). Notice from Figs. 7.2b and 7.2c that raising the signal variance σ2
s

or length-scale ` increases the degree of “hotspotness” H0 while raising the noise variance

σ2
n decreases the degree of “hotspotness” H0 as shown in Fig. 7.2d. Therefore, when the

hotspots in the environmental field are intense/pronounced, wide, and undiffused, a high

degree of “hotspotness” H0 is expected.

7.3 Application: Phosphorus Distribution Field

In Fig. 7.3, we demonstrate the application of the “hotspotness” index H0 to a real-world

dataset (i.e., the phosphorus distribution field of Broom’s Barn farm) and show the degrees of

“hotspotness” of the field in different sub-regions. It can be observed that the area with the

highest degree of “hotspotness” (i.e., H0 = 1.7142) features a pronounced hotspot while the

area with the lowest degree of “hotspotness” (i.e., H0 = 0.9542) exhibits a smoothly-varying
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Figure 7.3: Phosphorus distribution field with H0 = 1.7142, H0 = 1.2486, and H0 = 0.9542 for
the sub-regions boxed with a dashed red line, a dotted green line, and a solid blue line respectively.

field.

7.4 Generalized Index of “Hotspotness”

When comparing the degrees of “hotspotness” of different fields using the index H0, we

may perceive a field with larger length-scale ` and noise-to-signal ratio σ2
n/σ

2
s to be pro-

ducing “subjectively” higher than expected degree of “hotspotness” H0. Such a field can,

for example, be a slowly-varying field with exceedingly large length-scale but not as large

noise-to-signal ratio, thus resulting in a relatively high degree of “hotspotness” H0 that may

be undesirable.

To remedy this, we propose a generalized “hotspotness” measure Hθ. It is calibrated by
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setting θ > 0, which controls the reduction of the degree of “hotspotness” of all fields in

comparison. This can be observed in Fig. 7.1 such that increasing θ reduces the degree of

“hotspotness” Hθ. More importantly, a field with larger length-scale ` and noise-to-signal

ratio σ2
n/σ

2
s is penalized more because its degree of “hotspotness” is reduced by a greater

extent as shown in Fig. 7.4c. As a result, its “subjectively” higher than expected degree of

“hotspotness” H0 can be reduced to be lower than that of another field with smaller length-

scale ` and noise-to-signal ratio σ2
n/σ

2
s after calibration. This is guaranteed by the following

result, in particular, that arising from condition 4:

Theorem 7.4.1. Let the degree of “hotspotness” of field i be H i
θ with hyperparameters `i

and ρi. For θ > 0, H1
θ > H2

θ if one of the following conditions is satisfied:

1. `1 ≥ `2 and ρ1 < ρ2;

2. `1 > `2 and ρ1 = ρ2;

3. H1
0 ≥ H2

0 and `1 < `2 and ρ1 < ρ2;

4. H1
0 < H2

0 and `1 < `2 and ρ1 < ρ2 and θ ≥ 1

ρ1

(
ρ1

ρ2

) 1
1−(`1/`2)2

.

To prove the above result, observe from Fig. 7.4 that the four conditions give rise to dif-

ferent pairwise sets of hotspot fields with differing hyperparameters and degrees of “hotspot-

ness” H1
0 and H2

0 , which can achieve H1
θ > H2

θ after calibration. Conditions 1 and 2 are

depicted respectively in Figs. 7.4a and 7.4b, from which we can clearly see that H1
θ > H2

θ

for θ ≥ 0. Condition 3 is illustrated in Fig. 7.4c; when H1
0 ≥ H2

0 , increasing θ reduces the

degree of “hotspotness” of field 2 more than that of field 1. Hence, H1
θ > H2

θ for θ ≥ 0.

The most interesting result would be that arising from condition 4: from Fig. 7.4c, we can
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see that field 2 with length-scale `2, noise-to-signal ratio or ρ2, and degree of “hotspotness”

H2
0 larger than that of field 1 can achieve lower degree of “hotspotness” H2

θ after calibrating

with a large enough θ. That is, θ ≥ 1

ρ1

(
ρ1

ρ2

) 1
1−(`1/`2)2

is a sufficient condition for H1
θ > H2

θ .
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Figure 7.4: Graphical interpretations of H1
θ and H2

θ measuring the bounded areas covered, re-
spectively, by ‘+’s and ‘×’s. See the proof of Theorem 7.4.1 for more details.



Chapter 8

Effects of Spatial Correlation on Performance

Advantage of Adaptivity

In Section 3.3, we have shown that the optimal adaptive policy π1 from solving MASP(1)

(iMASP(1)) performs better than or at least as well as the optimal non-adaptive policy πn

from solving MASP(n) (iMASP(n)) . But, this result does not quantify the extent of such

a performance advantage. In this chapter, we will investigate how the spatial correlation

properties of the hotspot field (in particular, the length-scale hyperparameter ` of the `GP

covariance structure) affect the extent of this advantage. We assume here that the `GP

covariance structure is defined by the squared exponential covariance function (7.2).

We first show in Section 8.1 that for white-noise process fields (i.e., ` = 0) or constant

fields (i.e., ` = ∞), the multi-stage adaptive MASP(1) and iMASP(1) provide no perfor-

mance advantage over the non-adaptive MASP(n) and iMASP(n), respectively. Then, we

show in Section 8.2 that the performance advantage of the 2-stage adaptive iMASP(1) is

zero if and only if the field is constant or a white-noise process. Note that the contrapos-

itive of this second result implies the performance advantage is positive if and only if the

length-scale is non-extreme. Lastly, we illustrate that the performance advantage of the 2-

stage adaptive iMASP(1) improves with decreasing noise-to-signal variance ratio and peaks

93
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at some intermediate length-scale.

8.1 Multi-Stage MASP(1) and iMASP(1)

The first result indicates that sampling white-noise process fields (i.e., ` = 0) or constant

fields (i.e., ` = ∞) are sufficient conditions for multi-stage adaptive exploration to yield no

performance advantage under the mean-squared error (3.2) or entropy (4.1) criterion:

Theorem 8.1.1. If ` = 0 or ` = ∞, MASP(1) and iMASP(1) can be reduced to be

single-staged, and their optimal adaptive policies can be reduced to be non-adaptive.

The proof of the above result is in Appendix A.14. To understand the intuition behind

Theorem 8.1.1, prior observations made in a white-noise process field offer no information

on the unobserved locations. So, the policy π1 to select new unobserved locations becomes

independent of previous observations and can thus be reduced to be non-adaptive. In a

constant field, any new observation considered during a stagewise selection will provide the

same amount of information on the unobserved locations. As a result, the policy π1 can also

be reduced to be non-adaptive.

8.2 2-Stage iMASP(1)

We know from Section 8.1 that adaptivity provides no performance advantage for extreme

length-scales. Does adaptivity then offer positive performance advantage for non-extreme

length-scales? Theorem 8.1.1 ensues by exploiting the simplified covariance structure due

to extreme length-scales (Appendix A.14). However, the covariance structure cannot, in

general, be simplified with a non-extreme length-scale. In this section, we will use a different
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approach to analyze how the spatial correlation properties of the hotspot field (i.e., the

length-scale, signal variance, and noise variance hyperparameters1 of the `GP covariance

structure) affect the performance advantage. In particular, we will evaluate the performance

advantage of the 2-stage strictly adaptive iMASP(1) over the non-adaptive iMASP(n) (i.e.,

n = 2) for the case of k = 1 robot.

8.2.1 Exact closed-form solution for adaptive iMASP(1)

When n = 2, the reward-maximizing iMASP(1) (4.6) comprises the following 2-stage dy-

namic programming equations:

Uπ1

0 (d0) = max
a0∈A(x0)

H[Yx1 | d0] +

∫
f(zx1 | d0) U

π1

1 (d1) dzx1

= max
a0∈A(x0)

1

2
log 2πeσ2

Zx1 |d0
+ µZx1 |d0 +

∫
f(zx1 | d0) U

π1

1 (d1) dzx1

Uπ1

1 (d1) = max
a1∈A(x1)

H[Yx2 | d1]

= max
a1∈A(x1)

1

2
log 2πeσ2

Zx2 |d1
+ µZx2 |d1

(8.1)

where xi+1 = τ(xi, ai) and Zxi+1
= log Yxi+1

for i = 0, 1. It is computationally feasible to

solve (8.1) if the integral can be evaluated in closed form: observe that there are |A(x1)|

possible reward functions H[Yx2 | d1] = H[Yx2 | d0, x1, zx1 ] (one for each a1 ∈ A(x1)), each

of which is a linear function of zx1 as shown in Appendix A.15. Therefore, a different value

of zx1 can induce a different reward function H[Yx2 | d1] to dominate due to the maximum

operator. More specifically, Uπ1

1 (d1) is a piecewise-linear function of zx1 that is constituted

by at most |A(x1)| reward functions H[Yx2 | d1] dominating different disjoint intervals of

zx1 . These dominating reward functions intersect at breakpoints, which form the interval

endpoints and can be determined exactly.

By identifying these breakpoints, the integral can be evaluated in closed form: let

1See (7.2) and Section 7.2 for explanation of these hyperparameters of the `GP covariance structure.
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the support of Zx1 given the sampled data d0 be partitioned by previously established

breakpoints into ν (i.e., ν ≤ |A(x1)|) disjoint, consecutive intervals Z [1]
x1 , . . . ,Z

[ν]
x1 . Sup-

pose that each disjoint interval Z [i]
x1 is associated with the dominating reward function

H[Y
x
[i]
2
| d1]

4
= max

a1∈A(x1)
H[Yx2 | d1] ≥ H[Yx2 | d1] for any zx1 ∈ Z

[i]
x1 . That is, x

[i]
2 =

τ

(
x1, arg max

a1∈A(x1)

H[Yτ(x1,a1) | d1]

)
for any zx1 ∈ Z

[i]
x1 . Then, the integral can be expressed

in terms of the dominating reward functions for these intervals:∫
f(zx1 | d0) U

π1

1 (d0, x1, zx1) dzx1 =

∫
f(zx1 | d0) max

a1∈A(x1)
H[Yx2 | d0, x1, zx1 ] dzx1

=
ν∑
i=1

∫
Z [i]
x1

f(zx1 | d0) max
a1∈A(x1)

H[Yx2 | d0, x1, zx1 ] dzx1

=
ν∑
i=1

∫
Z [i]
x1

f(zx1 | d0) H[Y
x
[i]
2
| d0, x1, zx1 ] dzx1 ,

(8.2)

which can be reduced to a closed-form expression as shown in Appendix A.15. Consequently,

the exact closed-form solution of Uπ1

0 (d0) can be obtained.

8.2.2 Exact closed-form solution for non-adaptive iMASP(n)

On the other hand, the reward-maximizing iMASP(n) (4.5) with n = 2 has the following

form:

Uπ2

0 (d0) = max
a0:1

H[Yx1:2 | d0]

= max
a0∈A(x0)

H[Yx1 | d0] + max
a1∈A(x1)

∫
f(zx1 | d0) H[Yx2 | d1] dzx1

= max
a0∈A(x0)

H[Yx1 | d0] +

∫
f(zx1 | d0) H[Yx∗2 | d1] dzx1

(8.3)

where x1:2 = τ(x0:1, a0:1) and x∗2 = τ

(
x1, arg max

a1∈A(x1)

∫
f(zx1 | d0) H[Yτ(x1,a1) | d1] dzx1

)
for a

given location x1.
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8.2.3 Performance advantage of adaptive exploration

To evaluate the performance advantage of adaptivity Uπ1

0 (d0)−Uπ2

0 (d0), we need the following

lemma:

Lemma 8.2.1. Let (w0(x), w1(x))
4
= Σxx0:1Σ

−1
x0:1x0:1

. Then,

w0(x) =
σZx0Zx − w1(x)σZx0Zx1

σ2
Zx0

and w1(x) =
σZx1Zx|d0
σ2
Zx1 |d0

.

The above lemma provides an alternative interpretation of the weights on the observed

measurements zx0:1 when they are used to predict the measurement zx of an unobserved

location x via the Gaussian posterior mean (3.19). In particular, the original weight vector

Σxx0:1Σ
−1
x0:1x0:1

is decomposed into individual weights that are expressed in terms of Gaussian

posterior covariances and variances. As a result, the individual weights can be interpreted

more easily as opposed to understanding them directly through the inverse covariance matrix

Σ−1
x0:1x0:1

. This lemma can be generalized to cater to the weight vector Σxx0:nΣ−1
x0:nx0:n

.

Before we can determine the performance advantage of adaptivity Uπ1

0 (d0) − Uπ2

0 (d0),

we have to first consider its performance advantage when the same location x1 is already

selected to be explored by both adaptive iMASP(1) and non-adaptive iMASP(n), and then

work backwards. Supposing location x1 is selected to be explored, it can be noted from

(8.1) and (8.2) that the strictly adaptive iMASP(1) waits and observes the corresponding

measurement zx1 before selecting the next location x2 to explore. On the other hand, we can

see from (8.3) that the non-adaptive iMASP(n) selects the next location x2 before observing

zx1 . Given the same selected location x1 to be explored by both adaptive iMASP(1) and

non-adaptive iMASP(n), the resulting performance advantage of adaptivity, denoted by
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D(x1, d0), is then

D(x1, d0)

4
= H[Yx1 | d0] +

∫
f(zx1 | d0) max

a1∈A(x1)
H[Yx2 | d1] dzx1 −(

H[Yx1 | d0] + max
a1∈A(x1)

∫
f(zx1 | d0) H[Yx2 | d1] dzx1

)
=

∫
f(zx1 | d0) max

a1∈A(x1)
H[Yx2 | d1] dzx1 − max

a1∈A(x1)

∫
f(zx1 | d0) H[Yx2 | d1] dzx1

=
ν∑
i=1

∫
Z [i]
x1

f(zx1 | d0) max
a1∈A(x1)

H[Yx2 | d0, x1, zx1 ] dzx1 −
∫
f(zx1 | d0) H[Yx∗2 | d1] dzx1

=
ν∑
i=1

∫
Z [i]
x1

f(zx1 | d0) H[Y
x
[i]
2
| d1] dzx1 −

ν∑
i=1

∫
Z [i]
x1

f(zx1 | d0) H[Yx∗2 | d1] dzx1

=
ν∑
i=1

∫
Z [i]
x1

f(zx1 | d0) H[Y
x
[i]
2
| d1]−H[Yx∗2 | d1] dzx1

=
ν∑
i=1

∫
Z [i]
x1

f(zx1 | d0)
(
w1(x

[i]
2 )zx1 + c(d0, x1, x

[i]
2 )
)
−
(
w1(x

∗
2)zx1 + c(d0, x1, x

∗
2)
)
dzx1

=
ν∑
i=1

p[i]

x1

[(
w1(x

[i]
2 )− w1(x

∗
2)
)
z[i]
x1

+ c(d0, x1, x
[i]
2 )− c(d0, x1, x

∗
2)
]

=
ν∑
i=1

p[i]

x1

(
H[Y

x
[i]
2
| d0, x1, z

[i]
x1

]−H[Yx∗2 | d0, x1, z
[i]
x1

]
)

(8.4)

where c(d0, x1, x2) =
1

2
log 2πeσ2

Zx2 |d1
+ (1− w1(x2))µZx2 + w0(x2)(zx0 − µ), and p[i]

x1
and z

[i]
x1

are defined according to that of iMASP( 1
k
) (5.4). The second to fourth equalities are due

to (8.2). From the expression under the fifth equality in (8.4), we know that for any i,

H[Y
x
[i]
2
| d1] ≥ H[Yx∗2 | d1] for any zx1 ∈ Z

[i]
x1 , thus resulting in D(x1, d0) ≥ 0 for any x1. The

sixth and last equalities follow from

H[Yx2 | d1] =
1

2
log 2πeσ2

Zx2 |d1
+ µZx2 |d1

=
1

2
log 2πeσ2

Zx2 |d1
+ (1− w0(x2)− w1(x2))µZx2 + w0(x2)zx0 + w1(x2)zx1

= c(d0, x1, x2) + w1(x2)zx1

(8.5)
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such that the second equality in (8.5) is due to Lemma 8.2.1. It can be observed that

H[Yx2 | d1] is a linear function of zx1 . The seventh equality in (8.4) is due to linearity of

expectation.

Now, we remove the assumption of having to select the same location x1 to be explored

and evaluate the performance advantage Uπ1

0 (d0)−Uπ2

0 (d0) of the strictly adaptive iMASP(1)

over the non-adaptive iMASP(n). We know that this performance advantage is loosely

bounded by

min
a0∈A(x0)

D(τ(x0, a0), d0) ≤ Uπ1

0 (d0)− Uπ2

0 (d0) ≤ max
a0∈A(x0)

D(τ(x0, a0), d0) . (8.6)

The next lemma follows directly from (8.6):

Lemma 8.2.2. If D(τ(x0, a0), d0) = 0 for every a0 ∈ A(x0), U
π1

0 (d0) = Uπ2

0 (d0).

The following lemma provides a sufficient condition for satisfying the antecedent of

Lemma 8.2.2:

Lemma 8.2.3. Given x1, if w1(τ(x1, a1)) = w1(τ(x1, ã1)) for every pair of actions a1, ã1 ∈

A(x1), D(x1, d0) = 0.

To prove the above result, we know from (8.5) that w1(τ(x1, a1)) is the gradient of the

line H[Yx2 | d1] = H[Yτ(x1,a1) | d0, x1, zx1 ]. So, the antecedent of Lemma 8.2.3 implies that the

lines H[Yτ(x1,a1) | d0, x1, zx1 ] for a1 ∈ A(x1) are all parallel. As a result, the line H[Yx∗2 | d1]

has to dominate the entire support of Zx1 , which implies D(x1, d0) = 0 by (8.4).

The next lemma tells us that an extreme length-scale is a sufficient condition for satisfying

the antecedent of Lemma 8.2.3:
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Lemma 8.2.4. Given x1, if ` = 0 or ` = ∞, w1(τ(x1, a1)) = w1(τ(x1, ã1)) for every pair

of actions a1, ã1 ∈ A(x1).

To prove the above lemma, recall from Lemma 8.2.1 that w1(x2) =
σZx1Zx2 |d0
σ2
Zx1 |d0

. If ` = 0,

(A.13) can be used to show that w1(x2) = 0 for every x2. If ` = ∞, (A.14) can be used to

show that w1(x2) evaluates to the same constant for every x2. Hence, the lemma follows.

The next result follows immediately from Lemmas 8.2.2, 8.2.3, and 8.2.4. It indicates

that an extreme length-scale is a sufficient condition for adaptivity to offer zero performance

advantage:

Theorem 8.2.1. If ` = 0 or ` =∞, Uπ1

0 (d0) = Uπ2

0 (d0).

We note that the same outcome is reached in Theorem 8.1.1, but that result holds for the

more general multi-stage case. The contrapositive of Theorem 8.2.1 indicates that a non-

extreme length-scale is a necessary condition for adaptivity to yield positive performance

advantage.

We will now demonstrate how the performance advantage of adaptivity can be positive

(i.e., Uπ1

0 (d0) > Uπ2

0 (d0)) for non-extreme length-scales. Recall from Section 3.1 that the

hotspot field is discretized into a grid of sampling cell locations (e.g., Fig. 6.1) such that

each cell’s width is assumed to be 1 m2. We assume that the robot’s actions are restricted

to moving to the front, left, or right cell: when the robot moves either forward, left, or

right from its current cell location xi, its new cell location is denoted by xfi+1, x
`
i+1, and

xri+1 respectively. The robot starts in cell location x0 and has observed its corresponding

measurement zx0 . That is, the prior data d0 are available. Given these assumptions, we can

2Note that the results to follow do not rely on the grid resolution.
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obtain the following result indicating that a non-extreme length-scale is a sufficient condition

for adaptivity to yield positive performance advantage:

Theorem 8.2.2. If ` ∈ (0,∞), Uπ1

0 (d0) > Uπ2

0 (d0).

The contrapositive of Theorem 8.2.2 indicates that an extreme length-scale is a necessary

condition for adaptivity to yield zero performance advantage. To prove the above result, it

can be derived that the lines H[Yx`2 | d1] and H[Yxr2 | d1] have the same gradients and

y-intercepts (i.e., w1(x
`
2) = w1(x

r
2) and c(d0, x1, x

`
2) = c(d0, x1, x

r
2)). In contrast, the line

H[Yxf2
| d1] has a steeper gradient if the length-scale is non-extreme, which can be observed

from

w1(x
f
2)− w1(x

r
2) =

σ(1)(σ(
√

2)− σ(2))

σ(0)2 − σ(1)2
=

exp{−1.5/`2}
1 + ρ2−1

1−exp{−1/`2}

. (8.7)

that if ` ∈ (0,∞), w1(x
f
2) > w1(x

r
2). Note that ρ = 1 +

σ2
n

σ2
s

≥ 1. This implies the line

H[Yxf2
| d1] has to dominate the right interval of Zx1 while the other line H[Yxr2 | d1] (or

H[Yx`2 | d1]) dominates the left. Therefore, there exists an interval, say Z [i]
x1 , such that

H[Y
x
[i]
2
| d1] > H[Yx∗2 | d1] for zx1 = z

[i]
x1 since z

[i]
x1 cannot be a breakpoint. It follows from the

last equality in (8.4) that D(x1, d0) > 0 for any x1. Therefore, by (8.6), Uπ1

0 (d0) > Uπ2

0 (d0).

The corollary below follows immediately from Theorem 8.2.1 and contrapositive of The-

orem 8.2.2:

Corollary 8.2.1. ` = 0 or ` =∞ iff Uπ1

0 (d0) = Uπ2

0 (d0).

Fig. 8.1 shows the performance advantage of adaptivity Uπ1

0 (d0)− Uπ2

0 (d0) with varying

length-scales ` and signal variances σ2
s . The noise variance σ2

n, zx0 , and µ are set to be 0.16,
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Figure 8.1: Graph of performance advantage Uπ1

0 (d0) − Uπ2

0 (d0) vs. length-scale ` for varying
signal variances σ2

s .
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5, and 4 respectively. It can be derived that the performance advantage of adaptivity is

precisely the performance advantage that results from (and is the same for) selecting any

location x1. That is, Uπ1

0 (d0)− Uπ2

0 (d0) = D(xf1 , d0) = D(x`1, d0) = D(xr1, d0). Hence, it can

be evaluated in closed-form and its derivation is the same as that shown in Appendix A.15.

From Fig. 8.1, we can see that the performance advantage Uπ1

0 (d0)− Uπ2

0 (d0) is positive for

any non-extreme length-scale, which is in agreement with Theorem 8.2.2. Increasing the

signal variance σ2
s (i.e., decreasing noise-to-signal ratio) boosts the performance advantage

at any non-extreme length-scale. For every signal variance σ2
s , the performance advantage

peaks at some length-scale. As the signal variance σ2
s increases, this peak shifts towards

smaller length-scale ` and stabilizes at about ` = 1.8 m. To explain this, note that the point

of intersection of the lines H[Yxf2
| d1] and H[Yxr2 | d1] (i.e., breakpoint) has the expression

b
4
=
c(d0, x1, x

r
2)− c(d0, x1, x

f
2)

w1(x
f
2)− w1(xr2)

.

We observe that, for length-scales smaller than about 2.5 m, this breakpoint is dominated

by one of its terms
w0(x

r
2)− w0(x

f
2)

w1(x
f
2)− w1(xr2)

= ρ exp

{
1

2`2

}
.

Increasing the signal variance σ2
s decreases ρ above, thus decreasing the breakpoint b. Conse-

quently, this increases p[2]
x1

=
1

2

[
erf

(
zx1 − µZx1 |d0√

2σZx1 |d0

)]
Z [2]
x1

=[b,∞]

=
1

2

{
1− erf

(
b− µZx1 |d0√

2σZx1 |d0

)}
,

which gives a higher value of D(x1, d0) (8.4) for small length-scales. Therefore, the peak per-

formance advantage of adaptivity is shifted left towards smaller length-scale. This implies if

the hotspots are of higher intensity, they have to be smaller in size or width for adaptivity

to offer the greatest benefit.
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Chapter 9

Fast Information-Theoretic Path Planning with

Deterministic MDP for Active Sampling of

Gaussian Process

From Section 4.3.1, we know that iMASP(1) for sampling GP (4.9) can be reduced to a

non-Markovian, deterministic planning problem (Section 9.1). Due to its non-Markovian

structure, the state size grows exponentially with the number of stages. Furthermore, the

time complexity of evaluating each entropy-based stagewise reward in iMASP(1) depends

cubically on the length of the history of observations, which limits the practical use of its

approximation algorithm in in situ real-time, high-resolution active sampling. This latter

computational difficulty also plagues the widely-used non-Markovian greedy algorithm as it

is a single-staged, myopic variant of iMASP(1).

In this chapter, we will develop computationally efficient exploration strategies for sam-

pling the GP by assuming the Markov property in iMASP(1) planning. The resulting

information-theoretic path planning problem can be cast as a deterministic Markov decision

process (DMDP) (Section 9.3). We analyze the time complexity of solving the DMDP-based

path planning problem, and demonstrate analytically that it scales better than the non-

105
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Markovian greedy algorithm with increasing number of planning stages. We also provide a

theoretical guarantee on the performance of the DMDP-based policy for the case of a single

robot, which, in particular, improves with decreasing spatial correlation.

Unfortunately, the performance guarantee of the DMDP-based policy cannot be general-

ized to the case of multiple robots unless we impose more restrictive assumptions on the GP

covariance structure. However, we can obtain a similar form of performance guarantee by

factoring the stagewise reward (Section 9.4), which essentially imposes a conditional inde-

pendence assumption. The resulting path planning problem is therefore framed as a DMDP

with factored reward (DMDP+FR). In terms of time complexity, we show analytically that

it scales better than the DMDP-based algorithm with increasing number of robots.

In Section 9.5, the Markov-based algorithms are applied to the transect sampling task

(Section 9.2). In particular, we investigate empirically the effects of varying spatial corre-

lations on the mapping performance of the Markov-based policies as well as whether these

Markov-based path planners are time-efficient for in situ real-time, high-resolution active

sampling.

9.1 Deterministic Non-Markovian iMASP(1)

For sampling GP, we have learned from (4.8) that the stagewise rewards of iMASP(1) are

independent of the measurements. So, each stagewise reward H[Zxi+1
| di] (4.8) does not have

to be conditioned on the measurements zx0:i
, and can thus be simplified to H[Zxi+1

| x0:i]. As

a result, iMASP(1) for sampling GP (4.9) can be reduced to a non-Markovian, deterministic

planning problem:

Uπ1

i (x0:i) = max
ai∈A(xi)

H[Zτ(xi,ai) | x0:i] + Uπ1

i+1(x0:i+1)

Uπ1

t (x0:t) = max
at∈A(xt)

H[Zτ(xt,at) | x0:t]
(9.1)
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for stage i = 0, . . . , t−1. Recall from Section 4.3.1 that the induced optimal policy π1 selects

observation paths with maximum entropy and is non-adaptive.

Due to the non-Markovian structure of iMASP(1) (9.1), the state size grows exponentially

with the number of stages. To alleviate this computational difficulty, an anytime heuristic

search algorithm called Learning Real-Time A∗ (Korf, 1990) is used to solve iMASP(1)

approximately (Chapter 6). However, such an algorithm does not guarantee the performance

of its induced policy. We have also noticed that when the action space |A(xi)| and the number

of stages are large, it no longer produces a good policy fast enough. Even after incurring a

huge amount of time and space to improve its search, its resulting policy still performs worse

than the non-Markovian greedy policy (i.e., by repeatedly solving iMASP(1) with t = 0).

The non-Markovian structure of iMASP(1) (9.1) presents another computational problem

for the anytime algorithm as well as the greedy one: the time complexity of evaluating each

stagewise reward H[Zxi+1
| x0:i] depends cubically on the length of the history of observations.

Therefore, a limit has to be imposed on the length of the history of observations (e.g., by

restricting the size of prior data or length of observation path) for higher-resolution active

sampling and practical, real-time deployment of these algorithms. In Section 9.3, we do this

by assuming the Markov property in iMASP(1); the resulting information-theoretic path

planning problem can be cast as a deterministic Markov decision process (DMDP). Before

discussing the DMDP-based path planning algorithms, we will first describe the exploration

task that is considered in the work of this chapter.

9.2 Transect Sampling Task

Fig. 9.1 illustrates the transect sampling task that was previously introduced in (St̊ahl et al.,

2000; Thompson and Wettergreen, 2008). The 25 m × 150 m exploration region (i.e., tem-

perature field) is discretized into a 5× 30 grid of sampling locations comprising 30 columns,
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?

?

Figure 9.1: Transect sampling task over a 25 m × 150 m temperature field discretized into a
5× 30 grid of sampling locations (white dots).

each of which has 5 sampling locations. It can be observed that the number of columns is

much greater than the number of sampling locations in each column (i.e., number of rows).

This property is assumed to be consistent with every other transect sampling region. The

robots are constrained to explore forward from the leftmost to the rightmost column of the

temperature field such that each robot can only sample one location per column for a total

of 30 locations. So, each robot’s action space given its current location consists of moving to

any of the 5 locations in the adjacent column on its right. The number of robots is assumed

to be smaller than or equal to the number of sampling locations per column (i.e., number

of rows). We assume that an adversary chooses the starting locations of the robots in the

leftmost column and the robots will only know them at the time of deployment. This as-

sumption of unknown starting locations is realized in environments with unknown obstacles

or situations when the robots do not know, prior to exploring this region, the exact locations

that they will land in from exploring the previous transect sampling region or due to external

forces translating them (e.g., ocean drift on the autonomous boats). The robots are allowed

to end at any location in the rightmost column.

In practice, the constraint on forward exploration allows smoother motion paths and

makes it easier for the robots (e.g., autonomous boats) to achieve the planned waypoints

without needing complex control algorithms to perform complicated or awkward motion

commands. For practical applications, during a geologic site survey (Thompson and Wetter-

green, 2008), this task can be performed while the robot is en route from its current location
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to a distant waypoint to collect the most “informative” data for mapping the environment

between the waypoints. In monitoring of the ocean phenomena, we can think of the transect

sampling region (e.g., plankton density field) drifting at a constant rate from the right to

the left and the autonomous boats are tasked to explore within a line that is perpendicular

to the drift.

In this transect sampling task, we assume the environmental field to vary as a realization

of the Gaussian process (GP). The information-theoretic path planning algorithms considered

in this chapter are therefore non-adaptive (Section 4.3.1). As a result, the observation paths

can be determined prior to exploration.

9.3 Deterministic Markov Decision Process (DMDP)

By imposing the Markov assumption on iMASP(1), the resulting information-theoretic path

planning problem for sampling GP can be modeled as a deterministic Markov decision process

(DMDP). Specifically, the Markov property assumes each stagewise reward H[Zxi+1
| x0:i]

(9.1) does not have to be conditioned on the entire history of locations x0:i but rather on the

current locations xi only. Hence, H[Zxi+1
| x0:i] (9.1) can be approximated by H[Zxi+1

| xi].

Imposing the Markov assumption on iMASP(1) (9.1) therefore yields the following dynamic

programming equations for the DMDP-based path planning problem:

Ũi(xi) = max
ai∈A(xi)

H[Zxi+1
| xi] + Ũi+1(xi+1)

= max
ai∈A(xi)

H[Zτ(xi,ai) | xi] + Ũi+1(τ(xi, ai))

Ũt(xt) = max
at∈A(xt)

H[Zτ(xt,at) | xt]

(9.2)
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for stage i = 0, . . . , t − 1. The optimal deterministic policy π̃ = 〈π̃0(x0), . . . , π̃t(xt)〉, which

is induced by solving the DMDP-based path planning problem (9.2), can be determined by

π̃i(xi) = arg max
ai∈A(xi)

H[Zτ(xi,ai) | xi] + Ũi+1(τ(xi, ai))

π̃i(xt) = arg max
ai∈A(xi)

H[Zτ(xt,at) | xt]
(9.3)

for stage i = 0, . . . , t− 1. From (9.3), policy π̃ can be used to generate optimal observation

paths from all possible starting robot locations x0 prior to exploration because policy π̃

is independent of the measurements zx0:t . As demonstrated in the experimental results

(Section 9.5), policy π̃ can be computed extremely fast especially for transect sampling tasks

with unknown starting locations (Section 9.2). In contrast, the non-Markovian greedy policy

incurs a considerable amount of time to be derived.

Theorem 9.3.1. Let A 4
= A(x0) = . . . = A(xt) and k be the number of robots. Solving

the DMDP-based path planning problem (9.2) for the transect sampling task requires

O(|A|2(t+ k4)) time.

For the transect sampling task, note that the number of columns is the number of the

stages plus one (i.e., t + 2), and the size of the joint state space within each column is

equal to the size of the action space |A| = rCk = O(rk) where r is the number of sampling

locations per column (i.e., number of rows) and k ≤ r. For each current joint state or

vector of current robot locations xi, the time needed to evaluate the stagewise rewards

H[Zτ(xi,ai) | xi] (i.e., using Cholesky factorization) over all possible actions ai ∈ A(xi) is

|A|×O(k4) = O(|A|k4). Doing this over all possible current joint states within each column

thus incurs |A| × O(|A|k4) = O(|A|2k4) time. However, we do not have to compute these

entropy-based rewards again for every column because the rewards evaluated for any one
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column replicate across different columns. This computational saving is attributed primarily

to the Markov assumption and, to a lesser extent, the problem structure of the transect

sampling task. Propagating the optimal values from the last to the first stage takes O(|A|2t)

time. As a result, the time complexity of solving the DMDP-based path planning problem

is O(|A|2(t + k4)). Though the size of the action space |A| is exponential in the number of

robots k, the number of sampling locations per column (i.e., number of rows) r is expected

to be kept small for the transect sampling task, which prevents |A| from growing too large.

In contrast, the time complexity of solving the non-Markovian iMASP(1) is O(|A|tt2k4)1.

For the non-Markovian greedy algorithm, it incurs O(|A|t4k3 + |A|2tk4) time to compute the

optimal paths for all |A| possible choices of starting robot locations. The greedy algorithm

clearly does not scale as well as the DMDP-based one with increasing number of columns

(i.e., larger t), which is expected in the transect sampling task.

We will now provide a theoretical guarantee on the performance of the DMDP-based

policy π̃ vs. the iMASP(1)-based policy π1 (9.1) for the case of 1 robot. In terms of

notation, we can simplify the dynamic programming equations of the DMDP-based path

planning problem (9.2) to

Ũi(xi) = max
ai∈A(xi)

H[Zxi+1
| xi] + Ũi+1(xi+1)

Ũt(xt) = max
at∈A(xt)

H[Zxt+1 | xt] .
(9.4)

In the analysis of the performance of the DMDP-based policy π̃ below, we will assume that

the GP covariance structure is defined by the squared exponential covariance function

σZuZv
4
= σ2

s exp

{
−1

2
(u− v)>M(u− v)

}
+ σ2

nδuv (9.5)

1Since iMASP(1) for sampling GP is the same as iMASP(n) (4.9), we can alternatively determine the
time complexity of solving iMASP(n).
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where σ2
s is the signal variance, σ2

n is the noise variance, M = diag(`)−2, ` is a vector with

length-scale components `x and `y in the horizontal and vertical directions, respectively,

and δuv is a Kronecker delta of value 1 if u = v, and 0 otherwise. For the discretization

of the transect sampling region into a grid of sampling locations, let ωx and ωy denote the

horizontal and vertical grid discretization widths (i.e., horizontal and vertical separations

between adjacent sampling locations), respectively. Also, let `′x
4
= `x/ωx and `′y

4
= `y/ωy

represent the normalized horizontal and vertical length-scale components, respectively.

Recall that the Markov property assumes each stagewise reward H[Zxi+1
| x0:i] (9.1)

can be approximated by H[Zxi+1
| xi] (9.4). To obtain the performance guarantee for the

DMDP-based policy π̃, we must first consider bounding the difference of these entropies

ensuing from the Markov assumption:

H[Zxi+1
| xi]−H[Zxi+1

| x0:i] =
1

2
log

σ2
Zxi+1 |xi

σ2
Zxi+1 |x0:i

=
1

2
log

(
1−

σ2
Zxi+1 |xi

− σ2
Zxi+1 |x0:i

σ2
Zxi+1 |xi

)−1

> 0

(9.6)

where x0:i is a vector concatenating x0, . . . , xi. The following lemma bounds the variance

reduction term σ2
Zxi+1 |xi

− σ2
Zxi+1 |x0:i

in (9.6):

Lemma 9.3.1. Let ξ
4
= exp

{
− 1

2`′2x

}
and ρ

4
= 1 +

σ2
n

σ2
s

. If ξ <
ρ

i
,

0 ≤ σ2
Zxi+1 |xi

− σ2
Zxi+1 |x0:i

≤ σ2
sξ

4

ρ
i
− ξ

.

The proof of the above result is provided in Appendix A.16.
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The next lemma is fundamental to the results on the performance of DMDP-based policy

π̃ that follow. It provides bounds on the difference of entropies H[Zxi+1
| xi]−H[Zxi+1

| x0:i]

arising from the Markov assumption. It follows immediately from (9.6), Lemma 9.3.1, and

the following lower bound on σ2
Zxi+1 |xi

:

σ2
Zxi+1 |xi

= σ2
Zxi+1

−
(σZxi+1Zxi

)2

σ2
Zxi

≥ σ2
s + σ2

n − σ2
sξ

2 .

Lemma 9.3.2. If ξ <
ρ

i
,

0 ≤ H[Zxi+1
| xi]−H[Zxi+1

| x0:i] ≤ ∆(i)

where

∆(i)
4
=

1

2
log

(
1− ξ4

(ρ
i
− ξ)(ρ− ξ2)

)−1

.

Remark. If j ≤ s, ∆(j) ≤ ∆(s) for j, s = 0, . . . , t.

From Lemma 9.3.2, the upper bound ∆(i) depends on the normalized length-scale `′x in

the horizontal direction. As `′x → 0+, ξ → 0+ and consequently, ∆(i) → 0+. This means

when the horizontal correlation tends to zero, the difference of the entropies H[Zxi+1
| xi]

and H[Zxi+1
| x0:i] ensuing from the Markov assumption disappears. The upper bound ∆(i)

also depends on the noise-to-signal ratio σ2
n/σ

2
s through ρ. Raising the noise-to-signal ratio

decreases the difference of the entropies H[Zxi+1
| xi] and H[Zxi+1

| x0:i]. Lastly, the value of

i indicates the length of history of observations. The remark in Lemma 9.3.2 tells us that a

shorter length produces a smaller upper bound ∆(i), and hence a smaller difference of the



Chapter 9. Fast Information-Theoretic Path Planning with Deterministic MDP for Active
Sampling of Gaussian Process 114

entropies H[Zxi+1
| xi] and H[Zxi+1

| x0:i]. One limitation with using this upper bound ∆(i)

is that the condition ξ < ρ/i has to be satisfied. Hence, it cannot be used to analyze the

case of extremely large horizontal correlation.

The following theorem uses the induced optimal value Ũ0(x0) from solving the DMDP-

based path planning problem (9.4) to bound the largest entropy of observation paths Uπ1

0 (x0)

achieved by policy π1 from solving iMASP(1) (9.1):

Theorem 9.3.2. Let ε(i)
4
=
∑t

s=i ∆(s) ≤ (t−i+1)∆(t). Then, Ũi(xi)−ε(i) ≤ Uπ1

i (x0:i) ≤

Ũi(xi) for i = 0, . . . , t.

The proof of the above result uses Lemma 9.3.2 and is provided in Appendix A.17. Since

the error bound ε(i) depends on the sum of ∆(s)’s, we can rely upon the observations on ∆(s)

(see paragraph just after Lemma 9.3.2) to know how the error bound ε(i) can be improved.

In essence, smaller horizontal correlation, larger noise-to-signal ratio, and shorter length of

history of observations improve the error bound ε(i).

In the result below, the DMDP-based policy π̃ is guaranteed to achieve an entropy of

observation paths U eπ
0 (x0) that is not more than

∑t
s=0 ∆(s) from the largest entropy of

observation paths Uπ1

0 (x0) achieved by policy π1.

Theorem 9.3.3. Define the entropy of observation paths achieved by policy π with the

following value functions

Uπ
i (x0:i) = H[Zτ(xi,πi(x0:i)) | x0:i] + Uπ

i+1(x0:i+1)

Uπ
t (x0:t) = H[Zτ(xt,πi(x0:t)) | x0:t]

(9.7)

for stage i = 0, . . . , t− 1. Let ε
4
=
∑t

s=0 ∆(s) ≤ (t+ 1)∆(t). Then, policy π̃ is ε-optimal for

achieving the entropy criterion. That is, Uπ1

0 (x0)− U eπ
0 (x0) ≤ ε.
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The proof of the above result uses Lemma 9.3.2 and is provided in Appendix A.18. Again,

since the error bound ε depends on the sum of ∆(s)’s, we can rely upon the observations on

∆(s) (see paragraph just after Lemma 9.3.2) to understand how the error bound ε can be

improved. In essence, smaller horizontal correlation, larger noise-to-signal ratio, and shorter

length of history of observations improve the error bound ε.

9.4 Deterministic Markov Decision Process with Factored

Reward (DMDP+FR)

Unfortunately, the performance guarantee of the DMDP-based policy π̃ cannot be gener-

alized to the case of multiple robots unless we impose more restrictive assumptions on the

GP covariance structure such as the absence of suppressor variables (i.e., |σZjZk|xi | ≤ σZjZk).

However, we can provide a similar form of performance guarantee by factoring the stagewise

reward. Specifically, the stagewise reward H[Zxi+1
| xi] (9.2) is factored into a sum of k

additive rewards
∑k

m=1 H[Z
x

[m]
i+1
| x[m]

i ] where we define x
[m]
i and x

[m]
i+1 to be the m-th compo-

nents of the vectors of current robot locations xi and next robot locations xi+1, respectively.

So, each random measurement Z
x

[m]
i+1

is assumed to be conditionally independent of every

other random measurement Z
x

[j]
i+1

for j 6= m. Factoring the stagewise reward H[Zxi+1
| xi]

in the DMDP-based path planning problem (9.2) therefore yields the following dynamic

programming equations for the DMDP+FR-based problem:

Ûi(xi) = max
ai∈A(xi)

k∑
m=1

H[Z
x

[m]
i+1
| x[m]

i ] + Ûi+1(xi+1)

Ût(xt) = max
at∈A(xt)

k∑
m=1

H[Z
x

[m]
t+1
| x[m]

t ]

(9.8)
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for stage i = 0, . . . , t−1. The optimal deterministic policy π̂ = 〈π̂0(x0), . . . , π̂t(xt)〉 is induced

by solving the DMDP+FR-based path planning problem (9.8).

Theorem 9.4.1. Solving the DMDP+FR-based path planning problem (9.8) for the tran-

sect sampling task requires O(|A|2(t+ k)) time.

The time needed to evaluate the entropy-based factored reward H[Z
x

[m]
i+1
| x[m]

i ] for each

pair of current and next location components (i.e., respectively, x
[m]
i and x

[m]
i+1) is O(1).

Summing them over k pairs of location components thus incurs O(k) time. Doing this over

all pairs of current and next joint states (i.e., respectively, xi and xi+1) within each column

therefore takes O(|A|2k) time2. Similar to that of DMDP, we do not have to compute these

entropy-based rewards again for every column because the rewards evaluated for any one

column are the same across different columns. Propagating the optimal values from the

last to the first stage requires O(|A|2t) time. As a result, the time complexity of solving

the DMDP+FR-based path planning problem is O(|A|2(t+ k)). It can be observed that the

DMDP+FR-based dynamic programming algorithm scales better than the DMDP-based one

with increasing number of robots k.

We will now provide a theoretical guarantee on the performance of the DMDP+FR-based

policy π̂ vs. the iMASP(1)-based policy π1 (9.1) for the case of multiple robots (i.e., k ≥ 1).

We will assume here that the normalized horizontal and vertical length-scale components

are equal (i.e., `′
4
= `′x = `′y).

To obtain the performance guarantee for the DMDP+FR-based policy π̃, we must first

consider bounding the difference between
∑k

m=1 H[Z
x

[m]
i+1
| x

[m]
i ] and H[Zxi+1

| x0:i] ensuing

2This is possible if we order the location components in every joint state xi based on their corresponding
row numbers, rather than through the robot id’s. While this reduces the size of the action space, it does not
decrease the induced optimal value from solving iMASP(1) or change its optimal policy π1 since the order of
the location components in a joint state does not affect the corresponding evaluated posterior joint entropy.
It may, however, decrease the achievable optimal value from solving DMDP+FR.
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from the Markov assumption and factored reward:

k∑
m=1

H[Z
x

[m]
i+1
| x[m]

i ]−H[Zxi+1
| x0:i]

=
k∑

m=1

(
H[Z

x
[m]
i+1
| x[m]

i ]−H[Z
x

[m]
i+1
| x0:i,x

[1:m−1]
i+1 ]

)

=
1

2

k∑
m=1

log

σ2

Z
x
[m]
i+1

|x[m]
i

σ2

Z
x
[m]
i+1

|x0:i,x
[1:m−1]
i+1


=

1

2

k∑
m=1

log

1−
σ2

Z
x
[m]
i+1

|x[m]
i

− σ2

Z
x
[m]
i+1

|x0:i,x
[1:m−1]
i+1

σ2

Z
x
[m]
i+1

|x[m]
i


−1

> 0

(9.9)

where x
[1:m−1]
i+1 denotes a vector concatenating x

[1]
i+1, . . . ,x

[m−1]
i+1 . Similar to Lemma 9.3.1, the

following result bounds the variance reduction term σ2

Z
x
[m]
i+1

|x[m]
i

− σ2

Z
x
[m]
i+1

|x0:i,x
[1:m−1]
i+1

in (9.9):

Lemma 9.4.1. Let ξ
4
= exp

{
− 1

2`′2

}
and ρ

4
= 1 +

σ2
n

σ2
s

. If ξ <
ρ

ki+ 2(k − 1)
,

0 ≤ σ2

Z
x
[m]
i+1

|x[m]
i

− σ2

Z
x
[m]
i+1

|x0:i,x
[1:m−1]
i+1

≤
σ2
s

(
ki

ki+2(k−1)
ξ4 + 2(k−1)

ki+2(k−1)
ξ2
)

ρ
ki+2(k−1)

− ξ
≤ σ2

sξ
2

ρ
k(i+2)−2

− ξ

for m = 1, . . . , k.

Remarks.

1. When k = 1, the tighter upper bound reduces to that of Lemma 9.3.1.

2. For the multi-robot case here, ξ is defined in terms of the same normalized length-

scale component in both horizontal and vertical directions (i.e., `′
4
= `′x = `′y) instead
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of just the normalized horizontal length-scale component `′x for the single-robot case

in Lemma 9.3.1.

The proof of the above result is similar to that of Lemma 9.3.1. Let x
[−m]
i denote the

vector of current robot locations xi without the component x
[m]
i . In comparison to the

upper bound of Lemma 9.3.1, the numerator of the tighter upper bound comprises a convex

combination of ξ4 and ξ2 terms; the former ξ4 term is due to the Markov assumption while

the latter ξ2 term arises from the conditional independence assumption. The larger ξ2 term is

due to the presence of multiple robots residing at location components of x
[−m]
i and x

[1:m−1]
i+1 ,

which are close to the locations x
[m]
i and x

[m]
i+1.

Similar to Lemma 9.3.2, the next lemma provides bounds on the difference between∑k
m=1 H[Z

x
[m]
i+1
| x[m]

i ] and H[Zxi+1
| x0:i] arising from the Markov assumption and factored

reward, which is crucial to proving the results on the performance of DMDP+FR-based

policy π̂ that follow. It follows immediately from (9.9), Lemma 9.4.1, and a lower bound on

σ2

Z
x
[m]
i+1

|x[m]
i

:

Lemma 9.4.2. If ξ <
ρ

k(i+ 2)− 2
,

0 ≤
k∑

m=1

H[Z
x

[m]
i+1
| x[m]

i ]−H[Zxi+1
| x0:i] ≤ ∆1(i) ≤ ∆2(i)

where

∆1(i)
4
=
k

2
log

1−

(
ki

ki+2(k−1)
ξ4 + 2(k−1)

ki+2(k−1)
ξ2
)

( ρ
ki+2(k−1)

− ξ)(ρ− ξ2)

−1

and

∆2(i)
4
=
k

2
log

(
1− ξ2

( ρ
k(i+2)−2

− ξ)(ρ− ξ2)

)−1

.
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Remark. If j ≤ s, ∆2(j) ≤ ∆2(s) for j, s = 0, . . . , t.

To interpret the upper bounds ∆1(i) and ∆2(i), we can rely upon the observations on

∆(s) (see paragraph just after Lemma 9.3.2) to know how the upper bounds can be improved.

In particular, smaller length-scale, larger noise-to-signal ratio, and shorter length of history

of observations improve the upper bounds. Additionally, it can be observed that decreasing

the number of robots k reduces ∆2(i) and allows the sufficient condition ξ < ρ/(k(i+ 2)− 2)

to be more easily satisfied.

Similar to Theorem 9.3.2, the following theorem uses the induced optimal value Û0(x0)

from solving the DMDP+FP-based path planning problem (9.8) to bound the largest entropy

of observation paths Uπ1

0 (x0) achieved by policy π1 from solving iMASP(1) (9.1):

Theorem 9.4.2. Let ε1(i)
4
=
∑t

s=i ∆1(s) and ε2(i)
4
=
∑t

s=i ∆2(s). Then, Ûi(xi) − ε2(i) ≤

Ûi(xi)− ε1(i) ≤ Uπ1

i (x0:i) ≤ Ûi(xi) for i = 0, . . . , t.

The proof of the above result uses Lemma 9.4.2 and is similar to that of Theorem 9.3.2.

Since the error bounds ε1(i) and ε2(i) depend, respectively, on the sum of ∆1(s)’s and ∆2(s)’s,

we can rely upon the observations on ∆1(s) and ∆2(s) (see paragraph just after Lemma 9.4.2)

to understand how the error bounds ε1(i) and ε2(i) can be improved. In essence, smaller

length-scale, larger noise-to-signal ratio, shorter length of history of observations, and smaller

number of robots improve the error bounds ε1(i) and ε2(i).

Similar to Theorem 9.3.3, the result below guarantees the DMDP+FP-based policy

π̂ to achieve an entropy of observation paths U bπ
0 (x0) that is not more than

∑t
s=0 ∆1(s)

(
∑t

s=0 ∆2(s)) from the largest entropy of observation paths Uπ1

0 (x0) achieved by policy π1.
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Theorem 9.4.3. Let ε1
4
=
∑t

s=0 ∆1(s) and ε2
4
=
∑t

s=0 ∆2(s). Then, policy π̂ is ε1-optimal

(ε2-optimal) for achieving the entropy criterion. That is, Uπ1

0 (x0)− U bπ
0 (x0) ≤ ε1 ≤ ε2.

The proof of the above result uses Lemma 9.4.2 and is similar to that of Theorem 9.3.3.

Again, since the error bounds ε1 and ε2 depend, respectively, on the sum of ∆1(s)’s and

∆2(s)’s, we can rely upon the observations on ∆1(s) and ∆2(s) (see paragraph just after

Lemma 9.4.2) to understand how the error bounds ε1 and ε2 can be improved. In essence,

smaller length-scale, larger noise-to-signal ratio, shorter length of history of observations,

and smaller number of robots improve the error bounds ε1 and ε2.

9.5 Experiments and Discussion

This section presents empirical evaluations of the induced Markov-based optimal policies π̃

and π̂ from, respectively, solving DMDP and DMDP+FR on the temperature field data of

Panther Hollow Lake in Pittsburgh, PA spanning 25 m ×150 m. The exploration region is

discretized into a 5 × 30 grid of sampling locations as shown in Fig. 9.2. The setup of the

transect sampling task has been described in Section 9.2. Using maximum likelihood esti-

mation, the learned horizontal and vertical length-scale hyperparameters (i.e., respectively,

`x and `y) are 40.45 m and 16.00 m, respectively.

The performances of the DMDP-based policy π̃ and the DMDP+FR-based policy π̂

are compared with that of the non-Markovian greedy policy (i.e., by repeatedly solving

iMASP(1) with t = 0) denoted by πG. The non-Markovian policy π1 is initially included for

comparison and has to be derived approximately using an anytime heuristic search algorithm

called Learning Real-Time A∗. However, we have noticed through experiments that it no

longer produces a good policy fast enough due to the large action space |A(xi)| and number
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Figure 9.2: Temperature field discretized into a 5× 30 grid of sampling locations (white dots).

of stages involved in the transect sampling task. Even after incurring a huge amount of

time and space to improve its search, its resulting policy still performs worse than the non-

Markovian greedy policy πG. Hence, it is excluded from comparison.

9.5.1 Performance metrics

The ENT and ERR metrics described in Section 6.1 are also used here to evaluate the

performance of the policies. We will sometimes use ENT(π) and ERR(π) to, respectively,

denote the posterior map entropy and the mean-squared relative error achieved by policy π.

Additionally, we will consider the time taken to derive each policy as a performance metric.

9.5.2 Test results

We will first investigate the effects of varying spatial correlations (in particular, varying

length-scales) on the ENT and ERR performance of the evaluated policies. By reducing

the horizontal and/or vertical length-scales of the original temperature field, the following
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(a) Temperature field 1: `x = 5.00 m, `y = 5.00 m.

(b) Temperature field 2: `x = 5.00 m, `y = 16.00 m..

(c) Temperature field 3: `x = 40.45 m, `y = 5.00 m.

Figure 9.3: Temperature fields with varying horizontal and vertical length-scales.
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modified fields are obtained:

Temperature field `x (m) `y (m)

1 (Fig. 9.3a) 5.00 5.00

2 (Fig. 9.3b) 5.00 16.00

3 (Fig. 9.3c) 40.45 5.00

4 (Fig. 9.2a) 40.45 16.00

Note that the original temperature field is field 4. To produce the modified fields 1, 2, and

3, we fix the horizontal and vertical length-scales, and use the temperature data to learn the

remaining hyperparameters (i.e., signal and noise variances) through maximum likelihood

estimation.

Figs. 9.4, 9.6, and 9.8 show the results of the mean ENT and ERR performance of the

tested policies (i.e., averaged over all possible starting robot locations) with varying length-

scales and robot team sizes. Other than the ERR performance of the policies π̃ and π̂ for

the 1-robot case, we can observe decreasing ENT and ERR for all policies with increasing

length-scales due to increasing spatial correlation between measurements, thus resulting in

decreasing map uncertainty.

For the case of 1 robot (Fig. 9.4), note that the DMDP-based policy π̃ is equivalent to

the DMDP+FR-based policy π̂. The observations for the 1-robot case are as follows:

1. When the vertical length-scale is kept constant (i.e., either at `y = 5 m or at `y = 16 m),

decreasing the horizontal length-scale from `x = 40.45 m to `x = 5 m (i.e., either from

field 3 to field 1 or from field 4 to field 2) reduces the difference in ENT and ERR

performance between a Markov-based policy and the non-Markovian greedy policy πG.

This agrees with the decreasing error bound ε of the ε-optimal policy π̃ for achiev-

ing the entropy criterion due to smaller horizontal length-scale `x (Theorem 9.3.3)

even though this theoretical result holds with respect to the non-Markovian policy π1
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rather than the policy πG. Intuitively, since the horizontal correlation is small, the

non-Markovian greedy policy πG loses its advantage of being able to exploit a large

horizontal correlation.

2. The differences in ENT performance between a Markov-based policy and the non-

Markovian greedy policy πG are small for all temperature fields except for field 3 with

large horizontal length-scale `x and small vertical length-scale `y: due to the Markov

assumption, a Markov-based policy is not capable of exploiting the large horizontal

correlation to spread out the sampled locations in each row and distribute them evenly

across rows. Beyond the starting column, locations in rows 2 to 4 are therefore not

sampled as shown in Fig. 9.5a, thus resulting in a higher ENT. In contrast, the non-

Markovian greedy policy πG is capable of doing so as shown in Fig. 9.5b.

3. For field 1 with small horizontal and vertical length-scales, a Markov-based policy

achieves slightly lower ENT than the non-Markovian greedy policy πG: the locations

sampled by these policies are similar to those in Fig. 9.5. It can be observed that the

total area of unsampled grid cells is the same for both policies, but the area correspond-

ing to the Markov-based policy is not riddled by sampled grid cells. Consequently, the

prior joint entropy of the measurements at unobserved locations is smaller for the

Markov-based policy than for the non-Markovian greedy policy πG. Since the horizon-

tal and vertical correlations are both small, the entropy reduction due to the sampled

locations is small for both policies. The resulting posterior map entropy is therefore

lower for the Markov-based policy.

4. When the horizontal length-scale is kept constant (i.e., either at `x = 5 m or at

`x = 40.45 m), decreasing the vertical length-scale from `y = 16 m to `y = 5 m

(i.e., either from field 2 to field 1 or from field 4 to field 3) raises the difference in ERR

performance between a Markov-based policy and the non-Markovian greedy policy πG:
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with small vertical correlation, the measurements at unobserved locations in rows 2

to 4 for the Markov-based policy (Fig. 9.5a) can no longer be predicted well, thus

incurring larger ERRs.

For the case of more than 1 robot (Figs. 9.6 and 9.8), the DMDP-based policy π̃ and

the DMDP+FR-based policy π̂ are no longer equivalent. It can be observed from Figs. 9.6

and 9.8 that when the large horizontal and vertical length-scales of field 4 reduce to the small

length-scales of field 1 (i.e., `
4
= `x = `y = 5 m), the difference in ENT performance between

the DMDP+FR-based policy π̂ and the non-Markovian greedy policy πG decreases. This

decrease is also observed for field 1 with large horizontal and vertical length-scales and field

4 with small horizontal and vertical length-scales when the number of robots decreases from

3 to 1. These observations agree with the decreasing error bound ε1 (ε2) of the ε1-optimal

(ε2-optimal) policy π̂ for achieving the entropy criterion due to smaller length-scale ` and

smaller number of robots k (Theorem 9.4.3) even though this theoretical result holds with

respect to the non-Markovian policy π1 rather than the policy πG.

For the case of 2 robots (Fig. 9.6), the observations are as follows:

1. The differences in ENT performance between the DMDP+FR-based policy π̂ and the

non-Markovian greedy policy πG are small for all temperature fields except for field

2 with small horizontal length-scale `x and large vertical length-scale `y: due to the

conditional independence assumption (Section 9.4), the DMDP+FR-based policy π̂

is not capable of exploiting the large vertical correlation to spread out the sampled

locations in each column (Fig. 9.7a), thus incurring a higher ENT. In contrast, the

DMDP-based policy π̃ and the non-Markovian greedy policy πG are capable of doing

so (Fig. 9.7b). However, the DMDP+FR-based policy π̂ achieves slightly lower ERR

than the DMDP-based policy π̃ and the non-Markovian greedy policy πG: it can be

observed from Fig. 9.7b that beyond the starting column, the policies π̃ and πG do not

sample locations in rows 2 to 4, thus resulting in a higher ERR.
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Figure 9.4: Performance comparison of DMDP-based, DMDP+FR-based, and non-Markovian
greedy policies for the case of 1 robot.
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(a)

(b)

Figure 9.5: Squared relative error maps for field 3 with 1 robot showing white grid cells sampled
by the (a) DMDP-based policy π̃ and (b) non-Markovian greedy policy πG.
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Figure 9.6: Performance comparison of DMDP-based, DMDP+FR-based, and non-Markovian
greedy policies for the case of 2 robots.
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(a)

(b)

Figure 9.7: Squared relative error maps for field 2 with 2 robots showing white grid cells sampled
by the (a) DMDP+FR-based policy π̂, and (b) DMDP-based policy π̃ and non-Markovian greedy
policy πG.
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2. The differences in ENT performance between the DMDP-based policy π̃ and the non-

Markovian greedy policy πG are small for all temperature fields. In particular, when

the vertical length-scale is kept constant (i.e., either at `y = 5 m or at `y = 16 m),

decreasing the horizontal length-scale from `x = 40.45 m to `x = 5 m (i.e., either from

field 3 to field 1 or from field 4 to field 2) reduces the difference in ENT performance

between policies π̃ and πG: this is explained in the first observation for the 1-robot

case.

3. When the vertical length-scale is kept constant (i.e., either at `y = 5 m or at `y =

16 m), decreasing the horizontal length-scale from `x = 40.45 m to `x = 5 m (i.e.,

either from field 3 to field 1 or from field 4 to field 2) reduces the difference in ERR

performance between a Markov-based policy and the non-Markovian greedy policy πG:

this is explained in the first observation for the 1-robot case.

4. When the horizontal length-scale is kept constant (i.e., either at `x = 5 m or at

`x = 40.45 m), decreasing the vertical length-scale from `y = 16 m to `y = 5 m

(i.e., either from field 2 to field 1 or from field 4 to field 3) raises the difference in ERR

performance between a Markov-based policy and the non-Markovian greedy policy πG:

with small vertical correlation, the measurements at unobserved locations can no longer

be predicted well for the Markov-based policy since, unlike policy πG, it is not capable

of exploiting the (possibly large) horizontal correlation to improve prediction due to

the Markov assumption. As a result, larger ERRs are incurred.

For the case of 3 robots (Fig. 9.8), the observations are as follows:

1. When the horizontal length-scale is kept constant (i.e., either at `x = 5 m or at

`x = 40.45 m), decreasing the vertical length-scale from `y = 16 m to `y = 5 m

(i.e., either from field 2 to field 1 or from field 4 to field 3) reduces the difference

in ENT performance between the DMDP+FR-based policy π̂ and the non-Markovian
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Figure 9.8: Performance comparison of DMDP-based, DMDP+FR-based, and non-Markovian
greedy policies for the case of 3 robots.
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(a)

(b)

Figure 9.9: Squared relative error maps for field 3 with 3 robots showing white grid cells sampled
by the (a) DMDP-based policy π̃, and (b) non-Markovian greedy policy πG.
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greedy policy πG: with small vertical correlation, the policy πG loses its advantage of

being able to exploit a large vertical correlation.

2. For field 3 with large horizontal length-scale `x and small vertical length-scale `y,

a Markov-based policy achieves lower ENT than the non-Markovian greedy policy

πG: the unobserved locations are predominantly in groups of two for the DMDP-

based policy π̃ (Fig. 9.9a) and the DMDP+FR-based policy π̂, but the unobserved

locations are mostly isolated for policy πG. Consequently, the prior joint entropy of

the measurements at unobserved locations is smaller for the Markov-based policy than

for the non-Markovian greedy policy πG. Since the horizontal correlation is large, the

entropy reduction due to the sampled locations is relatively large for both policies. The

resulting posterior map entropy is therefore lower for the Markov-based policy.

3. When the vertical length-scale is kept constant (i.e., either at `y = 5 m or at `y = 16 m),

decreasing the horizontal length-scale from `x = 40.45 m to `x = 5 m (i.e., either from

field 3 to field 1 or from field 4 to field 2) increases the difference in ERR performance

between the DMDP+FR-based policy π̂ and the non-Markovian greedy policy πG: for

field 2, the DMDP+FR-based policy π̂ is not capable of exploiting the large vertical

correlation to spread out the sampled locations in each column due to the conditional

independence assumption (Section 9.4), thus incurring a higher ERR. In contrast, the

DMDP-based policy π̃ and the non-Markovian greedy policy πG are capable of doing

so. For field 1 with small horizontal and vertical length-scales, since a team of 3 robots

can cover 60% of the exploration region, a uniform coverage achieved by policies π̃ and

πG allows any unobserved location to be surrounded by sampled locations, thus offering

better prediction and lower ERR. Due to the conditional independence assumption,

the policy π̂ is not capable of uniform coverage.

4. The DMDP-based policy π̃ can achieve ENT and ERR comparable to (if not, better
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than) that of the non-Markovian greedy policy πG for all temperature fields (e.g.,

Fig. 9.9).

Fig. 9.10 shows the time taken to derive the tested policies for exploring temperature field

4 with varying robot team sizes. For the other modified fields, the incurred time profiles

are similar to that of Fig. 9.10. It can be observed that the time taken to derive the non-

Markovian greedy policy πG is longer than that needed to derive a Markov-based policy by

more than an order of magnitude. Furthermore, note that Fig. 9.10 reports the average time

taken to derive policy πG over all possible starting robot locations. So, if the starting robot

locations are unknown, the incurred time to derive policy πG has to be increased by 5-, 10-,

and 10-fold (i.e., 5Ck-fold) for the case of 1, 2, and 3 robots, respectively. In contrast, the

Markov-based policies cater to all possible starting robot locations. Therefore, the incurred

time to derive a Markov-based policy remains unchanged even if the starting robot locations

are unknown.

9.5.3 Summary of test results

The DMDP+FR-based policy π̂ can achieve very good ENT performance for temperature

field 1 (i.e., of small horizontal and vertical length-scales) with any number of robots. This

is in agreement with the result of Theorem 9.4.3. However, it achieves inferior ERR perfor-

mance for the same field 1 because it is not capable of performing uniform coverage. It can

achieve very good ERR performance for temperature field 4 with any number of robots by

depending on the large horizontal and vertical correlations to predict well.

Though the DMDP-based policy π̃ is not expected to achieve good ENT performance

for a temperature field of large horizontal length-scale, it can achieve ENT performance

comparable to that of the non-Markovian greedy policy πG for all fields with any number

of robots except for field 3 (i.e., of large horizontal length-scale and small vertical length-

scale) with 1 robot. It can achieve very good ERR performance for fields 2 and 4 (i.e., of
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Figure 9.10: Graph of time taken to derive policy vs. number of robots k for temperature field 4.

large vertical length-scales) with 1 and 2 robots whereby it is capable of exploiting the large

vertical correlation. It can also achieve very good ERR performance for all fields with 3

robots. As compared to the non-Markovian greedy policy πG, it is faster to derive a Markov-

based policy by more than an order of magnitude. Hence, a Markov-based path planner is

more time-efficient for in situ real-time, high-resolution active sampling.
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Chapter 10

Conclusion and Future Work

In this thesis, we have studied the following question:

How does a robot team plan resource-constrained observation paths to minimize the

map uncertainty of a hotspot field?

10.1 Summary of Contributions

To address the above question, the work in this thesis has provided the following novel

contributions:

1. Formalization of MASP (Low et al., 2008). MASP formalizes the exploration problem in

a sequential decision-theoretic planning under uncertainty framework, which allows the

performance of induced exploration policies of varying adaptivity to be theoretically

analyzed and the performance advantage of a more adaptive policy to be realized.

Through MASP, it is demonstrated that a more adaptive strategy can exploit clus-

tering phenomena in a hotspot field to produce lower expected map uncertainty. To

optimize the mean-squared error criterion, a MASP-based exploration strategy plans

non-myopic adaptive observation paths that minimize the expected posterior map error

or equivalently, maximize the expected map error reduction.

137
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2. Formalization of iMASP (Low et al., 2009). To optimize the entropy criterion, an

iMASP-based exploration strategy plans non-myopic adaptive observation paths that

minimize the expected posterior map entropy or equivalently, maximize the expected

entropy of observation paths. Unlike MASP, the time complexity of solving the reward-

maximizing iMASP approximately is independent of the map resolution.

3. Exploration strategies for learning hotspot field maps (Low et al., 2008, 2009). The

reward-maximizing MASP and iMASP allow observation selection properties of the

induced exploration policies to be realized for sampling GP and `GP. These properties

include adaptivity, hotspot sampling, and wide-area coverage.

4. Approximately optimal exploration strategies with performance guarantees (Low et al.,

2008, 2009). To handle continuous states, the convexity of reward-maximizing MASP

and iMASP can be exploited to derive, in a computationally tractable manner, approx-

imately optimal exploration policies with theoretical performance guarantees. Anytime

algorithms based on approximate MASP and iMASP are then proposed to alleviate

the computational difficulty that arises from their non-Markovian structure.

5. Quantifying “hotspotness”. A “hotspotness” index is defined using the spatial corre-

lation properties of the hotspot field. Consequently, this index can be related to the

intensity, size, and diffuseness of the hotspots in the field.

6. Effects of spatial correlation on performance advantage of adaptivity. We have derived

sufficient and necessary conditions of the spatial correlation properties of the hotspot

field for adaptive exploration to yield no performance advantage.

7. Exploiting small spatial correlation with fast Markov-based exploration strategies. We have

developed computationally efficient approximately optimal exploration strategies for

sampling the GP by assuming the Markov property in iMASP planning. We provide
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theoretical performance guarantees for the Markov-based policies, which improve with

decreasing spatial correlation.

Note that the use of the exploration strategies described in contributions 1 through 4 are not

limited to multi-robot teams; they can also be used for static sensor placements. The action

space then becomes the set of different possible choices of placing the next sensor or group

of sensors on the grid, which is often larger than the set of robot joint actions considered in

this thesis.

10.2 Future Work

This section proposes a few directions that can be pursued as continuation to the work in

this thesis.

1. Generalizing MASP to handle other optimizing criterion. We will identify other opti-

mizing criterion with a resulting problem structure that can be exploited to derive

computationally efficient or tractable exploration strategies.

2. Effects of spatial correlation on performance advantage of multi-stage adaptive exploration.

We will derive necessary and sufficient conditions of the spatial correlation properties

for multi-stage MASP and iMASP to yield no performance advantage. We will also

develop theoretical bounds on the performance advantage of adaptivity that depend on

the spatial correlation properties (i.e., length-scale, signal variance, and noise variance

hyperparameters).

3. Exploiting small spatial correlation with fast Markov-based adaptive exploration strategies.

We will devise computationally efficient Markov-based strategies for adaptive sampling

of log-Gaussian process.
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4. Improving map learning using auxiliary information. In our current work, the exploration

strategies for learning the hotspot field map are guided by observations of a single

environmental variable. However, the primary environmental variable to be mapped

is often associated with some highly correlated auxiliary variable(s), which may be

more densely sampled (e.g., due to cheaper sampling cost), sampled together with

the primary variable during exploration, or available prior to exploration (e.g., via

remote sensing). In algal bloom, the plankton density/abundance depends on the

ocean conditions such as temperature, salinity, and nutrients (Apple et al., 2008). In

precision agriculture, the soil nutrients can be correlated to the crop yield (Webster and

Oliver, 2007). We will investigate whether an exploration strategy can improve its map

learning by further exploiting the observations of the correlated auxiliary variables.

5. Framing MASP as a classification/labeling problem. We will examine the feasibility of

deploying a multi-robot science team for adaptive exploration to label (rather than

map) a hotspot field. That is, instead of reconstructing a hotspot field map of con-

tinuous measurements, we are interested in predicting a map of binary labels. To

label the measurements, we can make use of a predefined threshold. For example, a

location is labeled 1 if its corresponding measurement is greater than the predefined

threshold, and is labeled 0 otherwise. This threshold can be set as the permissible limit

for pollutant concentration in pollution monitoring, for salinity or alkalinity level in

precision agriculture, or for red-tide density in algal bloom. It is important to identify

the potential regions where this threshold is likely to be exceeded due to economic,

environmental, or health implications discussed in (Webster and Oliver, 2007). In this

case, the exploration objective becomes one of classifying the hotspots correctly rather

than predicting the field accurately.
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Appendix A

Proofs

A.1 Theorem 3.3.1

A basic property of integration is needed:

∫
f(zx | d) min

a∈A(x)
Q(a, d,x, zx) dzx ≤ min

a∈A(x)

∫
f(zx | d) Q(a, d,x, zx) dzx

for any function Q. Note that the optimal value functions of MASP(1) in (3.7) can be

expanded into a series of alternating minimum and expectation. By applying the above

property repeatedly on (3.7), it can be derived that the induced optimal value V π1

0 (d0) from

solving MASP(1) will be less than or equal to the induced optimal value V πn

0 (d0) from solving

MASP(n) (3.11). In particular, the optimal value decreases monotonically in adaptivity as

151
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shown below:

V π1

0 (d0)

= min
a0

∫
f(zx1 | d0) V

π1

1 (d1) dzx1

= min
a0

∫
f(zx1 | d0)

[
min
a1

∫
f(zx2 | d1) V

π1

2 (d2) dzx2

]
dzx1

≤ min
a0,a1

∫
f(zx1 | d0)

∫
f(zx2 | d1) V

π1

2 (d2) dzx2 dzx1

= min
a0,a1

∫
f(zx1:2 | d0) V

π1

2 (d2) dzx1:2

. . .

≤ min
a0,a1

∫
f(zx1:2 | d0)

[
min
a2,a3

∫
f(zx3:4 | d2) . . .[

min
an−2,an−1

∫
f(zxn−1:n | dn−2) V

π2

n/2(dn) dzxn−1:n

]
. . . dzx3:4

]
dzx1:2

= V π2

0 (d0)

. . .

≤ min
a0,a1,a2

∫
f(zx1:3 | d0)

[
min

a3,a4,a5

∫
f(zx4:6 | d3) . . .[

min
an−3,an−2,an−1

∫
f(zxn−2:n | dn−3) V

π3

n/3(dn) dzxn−2:n

]
. . . dzx4:6

]
dzx1:3

= V π3

0 (d0)

. . .

≤ min
a0,...,an−1

∫
f(zx1:n | d0) V

πn

1 (dn) dzx1:n

= V πn

0 (d0)

(A.1)

with the assignments xi+1 ← τ(xi, ai) for i ≥ 0 and xj+1:k+1 ← τ(xj:k, aj:k) for 0 ≤ j < k.

The expression under the last inequality in (A.1) corresponds to the optimal value function

of MASP(n) (3.11). Note that the inequalities follow from the abovementioned property.
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A.2 Theorem 3.4.1

Proof by induction on i that V π1

i (di) =
∑
x∈X

σ2
Zx|di − U

π1

i (di) for i = n− 1, . . . , 0.

Base case (i = n− 1):

V π1

n−1(dn−1)

= min
an−1∈A(xn−1)

∫
f(zxn | dn−1) V

π1

n (dn) dzxn

= min
an−1∈A(xn−1)

∫
f(zxn | dn−1)

∑
x∈X

σ2
Zx|dn dzxn

= min
an−1∈A(xn−1)

E[
∑
x∈X

σ2
Zx|dn | dn−1]

= min
an−1∈A(xn−1)

∑
x∈X

E[σ2
Zx|dn | dn−1]

= min
an−1∈A(xn−1)

∑
x∈X

σ2
Zx|dn−1

− var[µZx|dn | dn−1]

=
∑
x∈X

σ2
Zx|dn−1

− max
an−1∈A(xn−1)

∑
x∈X

var[µZx|dn | dn−1]

=
∑
x∈X

σ2
Zx|dn−1

− Uπ1

n−1(dn−1)

(A.2)

with the assignment xn ← τ(xn−1, an−1). The first and second equalities follow from (3.7).

The fourth equality follows from linearity of expectation. The fifth equality is due to the

variance decomposition formula. Hence, the base case is true.

Inductive case: Suppose that

V π1

i (di) =
∑
x∈X

σ2
Zx|di − U

π1

i (di) (A.3)
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is true. We have to prove that V π1

i−1(di−1) =
∑
x∈X

σ2
Zx|di−1

− Uπ1

i−1(di−1) is true.

V π1

i−1(di−1)

= min
ai−1∈A(xi−1)

∫
f(zxi | di−1) V

π1

i (di) dzxi

= min
ai−1∈A(xi−1)

E[V π1

i (di) | di−1]

= min
ai−1∈A(xi−1)

∑
x∈X

E[σ2
Zx|di | di−1]− E[Uπ1

i (di) | di−1]

= min
ai−1∈A(xi−1)

∑
x∈X

(
σ2
Zx|di−1

− var[µZx|di | di−1]
)
− E[Uπ1

i (di) | di−1]

=
∑
x∈X

σ2
Zx|di−1

− max
ai−1∈A(xi−1)

(∑
x∈X

var[µZx|di | di−1] + E[Uπ1

i (di) | di−1]

)
=
∑
x∈X

σ2
Zx|di−1

− Uπ1

i−1(di−1) .

(A.4)

The first equality follows from (3.7). The third equality follows from linearity of expectation

and (A.3). The fourth equality is due to the variance decomposition formula. The last

equality is due to (3.14). Hence, the inductive case is true. It is clear from (A.2) and (A.4)

that the optimal adaptive policy π1 corresponding to the optimal value V π1

0 (d0) coincides

with that associated with Uπ1

0 (d0).

A.3 Lemma 3.5.1

Previously, we have shown in Section 3.5.1 that Rπ1

(xi+1, di) =
∑
x∈X

σ2
Zx|di − σ

2
Zx|di+1

is inde-

pendent of zx1:n . Alternatively, we can prove that Rπ1

(xi+1, di) =
∑
x∈X

var[µZx|di+1
| di] (3.15)

is independent of zx1:n , which we will do here.
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Case 1 (x is a component of xi+1): Then, µZx|di+1
= Zx and

var[µZx|di+1
| di] = var[Zx | di] = σ2

Zx|di , (A.5)

which is independent of zx1:n (3.20).

Case 2 (x is not a component of xi+1 or x0:i): Then, using (3.19),

µZx|di+1
= µZx + Σxx0:i+1

Σ−1
x0:i+1x0:i+1

{
(zx0:i

, zxi+1
)> − µZx0:i+1

}
. (A.6)

Let w be the last k components of Σxx0:i+1
Σ−1

x0:i+1x0:i+1
, and Γ be the covariance matrix of

Zxi+1
conditioned on di, that is,

Γ = Σxi+1xi+1
− Σxi+1x0:i

Σ−1
x0:ix0:i

Σx0:ixi+1
. (A.7)

Since w and Γ are both independent of zx1:n , then, using (A.6) and (A.7),

var[µZx|di+1
| di] = var[wZ>xi+1

| di]

= wvar[Z>xi+1
| di]w>

= wΓw>

(A.8)

is also independent of zx1:n .

Hence, from (3.15), Rπ1
(xi+1, di) is independent of zx1:n for i = 0, . . . , n− 1.

A.4 Lemma 3.5.2

Case 1 (x is a component of xi+1): Then, µYx|di+1
= Yx. Since Zx = log Yx is normal, µYx|di+1

is lognormal. Then, it follows from (3.19), (3.23), and (3.24) that var[µYx|di+1
| di] = σ2

Yx|di
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depends on previously sampled data di.

Case 2 (x is not a component of xi+1 or x0:i): Then,

µYx|di+1
= exp{µZx|di+1

+ σ2
Zx|di+1

/2}

and

log µYx|di+1
= µZx|di+1

+ σ2
Zx|di+1

/2 . (A.9)

Since µZx|di+1
is a linear combination of normal random variables (i.e., components of zxi+1

),

log µYx|di+1
is normal. So, µYx|di+1

is lognormal. Then,

var[µYx|di+1
| di]

= E[µYx|di+1
| di]2(exp{var[log µYx|di+1

| di]} − 1)

= µ2
Yx|di(exp{var[µZx|di+1

+ σ2
Zx|di+1

/2 | di]} − 1)

= µ2
Yx|di(exp{var[µZx|di+1

| di]} − 1)

= µ2
Yx|di(exp{wΓw>} − 1)

= µ2
Yx|di(exp{σ2

Zx|di − σ
2
Zx|di+1

} − 1) .

(A.10)

The first equality follows from the lognormal µYx|di+1
(3.24). The second equality follows from

iterated expectations and (A.9). The third equality results from σ2
Zx|di+1

being independent

of zxi+1
. The fourth equality is due to (A.8). The last equality is due to the variance

decomposition formula. It follows from (3.19) and (3.23) that µyx|di depends on previously

sampled data di. So, var[µYx|di+1
| di] depends on di.

Hence, from (3.15), Rπ1
(xi+1, di) depends on di for i = 0, . . . , n− 1.
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A.5 Theorem 4.2.1

Proof by induction on i that V π1

i (di) = H[Zx0:i
| di]− Uπ1

i (di) for i = n− 1, . . . , 0.

Base case (i = n− 1):

V π1

n−1(dn−1)

= min
an−1∈A(xn−1)

∫
f(zxn | dn−1) V

π1

n (dn) dzxn

= min
an−1∈A(xn−1)

∫
f(zxn | dn−1) H[Zx0:n | dn] dzxn

= min
an−1∈A(xn−1)

H[Zxn ,Zx0:n | dn−1]−H[Zxn | dn−1]

= min
an−1∈A(xn−1)

H[Zx0:n−1 | dn−1]−H[Zxn | dn−1]

= H[Zx0:n−1 | dn−1]− max
an−1∈A(xn−1)

H[Zxn | dn−1]

= H[Zx0:n−1 | dn−1]− Uπ1

n−1(dn−1) .

The first and second equalities follow from (3.7). The third equality is due to the chain rule

for entropy (Cover and Thomas, 1991). The last equality is due to (3.14). Hence, the base

case is true.

Inductive case: Suppose that

V π1

i (di) = H[Zx0:i
| di]− Uπ1

i (di) (A.11)
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is true. We have to prove that V π1

i−1(di−1) = H[Zx0:i−1
| di−1]− Uπ1

i−1(di−1) is true.

V π1

i−1(di−1)

= min
ai−1∈A(xi−1)

∫
f(zxi | di−1) V

π1

i (di) dzxi

= min
ai−1∈A(xi−1)

∫
f(zxi | di−1)

(
H[Zx0:i

| di]− Uπ1

i (di)
)

dzxi

= min
ai−1∈A(xi−1)

H[Zx0:i−1
| di−1]−H[Zxi | di−1]−

∫
f(zxi | di−1) U

π1

i (di) dzxi

= H[Zx0:i−1
| di−1]− max

ai−1∈A(xi−1)

(
H[Zxi | di−1] +

∫
f(zxi | di−1) U

π1

i (di) dzxi

)
= H[Zx0:i−1

| di−1]− Uπ1

i−1(di−1) .

The first equality follows from (3.7). The second equality follows from (A.11). The third

equality follows from linearity of expectation and the chain rule for entropy (Cover and

Thomas, 1991). The last equality is due to (3.14). Hence, the inductive case is true.

It is clear from above that the induced optimal adaptive policies from solving the cost-

minimizing and reward-maximizing iMASP(1)’s coincide.

A.6 Equation 4.8

Since

f(Zxi+1
= zxi+1

| di) =

exp

{
−1

2
(zxi+1

− µZxi+1 |di)Σ
−1
Zxi+1 |di

(zxi+1
− µZxi+1 |di)

>
}

√
(2π)k | ΣZxi+1 |di |

,
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H[Zxi+1
| di]

= E[− log f(Zxi+1
| di) | di]

= E[log
√

(2π)k | ΣZxi+1 |di |+
1

2
(Zxi+1

− µZxi+1 |di)Σ
−1
Zxi+1 |di

(Zxi+1
− µZxi+1 |di)

> | di]

= log
√

(2π)k | ΣZxi+1 |di |+
1

2
E[(Zxi+1

− µZxi+1 |di)Σ
−1
Zxi+1 |di

(Zxi+1
− µZxi+1 |di)

> | di]

= log
√

(2π)k | ΣZxi+1 |di |+
1

2
E[tr(Σ−1

Zxi+1 |di
(Zxi+1

− µZxi+1 |di)(Zxi+1
− µZxi+1 |di)) | di]

= log
√

(2π)k | ΣZxi+1 |di |+
1

2
tr(Σ−1

Zxi+1 |di
E[(Zxi+1

− µZxi+1 |di)(Zxi+1
− µZxi+1 |di) | di])

= log
√

(2π)k | ΣZxi+1 |di |+
1

2
tr(Σ−1

Zxi+1 |di
ΣZxi+1 |di)

= log
√

(2π)k | ΣZxi+1 |di |+
1

2
tr(I)

= log
√

(2π)k | ΣZxi+1 |di |+
k

2

= log
√

(2πe)k | ΣZxi+1 |di | .

The fourth equality is due to the trace property tr(AB) = tr(BA).

A.7 Equation 4.10

Using the Jacobian method of variable transformation,

f(Yxi+1
| di) = f(Zxi+1

| di)
∏
x∈X ′

dZx
dYx

= f(Zxi+1
| di)

∏
x∈X ′

1

Yx
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where X ′ = {x | x is a location component in xi+1}. So,

H[Yxi+1
| di]

= E[− log f(Yxi+1
| di) | di]

= E[− log

(
f(Zxi+1

| di)
∏
x∈X ′

1

Yx

)
| di]

= E[− log f(Zxi+1
| di) +

∑
x∈X ′

log Yx | di]

= E[− log f(Zxi+1
| di) | di] +

∑
x∈X ′

E[Zx | di]

= log
√

(2πe)k | ΣZxi+1 |di |+ µZxi+1 |di1
> .

The fourth equality is due to the transformation Zx = log Yx and linearity of expectation.

The fifth equality follows from (4.8).

A.8 Generalized Jensen and Edmundson-Madansky bounds

Theorem A.8.1 (Huang et al. (1977)). Let W (ξ) be a convex function of ξ with the

support [a, b] that is subdivided at arbitrary points b0, . . . , bν (i.e., a := b0 < b1 < . . . <

bν =: b). Let Jν and Mν denote the ν-fold generalized Jensen and Edmundson-Madansky

bounds respectively:

Jν
4
=

ν∑
j=1

αjW (βj), Mν
4
=

ν∑
j=0

δjW (bj), ν = 1, 2, . . . , (A.12)

where

αj
4
=

∫ bj

bj−1

f(ξ)dξ, βj
4
=

1

αj

∫ bj

bj−1

ξf(ξ)dξ, j = 1, . . . , ν

δj
4
= αj

(
βj − bj−1

bj − bj−1

)
+ αj+1

(
bj+1 − βj+1

bj+1 − bj

)
, j = 0, . . . , ν
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and α0 := αν+1 := β0 := βν+1 := b−1 := 0. If the partition corresponding to k + 1 is at

least as fine as that corresponding to k for k = 1, . . . , ν − 1, J1 ≤ . . . ≤ Jν ≤ E[W (ξ)] ≤

Mν ≤ . . . ≤M1.

The objective of this section is to construct piecewise-linear functions for bounding the

convex function W (ξ). Note that the expectation of W (ξ) can be expressed as the sum of

conditional expectations weighted on the intervals [b0, b1], . . . , [bν−1, bν ] of the support [b0, bν ]:

E[W (ξ)] =
ν∑
j=1

αj E[W (ξ) | ξ ∈ [bj−1, bj] ] .

For each interval [bj−1, bj], a linear function W j(ξ) can be constructed to lower-bound the

convex function W (ξ) such that it is tangential to W (ξ) at some point βj. So, its gradient

has to be W ′(βj). This gives the linear function

W j(ξ) = W (βj) +W ′(βj){ξ − βj} .

Hence, we can lower-bound E[W (ξ) | ξ ∈ [bj−1, bj] ] by the conditional expectation of W j(ξ)

on the interval [bj−1, bj]:

E[W j(ξ) | ξ ∈ [bj−1, bj] ] = W (βj) +W ′(βj){E[ξ | ξ ∈ [bj−1, bj] ]− βj}

= W j(E[ξ | ξ ∈ [bj−1, bj] ]) .

The largest lower bound can be obtained by differentiating W j(E[ξ | ξ ∈ [bj−1, bj] ]) with

respect to βj and setting it to 0. This gives

βj = E[ξ | ξ ∈ [bj−1, bj] ] =
1

αj

∫ bj

bj−1

ξf(ξ)dξ .
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So, the ν-fold generalized Jensen bound can be derived as follows:

E[W (ξ)] =
ν∑
j=1

αj E[W (ξ) | ξ ∈ [bj−1, bj] ]

≥
ν∑
j=1

αj E[W j(ξ) | ξ ∈ [bj−1, bj] ]

=
ν∑
j=1

αj W (βj)

= Jν .

For each interval [bj−1, bj], a linear function W j(ξ) can also be constructed to upper-

bound the convex function W (ξ) such that it crosses the two extreme points (bj−1,W (bj−1))

and (bj,W (bj)). Then, the linear function is of the form

W j(ξ) =
W (bj)−W (bj−1)

bj − bj−1

ξ +
bj

bj − bj−1

W (bj−1)−
bj−1

bj − bj−1

W (bj) .

We can upper-bound E[W (ξ) | ξ ∈ [bj−1, bj] ] by the conditional expectation of W j(ξ) on the

interval [bj−1, bj]:

E[W j(ξ) | ξ ∈ [bj−1, bj] ] =
W (bj)−W (bj−1)

bj − bj−1

E[ξ | ξ ∈ [bj−1, bj] ] +

bj
bj − bj−1

W (bj−1)−
bj−1

bj − bj−1

W (bj)

=
bj − βj
bj − bj−1

W (bj−1) +
βj − bj−1

bj − bj−1

W (bj)

= W j(βj) .
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So, the ν-fold generalized Edmundsen-Madansky bound can be derived as follows:

E[W (ξ)] =
ν∑
j=1

αj E[W (ξ) | ξ ∈ [bj−1, bj] ]

≤
ν∑
j=1

αj E[W j(ξ) | ξ ∈ [bj−1, bj] ]

=
ν∑
j=1

αj

(
bj − βj
bj − bj−1

W (bj−1) +
βj − bj−1

bj − bj−1

W (bj)

)
=

ν∑
j=0

δjW (bj)

= Mν .

A.9 Lemma 5.3.1

We first show that R(xi+1, di) is convex in zx0:i
for i = 0, . . . , t.

For MASP( 1
k
) (5.1), we know from (3.25) that

R(xi+1, di) =
∑
x∈X

µ2
Yx|di(exp{σ2

Zx|di − σ
2
Zx|di+1

} − 1) .

From (3.19) and (3.23), µ2
Yx|di is the exponential of an affine function of zx0:i

. Hence, it

is convex in zx0:i
((Boyd and Vandenberghe, 2004), pp. 79). From (3.20), the posterior

variances σ2
Zx|di and σ2

Zx|di+1
are independent of zx0:i

. So, exp{σ2
Zx|di − σ

2
Zx|di+1

} − 1 is a con-

stant term. Since the sum with respect to x preserves convexity, R(xi+1, di) is convex in zx0:i
.

For iMASP( 1
k
) (5.1), we know from (4.7) that

R(xi+1, di)
4
= H[Yxi+1

|di] = log
√

2πeσ2
Zxi+1 |di

+ µZxi+1 |di .
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From (3.19), the posterior mean µZxi+1 |di is an affine function of zx0:i
. Hence, it is convex in

zx0:i
((Boyd and Vandenberghe, 2004), pp. 71). From (3.20), the posterior variance σ2

Zxi+1 |di

is independent of zx0:i
. So, log

√
2πeσ2

Zxi+1 |di
is a constant term. Therefore, R(xi+1, di) is

convex in zx0:i
.

We will revert to using Zxi+1
in MASP( 1

k
) and iMASP( 1

k
) (5.1) for `GP (i.e., by transforming

Zxi+1
= log Yxi+1

). The induction proof below holds for both MASP( 1
k
) and iMASP( 1

k
).

Proof by induction on i that Ui(di) is convex in zx0:i
for i = t, . . . , 0.

Base case (i = t): As proven above, R(xt+1, dt) is convex in zx0:t . Then, the pointwise

maximum of R(xt+1, dt) (i.e., maxat∈A′(xt)R(xt+1, dt)) is convex in zx0:t ((Boyd and Vanden-

berghe, 2004), pp. 81). Therefore, Ut(dt) is convex in zx0:t . The base case is true.

Inductive case: Suppose that Ui+1(di+1) is convex in zx0:i+1
. We have to prove that Ui(di) is

convex in zx0:i
.

From (5.1), the expectation under the normal variable Zxi+1
with posterior mean µZxi+1 |di

and variance σ2
Zxi+1 |di

can be expressed in terms of the standard normal variable Z = (Zxi+1
−

µZxi+1 |di)/σ
2
Zxi+1 |di

:

∫
f(Zxi+1

= zxi+1
|di) Ui+1(di, xi+1, zxi+1

) dzxi+1
=

∫
f(z) Ui+1(di, xi+1, µZxi+1 |di+σ

2
Zxi+1 |di

z) dz .

Since di and µZxi+1 |di + σ2
Zxi+1 |di

z are affine in zx0:i
and Ui+1(di+1) is convex in zx0:i+1

by assumption, Ui+1(di, xi+1, µZxi+1 |di + σ2
Zxi+1 |di

z) is convex in zx0:i
because vector com-

position operation preserves convexity1 ((Boyd and Vandenberghe, 2004), pp. 86). Since

1Note that Ui+1(di+1) does not have to be non-decreasing in each argument because di and µZxi+1 |di
+

σ2
Zxi+1 |di

z are affine in zx0:i .
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Ui+1(di, xi+1, µZxi+1 |di+σ
2
Zxi+1 |di

z) is convex in zx0:i
for each z,

∫
f(z) Ui+1(di, xi+1, µZxi+1 |di+

σ2
Zxi+1 |di

z) dz is convex in zx0:i
because integration preserves convexity ((Boyd and Vanden-

berghe, 2004), pp. 79). So,

∫
f(zxi+1

|di) Ui+1(di, xi+1, zxi+1
) dzxi+1

is convex in zx0:i
. From

above, R(xi+1, di) is convex in zx0:i
. Then, the pointwise maximum of R(xi+1, di)+

∫
f(zxi+1

|

di) Ui+1(di, xi+1, zxi+1
) dzxi+1

is convex in zx0:i
. Therefore, Ui(di) is convex in zx0:i

. The in-

ductive case is true.

A.10 Theorem 5.3.1

Proof by induction on i that Uν
i (di) ≤ Uν+1

i (di) ≤ Ui(di) for i = t, . . . , 0.

Base case (i = t): From (5.1) and (5.4), Uν
t (dt) = Uν+1

t (dt) = Ut(dt) = max
at∈A′(xt)

R(xt+1, dt).

Hence, the base case is true.

Inductive case: Suppose that Uν
i+1(di+1) ≤ U ν+1

i+1 (di+1) ≤ Ui+1(di+1) is true. We have to

prove that Uν
i (di) ≤ Uν+1

i (di) ≤ Ui(di) is true.

We will first show that Uν+1
i (di) ≤ Ui(di).

Uν+1
i (di) = max

ai∈A′(xi)
R(xi+1, di) +

ν+1∑
j=1

p[j]

xi+1
Uν+1
i+1 (di, xi+1, z

[j]
xi+1

)

≤ max
ai∈A′(xi)

R(xi+1, di) +
ν+1∑
j=1

p[j]

xi+1
Ui+1(di, xi+1, z

[j]
xi+1

)

≤ max
ai∈A′(xi)

R(xi+1, di) + E[Ui+1(di, xi+1, Zxi+1
) | di]

= Ui(di) .

The first equality is due to (5.4). The first inequality follows from assumption, that is,

Uν+1
i+1 (di, xi+1, z

[j]
xi+1) ≤ Ui+1(di, xi+1, z

[j]
xi+1). The second inequality follows from Lemma 5.3.1
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that Ui+1(di, xi+1, zxi+1
) is convex in zxi+1

for `GP, and the generalized Jensen bound (5.2).

The last equality is due to (5.1).

We will now prove that Uν
i (di) ≤ Uν+1

i (di).

Uν
i (di) = max

ai∈A′(xi)
R(xi+1, di) +

ν∑
j=1

p[j]

xi+1
Uν
i+1(di, xi+1, z

[j]
xi+1

)

≤ max
ai∈A′(xi)

R(xi+1, di) +
ν∑
j=1

p[j]

xi+1
Uν+1
i+1 (di, xi+1, z

[j]
xi+1

)

≤ max
ai∈A′(xi)

R(xi+1, di) +
ν+1∑
`=1

p[`]

xi+1
Uν+1
i+1 (di, xi+1, z

[`]
xi+1

)

= U ν+1
i (di) .

The equalities are due to (5.4). The first inequality follows from assumption, that is,

Uν
i+1(di, xi+1, z

[j]
xi+1) ≤ Uν+1

i+1 (di, xi+1, z
[j]
xi+1)). We need the result that Uν+1

i (di) is convex

in zx0:i
for i = 0, . . . , t for the second inequality to hold. The proof2 is similar to that of

Lemma 5.3.1. Consequently, since Uν+1
i+1 (di, xi+1, zxi+1

) is convex in zxi+1
and Zν+1

xi+1
is ob-

tained by splitting one of the intervals in Zνxi+1
, the second inequality results. The inductive

case is thus true.

The proof of Ui(di) ≤ U
ν+1

i (di) ≤ U
ν

i (di) for i = t, . . . , 0 is similar to the above except

that the inequalities are reversed.

A.11 Theorem 5.3.2

Proof by induction on i that Uν
i (di) ≤ Uπ

1
k

i (di) ≤ Ui(di) for i = t, . . . , 0.

Base case (i = t): Uπ
1
k

t (dt) = R(τ(xt, π
1
k
t (dt)), dt) = max

at∈A′(xt)
R(xt+1, dt) = Uν

t (dt) = Ut(dt).

2The lower approximate problem MASP( 1
k )/iMASP( 1

k ) and upper approximate problem
MASP( 1

k )/iMASP( 1
k ) differ from MASP( 1

k )/iMASP( 1
k ) (5.1) by the non-negative weighted sum (in-

stead of the expectation), which also preserves convexity.
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Hence, the base case is true.

Inductive case: Suppose that Uν
i+1(di+1) ≤ Uπ

1
k

i+1(di+1) ≤ Ui+1(di+1) is true. We have to

prove that Uν
i (di) ≤ Uπ

1
k

i (di) ≤ Ui(di) is true.

We will first show that Uπ
1
k

i (di) ≤ Ui(di).

Uπ
1
k

i (di) = R(τ(xi, π
1
k
i (di)), di) + E[Uπ

1
k

i+1(di+1) | di]

≤ R(τ(xi, π
1
k
i (di)), di) + E[Ui+1(di+1) | di]

≤ max
ai∈A′(xi)

R(xi+1, di) + E[Ui+1(di, xi+1, Zxi+1
) | di]

= Ui(di) .

The first inequality follows from assumption (i.e., Uπ
1
k

i+1(di+1) ≤ Ui+1(di+1)). We will now

prove that Uν
i (di) ≤ Uπ

1
k

i (di). It requires the observation that Uπ
i (di) is convex in zx0:i

for

i = 0, . . . , t, which can be shown in a similar manner as that of Lemma 5.3.1 without the

max operator.

Uν
i (di) = max

ai∈A′(xi)
R(xi+1, di) +

ν∑
j=1

p[j]

xi+1
Uν
i+1(di, xi+1, z

[j]
xi+1

)

= R(τ(xi, π
1
k
i (di)), di) +

ν∑
j=1

p[j]

xi+1
Uν
i+1(di, τ(xi, π

1
k
i (di)), z

[j]
xi+1

)

≤ R(τ(xi, π
1
k
i (di)), di) +

ν∑
j=1

p[j]

xi+1
Uπ

1
k

i+1(di, τ(xi, π
1
k
i (di)), z

[j]
xi+1

)

≤ R(τ(xi, π
1
k
i (di)), di) + E[Uπ

1
k

i+1(di+1) | di]

= Uπ
1
k

i (di) .

The first inequality follows from assumption (i.e., Uν
i+1(di+1) ≤ Uπ

1
k

i+1(di+1)). The second

inequality follows from the observation that Uπ
1
k

i+1(di+1) is convex in zxi+1
and Theorem A.8.1.

The inductive case is thus true.
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A.12 Monotonicity of Lower Heuristic Bound

H i(di) = R(x∗i+1, di) +H i+1(di, x
∗
i+1,E[Zx∗i+1

| di])

≤ max
ai∈A′(xi)

R(xi+1, di) +H i+1(di, xi+1,E[Zxi+1
| di])

≤ max
ai∈A′(xi)

R(xi+1, di) + E[H i+1(di, xi+1, Zxi+1
) | di]

for stage i = 0, . . . , t−1. The second inequality follows from the convexity ofH i+1(di, xi+1, zxi+1
)

in zxi+1
and Theorem A.8.1 (i.e., Jensen bound). Consequently, by Theorem A.8.1,

H i(di) ≤ max
ai∈A′(xi)

R(xi+1, di) +
ν∑
j=1

p[j]

xi+1
H i+1(di, xi+1, z

[j]
xi+1

)

with p[j]
xi+1

and z
[j]
xi+1 defined according to that of MASP( 1

k
) (5.4).

A.13 Monotonicity of Upper Heuristic Bound

max
ai∈A′(xi)

R(xi+1, di) + E[H i+1(di, xi+1, Zxi+1
) | di]

= max
ai∈A′(xi)

∑
x∈X

var[µYx|di,xi+1,exp{Zxi+1} | di] + E[
∑
x∈X

σ2
Yx|di,xi+1,exp{Zxi+1}

| di]

= max
ai∈A′(xi)

∑
x∈X

var[µYx|di,xi+1,Yxi+1
| di] + E[

∑
x∈X

σ2
Yx|di,xi+1,Yxi+1

| di]

= max
ai∈A′(xi)

∑
x∈X

var[µYx|di,xi+1,Yxi+1
| di] +

∑
x∈X

E[σ2
Yx|di,xi+1,Yxi+1

| di]

= max
ai∈A′(xi)

∑
x∈X

var[µYx|di,xi+1,Yxi+1
| di] +

∑
x∈X

(σ2
Yx|di − var[µYx|di,xi+1,Yxi+1

| di])

=
∑
x∈X

σ2
Yx|di

= H i(di)
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for stage i = 0, . . . , t − 2. Since H i+1(di, xi+1, zxi+1
) is convex in zxi+1

, by Theorem A.8.1

(i.e., Jensen bound),

H i(di) ≥ max
ai∈A′(xi)

R(xi+1, di) +
ν∑
j=1

p[j]

xi+1
H i+1(di, xi+1, z

[j]
xi+1

)

with p[j]
xi+1

and z
[j]
xi+1 defined according to that of MASP( 1

k
) (5.4). When i = t− 1,

H t−1(dt−1)

=
∑
x∈X

σ2
Yx|dt−1

≥ Ut−1(dt−1)

≥ Uν
t−1(dt−1)

= max
at−1∈A′(xt−1)

R(xt, dt−1) +
ν∑
j=1

p[j]

xt
Uν
t (dt−1, xt, z

[j]
xt )

= max
at−1∈A′(xt−1)

R(xt, dt−1) +
ν∑
j=1

p[j]

xt
H t(dt−1, xt, z

[j]
xt )

The first inequality follows from Theorem 3.4.1 and the second inequality is due to Theo-

rem 5.3.1.

A.14 Theorem 8.1.1

For the squared exponential covariance function (7.1),

Case of ` = 0:

σZxZu =

 σ2
s + σ2

n if x = u,

0 otherwise.
(A.13)
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Case of ` =∞:

σZxZu =

 σ2
s + σ2

n if x = u,

σ2
s otherwise.

(A.14)

A.14.1 MASP

Recall from Appendix A.4 that the reward function (3.15) is

Rπ1

(xi+1, di) =
∑
x∈X

µ2
Yx|di(exp{σ2

Zx|di − σ
2
Zx|di+1

} − 1) .

Case of ` = 0: If x is a component of x0:i, σ
2
Zx|di = σ2

Zx|di+1
= 0. If x is not a component

of x0:i+1, σ
2
Zx|di = σ2

Zx|di+1
= σZxZx . If x is a component of xi+1 but not a component of x0:i,

σ2
Zx|di = σZxZx and σ2

Zx|di+1
= 0. It follows that Rπ1

(xi+1, di) =
∑
x∈X ′

µ2
Yx(exp{σZxZx} − 1) =∑

x∈X ′
σYxYx where X ′ = {x | x is a location component of xi+1 but not of x0:i}. Hence,

Lemma 3.5.1 is satisfied. As a result, Theorem 3.5.1 holds. Therefore, π1 is non-adaptive.

The reduction of MASP(1) to a single-staged MASP(n) is similar to that of (3.22).

Case of ` =∞: To simplify exposition, we assume that no prior data d0 are available. If x

is a component of x1:i, σ
2
Zx|di = σ2

Zx|di+1
= 0. If x is not a component of x1:i+1,

σ2
Zx|di = σZxZx − Σxx1:i

Σ−1
x1:ix1:i

Σx1:ix

= σ2
n

(
1 +

σ2
s

kiσ2
s + σ2

n

)
.

(A.15)

The second equality follows from the covariance vector Σxx1:i
with components σ2

s , and the

covariance matrix Σx1:ix1:i
with diagonal components σ2

s+σ2
n and off-diagonal components σ2

s .

As a result, Σ−1
x1:ix1:i

has diagonal components
(ki− 1)σ2

s + σ2
n

σ2
n(kiσ2

s + σ2
n)

and off-diagonal components
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− σ2
s

σ2
n(kiσ2

s + σ2
n)

. Similarly,

σ2
Zx|di+1

= σ2
n

(
1 +

σ2
s

k(i+ 1)σ2
s + σ2

n

)

and

µZx|di =
σ2
n

kiσ2
s + σ2

n

µ+
σ2
s

kiσ2
s + σ2

n

zx1:i
1> (A.16)

where µ
4
= µZx = µZu for x, u ∈ X due to the constant mean assumption (Section 3.5.1). If

x is a component of xi+1 but not a component of x1:i, σ
2
Zx|di and µZx|di are calculated in the

same way as that of (A.15) and (A.16) respectively but σ2
Zx|di+1

= 0. Then,

Rπ1

(xi+1, di) =
∑

x∈X exp{2µZx|di + σ2
Zx|di}(exp{σ2

Zx|di − σ
2
Zx|di+1

} − 1)

= exp

{
2

(
σ2
n

kiσ2
s + σ2

n

µ+
σ2
s

kiσ2
s + σ2

n

zx1:i
1>
)

+ σ2
n

(
1 +

σ2
s

kiσ2
s + σ2

n

)}
{
|X ′′|

(
exp

{
σ2
nσ

2
s

(
1

kiσ2
s + σ2

n

− 1

k(i+ 1)σ2
s + σ2

n

)}
− 1

)
+

|X ′|
(

exp

{
σ2
n

(
1 +

σ2
s

kiσ2
s + σ2

n

)}
− 1

)}
= exp

{
2

(
σ2
n

kiσ2
s + σ2

n

µ+
σ2
s

kiσ2
s + σ2

n

zx1:i
1>
)

+ σ2
n

(
1 +

σ2
s

kiσ2
s + σ2

n

)}
{
|X − k(i+ 1)|

(
exp

{
σ2
nσ

2
s

(
1

kiσ2
s + σ2

n

− 1

k(i+ 1)σ2
s + σ2

n

)}
− 1

)
+

k

(
exp

{
σ2
n

(
1 +

σ2
s

kiσ2
s + σ2

n

)}
− 1

)}
.

(A.17)

where X ′′ = {x | x is not a location component of x1:i+1}, |X ′| = k, and |X ′′| = |X−k(i+1)|.

Note that Rπ1

(xi+1, di) is independent of xi+1 and is the exponential of an affine function of



Chapter A. Proofs 172

zx1:i
only. So, we let

Rπ1

(xi+1, di) = αi exp

{
2σ2

s

kiσ2
s + σ2

n

zx1:i
1>
}

where αi is the constant term in (A.17). Consequently, we can swap the maximum and

expectation in (3.14) for stage t− 1 to give

Uπ1

t−1(dt−1) = max
at−1∈A(xt−1)

Rπ1

(xt, dt−1) +

∫
f(zxt | dt−1) U

π1

t (dt) dzxt

= max
at−1

αt−1 exp

{
2σ2

s

k(t− 1)σ2
s + σ2

n

zx1:t−11
>
}

+

max
at

αt exp

{
2σ2

s

ktσ2
s + σ2

n

zx1:t−11
>
}

E

[
exp

{
2σ2

s

ktσ2
s + σ2

n

Zxt1
>
} ∣∣∣∣∣dt−1

]
= max

at−1:t

αt−1 exp

{
2σ2

s

k(t− 1)σ2
s + σ2

n

zx1:t−11
>
}

+

αt exp

{
2σ2

s

ktσ2
s + σ2

n

(
zx1:t−11

> + µZxt |dt−11
> +

σ2
s

ktσ2
s + σ2

n

1ΣZxt |dt−11
>
)}
(A.18)

where µZxt |dt−1 and ΣZxt |dt−1 are independent of xt:t+1, and µZxt |dt−1 is an affine function of

zx1:t−1 only. So, the expression after the maximum operator in the third equality of (A.18)

is independent of xt:t+1 and is the sum of exponentials of affine function of zx1:t−1 only. As

a result, we can swap the maximum and expectation in (3.14) for stage t − 2 to derive

an expression after the maximum operator that is independent of xt−1:t+1 and is the sum

of exponentials of affine function of zx1:t−2 only. We continue swapping the maximum and

expectation in (3.14) for stages t − 3, . . . , 0 until the single-staged equation of MASP(n)

(3.16) is obtained. So, π1 = πn, which is independent of zx1:t+1 . Hence, π1 is non-adaptive.
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A.14.2 iMASP

Recall that the reward function is

Rπ1

(xi+1, di) = H[Yxi+1
| di] = log

√
(2πe)k|ΣZxi+1 |di |+ µZxi+1 |di1

> .

Case of ` = 0: Rπ1

(xi+1, di) = k

{
1

2
log 2πe(σ2

s + σ2
n) + µ

}
. Hence, Lemma 3.5.1 is satisfied.

As a result, Theorem 3.5.1 holds. Therefore, π1 is non-adaptive. The reduction of iMASP(1)

to a single-staged iMASP(n) is similar to that of (3.22).

Case of ` =∞: To simplify exposition, we assume that no prior data d0 are available. Then,

µZxi+1 |di1
> =

∑
x∈X ′

µZx|di = k

(
σ2
n

kiσ2
s + σ2

n

µ+
σ2
s

kiσ2
s + σ2

n

zx1:i
1>
)

where µZx|di is calculated using (A.16). So, Rπ1
(xi+1, di) is independent of xi+1 and is an

affine function of zx1:i
only. Consequently, we can swap the maximum and expectation in

(3.14) for stage t−1. The rest of the proof follows closely to that for MASP in Section A.14.1,

and the single-staged equation of MASP(n) (3.16) is consequently derived. So, π1 = πn,

which is independent of zx1:t+1 . Hence, π1 is non-adaptive.

A.15 Equation 8.2

Using Lemma 8.2.1,

H[Yx2 | d1] =
1

2
log 2πeσ2

Zx2 |d1
+ µZx2 |d1

=
1

2
log 2πeσ2

Zx2 |d1
+ (1− w0(x2)− w1(x2))µZx2 + w0(x2)zx0 + w1(x2)zx1 ,
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which is a linear function of zx1 . Then,∫
Z [i]
x1

f(zx1 | d0) H[Y
x
[i]
2
| d1] dzx1

=

∫
Z [i]
x1

1√
2πσZx1 |d0

exp

{
−

(zx1 − µZx1 |d0)
2

2σ2
Zx1 |d0

}(
c(d0, x1, x

[i]
2 ) + w1(x

[i]
2 )zx1

)
dzx1

=
c(d0, x1, x

[i]
2 ) + w1(x

[i]
2 )µZx1 |d0

2

[
erf

(
zx1 − µZx1 |d0√

2σZx1 |d0

)]
Z [i]
x1

−

w1(x
[i]
2 )σZx1 |d0√

2π

[
exp

{
−

(zx1 − µZx1 |d0)
2

2σ2
Zx1 |d0

}]
Z [i]
x1

(A.19)

where c(d0, x1, x2) =
1

2
log 2πeσ2

Zx2 |d1
+ (1− w0(x2)− w1(x2))µZx2 + w0(x2)zx0 .

A.16 Lemma 9.3.1

Let Σx0:i−1x0:i−1|xi
4
= C + E where C is defined to be a matrix with diagonal components

σ2
Zxk

= σ2
s + σ2

n for k = 0, . . . , i − 1 and off-diagonal components 0, and E is a matrix with

diagonal components −(σZxkZxi )
2/σ2

Zxi
= −(σZxkZxi )

2/(σ2
s + σ2

n) for k = 0, . . . , i− 1 and the

same off-diagonal components as Σx0:i−1x0:i−1|xi (i.e., σZxjZxk |xi = σZxjZxk−σZxjZxiσZxiZxk/σ
2
Zxi

for j, k = 0, . . . , i− 1, j 6= k). Then,

||C−1||2 = ||(σ2
s + σ2

n)−1I||2 =
1

σ2
s + σ2

n

. (A.20)

The last equality follows from σ2
s + σ2

n being the smallest eigenvalue of C. So, 1/(σ2
s + σ2

n)

is the largest eigenvalue of C−1, which is equal to ||C−1||2.

Note that the minimum distance between any pair of location components of x0:i−1 cannot

be less than ωx. So, it can be observed that any component of E cannot have an absolute
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value more than σ2
sξ. Therefore,

||E||2 ≤ iσ2
sξ , (A.21)

which follows from a property of the matrix 2-norm that ||E||2 cannot be more than the

largest absolute component of E multiplied by i (Golub and Van Loan, 1996).

Note that the minimum distance between locations xi and xi+1 as well as between location

xi and any location component of x0:i−1 cannot be less than ωx. So, it can be observed that

any component of Σxi+1x0:i−1|xi cannot have an absolute value more than σ2
sξ

2. Therefore,

|σZxi+1Zxk |xi | ≤ σ2
sξ

2 (A.22)

for k = 0, . . . , i− 1.

Now,

Σxi+1x0:i−1|xiΣ
−1
x0:i−1x0:i−1|xiΣx0:i−1xi+1|xi − Σxi+1x0:i−1|xiΣ

−1
x0:i−1x0:i−1|xiΣx0:i−1xi+1|xi

= Σxi+1x0:i−1|xi(C + E)−1Σx0:i−1xi+1|xi − Σxi+1x0:i−1|xiC
−1Σx0:i−1xi+1|xi

= Σxi+1x0:i−1|xi{(C + E)−1 −C−1}Σx0:i−1xi+1|xi

≤ ||Σxi+1x0:i−1|xi ||22 ||(C + E)−1 −C−1||2

≤
i−1∑
k=0

|σZxi+1Zxk |xi|
2 ||C−1||2 ||E||2

1
||C−1||2 − ||E||2

= i(σ2
s)

2ξ4 ||C−1||2 ||E||2
1

||C−1||2 − ||E||2
.

(A.23)

The first inequality is due to Cauchy-Schwarz inequality and submultiplicativity of the matrix

norm (Stewart and Sun, 1990). The second inequality follows from an important result

in the perturbation theory of matrix inverses (in particular, Theorem III.2.5 in (Stewart

and Sun, 1990)). It requires the assumption of ||C−1 E||2 < 1. This assumption can be

satisfied by ||C−1||2 ||E||2 < 1 because ||C−1 E||2 ≤ ||C−1||2 ||E||2. By (A.20) and (A.21),

||C−1||2 ||E||2 < 1 translates to ξ < ρ/i. The last equality is due to (A.22).
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From (A.23),

Σxi+1x0:i−1|xi(C + E)−1Σx0:i−1xi+1|xi

≤ Σxi+1x0:i−1|xiC
−1Σx0:i−1xi+1|xi + i(σ2

s)
2ξ4 ||C−1||2 ||E||2

1
||C−1||2 − ||E||2

≤ i(σ2
s)

2ξ4 ||C−1||2

(
1 +

||E||2
1

||C−1||2 − ||E||2

)
=

i(σ2
s)

2ξ4

1
||C−1||2 − ||E||2

≤ i(σ2
s)

2ξ4

1
||C−1||2 − ||E||2

≤ i(σ2
s)

2ξ4

σ2
s + σ2

n − iσ2
sξ

=
σ2
sξ

4

ρ
i
− ξ

(A.24)

The second inequality is due to

Σxi+1x0:i−1|xiC
−1Σx0:i−1xi+1|xi ≤ i(σ2

s)
2ξ4 ||C−1||2 ,

which follows from Cauchy-Schwarz inequality and (A.22). The third inequality follows from

(A.20) and (A.21).

We will need the following property of posterior variance, which is similar to (3.20):

σ2
Zxi+1 |x0:i

= σ2
Zxi+1 |xi

− Σxi+1x0:i−1|xiΣ
−1
x0:i−1x0:i−1|xiΣx0:i−1xi+1|xi (A.25)

where Σxi+1x0:i−1|xi is a posterior covariance vector with components σZxi+1Zxk |xi for k =

0, . . . , i − 1, Σx0:i−1xi+1|xi is the transpose of Σxi+1x0:i−1|xi , and Σx0:i−1x0:i−1|xi is a posterior

covariance matrix with components σZxjZxk |xi for j, k = 0, . . . , i− 1.
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By (A.24) and (A.25),

σ2
Zxi+1 |xi

− σ2
Zxi+1 |x0:i

= Σxi+1x0:i−1|xiΣ
−1
x0:i−1x0:i−1|xiΣx0:i−1xi+1|xi

≤ σ2
sξ

4

ρ
i
− ξ

.

A.17 Theorem 9.3.2

Proof by induction on i that Uπ1

i (x0:i) ≤ Ũi(xi) ≤ Uπ1

i (x0:i) +
∑t

s=i ∆(s) for i = t, . . . , 0.

Base case (i = t): By Lemma 9.3.2,

H[Zxt+1 | x0:t] ≤ H[Zxt+1 | xt] ≤ H[Zxt+1 | x0:t] + ∆(t) for any xt+1

⇒ max
at∈A(xt)

H[Zxt+1 | x0:t] ≤ max
at∈A(xt)

H[Zxt+1 | xt] ≤ max
at∈A(xt)

H[Zxt+1 | x0:t] + ∆(t)

⇒ Uπ1

t (x0:t) ≤ Ũt(xt) ≤ Uπ1

t (x0:t) + ∆(t) .

(A.26)

Hence, the base case is true.

Inductive case: Suppose that

Uπ1

i+1(x0:i+1) ≤ Ũi+1(xi+1) ≤ Uπ1

i+1(x0:i+1) +
t∑

s=i+1

∆(s) (A.27)

is true. We have to prove that Uπ1

i (x0:i) ≤ Ũi(xi) ≤ Uπ1

i (x0:i) +
∑t

s=i ∆(s) is true.
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We will first show that Ũi(xi) ≤ Uπ1

i (x0:i) +
∑t

s=i ∆(s). By Lemma 9.3.2,

H[Zxi+1
| xi] ≤ H[Zxi+1

| x0:i] + ∆(i) for any xi+1

⇒ H[Zxi+1
| xi] + Ũi+1(xi+1) ≤ H[Zxi+1

| x0:i] + Uπ1

i+1(x0:i+1) +
t∑
s=i

∆(s) by (A.27) for any xi+1

⇒ max
ai∈A(xi)

H[Zxi+1
| xi] + Ũi+1(xi+1) ≤ max

ai∈A(xi)
H[Zxi+1

| x0:i] + Uπ1

i+1(x0:i+1) +
t∑
s=i

∆(s)

⇒ Ũi(xi) ≤ Uπ1

i (x0:i) +
t∑
s=i

∆(s) .

We will now prove that Uπ1

i (x0:i) ≤ Ũi(xi). By Lemma 9.3.2,

H[Zxi+1
| x0:i] ≤ H[Zxi+1

| xi] for any xi+1

⇒ H[Zxi+1
| x0:i] + Uπ1

i+1(x0:i+1) ≤ H[Zxi+1
| xi] + Ũi+1(xi+1) by (A.27) for any xi+1

⇒ max
ai∈A(xi)

H[Zxi+1
| x0:i] + Uπ1

i+1(x0:i+1) ≤ max
ai∈A(xi)

H[Zxi+1
| xi] + Ũi+1(xi+1)

⇒ Uπ1

i (x0:i) ≤ Ũi(xi) .

Hence, the inductive case is true.

A.18 Theorem 9.3.3

The following lemma is needed for the proof:

Lemma A.18.1. Ũi(xi) ≤ U eπ
i (x0:i) +

∑t
s=i ∆(s) for i = 0, . . . , t.

Proof by induction on i that Uπ1

i (x0:i) ≤ U eπ
i (x0:i) +

∑t
s=i ∆(s) for i = t, . . . , 0.
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Base case (i = t):

Uπ1

t (x0:t) ≤ Ũt(xt) ≤ U eπ
t (x0:t) + ∆(t) .

The first inequality is due to Theorem 9.3.2. The second inequality follows from Lemma A.18.1.

Hence, the base case is true.

Inductive case: Suppose that

Uπ1

i+1(x0:i+1) ≤ U eπ
i+1(x0:i+1) +

t∑
s=i+1

∆(s) (A.28)

is true. We have to prove that Uπ1

i (x0:i) ≤ U eπ
i (x0:i) +

∑t
s=i ∆(s) is true.

Uπ1

i (x0:i) ≤ Ũi(xi)

= H[Zτ(xi,eπi(xi)) | xi] + Ũi+1(τ(xi, π̃t(xi)))

≤ H[Zτ(xi,eπi(x0:i)) | x0:i] + ∆(i) + Ũi+1(τ(xi, π̃t(xi)))

≤ H[Zτ(xi,eπi(x0:i)) | x0:i] + ∆(i) + U eπ
i+1(x0:i+1) +

t∑
s=i+1

∆(s)

= U eπ
i (x0:i) +

∑t
s=i ∆(s) .

The first inequality is due to Theorem 9.3.2. The first equality follows from (9.4). The

second inequality follows from Lemma 9.3.2. The third inequality is due to Lemma A.18.1.

Hence, the inductive case is true.

A.19 Lemma A.18.1

Proof by induction on i that Ũi(xi) ≤ U eπ
i (x0:i) +

∑t
s=i ∆(s) for i = t, . . . , 0.
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Base case (i = t):

Ũt(xt) = max
at∈A(xt)

H[Zxt+1 | xt]

= H[Zτ(xt,eπt(xt)) | xt]
≤ H[Zτ(xt,eπt(x0:t)) | x0:t] + ∆(t)

= U eπ
t (x0:t) + ∆(t) .

The first equality follows from (9.4). The inequality follows from Lemma 9.3.2. The last

equality is due to (9.7). So, the base case is true.

Inductive case: Suppose that

Ũi+1(xi+1) ≤ U eπ
i+1(x0:i+1) +

t∑
s=i+1

∆(s) (A.29)

is true. We have to prove that Ũi(xi) ≤ U eπ
i (x0:i) +

∑t
s=i ∆(s) is true.

By Lemma 9.3.2,

H[Zxi+1
| xi] ≤ H[Zxi+1

| x0:i] + ∆(i) for any xi+1

⇒ H[Zxi+1
| xi] + Ũi+1(xi+1) ≤ H[Zxi+1

| x0:i] + U eπ
i+1(x0:i+1) +

t∑
s=i

∆(s) by (A.29) for any xi+1

⇒ H[Zτ(xi,eπi(xi)) | xi] + Ũi+1(τ(xi, π̃t(xi))) ≤ H[Zτ(xi,eπi(x0:i)) | x0:i] + U eπ
i+1(x0:i+1) +

t∑
s=i

∆(s)

for xi+1 = τ(xi, π̃t(xi)) = τ(xi, π̃i(x0:i))

⇒ Ũi(xi) ≤ U eπ
i (x0:i) +

t∑
s=i

∆(s) .

Hence, the inductive case is true.
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