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Abstract 
 
A sensorimotor controller has been implemented to enable a mobile robot to learn 
its motion control autonomously and perform simple target-reaching movements. 
This controller is able to perform fine motion by reducing its self-positioning error 
and also, reach a designated target location with minimum delay. The control 
architecture is in the form of a neural network known as the Self-Organizing Map. 
Besides implementing the motor control and the online learning algorithms, the 
essentiality of a pre-learning phase is also evaluated. Then, we explore the 
possibility of incorporating a novel concept known as Local Linear Smoothing into 
our batch training algorithm; this notion allows the elimination of the boundary bias 
phenomenon. Lastly, we suggest a simple approach to learning in an obstacle-
ridden environment. 
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Chapter 1 

INTRODUCTION 

 
This chapter identifies the problem domain and the specific objectives to be achieved. The 

structure of this thesis report is also presented. 

 
1.1 Project Motivation 

In recent years, an increasing amount of mobile robotics research has focused on the 

fundamental problem of autonomous goal-directed navigation in unstructured 

environments; this is essential for mobile robots operating in hostile conditions, like space, 

sea and contaminated habitats, as well as in the emerging field of service robotics, that 

include waste management [39], cleaning [55], luggage transfer, mail delivery, 

reconnaissance and handicap assistance. Nevertheless, a trivial solution cannot be derived 

due to the following impediments. 

• Unstructured and dynamically changing navigation domain. 

• Mobility constraints of the mobile robot such as non-linear motor control and 

degrees of freedom. 

• Presence of systematic and non-systematic noise in the environment and the 

robot sensors and actuators [32]. 

It would therefore be a challenging task to evolve a robust and flexible navigation 

technique, which circumvents these constraints. To do so, it is our belief that tremendous 

insights can be drawn from biological agents, which have already achieved this task; the 
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ability to successfully move through a novel environment is imperative to the survival of 

humans and animals. If the navigation capabilities of a mobile robot hinge on this analogy, 

it must be endowed with the ability of autonomous or unsupervised learning. This should 

be the primary inspiration for any of its navigational tasks. 

Goal-directed navigation is a problem that is too complex to be tackled en bloc. Logically, 

we should employ a divide-and-conquer strategy to solve this problem; we can 

hierarchically and modularly decompose it into high-level, complex modules such as self-

localization, map building, path planning and feature extraction and low-level, primitive 

motor control modules. This project focuses on the implementation of a low-level motor 

control module that enables a mobile robot to learn its motion control autonomously and 

perform simple target-reaching movements such as beacon aiming [40] or homing [6]. This 

will establish the most fundamental, yet crucial, foundation for subsequent higher-level 

modules to be mounted. 

 
1.2 Research Scope and Objectives 

Based on the reasoning of our motivation, the mobile robot can acquire its motor control 

skill through unsupervised learning. The implementation of the motor controller should 

achieve the following criteria. 

• Learning Method :- The motor controller must be able to learn the association 

between the sensory input and the motor output without an external teacher. A 

fast rate of convergence in learning is also desired. 

• Motor Control Performance :- The robot must be able to perform fine motion 

to reduce its self-positioning error and it must also be able to reach a designated 
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target location with minimum delay. These two requirements are in fact our 

performance metrics for the evaluation of our motor controller. 

• Noise Tolerance :- The motor controller must be robust against systematic and 

non-systematic noise and still achieve the two above-mentioned objectives. To 

do this, it must be adaptable to environmental noise and changes and resistant 

to noise in the robot sensors and actuators. 

The objectives stated above are intended for general mobile robotics applications and by 

no means exhaustive. Specific applications may require additional constraints. 

 
1.3 Thesis Overview 

Chapter 1 Introduction identifies the problem domain and the specific objectives to be 

achieved. 

Chapter 2 Background and Related Work describes the research direction and some 

critical design considerations to evolve the unsupervised learning and motor control 

mechanisms. Following that, our proposed method is differentiated from other related 

work. 

Chapter 3 Characteristics of Mobile Robot gives an overview of the robotic tools, the 

development environments and the resource constraints in the implementation of the 

sensorimotor controller. The approaches to circumvent these constraints are also discussed. 

Chapter 4 Network Architecture of Sensorimotor Controller presents an overview of 

the network architecture as well as the details of our sensorimotor control and online 

unsupervised learning mechanisms. The need of the random activity generator to bootstrap 
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the learning process is also evaluated. Lastly, we introduce a novel concept of local linear 

smoothing into our pre-learning phase and our batch training algorithm. 

Chapter 5 Simulation Results and Analysis compares the performance of our online 

unsupervised learning algorithm, the inclusion of the pre-learning phase and our batch 

training algorithm using local linear smoothing. The real Khepera robot is also tested, 

based on one time step. 

Chapter 6 Learning in an Obstacle-Ridden Environment suggests a mechanism to fuse 

our sensorimotor controller and the Braitenberg’s vehicle type 3-C obstacle avoidance 

behavior. 

Chapter 7 Discussion, Future Work and Conclusion does an analytical comparison with 

two pieces of related work. Future research directions have been proposed and the 

conclusion sums up my contributions to this project. 
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Chapter 2 

BACKGROUND AND RELATED WORK 

 
The background section describes the research direction and some critical design 

considerations to evolve the unsupervised learning and motor control mechanisms. 

Following that, we differentiate our proposed method with other related work. 

 
2.1 Background 

2.1.1 Motor Control in Mobile Robots 

Recent work in behavioral robotics has shown much success in low-level navigational 

tasks [41, 42, 43, 44, 45, 46, 47]. Our low-level motor control task can similarly be 

translated into a simple, low-level navigational behavior, known as homing1, which is 

predominant in most animals [1]. However, it is a mandatory skill towards the acquisition 

of more complex navigational behaviors [27, 28]; the general problem of learning to 

navigate between a given number of arbitrary locations or landmarks can be decomposed 

into simpler navigational components between one-one, many-one and one-many locations 

as shown in Fig. 1. 

  Destination Locations 
  One Many 

 
One 

 

Simple 
Interlocation 
Navigation 

Example: Foraging 
Source 

Locations  
Many 

 
Example: Homing General-Purpose 

Navigation 
    

Fig. 1 A hierarchical decomposition of the general navigation problem. 

 
 

________________________________________ 
1It can be defined as the ability of an autonomous agent to navigate to a particular “home” location from arbitrary 
locations within a specific environment. 
 



Mobile Robots That Learn to Navigate  6 
Chapter 2 Background and Related Work 

To acquire this low-level homing behavior, the mobile robot must gain knowledge of its 

motion control, otherwise known as kinematics, in a given environment. This relates to 

sensorimotor coordination2. How then can the mobile robot be acquainted with its own 

kinematics? 

Our research rooted off by examining the control architectures of robot arms [5, 8, 9, 14, 

15, 36, 37] to identify the underlying concepts behind automatic end effector positioning; 

these concepts may be applicable to our cause. In doing so, we have to observe that the 

direct translation of learning and sensorimotor control techniques from robot arms to 

mobile robots is not possible due to several critical constraints. Let me illustrate a few 

examples to substantiate my claim. 

Firstly, the arbitrary target location of a mobile robot is specified in a 2D environment, 

instead of a 3D environment for the robot arm. Secondly, the workspace of the mobile 

robot is not limited by the robot’s structure, unlike that of a robot manipulator; the mobile 

robot must make movements to targets at arbitrary distances and angles. In my opinion, it 

is not feasible to train the mobile robot to sample all possible movements in an arbitrarily 

large workspace (global map space) due to scalability of network size and training time. 

Thus, we have adopted an incremental movement approach (local perceptual space) such 

that each resulting movement is held over a short space-time interval. When the target is 

beyond the maximum distance and/or angle in the local perceptual space, our motor 

controller generates wheel speeds that will move the robot to the largest distance and/or 

angle in this space. As a result, the robot will incrementally turn and move towards the 

target at the maximum rate. Once the target falls within this space, the motor wheel speeds 

will be reduced until the robot comes to a stop over the target.
________________________________________ 
2This term refers to the association of signals coming from various sensory modalities, such as audition [59], vision [7], 
sonar [29], infrared [30] and even smell [31], to motor commands in view of a given task, such as homing [7] or obstacle 
avoidance [30]. 
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Thirdly, the mobile robot does not possess redundant degrees of freedom; we do not need 

to deal with issues of redundancy such as smoothness of robot movements, rate of reaction 

and fatigue [10]. Lastly, the mobile robot cannot generate arbitrary movements; it cannot 

be displaced laterally with a single movement. 

We have also realized that the classical approach to motor control is to assume an “a 

priori” model of correlation between the sensors and motor commands; it is a 

mathematical model built on the foundation of physical laws of kinematics. The forward 

kinematics (motor commands to sensors) is utilized in a popular localization or self-

positioning technique known as dead reckoning3. Based on proprioceptive sensor data such 

as displacement encoders, the momentary position of the mobile robot, relative to a known 

start position, can be computed using simple geometric equations (a forward kinematics 

model) shown in [32]. This method cannot be employed for long distances as it suffers 

from various drawbacks; the kinematics model always has some inaccuracies, encoders 

have limited precision and external sources affecting the robot’s motion, such as wheel 

slippage, are not observable by the sensors. Thus, the self-positioning error accumulates 

over time. The inverse kinematics (sensors to motor commands) can be represented by 

mathematical equations [5] and it also suffers the same drawbacks. The “a priori” model 

denotes the ideal kinematics behavior, observed only in simulated environments, which is 

extremely noise sensitive. In reality, the real robot deviates significantly from this model. 

How can we produce a replica closer to the true model of the real robot? The solution lies 

in the next section. 

 

________________________________________ 
3Dead reckoning refers to the process of updating an estimate of one’s current position based on self-knowledge of time, 
speed and direction of self-motion. 
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2.1.2 Learning Paradigms 

An alternative approach to the “a priori” model has to be considered; the “a posteriori” 

model is built on observed data of the correlation between exteroceptive sensor 

perceptions, such as sonar or vision, and motor actions collected during the robot’s 

navigation. Therefore, the model does not require knowledge of the robot’s kinematics. 

These pairs of real-time perception-action data are used to estimate the parameters of the 

model, thus accounting for the noisy components. The final product of this model can even 

move a “semi-handicapped” robot correctly to its destination. This whole approximation 

problem is in fact a learning process. It is our intention to investigate and implement this 

process. 

Should this learning process be supervised or unsupervised? Supervised learning methods 

are straightforward and relatively easy to implement but there are serious shortcomings. 

Firstly, the external teacher’s knowledge used in the supervised training is usually varied, 

in the case of multiple external supervisors, and biased in terms of distribution, sequence 

and selection of the training samples in the learning set. Secondly, it is not adaptable to 

novel environments. The whole learning process has to be repeated with the involvement 

of the external teacher. On the contrary, unsupervised learning techniques have overcome 

such problems due to its robustness and flexibility. No external supervisor is required, thus 

eliminating the bias in the training samples. As mentioned before in Section 1.1, 

unsupervised learning allows the mobile robot to adapt easily to a novel environment. 

Thus, unsupervised learning will be used to train our motor controller.  

Many unsupervised learning algorithms have been dedicated to the application of 

sensorimotor coordination on robot manipulators and mobile robots. They include 
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evolutionary optimization or genetic algorithms [33], rule-based algorithms [34], fuzzy 

logic [35], artificial neural networks [5, 6, 7, 8, 9, 14, 15, 30, 36, 37, 48, 49, 50, 60] and 

reinforcement learning [38]. The choice of the learning algorithm must take into 

consideration all the objectives stated in Section 1.2. In particular, artificial neural network 

fits our purpose extremely well; it replicates the cerebellum of a mammalian brain, which 

performs sensorimotor coordination. We shall now discuss how and why this is so. 

Our approach stems from the process of circular reaction in Fig. 2, presented by M. 

Kuperstein et al. [3]. The current use of circular reaction is an extension of one of J. 

Piaget's development stages [4]. This unsupervised learning-by-doing cycle operates in two 

phases. The initial training phase involves the learning of the sensorimotor relations via 

correlations between input and output signals while the performance phase uses the learned 

correlations to evoke the correct motor signals to move to the target location. The 

sequences within these two phases are briefly mentioned in Fig. 2. 
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Visual 
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Fig. 2 The circular reaction. Self-produced motor signals are 
 correlated with sensory signals. The sequence for training is a, 
 b, c, d, (e+f), g. Correlated learning is done in step g.  After this 
 correlation is achieved, sensory input signals can evoke 
 associated motor  output signals to accurately move to the 
 target location. The sequence for performance is c, d, e, b. 

 

From the same diagram, we can observe two issues of interest. Firstly, how do we integrate 

the input map, weight map and target map modules so that the training process that 
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interlinks these modules can be successful and efficient in producing an accurate weight 

map? In other words, how should we implement the sensorimotor control and learning 

mechanisms? Secondly, how effective is the random activity generator in bootstrapping the 

learning process? Can we eliminate this random activity generator, restructure the usual 

procedures in the two phases, such that both phases run concurrently in a “split brain” 

fashion, and still achieve a reasonable quality in learning? We shall now investigate the 

first problem and postpone the discussion of the second problem to Chapter 4. 

 
2.1.3 Self-Organizing Map 

To solve the first problem, various neural network architectures for mobile robots have 

been proposed [5, 6, 7, 60]. They have a common goal, which is to autonomously learn the 

inverse kinematics of a mobile robot. An accurate weight map, previously shown in Fig. 2, 

must be obtained to verify the correctness of their solutions. Their approaches rely on a 

crucial concept known as “linearization”. It suggests that the non-linear sensorimotor 

transformation can be decomposed into local linear mappings recorded by the weight map. 

Thus, “linearization” is a viable adoption for our purpose. Our problem can now be 

narrowed down to the representation and interaction of the input map, weight map and 

target map modules in Fig. 2 to facilitate the learning process. This calls for the need to 

establish a map representation, which can assimilate learning and sensorimotor control. 

Our biologically motivated framework is in the form of a self-organizing neural network, 

which performs “linearization”. It takes inspiration from a robot arm experiment on end 

effector positioning realized by K.J. Schulten et al. [8, 9, 36, 37], which utilizes an 

extension of T. Kohonen’s Self-Organizing Map Algorithm [2]. T. Kohonen’s Self-
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Organizing Map (SOM) is an unsupervised learning neural network method that produces 

a similarity graph of input data. It consists of a finite set of models, each approximating a 

local disjoint region in the open, unlimited set of input data. These models are associated 

with nodes or neurons that are arranged as a regular, usually two-dimensional grid. They 

are adapted by a learning process that automatically orders them on the two-dimensional 

grid along with their mutual similarity. The algorithm operates recursively in two simple 

steps. Upon each presentation of input data vector, it performs a search for the neuron with 

the closest4 model vector. This “winning” neuron and its neighboring neurons are adapted 

by learning rules. Details of this algorithm will be presented in Chapter 4. 

Two immediate advantages of SOM can be observed. Firstly, it performs dimensionality 

reduction of the input data. Secondly, SOM can first be computed using any representative 

subset of old input data and new input items can be mapped straight into the most similar 

models without re-computation of the whole mapping. SOM has been widely utilized in 

several fields such as machine vision and image analysis, robotics, data processing, 

linguistic and AI problems, neurophysiological research and etc. Examples of these 

applications can be found in [53] and [54], which are bibliographies used for our search of 

SOM-related materials. [51, 52] are the other SOM resources used for the implementation 

of our motor controller. 

Apart from the SOM weight map, the representation of sensory input map and the motor 

target map must also be determined. Should the sensory input map be the global map space 

of the environment or the local perceptual space of the mobile robot? The global map 

space is typically employed by the traditional planner-based or deliberative strategies. 

They rely on this centralized world model to verify sensory information and

________________________________________ 
4The distance measure may be, for instance, Manhattan or Euclidean distance. 
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generate actions in the world [48, 49, 50]. The information in the world model is used by 

the planner to produce the most appropriate sequence of actions for the robot. Thus, it is 

not a direct result of sensory data but rather an outcome of a series of sense-model-plan-act 

stages. Uncertainties in sensing and action and environmental changes can require frequent 

re-planning, which amounts to high computational cost. Planner-based approaches have 

been criticized for scaling poorly with the complexity of real-world problems, and making 

real-time reaction to sudden world changes impossible. 

Conversely, the local perceptual space is utilized by reactive approaches, which can 

achieve real-time performance in autonomous travel [5, 7, 60]. They maintain no internal 

models. Typically, they apply a simple functional mapping between sensory stimuli and 

appropriate motor responses, usually in the form of a lookup. They have the same theme of 

constant-time run-time direct encodings of the appropriate action for each input state. 

These mappings rely on a direct coupling between sensing and action and fast feedback 

from the environment. Thus, these strategies for low-level sensorimotor control tasks have 

proven effective in reacting to dynamic changes in the environment. 

How should the motor target map be represented? Should it be discretized into specific, 

state-based events such as ‘move forward’, ‘move backwards’, ‘turn left’, ‘turn right’, 

‘rotate on the spot’ and so on [30]? Recall that one of our objectives in Section 1.2 requires 

fine motion in the mobile robot to reduce its self-positioning error. Clearly, the previous 

representation does not permit this. Therefore, a continuous motor output space is 

adopted. 
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2.2 Related Work 

2.2.1 Zalama, Gaudiano and Coronado (NETMORC) 

A Neural NETwork MObile Robot Controller (NETMORC) is introduced by E. Zalama et 

al. [5, 60] to autonomously learn the motion control of the mobile robot. The network 

architecture essentially comprises of two arrays of 1-D neurons encoding distance and 

angle of the robot displacement and a 2-D grid of neurons encoding the motor wheel 

velocities. Each neuron in the two arrays has connection weights to every neuron in the 2-

D grid. During the learning phase, random motor wheel velocities are generated to move 

the robot and the corresponding displacements are observed. Each velocity-displacement 

pair is pattern-matched against the velocity information encoded in the 2-D grid neurons 

and the distance and angle information encoded in the two respective sets of 1-D array 

neurons. The connection weights of the “fired” neurons in the 1-D arrays are trained 

accordingly using Grossberg’s outstar learning rule. In the performance phase, the trained 

network is used to produce corresponding motor wheel velocities from the input of 

distance and angle to target. If the target lies beyond the local perceptual space of the robot 

established in the learning phase, it would need a few incremental moves to reach the 

target. At the end of each move, the sensory system updates the robot with its new position 

with respect to the target so that the next move can be determined. This goes on until the 

robot stops over the target location. This robot controller has been tested in simulations and 

implemented on the Robuter robot. 

 
2.2.2 Versino and Gambardella (Invertible Kohonen Map) 

C. Versino and L.M. Gambardella [7] demonstrated the utilization of a two-dimensional
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Self-Organizing Map (SOM) to autonomously learn the motion control of the mobile 

robot. Each neuron in the SOM encodes a motor weight and a displacement weight. During 

the learning phase, a set of training samples is collected by randomly generating motor 

wheel speeds to move the robot and observing the corresponding displacements. The motor 

component in each training sample is used to determine the “winning” neuron by its 

closeness to the neuron’s motor weight. The weights of this node and of its neighbors are 

adapted to the training sample through the learning rules of SOM. We can observe that the 

SOM is trained in the forward mode on a transformation from the space of motor 

commands to the space of sensory perceptions. In the performance phase, the SOM is used 

in backward mode. To move to a designated target location, the distance and the angle of 

the target with respect to the robot serve as the sensory input to the SOM. The network 

returns a motor output to move the robot towards the target. If the target lies beyond its 

local perceptual space, the same approach, as discussed previously, is adopted. The 

network performance has been tested both in a computer simulation and on the Khepera 

robot. 

 
2.2.3 Our Proposed Method (‘Extended’ Self-Organizing Map) 

These two pieces of related work have been selected for comparison because their design 

considerations are similar to ours: unsupervised learning, reactive motion control, local 

perceptual sensory space, and continuous motor output space. However, our work can be 

significantly distinguished from theirs by the following key features. 

• Concurrency of Learning and Performance Phases :- The two pieces of 

related work segregate the learning phase and the performance phase such that 
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the former phase precedes the latter. We argue that the two phases can be 

integrated to operate simultaneously. The simulation results in Chapter 5 prove 

its feasibility. 

• Segmentation of Input Space :- “Linearization” results in the discretization 

of the sensory input space into small disjoint regions, each governed by a 

neuron. How should the space be segmented? In NETMORC, the input space is 

manually segmented into a fixed, regular topology. This implies that the 

network has no self-organizing power. Thus, a low self-positioning error can 

only be achieved by adding enough neurons. Our proposed method takes on an 

irregular, self-organizing topology, which is automatically shaped by the robot’s 

motion in its environment. This has an effect of dense partitioning in the 

sensory area used for fine positioning and sparse partitioning in the sensory area 

that is rarely traversed. This self-organizing ability thus improves the 

performance and scalability of the network. 

• Immediate Output of Network :- NETMORC and the Invertible Kohonen 

Map maps the sensory input space directly to the motor output space. Our 

method assumes a different perspective; the direct output of our SOM 

characterizes the transformation component that is responsible for the mapping 

from the sensory input space to the motor output space. We argue that this can 

overcome certain limitations of the existing approaches, which shall be 

discussed in Chapter 7. 
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• Online vs. Batch Training :- Our method is the first to introduce the notion of 

online learning and batch training to the motion control of a mobile robot. Our 

work implements and compares the two forms of learning.  

A more detailed analytical comparison of our proposed method with these two pieces of 

related work will be made in Chapter 7. 
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Chapter 3 

CHARACTERISTICS OF MOBILE ROBOT 

 
This chapter gives an overview of the robotic tools, the development environments and the 

resource constraints in the implementation of the sensorimotor controller. The approaches 

to circumvent these constraints are also discussed. 

 
3.1 Khepera : A Miniature Mobile Robot 

3.1.1 Technical Specifications 

This mini-mobile robot is developed at MicroComputing and Interface Lab (LAMI) – 

Swiss Federal Institute of Technology, Lausanne (EPFL) by Edoardo Franzi, Paolo Ienne 

and Francesco Mondada [26]. It is a commercial product distributed by K-team S.A. 

(http://www.k-team.com). Fig. 3 describes its basic configuration. 

  

 
 

COMPONENT DESCRIPTION 
Processor Motorola 68331 microcontroller. 
RAM 256 Kbytes. 
ROM 128 or 256 Kbytes. 
Motion 2 DC motors with incremental encoder of about 12 pulses/mm resolution. 
Sensors 8 IR proximity and light sensors with range of 4-5 cm and 15-16 cm respectively. 
Power Rechargeable NiCd batteries, allowing 30 min. of maximal activity, or external power supply. 
Extension Bus Additional turrets for vision, manipulator and inter-robot communications can be mounted (Fig. 4 and Fig. 5 on the next 

page). 
Size Diameter: 55 mm. 

Height: 30 mm. 
Weight About 70 g. 

 
Fig. 3 Technical Specifications of Khepera robot. 

 

http://www.k-team.com/
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Fig. 4 Khepera robot with  
 stereoscopic vision and 
 gripper turrets. 

Fig. 5 Khepera robot with a twin 
 panoramic vision turret. 

 
3.1.2 Features and Advantages 

• Easy to Use and Control :- Robotic tool for research, experiments and prototyping. It 

allows quick entry into collaborative, evolutionary and neurobiological robotics 

research and also, real world testing of algorithms developed in simulation for 

trajectory planning, obstacle avoidance, wall following, target searching, collective 

behavior and hypotheses on behavior processing, among others. The Khepera robot can 

be manipulated easily. 

• Easy to Install :- It functions like a plug and play device. The serial connection 

between the PC and the robot can be made with an aerial cable without problems. 

• Low Cost :- The environment is also easy and cheap to build. 

• Robust :- There is no need of an electronic engineer to be consulted every week. 

• Compact :- The user can perform experiments on a small area (i.e. a table top) with 

everything at hand (PC, robot, environment). With similar functionality to larger robots 

used in research and education, the miniature robot is relatively much more robust than 

a big one. Imagine the Khepera robot, 55 mm in diameter, running against a wall at a 

speed of 50 mm/s. Now compare it with a big robot, 1 m in diameter, going against a 
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wall at a speed of 1m/s. Will the wall or the robot survive? Thus, its compactness 

makes it practical to use, as it does not pose any danger. 

• Easy Transportability :- To ship or to take the robot to a conference won't be a 

problem anymore. 

• Modularity :- At software level, an efficient library of on-board applications for 

controlling the robot, monitoring experiments, and downloading new software has 

already been implemented. Refer to Section 3.1.3 for more details. At hardware level, a 

large number of extension modules (Fig. 4 and Fig. 5) makes it adaptable to a wide 

range of experimentation. 

• High Computational Power 

• Easy to Program :- A number of standard or graphical software environments has 

already been developed. Refer to Section 3.1.3 for more details. 

3.1.3 Development Methodology and Environments 
 

 
There are three possible configurations of the development environments. 

1. Cross Compiler Method 
 

 

The oldest and most well known development 
methodology consists of building the binary code 
for the robot on the PC, transferring it to the 
robot and running it on the robot. A library of 
procedures is available to control the robot 
hardware; wheel speed and position control, 
sensor reading, multitasking management and 
many other features are included in the BIOS of 
the robot and can be used from a C program. 
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This configuration has the advantage of allowing the robot to run independently from the 
computer, but the disadvantage is that the user has no access to the running code. This is 
very problematic for debugging the program and for understanding the tested control 
program. One way to resolve this is to test and debug the control program on Webots: a 
mobile robot simulator (Section 3.2) first before running it on the real robot. This 
simulator automatically builds the binary code from the control program and directly 
downloads the binary code to the real robot. 
  
2. Remote Control Method 
 

 

Most of the actual users of these robots work by 
running the control program on a PC in their own 
programming environment (C, C++, SysQuake, 
LabVIEW, MATLAB, Webots) by controlling 
the robot through a standard RS232 serial link. 
Khepera has a running mode called "SerCom", 
where all primitive functionalities of the robot, 
like wheel speed and sensor reading, can be 
controlled with simple ASCII commands sent on 
the RS232 serial line. 

This configuration splits the control of the robot between the local processor placed on the 
robot and the host PC. The robot processor manages all strict real-time tasks (motor 
control) and the PC manages the higher-level, more computationally demanding tasks. 
Having this part of the control program on the PC allows an easier development (known 
environment and good debug tools) and a much better understanding of the system due to 
the possibility of a much better interaction (graphical representation, mouse and keyboard 
which are not present on the robot).  
Refer to [58] and [61] for examples of this configuration. 
  
3. ‘Combination of Both’ Method 
 

 

When users start to understand their algorithms 
and want another form of distribution of the 
tasks between robot and host computer such 
that the robot assumes a higher-level role now, 
they use a combination of the two previous 
methodologies. Both the robot and the host PC 
have their own set of running code, which 
communicates via the serial link. This 
configuration is very powerful, but needs a 
good knowledge of the system. 

For example, our unsupervised sensorimotor controller may be hosted entirely on the 
robot while the PC conducts the high-level navigational tasks such as localization, map 
building, path planning and feature extraction. The PC instructs the robot via the serial 
link on the path to head while the robot sometimes feedbacks the sensory inputs to the PC 
to be stored as signatures for place recognition. 
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3.2 Webots : A Mobile Robot Simulator 

Webots 2.0 is a realistic 3D mobile robots simulator from Cyberbotics 

(http://www.cyberbotics.com) [25] intended for use in the fields of autonomous agents, 

neurobiological modeling, intelligent robotics, evolutionary robotics, computer vision, and 

artificial intelligence research. It is a highly realistic modeling of Khepera, in terms of 

noise in sensors and actuators, with extension turrets for vision and manipulator. The user 

can test, debug and understand their control algorithms through the virtual robots using a 

C/C++ library before downloading onto the real robots via this simulator. A 3D 

environment editor allows the customization of various robotics scenarios shown in Fig. 6 

and Fig. 7. 

 
 Fig. 6 Webots: the virtual Khepera robot in town. 
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 Fig. 7 Webots: the virtual Khepera robots in RoboSoccer. 

 
The flexibility of this simulator allows the setup of all three configurations mentioned in 

Section 3.1.3. 

 
3.3 Hardware and Software Limitations 

Currently, the only available implementation tools are the real Khepera robot in its basic 

configuration (Fig. 3) and the Webots 2.0 simulator. There is no on-board or external 

vision system available for use. The eight on-board IR sensors are close range sensors, 

effective only for real-time reactive obstacle avoidance. Mid or long range sensors (vision, 

sonar) are very much necessary for the successful learning of homing behavior. Our local 

perceptual space approach only allows the performance assessment of the controller on the 

real robot based on one time step. Before this can happen, the controller must be 
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sufficiently trained in Webots 2.0 simulator. Even so, this trained controller does not depict 

the true kinematics model of the real robot; the learning mechanism is not executed on it. 

We should therefore expect a tradeoff in performance. Nevertheless, it is still worth testing. 

Vision turrets are available in Webots 2.0 simulator, which can be mounted on the virtual 

Khepera robots. But the vision algorithms are missing. Since the vision problem is out of 

our scope of research, a good representation of the sensor input must be assumed such that 

it can be generalized to all forms of sensors. A viable sensory input would be the 

egocentric or robot-centered distance and direction to the target. The motor output is the 

internal motor speed of the robot’s wheels. In the classical control theory, the association 

between the motor output and the sensory input is denoted by the transformation 

component known as the control parameters (This was first mentioned in Section 2.2.3). 

Our sensorimotor controller operates on this theory by accepting a sensory input of the 

above form and generating the corresponding control parameters as output. An appropriate 

motor output can then be derived from the two to move the robot towards the target. The 

next chapter describes the learning and the execution of this process thoroughly. 
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Chapter 4 

NETWORK ARCHITECTURE 
OF SENSORIMOTOR CONTROLLER 

 
 
This chapter presents an overview of the network architecture as well as the details of our 

sensorimotor control and online unsupervised learning mechanisms. The second problem 

mentioned in Section 2.1.2, that is the need of the random activity generator to bootstrap 

the learning process, is also evaluated. Lastly, we introduce a novel concept of local linear 

smoothing into our pre-learning phase and our batch training algorithm to eliminate the 

boundary bias in our sensory input space and possibly, speed up the rate of convergence in 

learning. 

 
4.1 Framework Overview 

The sensorimotor control or inverse kinematics problem of a mobile robot can be 

expressed in a simple mathematical form. Given the sensory input of the target location 

u∈U and a corresponding motor output c∈C , the mapping is defined as 

F : U → C  ⇒ c = F(u)    (1) 

Motor Control : Linear Case 

If this problem is linear, for a one-dimensional motor output c, 

umuF T=== ∑
∀

i
i

i umc  )(      (2) 

where m is the control parameters vector. For a multi-dimensional motor output c, 

c = M u      (3) 
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where M∈M denotes the control parameters matrix. 

Motor Control : General or Non-Linear Case 

The actual problem is, in fact, non-linear. We apply the concept of “linearization” here. 

The principle idea is to partition the sensory input space U into a set of disjoint regions, 

each governed by a neuron. Within each region, a local linear mapping of a form similar to 

equation (3) can be defined. Every neuron r stores two weights: a weight sensory vector 

wr, coding the region center and a control parameters matrix Mr. Thus, the local linear 

mapping can be defined as 

c = Ms u      (4) 

where u is in the region of neuron s. This neuron s can be determined using a simple 

nearest neighbor search defined by 

uwuw r
r

s −=−
∀

min     (5) 

This is illustrated in Fig. 8. 

 

M 

2-d Lattice of Neurons 

 

Fig. 8 Schematic representation of ‘Extended’ Self-Organizing Map 
 Algorithm. The winning neuron is labeled “s” while the 
 neighboring neurons are marked by different gray levels. 

Input Space U 
Output Space 
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We can observe that the neurons are arranged into a 2-d grid lattice. Whenever a new 

target position vector u in the defined workspace or environment is presented, equations 

(4) and (5) will be used to locate the “winning” neuron s. In SOM, we can generalize by 

using the weights of this neuron and its neighboring neurons to determine the motor output 

vector c to move the mobile robot (This will be explained in the next section). At the same 

time, these weights are gradually refined through adaptive learning rules described in 

Section 4.3. The simulation results in Chapter 5 reveal that the influence of this form of 

collective neighborhood learning is two-fold; it increases the rate of convergence of 

learning and improves the self-positioning accuracy. This whole learning-by-doing process 

will be elucidated in the next two sections; Section 4.2 describes the sensorimotor control 

mechanism while Section 4.3 explains the online unsupervised learning mechanism. If we 

refer back to Fig. 2, the control and learning mechanisms correspond to the performance 

and training phases respectively. But in our instance, both mechanisms can run 

concurrently in a “split brain” fashion, compared to the sequential ordering of the two 

phases. 

 
4.2 Sensorimotor Control Algorithm 

Before explaining the steps in this algorithm, a few assumptions and notations must be 

explained. The robot is assumed to have a sensory system that can calculate an egocentric 

(robot-centered) representation of the distance d in meters and angle α in radians to 

arbitrary target locations. This is shown in Fig. 9. Therefore, 

u = [d, α]T      (6) 

where d∈R+ and α∈(-π, π]. 
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wr = [dr, αr]T      (7) 

where dr∈[0, dmax] and αr∈(-π, π]. 

 

 

d 

α

Fig. 9 Egocentric (robot-centered) 
 representation of distance 
 d and orientation α to a 
 pole target. 

Assuming that the mobile robot is differential drive with two wheels,  

c = [cL, cR]T      (8) 

where L denotes the left wheel and R denotes the right wheel and cL, cR∈[cmin, cmax]. Lastly, 

we assume an instantaneous change in the internal motor wheel speeds. 

 

Sensorimotor Control Algorithm 

1. Present a target point in the workspace to the robot.  

2. Let the sensory system observe the target position vector u of the target point. 
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3. Selection of “Winning” Neuron 

Our nearest neighbor search in equation (5) cannot use Euclidean distance to determine 

the “winning” neuron s because d and α are different in type and domain range. 

Consider that, while α varies in a limited range of values (-π, π], the target distance d 

can be an arbitrarily large value. This means the target is extremely far but still within 

sensory range. If both d and α are scaled equally (which is the case for Euclidean 

distance), d would have had more importance in determination of the “winning” 

neuron. This can lead to undesirable effects such as always selecting the “winning” 

neuron, which corresponds to the highest motor speed on both wheels because this 

“winning” neuron matches the longest incremental distance traveled in one time step of 

τ sec. 

Our solution to this is derived from the following observation: it seems natural to give 

priority to α, so that the robot's first goal is to turn to face the target while on the move. 

d becomes really relevant when the robot is close to the target point so as to gradually 

reduce the motor wheel speed. The motor wheel speed will be reduced to zero when the 

robot reaches the target point. With this in mind, we can now state a set of feasible 

procedures. 

a. Select a subset K of the N neurons in the 2-d grid lattice with the smallest ║αs - 

α║. 

αααα −=−
∀

r
r

s min       (9) 

b. Find the “winning” neuron s in K with the smallest weighted difference Qs where 

i
i

s QQ
κ∈

= min       (10) 
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Qi = ( β(di  - d)2 + γ(αr - α)2 )1/2    (11) 

where β>>γ. 

Since 3a. has already competed using α, we can decrease the importance of α by 

making γ a relatively small value. Nevertheless, its presence in equation (11) eliminates 

neurons in K with αr that do not match α well. It also relaxes the requirement of 

choosing an optimal size for K . 

4. Weighted Averaging of Motor Output Vector 

a. Simple Form 

We can use equation (4) to generate c. If cL, cR>cmax or cL, cR<cmin, replace c by 

c = Ms ws      (12) 

b. General Form 

∑
∑

∀

∀=

r

r

r

sr

uMsr
c

),h(

 )h(   ,
     (13) 

where h(r, s) defines the Gaussian kernel weight of ║r - s║. 













 −
−= 2

2

2
exp),h(

σ
sr

sr      (14) 

where ║r - s║ defines the lattice distance and σ denotes the kernel bandwidth that 

decreases exponentially with time t. When t>=tmax, σ(t)=σ(tmax). 

maxmax

)0(
)()0()( t

t
tt 








=

σ
σσσ     (15) 
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This general form is known as the weighted/population averaging scheme whereby the 

neighborhood of the “winning” neuron is also considered for determining c. By 

employing this scheme, considerable generalization to novel situations is achieved due 

to the inherent interpolation evident in such a step. The above averaging method is a 

form of interpolation using radial basis functions [11] and is inspired by recent 

neurophysiological evidence [12] that the superior colliculus, a multilayered neuronal 

structure in the brain stem that is known to play a crucial role in the generation of 

saccadic eye movements, in fact employs a weighted averaging scheme to compute 

saccadic motor vectors. This scheme also allows the application of local linear 

smoothing, which will be the topic of discussion in Section 4.5. 

If cL, cR>cmax or cL, cR<cmin, replace c by 

 
∑

∑

∀

∀=

r

r
sr

sr

wMsr

),h(

 ),h(   

c       (16) 

Equations (12) and (16) are mandatory because in equations (4) and (13), if d→∞, cL 

and cR→∞ or -∞. cL and cR will be delimited by cmin and cmax, making the robot move in 

the forward direction at cmax on both wheels or the backward direction at cmin on both 

wheels. This effect is undesirable, as α will be totally disregarded; the value of α is 

negligible, compared to d, in the computation of cL and cR in equations (4) and (13). 

This situation is remedied by substituting equations (4) and (13) with (12) and (16) 

respectively. 

c. (Optional) If the robot’s internal motor speeds are in Z, pass c through the sigmoid 

functions below. 
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cL ←          (17) 

      

cmin  if cL <= cmin, 
cmax  if cL >= cmax, 
ceil(cL)  if cL - floor(cL) >= 0.5, 
floor(cL) otherwise.  

      
       

cR ←          (18) 
      

cmin  if cR <= cmin, 
cmax  if cR >= cmax, 
ceil(cR)  if cR - floor(cR) >= 0.5, 
floor(cR) otherwise. 

 
d. Execute c in 1 time step size of τ sec. 

e. Let the sensory system observe the corresponding robot displacement vector v. A 

training sample (v, c) is thus collected for the online learning algorithm in Section 4.3 

or the batch training algorithm in Section 4.6. This step 4e. allows sensorimotor control 

to be performed concurrently with learning. It can be omitted when the learning 

mechanism stops.  

5. If the robot has not reached or stopped over the target location, continue with step 2.   

 
4.3 Online Unsupervised Learning Algorithm 

1. Weights Initialization 

a. Initialize the 2-d Y(number of rows) by X(number of columns) lattice to N neurons 

where N =X × Y. 

b. Initialize the synaptic weights of the N neurons in the 2-d lattice. 

i. Initialize the control parameters matrix Mr of each neuron to small random values. 

Code for the random numbers generator is obtained from [63]. 

ii. Initialize the weight sensory vector wr of each neuron in an “ordered” or topology-

conserving manner to achieve a faster rate of convergence as pointed out in [2]. 

Choose a small subspace, totally enclosed by the sensory input space U, which 
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represent distances between 0 and Dmax and angles between αmin and αmax. Initialize 

wr of the four corner neurons in the 2-d lattice to w1,1=[0, αmin]T, w1,Y=[0, αmax]T, 

wX,1=[Dmax, αmin]T, wX,Y=[Dmax, αmax]T as shown in Fig. 10.  

w1,1 .    .    . wX,1 
 

. 

. 

. 
 

 
. 
. 
. 

 
. 
. 
. 

 
w1,Y .    .    . wX,Y 

 
Fig. 10 Assignment of w1,1 ,wX,1 ,w1,Y ,wX,Y   

iii. Initialize wr of the remaining neurons through interpolation of the wr of the four 

corner neurons using the following equations: 
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==+= i,1Yi,ji, www  (23)

c. Initialize the time step parameter t = 0, time step size = τ sec and maximum time step 

tmax to Z+. 

2. Adaptation Rules 

a. When a training sample (v, c) can be obtained from step 4e. of the sensorimotor control 

algorithm in the previous section, use step 3 of that algorithm to determine the
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“winning” neuron s with robot displacement vector v. 

b. Determine the improved values of wr of the “winning” neuron s and its neighboring 

neurons.  

∆wr = η h(r, s) ( v - wr )     (24) 

where η defines the learning rate that decreases exponentially with t. When t>= tmax, 

η(t)= η(tmax). 

maxmax

)0(
)()0()(

t
t

tt 







=

η
ηηη      (25) 

h(r, s) defines the Gaussian kernel weight of ║r - s║ and it is of the form in equation 

(14). If collective neighborhood learning is not desired, 

      
h(r, s) =     (26) 

 

c. Determine the improved values of Mr of

neurons.  

∆Mr =

where η’ defines the learning rate of

exponentially with t. When t>= tmax, η’(t)

weight of ║r - s║ and it is of the form

learning is not desired, use equation (26

stochastic gradient descent learning rule f

E = ½ 

and is given by an error correction rule of

 

  1 if r = s, 
0 otherwise.
 the “winning” neuron s and its neighboring 

 η’ h’(r, s) ∆Mr’    (27) 

 the form in equation (25) that decreases 

= η’(tmax). h’(r, s) defines the Gaussian kernel 

 in equation (14). If collective neighborhood 

). ∆Mr’ is defined such that it undergoes a 

or the quadratic cost function 

║ c - Mr v ║2    (28) 

 Widrow-Hoff type [13] 
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∆Mr’ = ρ ( c - Mr v ) v    (29) 

where ρ∈[0,1] is the learning rate. 

3. If t<=tmax, increase the time parameter t: 

t = t + 1      (30) 

Continue with step 2. 

Notice that the random activity generator used in Fig. 2 is totally left out of our online 

unsupervised learning algorithm. Realistically, can we omit this form of pre-learning 

phase? This issue is discussed in the next section. 

 
4.4 Motor Babbling 

The pre-learning phase, using the random activity generator, is termed the motor babbling 

phase; random motor output vectors are generated to perform movements for training the 

network. In this phase, homing movements cannot be performed and it incurs training 

time. Nevertheless, several mobile robot experiments [5, 7] and robot manipulator 

experiments [8, 9, 14, 15] emphasize on the importance of this phase in their simulations. 

In [14, 15], P. van der Smagt et al. reasoned that if the network starts with random weights, 

it is likely that it will always generate very similar motor output commands, which are 

subsequently reinforced since they constitute new learning samples. In other words, if only 

a few (similar) learning samples are taught to the network, the network is likely to generate 

a similar motor output independent of the applied sensory input. If this move is 

subsequently learned by the network, by reinforcement, all next generated displacements 

will be in the same direction. This implies that the input space may not be explored at all. 

By motor babbling, random movements are performed to train the network with the 
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corresponding learning samples. Now, it will be able to generate movements in different 

directions and the input space can be explored. 

The above analysis claims that our robot, equipped with the online learning algorithm in 

Section 4.3, faces the danger of not learning at all! This calls for the need to implement the 

motor babbling phase to complement and head start our learning algorithm; the motor 

babbling phase will be executed for a sufficient period of time enough to mitigate any risks 

of impedance to learning. Subsequently, our online learning algorithm takes over so that 

homing movements can be performed straight away. This implementation will also allow 

us to explore its benefits and compare its performance with our standalone online learning 

algorithm. Then, we can conclude whether this motor babbling phase is redundant or not. 

We shall now briefly describe the motor babbling process. 

Motor Babbling 

1. Generate a random motor output vector c = [cL, cR]T where cL, cR∈[cmin, cmax]. 

2. Execute c in 1 time step size of τ sec. 

3. Let the sensory system observe the corresponding robot displacement vector v. A 

training sample (v, c) is thus collected and stored. 

4. Repeat steps 1 to 3 to gather a large enough training samples set T. 

The training rules in the motor babbling phase can either be online or batch. Online 

learning only requires the first three steps of motor babbling. Following that, our online 

unsupervised learning algorithm described in the previous section is used to train the 

network. On the other hand, batch training requires all the four steps of motor babbling so 

that learning can be conducted at each batch interval. Then a batch training algorithm is 

required. 
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Online learning reduces the utilization of huge memory storage and allows the possibility 

of real-time performance. Though these benefits turn into disadvantages for batch training, 

batch training has its own value. Often in online learning, we face the problem of 

heuristically determining an optimal or even feasible standard deviation for the random 

initialization of weight values. A wrong choice of standard deviation can deter the learning 

process. This difficulty is not encountered in batch training, as it does not rely on the initial 

weight values. However, training time can be drastically reduced if the initial weight 

sensory vectors for the neurons in the SOM are initialized in an ‘ordered’ manner rather 

than a random manner [2]. An effective ‘ordered’ map initialization scheme, proposed by 

M.C. Su [22, 23], is hence introduced.  

Map Initialization for Batch Training 

1. Initialization of wr of the neurons on the four corners (Fig. 10) 

We first select a pair of training samples whose weighted Euclidean distance (equation 

11) of their v coordinates is the largest one among the training set. The v coordinates of 

the two selected samples are used to initialize wX,1 and w1,Y. From the remaining 

training samples, the v coordinates of the sample which is “farthest” to the v 

coordinates of the two selected training samples is then used to initialize w1,1. wX,Y is 

set to be the v coordinates of the training sample which is farthest to the v coordinates 

of the previously selected three samples. 

2. Initialization of the neurons on the four edges 

Initialize the wr of the neurons according to equations (19), (20), (21) and (22). 
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3. Initialization of the remaining neurons 

Initialize the wr of the remaining neurons from left to right followed by top to bottom 

using equation (23). 

Can’t we directly partition the input space into X × Y grids and use the coordinates of 

the grid centers to initialize the weights of the network? As we can observe in Fig. 

11(a), this direct method tends to under-sample high probability regions and over-

sample low probability ones. As a result, more iterations may be required to refine the 

map. Our proposed method, shown in Fig. 11(b), overcomes this effect. 

 

(b)(a) 
 

 Fig. 11 Differences between direct partitioning method (a) 
 and our initialization scheme (b). Each X represents a 
 training sample.  

In the next section, we propose a new concept called local linear smoothing in the 

implementation of our batch training algorithm. 

 
4.5 Local Linear Smoothing 

We can easily implement our batch training algorithm using T. Kohonen’s Batch Map 

Algorithm [16, 17] to adapt the weight sensory vectors wr and Batch Gradient Descent 

Algorithm [18] to adapt the control parameters matrices Mr. Intuitively, the Batch Map 

algorithm works this way. Recall that each neuron governs a region in the input sensory 

space U. Whenever a batch of T training samples is ready, these samples are dispersed into 
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their respective regions. Then, each neuron uses the robot displacement vectors v of the 

samples in its region to calculate the mean. Finally, each neuron finds its new weight 

sensory vector wr (local constant fit) by taking a Gaussian weight over the means of every 

neuron in its neighborhood. This is assuming that each region has equal number of 

samples. Otherwise, the Gaussian value used on each neuron is further weighted by the 

sample frequency in that neuron’s region. Batch Gradient Descent can be performed in a 

similar manner, except that the sum of the change in the control parameters matrix, instead 

of the mean, is calculated over the samples. 

These methods have a common flaw; the corner and edge neurons in the SOM will incur a 

border effect [62]. The cause of this boundary bias is that the Gaussian function cannot 

differentiate regions outside the local perceptual space with no samples but within its 

coverage and regions out of its coverage. It simply assumes that the function goes to zero 

everywhere outside its domain. Consequently, if the border lies within the bandwidth of 

the Gaussian spread, it will face a boundary bias. Fig. 12 illustrates a univariate example of 

this problem. Multivariate models like our SOM would naturally face a more severe bias. 

What harm does this boundary bias do? Fan J. [20] explains that the rate of convergence at 

the boundary is slower. This means that if we look at the weight sensory vectors of the 

neurons, they will initially expand out to fill the local perceptual space and collapse 

towards the center due to the boundary bias, as shown in the simulation results in the next 

chapter. This goes on during the training time until the SOM receives enough training with 

a large sample set at the boundary. Thus, more time is incurred to reach final stability or 

convergence. The same goes true for the control parameters matrices. To note, our online 

unsupervised learning algorithm is also under the mercy of this phenomenon as it faces the
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same problem. We have to search for means to eliminate this boundary bias5 so that a 

faster rate of network convergence can be achieved.  

 

Sample 
Data

Estimated f(0.0) 
using Local 
Constant Fit 

True f(0.0) Gaussian
Spread

Fig. 12 Nadaraya-Watson estimate, boundary effects. x=0.0 is the boundary of the 
 sample points distribution. Using T. Kohonen’s Batch Map algorithm, the 
 estimated sample mean will deviate substantially from the true mean at the 
 boundary, similar to the instance shown in the diagram. This is termed the 
 boundary bias. 

 

 

T. Kohonen [16] has proposed a heuristic weighting rule for the boundary neurons but it is 

not intuitive, general or reliable. Moreover, it requires manual fine-tuning of the weighting 

factor. V. Cherkassky et al. [19] has interpreted our batch training modes as kernel 

estimation methods; these methods operate in a similar manner except that kernel 

weighting in a SOM is done in neighborhoods in the grid space rather than in the input 

space. Our batch training modes are commonly known as Nadaraya-Watson

________________________________________ 
5Note that eliminating the boundary bias does not mean eliminating all bias in the boundary regions. Rather, it means that 
the boundary regions are no more biased than the interior (non-boundary) regions. 
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kernel estimator. This estimator generally segments the entire sample data space into small 

local regions. In each region, an estimated local constant is derived to fit the local data. 

This estimator method faces a boundary bias, as explained previously. 

A more superior kernel estimator, known as Local Linear Smoothing, has been derived to 

cure this effect [20, 21, 24]. How does it work? Instead of finding a local constant fit, we 

simply use a local line to fit the local data. I shall now explain how this can be achieved. In 

a small local neighborhood of the lattice grid point s in our 2-D SOM, if grid point r is in 

this same neighborhood, the weight sensory vector at r can be linearly defined as 

)( sr'www ssr −+≈      (31) 

This equation is the line that we try to fit into the local data. The solution to our problem at 

hand can be found by estimating ws. To do this, we try to find ws and ws
’ to minimize the 

weighted least squares equation. 

),h())(( srsr'www
r

2
ssr∑

∀

−−−     (32) 

where h(r, s) defines the Gaussian kernel weight of ║r - s║ and it is of the form in 

equation (14). By solving equation (32), we can obtain an estimate of ws, which is given by 

equation (34) in the next section. We can do the same for the control parameters matrices. 

Fig. 13 shows how this local linear fit eliminate the boundary bias for a univariate model. 

We can see from Fig. 13 that equation (32) causes a deformation in the Gaussian kernel 

near the boundary to the extent of assigning negative weight to those sample data farther 

away from the boundary, which drastically reduces the bias. The simulation results in 

Chapter 5 will show the disappearance of the boundary bias phenomenon and a faster rate 

of convergence in learning. I wish to point out that local linear smoothing only works if the 
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Gaussian spread covers more than one neuron. Without the existence of a neighborhood, 

i.e. if only one neuron is affected, boundary bias can never be experienced, even for 

Nadaraya-Watson estimator. The old Batch Map and Batch Gradient Descent algorithms 

can be used for this instance. To conclude, local linear smoothing is automatic, has a 

simple intuitive interpretation and adapts well to our cause. In the next section, we show 

how this concept can be incorporated into our batch training algorithm.  

 

Estimated f(0.0) 
using Local 
Linear Fit Sample 

Data

Gaussian
SpreadTrue f(0.0)

Fig. 13 Local linear smoothing, boundary region. x=0.0 is the boundary of the 
 sample points distribution. We can observe that the bias has been 
 considerably reduced, compared to that of Naradaya-Watson estimator. 

 

4.6 Batch Training Algorithm 
 
Batch Map with Local Linear Smoothing 

1. For each neuron r in the 2-d lattice, collect a list Vr of all those training samples (v, c) 
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from the training set T whose v is “closest” to wr, using the distance measure in Step 3 

of the sensorimotor control algorithm described in Section 4.2. 

2. For each neuron r in the 2-d lattice, find the number of samples nr and the mean mr 

over the respective list. 

rn

∑
∈∀= rv

r

v
m ν       (33) 

3. For each neuron s in the 2-d lattice, determine its ws by 
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k(r, s) = h(r, s) nr ( s2(r, s) - ║r - s║ s1(r, s) )   (35) 

∑
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where h(r, s) defines the Gaussian kernel weight of ║r - s║ and it is of the form in 

equation (14). k(r, s) is in fact the deformed Gaussian, which is used to eliminate the 

boundary bias. If collective neighborhood learning is not desired, local linear 

smoothing cannot be performed. Since ║r - s║ = 0, the denominator of equation (34) 

turns zero, making it unsolvable. Then ws is simply 

ws = mr      (37) 

This algorithm turns into K-means or Linde-Buzo-Gray (LBG) algorithm [64]. 

4. Iterate all the steps until further change in ws is considered minimal. 

Batch Gradient Descent with Local Linear Smoothing 

1. For each neuron r in the 2-d lattice, initialize ∆Mr’ = 0. 

2. Do Step 2 of the Batch Map with Local Linear Smoothing. 
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3. For each neuron r in the 2-d lattice, use each training sample (v, c) in the respective list 

to do 

∆Mr’ ← ∆Mr’ + ρ ( c - Mr v ) v    (38) 

where ρ∈[0,1] is the learning rate. 

4. For each neuron r in the 2-d lattice, find the number of training samples nr collected 

over the respective list. 

5. For each neuron s in the 2-d lattice, determine its ∆Ms
’ by 

∑
∑
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      (39) 

where k’(r, s) is of the form in equation (35). If collective neighborhood learning is not 

desired, local linear smoothing cannot be performed (Since ║r - s║ = 0, the 

denominator of equation (39) turns zero, making it unsolvable). Then equation (39) is 

simply omitted and this algorithm becomes a normal Batch Gradient Descent [18]. 

6. For the same neuron s, determine the improved value of Ms.  

∆Ms = ϕ ∆Ms
’      (40) 

where ϕ defines the learning rate of the form in equation (25) that decreases 

exponentially with t.  

7. Iterate all the steps until further change in Ms is considered minimal. 
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Chapter 5 

SIMULATION RESULTS AND ANALYSIS 

 
The simulation results in this chapter compare the performance of our online unsupervised 

learning algorithm, the inclusion of the pre-learning phase and our batch training algorithm 

using local linear smoothing. We also test the real Khepera robot based on one time step. 

 
5.1 Simulation Overview 

5.1.1 Performance Metrics 

Mean Positioning Error (MPE)  

This measures the mean accuracy of the robot self-positioning to designated target 

locations. The robot must come to a stop, that is c = [0, 0]T, to be considered to have 

reached the designated target location. It is mathematically defined as 

n

d
MPE

n

i

i∑
∀=       (41) 

where di defines the self-positioning error at one designated target location and n defines 

the number of designated target locations to be reached. 

 
Mean Steps per unit Distance (MSD) 

Measures the mean rate (number of time steps per meter) at which the robot moves to 

reach all designated target locations. Recall that each time step is defined to be τ seconds. 
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5.1.2 Experimental Setup 

1. Webots 2.0 Simulator, as described in Section 3.2, is used as an implementation tool 

for our algorithms. 

2. This simulator already models 10% white noise in the motor actuators and light/IR 

sensors. 

3. 6 different test cases have been conducted under the same conditions listed in this 

section. Their results are displayed from sections 5.2 to 5.6 respectively.  

4. Each test case is run 5 times. In each run, the number of time steps tmax is 100000. The 

time τ for each step is 1024 ms. During these 100000 time steps, the robot will be 

presented with randomly generated target locations for learning. In fact, target reaching 

movements can be observed during this learning stage. 

5. During each interval of 10000 time steps, the robot will be tested with 50 target 

locations for its performance. These target locations are initially randomly generated to 

lie in a 5 by 5 meter square plane. These positions are then fixed for the performance 

testing in all the 10 intervals. Whenever the robot is tested with these 50 target 

locations, it will be manually placed at the center of this square plane first. 

6. The whole environment is obstacle-free. 

5.2 Online Learning : Single Neuron Update 

This test case does not incorporate collective neighborhood learning; each neuron adapts 

its own weights.  

Parameters Initialization 

Parameters in Sensorimotor Control Algorithm (Section 4.2) 
K = 15, β = 1.0, γ = 0.1, cmin = -20, cmax = 20. 
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Parameters in Unsupervised Online Learning Algorithm (Section 4.3) 
N = 225, X = 15, Y = 15, Dmax = 0.02, αmin = -3.0, αmax = 3.0, η(0) = 1.0, 
η(tmax) = 0.2, η’(0) = 1.0, η’(tmax) = 0.2, ρ = 0.08. 

 
Algorithm Performance 
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Observations and Analysis 

We can observe from Fig. 14 that the network stabilizes after 80000 time steps at about 

0.006 meters for MPE and 35 time steps per meter for MSD. Let us now compare these 

results with online learning: neighborhood update in the next section. 

 
5.3 Online Learning : Neighborhood Update 

This test case incorporates collective learning. 

Parameters Initialization 

Parameters in Sensorimotor Control Algorithm (Section 4.2) 
K = 15, β = 1.0, γ = 0.1, cmin = -20, cmax = 20. 
 
Parameters in Unsupervised Online Learning Algorithm (Section 4.3) 
N = 225, X = 15, Y = 15, Dmax = 0.02, αmin = -3.0, αmax = 3.0, η(0) = 1.0, 
η(tmax) = 0.2, σ(0) = 1.2, σ(tmax) = 0.1345, η’(0) = 1.0, η’(tmax) = 0.2,  
σ’(0) = 0.6, σ’(tmax) = 0.38, ρ = 0.08. 
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Algorithm Performance 

 

 

 

 



Mobile Robots That Learn to Navigate  49 
Chapter 5 Simulation Results and Analysis 

Observations and Analysis 

We can see from Fig. 16 that there is a tremendous improvement in the MPE and the rate 

of convergence over online learning: single neuron update in the previous section. The 

network stabilizes after 40000 time steps at about 0.004 meters for MPE and 35 time steps 

per meter for MSD. 

Presence of Boundary Bias Phenomenon 

As mentioned in Section 4.5, our online unsupervised learning algorithm will experience a 

boundary bias problem. The phenomenon caused can be easily discerned by observing the 

movements of the weight sensory vectors wr of the neurons in the local perceptual space. 

Fig. 18 to Fig. 24 attempt to show the wr of these neurons in the x, y plane expressed in 

meters. 
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The weight sensory vectors of the neurons initially expand out to fill the local perceptual 

space at 6000 time steps and then collapse towards the center at 14000 time steps. By 
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26000 time steps, they expanded out again and at 34000 time steps, there is only a slight 

collapse. By this time, a major collapse is prevented due to a large enough sample set at the 

boundary and the reduction of the Gaussian bandwidth and learning rate. Finally, the 

network stabilizes its local perceptual space at about 50000 time steps. Fig. 25 shows the 

stabilized state of the local perceptual space at 100000 time steps in d, α plane. We can 

observe from Fig. 24 and Fig. 25 that there is a major concentration of weight sensory 

vectors at the origin where d is approximately 0. This is necessary for fine positioning to 

reduce the MPE to a minimum. Majority of the neurons are clustered in the region where α 

lies between –1 radian and 1 radian. This is required for a low MSD because the robot can 

move in a more or less straight path to the target, which implies shortest distance and delay 

to target. 

 

Fig. 25 Local Perceptual Space (d, α plane) at 100000 time steps 

d /meters 

α /radians 
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5.4 Pre-learning : Single Neuron Update 

This test case is similar to the test case in Section 5.2 with an initial pre-learning or motor 

babbling phase. Since it is single neuron update, local linear smoothing is not employed. 

K-means [64] and normal Batch Gradient Descent [18] are used for batch processing 

during the motor babbling phase. Refer to Section 4.6 for more details. 

Parameters Initialization 

Parameters in Motor Babbling (Section 4.4) 
T = 1681 
 
Parameters in Sensorimotor Control Algorithm (Section 4.2) 
K = 15, β = 1.0, γ = 0.1, cmin = -20, cmax = 20. 
 
Parameters in Unsupervised Online Learning Algorithm (Section 4.3) 
N = 225, X = 15, Y = 15, η(0) = 1.0, η(tmax) = 0.2, η’(0) = 1.0, η’(tmax) = 0.2, 
ρ = 0.08. 
 
Parameters in K-Means Algorithm (Section 4.6) 
Iterations = 50. 
 
Parameters in Batch Gradient Descent Algorithm (Section 4.6) 
Iterations = 250, ρ = 0.08, ϕ = 0.08. 

 
Algorithm Performance 

 

 



Mobile Robots That Learn to Navigate  55 
Chapter 5 Simulation Results and Analysis 

 

Observations and Analysis 

From Fig. 26 and Fig. 27, the motor babbling phase at time step 0 creates a MPE of about 

0.015 meters and 100 time steps per meter for MSD. The network stabilizes after 30000 

time steps at about 0.0055 meters for MPE and 35 time steps per meter for MSD, which is 

better than online learning: single neuron update in terms of convergence rate. Thus, we 

can conclude that motor babbling can improve the convergence rate tremendously but is 

not necessary for successful online learning through single neuron update. 

5.5 Pre-learning : Neighborhood Update 

This test case is similar to the test case in Section 5.3 with an initial pre-learning or motor 

babbling phase. Local Linear Smoothing is employed in Batch Map and Batch Gradient 

Descent during the motor babbling phase. 

Parameters Initialization 

Parameters in Motor Babbling (Section 4.4) 
T = 1681 
Parameters in Sensorimotor Control Algorithm (Section 4.2) 
K = 15, β = 1.0, γ = 0.1, cmin = -20, cmax = 20. 
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Parameters in Unsupervised Online Learning Algorithm (Section 4.3) 
N = 225, X = 15, Y = 15, η(0) = 1.0, η(tmax) = 0.2, σ(0) = 1.2, σ(tmax) = 0.1345, 
η’(0) = 1.0, η’(tmax) = 0.2, σ’(0) = 0.6, σ’(tmax) = 0.38, ρ = 0.08. 
 
Parameters in Batch Map Algorithm for Pre-Learning 
with Local Linear Smoothing (Section 4.6) 
Iterations = 50, σ(0) = 0.8, σ(50) = 0.1345. 
 
Parameters in Batch Gradient Descent Algorithm for Pre-Learning 
with Local Linear Smoothing (Section 4.6) 
Iterations = 250, ρ = 0.08, ϕ = 0.07, σ’(0) = 0.6, σ’(250) = 0.38. 
 

Algorithm Performance 
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Observations and Analysis 

We can see from Fig. 28 and 29 that the network stabilizes after 40000 time steps at about 

0.004 meters for MPE and 35 time steps per meter for MSD. There is no improvement 

over online learning: neighborhood update. Thus, motor babbling is considered redundant 

if neighborhood update is in play. 

 
5.6 Batch Learning : Neighborhood Update 

This test case uses Batch Map and Batch Gradient Descent with Local Linear Smoothing. 

500 training samples are collected for each batch training process. 

Parameters Initialization 

Parameters in Batch Map Algorithm  
with Local Linear Smoothing (Section 4.6) 
N = 225, X = 15, Y = 15, Dmax = 0.02, αmin = -3.0, αmax = 3.0, K = 15, β = 1.0,  
γ = 0.1, cmin = -20, cmax = 20, T = 500, Iterations = 200, σ(0) = 0.7,  
σ( tmax) = 0.1345. 
 
Parameters in Batch Gradient Descent Algorithm  
with Local Linear Smoothing (Section 4.6) 
T = 500, Iterations = 200, ρ = 0.08, ϕ = 0.001, σ’(0) = 0.6, σ’(tmax) = 0.38. 
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Algorithm Performance 
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Observations and Analysis 

We can see from Fig. 30 and Fig. 31 that the network stabilizes extremely fast at 10000 

time steps with MPE of 0.005 meters and 160 time steps per meter for MSD.  

Absence of Boundary Bias Phenomenon 

As mentioned in Section 4.5, Local Linear Smoothing can eliminate the boundary bias. 

Thus, the phenomenon does not exist, as proven in Fig. 32 to Fig. 37. At time step 0, the 

neurons’ weight sensory vectors are initialized to that in Fig. 18. 
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By 6000 time steps, the weight sensory vectors have already expanded out by quite a fair 

amount. Hence, we can observe a faster rate of convergence for local linear smoothing. 

Fig. 38 shows the stabilized state of the local perceptual space at 100000 time steps in d, α 

plane. We can observe from Fig. 37 and Fig. 38 that there is a major concentration of 

weight sensory vectors at the origin where d is approximately 0. This is necessary for fine 

positioning to reduce the MPE to a minimum.  
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Fig. 38 Local Perceptual Space (d, α plane) at 100000 time steps 

d /meters 

 α /radians 

The rest of the neurons are well spread in the local perceptual space, instead of clustering 

in the front region α∈(-1, 1), which is the case for online learning: neighborhood update. 

This accounts for a higher MSD since no emphasis is placed on learning to move in a 

straight path. Why is this so? The robot has its first batch training session after 500 time 

steps. These initial 500 training samples emphasize on stabilizing at the randomly 

generated target location, which implies fine motion. By subsequent reinforcements, the 

robot continues with this emphasis. There are also evidences, during the learning process 

in our simulation runs, showing that the robot reaches much less random target locations, 

as compared to that of online learning: neighborhood update. We want to test our claim. 

Therefore, we increase the batch number T to 2000 and run some simulations. The MSD 

results for T = 2000 are presented in Fig. 39. 
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Fig. 39 shows an average MSD of 280 time steps per meter, which is 120 time steps more 

than that of T = 500. This means that more time is used to stabilize at a target location. 

Thus, our claim is substantiated. 

 
5.7 Model Performance on Khepera Robot 

As mentioned in Section 3.3, without a vision system, we can only test the real Khepera 

robot on the basis of 1 time step of 1024 ms. To do so, we employ the remote control setup 

described in Section 3.1.3. The khep_core package [61] is used to interface with the robot; 

it is a package of C++ classes that allows one to communicate simply and effectively with 

a Khepera robot via the serial port of a PC. The weights of the trained SOM in Section 5.3 

Online Learning: Neighborhood Update and in Section 5.6 Batch Learning: Neighborhood 
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Update are used for testing. Fig. 40 tabulates the results of the positioning errors at various 

possible locations in 1 time step. 

  ONLINE LEARNING 
(Section 5.3) 

BATCH LEARNING 
(Section 5.6) 

d / meters α / radians Self-Positioning Error Self-Positioning Error 
    

0.100 0.000 0.0102 0.0045 
0.127 0.197 0.0122 0.0210 
0.127 -0.197 0.0054 0.0177 
0.100 3.142 0.0143 0.0231 

MPE (d >= 0.1) 0.0105 0.0166 

    
    

0.050 0.000 0.0000 0.0000 
0.071 0.785 0.0248 0.0112 
0.071 0.785 0.0175 0.0161 
0.050 1.571 0.0120 0.0367 
0.050 -1.571 0.0135 0.0120 
0.050 3.142 0.0211 0.0000 
0.071 2.356 0.0305 0.0269 
0.071 -2.356 0.0242 0.0134 

MPE (d <= 0.71) 0.0180 0.0145 

    
Fig. 40 Positioning errors of Khepera Robot at various locations in 1 time step. 

 
The mean positioning errors for d >= 0.1 and d <= 0.71 for the online and batch learning 

are as expected. From Section 5.3 Fig. 24, we can observe a dense clustering for long 

distances (d >= 0.1) on the robot trained by online learning. Hence, we would expect a 

better accuracy. From Section 5.6 Fig. 37, we witness a sparse clustering for long distances 

(d >= 0.1) on the robot trained by batch training. This results in a greater error. But for 

shorter distances (d <= 0.71), this same robot is more accurate because it emphasizes on 

fine motion during training as explained in Section 5.6. The robot with online learning has 
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a slightly higher error due to less emphasis in fine motion. Note that if these values can be 

further refined if iterative sensory feedback is available. 

For the simulations described in this chapter, no obstacles are assumed, not even walls. 

Thus, an infinite workspace may be required to train the robot. This is not practical. If we 

want the robot to start learning in an enclosed, obstacle-ridden environment, can it be 

done? The next chapter addresses this issue. 
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Chapter 6 

LEARNING IN AN  
OBSTACLE-RIDDEN ENVIRONMENT 

 
 
6.1 A Biological Approach : Escape Tactics of a Fly 

Have you ever tried to chase a fly with your bare hands? You may have wondered how 

such a small insect can develop such efficient escape tactics. Where can it process the 

visual information that is coming to it from its eyes, if it barely has a brain? The answer 

lies in the visual system itself. Animals of all sizes and types show a remarkable capability 

to obtain very complicated behaviors with simple systems. What is their secret? Can it give 

us some insight on developing some autonomous complex behaviors for mobile robots? 

The secret lies in sensor adaptation and short sensorimotor loops. By sensor adaptation we 

understand that the animal sensors are perfectly adapted for a given task. For instance, the 

fly uses the light detectors in its panoramic eyes to detect motion in the scene. It becomes 

blind if there is no motion. Thus, it needs to move constantly to perceive its environment. 

Short sensorimotor loops are necessary to have a real-time response, something critical in a 

dynamic environment. To achieve this, animals have very short connections between 

sensors and actuators, which implies that most of the visual information is not processed at 

the highest levels of the nervous system, which is the brain. The biological solution is to 

process the information on the retinas themselves, therefore sending to the next layer only 

the relevant information. 
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68 

 

Now suppose that a newborn fly has an innate ability to avoid obstacles using its visual 

sensors and it is desperate to learn homing through its smell sensors so that it can home in 

on potential food sources and steer clear of moving bodies such as our hands. This 

situation is analogous to a mobile robot, with obstacle avoidance capabilities, trying to 

autonomously learn its homing behavior in an obstacle-ridden environment. Using the 

above-mentioned concepts of sensor adaptation and short sensorimotor loops, we develop 

a behavior coordination mechanism, which fuses homing and obstacle avoidance, to enable 

this. 

6.2 Obstacle Avoidance Behavior 

Before we introduce the behavior coordination mechanism, we need a simple, pre-defined 

obstacle avoidance behavior, which exhibits high real-time reactivity. Braitenberg type-3C 

vehicle [56] matches our description. Fig. 41 illustrates how it works. 

 

Obstacle 
1 Left Motor 

2 

8 3 

4 
7 

5 

Moving PathRight Motor 6 

Excitatory Connection :- Increases motor speed

Inhibitory Connection :- Decreases motor speed

 Fig. 41 Braitenberg type-3C vehicle. The front IR/light sensors have uncrossed excitatory  
connections and crossed inhibitory connections to the two motors while the back sensors 
have excitatory connections to both motors. The proximity of any sensors to an obstacle is 
reflected in its signal strength. For example, sensors 2 and 3 have extremely high signal 
strengths due to a nearby obstacle. The change in motor speed of each wheel is dependent 
on the signal strength of each sensor and its corresponding connection type and weight. For 
example, excitatory connections of sensors 2 and 3 drive the left wheel forward by 
increasing the left motor speed and their inhibitory connections drive the right wheel 
backward by decreasing the right motor speed. The robot therefore turns to the right. 
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We can observe from Fig. 41 that the eight IR proximity/light sensors surrounding the 

Khepera robot serve as the artificial compound eye of the fly to avoid both static and 

dynamic obstacles in its path. 

 
6.3 A Behavior Coordination Mechanism : Command Fusion 

To enable learning in an obstacle-ridden environment, a mechanism known as command 

fusion is implemented to coordinate the homing and obstacle avoidance behaviors. 

Command fusion is concerned with “how to combine results from different behaviors into 

one command to be sent to the robot’s actuators” [47]. This technique proceeds in three 

steps [57]: 

1. Action Recommendations :- A module is implemented to generate recommended 

actions according to some behavioral criteria such as homing and obstacle avoidance. 

2. Behavior Aggregation :- The actions recommended by behaviors are combined 

according to some rule such as summation. 

3. Action Selection :- An appropriate action is selected based on the combined 

recommendations such as the output of summation in step 2. 

Fig. 42 shows the command fusion of the homing and obstacle avoidance behaviors in a 

mobile robot to imitate a fly. 

 
Smell 

Sensors 

IR/Light 
Sensors 

Motor 
Output 

Motor 
Output 

Σ

Homing 
Module 

Obstacle 
Avoidance

Module 

 

Motor 
Actuators 

 

 

 
Fig. 42 Command fusion of homing and obstacle avoidance behaviors. 
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The smell and IR/light sensor readings are always collected simultaneously at a fixed time 

interval to produce a resultant motor output to move the robot wheels. Recall from Section 

6.1 that a short sensorimotor loop is desired in order to have quick real-time response to 

the environment. Thus, the time step size τ in the homing module (otherwise known as 

sensorimotor controller in Chapter 4) is reduced to a rate where the incremental movement 

space of the robot in one time step coincides with that of the IR/light sensory space. In fact, 

this change is critical to the success of the autonomous learning mechanism in Section 4.3. 

Every training sample fed into the learning mechanism comprises of a motor output vector 

and a corresponding observed motion vector of the robot in time τ. In Fig. 42, the resultant 

motor output to the actuators from the summation is the one that produces the observed 

motion instead of the motor output from the homing module. If the incremental movement 

space in one time step exceeds that of the IR/light sensory space, the non-overlapped space 

may contain an obstacle to obstruct the actual motion path generated by motor output 

vector. This causes a foreshortening in the observed motion and creates an erroneous 

training sample. Fig. 43 gives a pictorial illustration of this problem. This command fusion 

mechanism is implemented and tested in the simulator to validate its performance. 

 
6.4 Simulation Results and Analysis 

The experimental setup is the same as that in Section 5.1.2. New constraints are added; 4 

walls, 7 static obstacles (pillars and spheres) and 2 moving obstacles (Khepera robots) are 

placed in the enclosed environment together with our Khepera. These are shown in Fig. 44. 
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(a) 

Fig. 43 (a) The incremental movement space exceeds that of IR/light sensory space. Since the obstacle lies 
 outside the IR/light range, it is undetected. When the robot executes the actual motion path generated 
 by the motor output vector, its motion is obstructed and shortened to the observed motion due to lack 
 of obstacle avoidance. The observed motion is a wrong correspondence to the motor output vector, thus 
 creating an erroneous training sample. 
 (b) The incremental movement space lies within that of IR/light sensory space. Since the obstacle lies 
 inside the IR/light range, it is detected. Thus, the motor output vector  accounts for the obstacle 
 avoidance behavior by steering to the left. The observed motion is the actual motion path generated by 
 the same motor output vector. The training sample is therefore valid. 
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Fig. 44 Our Khepera robot 
 is the one with a 
 black pole. The 
 two other Kheperas 
 in the background 
 act as moving 
 obstacles. They will 
 move forward all 
 the time. Upon 
 encountering 
 obstacles, 
 Braitenberg vehicle 
 type 3-C obstacle 
 avoidance behavior 
 will be activated in 
 them. We can also 
 see static obstacles 
 like pillars, spheres 
 and pink walls that 
 enclose this 
 environment. 
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Parameters Initialization 

Parameters in Sensorimotor Control Algorithm (Section 4.2) 
K = 30, β = 1.0, γ = 0.001, cmin = -20, cmax = 20. 
 
Parameters in Unsupervised Online Learning Algorithm (Section 4.3) 
τ = 256ms, N = 225, X = 15, Y = 15, Dmax = 0.005, αmin = -3.0, αmax = 3.0, 
η(0) = 1.0, η(tmax) = 0.2, σ(0) = 0.8, σ(tmax) = 0.1345, η’(0) = 1.0, η’(tmax) = 0.2, 
σ’(0) = 0.55, σ’(tmax) = 0.38, ρ = 0.08. 
 

 
Algorithm Performance 

 

Observations and Analysis 

We can see from Fig. 45 and Fig. 46 that the network stabilizes at about 40000 time steps 

with MPE of 0.001 meters and 130 time steps per meter for MSD. The MPE is extremely 

small because we use the same number of neurons N = 225 to cover a smaller local 

perceptual space. Higher accuracy would therefore be expected. Our aim is thus achieved. 
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Limitations 

1. The Khepera robot has 6 IR sensors in the front and only 2 IR sensors at the back. 

Therefore, there is a possibility that the Khepera robot may move diagonally backwards 

and bump into an obstacle without sensing it. If we look at Fig. 41, we can see that 

those directions do not have IR sensors. If the robot has IR sensors all around its body, 

this situation would never be encountered. 

2. The reactive obstacle avoidance behavior employed in our command fusion mechanism 

cannot be used against complex concave obstacles. The range of the IR sensors is just 

too short; it would already be too late when they sense these obstacles. Other behaviors 

like wall following or backtracking must be incorporated into our architecture to 

overcome this barrier. 
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Chapter 7 

DISCUSSION, FUTURE WORK 
AND CONCLUSION 

 
 
7.1 Comparison with other Approaches 

Concurrency of Learning and Performance Phases  

As shown in the simulation results from Chapter 5, we achieve the concurrency of online 

learning and target reaching. This notion has never been mentioned by C. Versino and 

L.M. Gambardella [7] or E. Zalama et al. [5, 60]. 

Segmentation of Input Space  

With an irregular, self-organizing topology, our method is able to reduce the self-

positioning error through fine motion and also perform target reaching with minimum 

delay. In Section 5.3, our online learning algorithm has proven so, with the help of 

neighborhood update. This makes our method much more superior than E. Zalama et al. [5, 

60] since it can automatically re-shuffle the neurons’ weights to maximize the coverage in 

the input and output space to achieve a good neuron to space ratio and fine performance as 

well. 

Immediate Output of Network  

The robot control architecture proposed by Versino and L.M. Gambardella [7] and E. 

Zalama et al. [5, 60] maps the sensory input space directly to the motor output space. But 

we choose the control parameters to represent our output space. What do we take on this 

perspective? Are there any advantages to this notion? 
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Let us now try to visualize the internal works of Versino’s SOM and our SOM. Version’s 

SOM maps each local region in the input sensory space through a neuron to a discrete 

motor output. But our SOM maps each local region through a neuron to a region of motor 

output space. This is achieved by the control parameters matrix in each neuron. In this 

manner, we can get different motor outputs, which correspond to different sensory inputs 

lying in the same local region. In fact, our method attempts to find a local linear fit in that 

region while Versino’s method finds a local constant. As mentioned in Section 4.5, local 

linear fit makes a better approximation [24]. 

Hence for each neuron s,  

c(u) = c(ws) + Ms( u - ws)      (42) 

where c is the motor output vector, u is the input sensory vector, ws is the weight sensory 

vector and Ms is the control parameters matrix for neuron s. To find c(u), three weights ws, 

c(ws) and Ms have to be estimated. Maintaining these three weights would require a lot of 

computational time, learning time and storage space. The scalability of the network would 

also be dampened. We can cut down to two weights ws and Ms by doing an approximation. 

sss wMwc   )( ≈       (43) 

This means that with accurate weights of ws and Ms, c(ws) would be redundant. Equation 

(42) will be reduced to  

uMuc s  )( ≈        (44) 

7.2 Future Work 

Generic Nature of Sensorimotor Controller 

Our proposed method can be tested on other forms of robots to validate its generic nature.
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Real robots are expensive. Alternatively, we can use a mobile robot simulator, which is 

capable of modeling any forms of robots. Webots 3.0 is one such simulator but it is still in 

its making. Fig. 47 and Fig. 48 show the types of robots available in this simulator. 

  
Fig. 47 Webots 3.0: Virtual Koala Robot. Fig. 48 Webots 3.0: Virtual Magellan Robot. 
 
Localization 

As mentioned in Section 2.1.1, dead reckoning causes the self-positioning error to 

accumulate over time. Our method has already eliminated the translational error. The 

rotational error can be accounted for if we let the robot learn a new component known as 

the robot heading in our SOM. When a reference landmark (one that does not change its 

relative position due to robot motion) is available, the robot can use this landmark to learn 

its own heading. If this reference landmark goes missing, the robot can use this learned 

heading to perform localization. This localization behavior has been detected in certain 

species of bees; during rainy or cloudy days, they can still navigate reasonably well. 
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Cognitive Map 

A map-building module can be mounted on top of our current sensorimotor controller. 

This higher-level module defines the exploration strategies, graph structure and place or 

landmark recognition. Several critical problems can be encountered here. For example, 

how does the robot know whether it has traversed to or near a previously explored place or 

landmark? Particularly, if the robot is “kidnapped” and transported to another location in 

the map, can it find out by autonomous means its current location? Another problem would 

be that of perceptual aliasing; how does a robot differentiate two nodes with similar 

sensory signatures?  

 
7.3 Conclusion 

I will conclude by listing my contributions. 

Learning Method  

Our SOM network has autonomously learned the association between the sensory input 

and the motor output through the robot’s motion. This whole self-organizing process is 

automatic and gains from several advantages mentioned in Section 7.1. 

Motor Control Performance  

The mobile robot, equipped with our trained SOM, is able to reduce its self-positioning 

error by performing fine motion and through iterative sensory feedback. The introduction 

of neighborhood update further reduces the error. The robot is also able to reach a 

designated target location with minimum delay.  
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Noise Tolerance  

Our simulations performed on Webots 2.0 are subject to 10% white noise modeled in the 

motor output and the IR sensors. Thus, our SOM network has proven to be robust against 

noise and still achieve the two above-mentioned objectives. This also means that our SOM 

network can adapt to different environments. 

Batch Training with Local Linear Smoothing 

We have introduced the notion of batch training with local linear smoothing into the field 

of mobile robotics. I’ve yet to come across an article that does so. 
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