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ABSTRACT
This paper presents an overview of our novel decision-theoretic
multi-agent approach for controlling and coordinating mul-
tiple active cameras in surveillance. In this approach, a
surveillance task is modeled as a stochastic optimization
problem, where the active cameras are controlled and co-
ordinated to achieve the desired surveillance goal in pres-
ence of uncertainties. We enumerate the practical issues in
active camera surveillance and discuss how these issues are
addressed in our decision-theoretic approach. We focus on
two novel surveillance tasks: maximize the number of targets
observed in active cameras with guaranteed image resolution
and to improve the fairness in observation of multiple tar-
gets. We discuss the overview of our novel decision-theoretic
frameworks: Markov Decision Process and Partially Observ-
able Markov Decision Process frameworks for coordinating
active cameras in uncertain and partially occluded environ-
ments.

Categories and Subject Descriptors
I.4.8 [Scene Analysis]: Tracking; I.2.9 [Robotics]: Com-
mercial robots and applications, Sensors

Keywords
Active camera networks, Smart camera networks, Multi-
camera coordination and control, Surveillance and security

1. INTRODUCTION
Surveillance security is becoming a part of the building

infrastructures due to recent security threats like the Mum-
bai terrorist attack and Boston bomb blasts. Central to the
problem of surveillance is that of monitoring, tracking, and
observing multiple mobile targets of interest distributed over
a large-scale obstacle-ridden environment (e.g., airport ter-
minals, railway and subway stations, bus depots, shopping
malls, school campuses, military bases, etc.). It is often nec-
essary to acquire high-resolution videos/images of these tar-
gets for supporting real-world surveillance applications like
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activity/intention tracking and recognition, biometric analy-
sis like target identification and face recognition, surveillance
video mining, forensic video analysis/retrieval, among oth-
ers. Traditional surveillance systems consists of large num-
ber of fixed/static CCTV (Closed Circuit Television) cam-
eras that are placed to constantly focus at the selected im-
portant locations in the buildings like entrance/exit, lobby,
etc. A relatively large network of such cameras has to be
installed in order to observe the targets in any region of
the environment at high-resolution, which is impractical in
terms of equipment, installation, and maintenance costs.

Motivations 
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Figure 1: Axis 214 PTZ cameras.

The use of active PTZ (Pan/Tilt/Zoom) cameras is be-
coming an increasingly popular alternative to that of fixed/
static cameras for surveillance because the active cameras
are endowed with pan-tilt-zoom capabilities that can be ex-
ploited to focus on and observe the targets at high image/
video resolution. Hence, fewer active cameras need to be de-
ployed to be able to capture high-resolution images/videos
of the targets in any region of the environment. Most of the
activities of interests are sporadic in nature and are scat-
tered across the surveillance environment. Therefore, the
active cameras can be steered and zoomed to focus on these
activities at a high-resolution. Manual control of these cam-
eras in the above applications becomes difficult, especially
when the number of targets and cameras increases. Figure 1
shows the images of Axis 214 PTZ cameras that are widely
used in research and commercial purposes.

This paper aims to address the following central prob-
lem in surveillance: How can a network of active cameras be
coordinated to monitor a set of moving targets with a guar-
anteed image resolution? Monitoring a set of targets with
a guaranteed resolution is an important surveillance task.
Coordinating active cameras in order to observe these tar-
gets with a guaranteed image resolution is challenging and
non-trivial. This is due to the following practical issues in
designing a coordination framework for active cameras in
surveillance:
• Multiple sources of uncertainties: The surveillance

environment is fraught with multiple sources of uncertain-
ties such as targets’ stochastic motion, unknown targets’
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Figure 2: An example of partially observable surveil-
lance setting with 6 PTZ cameras.

locations, noisy camera observations, etc. These uncer-
tainties in the surveillance environment make it difficult
for the active cameras to know where to observe in or-
der to keep the targets within their fields of view (fov).
Consequently, they may also lose track of the observed
targets.
• Camera - Target ratio: In practice, the number of

targets to be observed is usually much greater than the
number of available active cameras. When the number of
targets increases, the camera coordination framework, if
poorly designed, tends to incur exponentially increasing
computational time, which degrades the performance of
the entire surveillance system.
• Trade-off between maximizing the expected num-

ber of targets and the resolution of these observed
targets: Increasing the resolution of observing some tar-
gets through panning, tilting, or zooming may result in
the loss of other targets being tracked; and increasing the
number of targets to be observed by decreasing the zoom
level, may result in the decrease of the resolution of these
targets. Therefore, it is necessary to address this trade-off
in the underlying camera coordination framework.
• Scalability: The camera coordination framework should

be scalable with an increasing number of targets and cam-
eras. The computational time required for calculating op-
timal control decisions for the cameras should be made
in polynomial time for increasing number of targets and
cameras.
• Real-time: The control decisions for these cameras should

be made proactively in real-time.
• Occlusions: Many real-world surveillance environments

contain obstacles like pillars, walls and barriers that oc-
clude the FoV of some or perhaps even all of the cam-
eras. This can also be due to privacy issues in monitor-
ing certain regions of the environment. Therefore, it is
highly impractical for the cameras to persistently track
the observed targets in such environments. The regions
where the targets cannot be observed by any of the cam-
eras due to obstacles or privacy issue are referred as blind
regions and the surveillance environment with blind re-
gions is called as partially observable environments (see
Figure 2). Hence when the targets are in the blind regions,
the camera coordination framework has no information
about these targets which causes performance degrada-
tion of the surveillance system.
• Fairness property: Fairness is a vital property in active

camera surveillance where the active cameras are coordi-
nated to observe the targets in the surveillance environ-
ment such that no target is “starved” of observation by
the cameras for a long time. When there is no fairness
in coordinating active cameras, then one or more targets

may not be observed (i.e., starved) for long duration which
may lead to a loophole in surveillance, i.e., the behavior
of those targets will neither be monitored nor recorded
in high-resolution. Hence it is necessary to incorporate
fairness property in the coordination framework.

Therefore, the problem of controlling and coordinating a
network of active cameras in order to monitor a set of targets
is challenging and needs significant research attention.

In this paper, we discuss our novel decision-theoretic multi-
agent approach for controlling and coordinating multiple ac-
tive cameras in surveillance that addresses the above men-
tioned issues. Decision-theoretic approach provides formal
and principled frameworks to coordinate the planning of ac-
tive cameras’ control decisions under stochastic and partially
observable environments (e.g., uncertainty in targets’ mo-
tion and locations) in achieving the desired surveillance ob-
jective/task. It models the surveillance task as a stochastic
optimization problem in which optimal actions of the cam-
eras are determined such that the utility of the surveillance
is increased. The utility of the surveillance can be mod-
eled as formal objective functions, such that the active cam-
eras are coordinated to achieve this high-level surveillance
goal. The first goal of the surveillance system is to maximize
the number of targets observed with guaranteed image res-
olution. We refer to this surveillance task as maximizing
observations of multiple targets (MOMT) problem.
That is, a network of active cameras coordinating to obtain
images/videos of the moving targets in the surveillance en-
vironment with guaranteed image resolution. A drawback
of this surveillance goal is that one or more targets may not
be observed by the active cameras for long duration as the
cameras are coordinated to focus or observe locations where
there are more number of targets in the environment. To
overcome this limitation, we propose fairness in observation
of targets as our second goal of surveillance. That is, no
target is “starved” of observation by active cameras for long
duration. We refer to this tasks as fairness in observation
of multiple targets (FOMT) problem.

Specifically, we discuss the existing works in active cam-
era coordination and control (Section 2) and provide an
overview of our novel decision-theoretic frameworks to con-
trol and coordinate multiple active cameras: (a) Markov
Decision Process (MDP) framework to solve the MOMT
task in fully observable surveillance environment (Section 3),
(b) Markov Decision Process (MDP) framework to solve
the FOMT task in fully observable surveillance environment
(Section 3), and (c) Partially Observable Markov Decision
Process (POMDP) to solve MOMT task in partially observ-
able surveillance environment (Section 4). Our decision-
theoretic formulations exploits the inherent properties and
structures that are present in our surveillance problems, in
order to scale the framework for increasing number of tar-
gets. That is, the assumption that the motion of each target
is conditionally independent of other targets and cameras in
the environment given the current position, direction and
speed of that target is exploited.

2. CAMERA CONTROL & COORDINATION
APPROACHES

In early days, the PTZ cameras are controlled manually
by humans using the joy-stick and other hardware devices.
Based on the videos from static cameras, the user in the se-
curity office controls the PTZ cameras to focus on regions of



interests in high-resolution [3]. For example, [6] developed a
surveillance system know as FLYSPEC system that converts
the user selected region of interest in the wide-view cameras
into the corresponding PTZ control signals and sends it to
the PTZ cameras.

The above setup was improved by controlling the PTZ
cameras to automatically gaze the targets that are observed
in the static cameras [10] and omni-directional cameras [5].
These static wide-view cameras and omni-directional cam-
eras are calibrated with the PTZ cameras on a common
ground plane coordinates. Based on this simple setup (i.e.,
coupling static wide-view cameras and PTZ cameras), there
has been many work that have been explored in multi-camera
control and coordination. From the survey, we can see that
researchers have adopted different approaches to control and
coordinate multiple active cameras such as control theory
[16, 21], game theory [4, 18], state machine [15, 20], multi-
agent system [9], probabilistic approach [17], and many other
ad-hoc approaches [14] as well. In this paper, we discuss a
novel decision-theoretic approach to control and coordinate
multiple active cameras in surveillance [11, 12, 13]. The na-
ture of the surveillance problem (i.e., choosing optimal ac-
tions of active cameras in presence of uncertainties) makes
decision-theoretic approach an appropriate choice to con-
trol and coordinate active cameras in stochastic surveillance
environment. Spaan et al. [19] have proposed a decision-
theoretic approach to select camera views in the surveillance
system. Their work is purely based on selecting one or more
static cameras which is different from our work on control-
ling active cameras to accomplish a desired surveillance task.
Our decision-theoretic approach offers some of the following
advantages in surveillance:
• Decision-theoretic approach models the interaction be-

tween active camera network and the surveillance envi-
ronment effectively. Specifically, it models the surveillance
task as a stochastic optimization problem in which opti-
mal actions of the cameras are determined such that the
utility of the surveillance is increased.
• It provides formal, principled and rich mathematical mod-

els like Markov Decision Process (MDP), Partially Ob-
servable Markov Decision Process (POMDP), etc. for
planning optimal control actions for cameras in presence
of uncertainties like targets’ motion and location, noisy
camera observations, occlusions, etc.
• Multiple high-level surveillance goals can be defined for-

mally as mathematical objective functions.
When decision-theoretic models are poorly designed or used
naively for a surveillance problem, the state space explodes
and hence computing optimal actions for these cameras be-
comes intractable. For example, [19] has serious limitation
in terms of scalability in number of targets and cameras.
Whereas in our work, we exploit the structures and proper-
ties of the underlying surveillance problem to improve the
scalability issue.

3. MDP FRAMEWORK FOR COORDINAT-
ING CAMERAS

A novel Markov Decision Process (MDP) framework has
been proposed to control active cameras in a fully observable
surveillance environment, i.e., the locations, directions and
speeds of the moving targets are estimated from a set of
wide-view static cameras that are calibrated site-wide. In
this environment, the targets are assumed to be visible to

the static cameras at every instance of time and based on
the observations from the static cameras, the proposed MDP
framework directs the active cameras to observe the targets
in high-resolution. In order to direct the active cameras to
the predicted locations of the target, greedy solution (i.e.,
one step look-ahead of target’s motion) has been proposed
to solve the underlying MDP.

Specifically, the MDP framework resolves some of the above
mentioned issues in the following ways: (a) the motion of
the targets are modeled probabilistically; (b) the non-trivial
trade-off between maximizing the expected number of tar-
gets and the resolution of these observed targets has been
addressed by controlling the active cameras to maximize
the number of targets by guaranteeing the predefined im-
age/video resolution; (c) the scalability in number of tar-
gets has been improved by exploiting the properties that
are present in our surveillance problem; and (d) in order to
compute optimal control decisions for cameras in real-time,
we pre-compute the solutions off-line and do a look-up op-
eration on our stored solutions during the surveillance.
Formally, the MDP framework is defined as a tuple (S, A,
Tf , R) consisting of:
• a set S of joint states of active cameras (i.e., discrete

configurations of pan/tilt/zoom value) and targets (i.e.,
discrete location, direction and speed) in the surveillance
environment,
• a set A of joint actions (i.e., commands to move the active

cameras from one PTZ configuration to another) of active
cameras,
• a transition function Tf : S × A × S → [0, 1] denoting

the probability P (S′|S,A) of switching from the current
state S ∈ S to the next state S′ ∈ S using the joint action
A ∈ A,
• a real-valued reward function R : S → R representing the

high-level surveillance goal.
In the MDP framework, the policy function π : S → A maps
from each state to a joint action of the cameras. Solving
the MDP involves choosing the policy that maximizes the
expected reward for any given state. The optimal greedy
policy, denoted by π∗, maximizing the expected utility of
the system in the next time step is given by

π∗(S) = arg max
A∈A

∑
S′∈S

R(S′) P (S′|S,A) .

For MOMT task, the reward function R is defined as the
total number of targets that are observed by any of the ac-
tive camera with guaranteed resolution. As mentioned pre-
viously, the drawback of this task is the lack of fairness in
the observation of targets, i.e., targets are “starved” of ob-
servation from active cameras for long duration. Therefore
in [13], we define FOMT task and formally realize a pop-
ular fairness metric in resource allocation problems known
as max-min fairness, for achieving fairness in active camera
surveillance. We formulate this max-min metric as a reward
function and optimize it, such that no target is “starved” of
observation by active cameras for long time.

The main challenge in the MDP is managing the state
space S. This is because the state space grows exponen-
tially in the number of targets and active cameras. Hence,
the policy computation time for both the surveillance tasks
becomes exponential. In practice, the structure of the prob-
lem and environment can usually be exploited to reduce the
number of states and the time required to compute the op-



timal policy. We have shown in [12] and [13] how the state
space can be managed for our MOMT and FOMT surveil-
lance tasks, respectively, and thus allowing the MDPs to be
solved more efficiently.

4. POMDP FRAMEWORK FOR COORDI-
NATING CAMERAS

A novel Partially Observable Markov Decision Process
(POMDP) framework has been proposed to control active
cameras in a partially observable surveillance environment,
i.e., the case where we do not have static cameras that
can observe the entire surveillance environment at a low-
resolution. Hence, the targets’ information are observed
only through the active cameras. In such partially observable
environment, the targets may not be continuously observed
in any of the active cameras due to blind regions in the
surveillance environment. This setup is more realistic be-
cause, many real world environments (like airports, railway
and subway stations, schools and university campuses, etc.)
have occlusions due to physical structures like walls and pil-
lars, and also restricted regions where the cameras cannot
be placed. Figure 2 shows an example of overhead view of
a partially observable surveillance setup with 6 active cam-
eras and the occlusion caused by pillars and non-overlapping
active cameras.

This framework resolves some of the above-mentioned surveil-
lance issues in the following ways: (a) the targets are tracked
even when they are in blind spots by modeling the belief over
the targets’ states (i.e., locations, directions and speeds) and
updating the belief using the Bayesian paradigm based on
the probabilistic models for targets’ motion and active cam-
eras’ observations; (b) the actions of the active cameras are
coordinated to simultaneously improve the belief over the
targets’ states and maximize the expected number of targets
observed with a guaranteed resolution; (c) the targets’ mo-
tion uncertainty is modeled by a probabilistic motion model;
(d) the noisy camera observation is modeled by having a
probabilistic observation model; (e) the non-trivial trade-
off between maximizing number of targets and the image
resolution of observing these targets is addressed by coordi-
nating the cameras’ action such that the expected number
of targets is maximized while maintaining a guaranteed im-
age/video resolution; (f) the scalability in number of targets
is improved by exploiting the properties in our MOMT task
and (g) the optimal cameras’ actions are computed in real-
time by using sparse data structures to store and manipulate
the probabilities.

Formally, the POMDP framework is defined as a tuple (S,
A, Z, Tf , Of , R) consisting of
• a set S of joint states of active cameras and targets in the

surveillance environment,
• a set A of joint actions of active cameras,
• a set Z of joint observations of the targets taken by the

cameras,
• a transition function Tf : S × A × S → [0, 1] denoting

the probability P (S′|S,A) of going from the current joint
state S ∈ S to the next joint state S′ ∈ S using the joint
action A ∈ A,
• an observation function Of : S → [0, 1] denoting the prob-

ability P (Z|S) of observing the joint observation Z ∈ Z
given the joint state S ∈ S,
• a real-valued objective/reward function R : S → R repre-

senting a high-level surveillance goal.

At any given time, the exact state of the environment is
not fully observable to the POMDP controller. Instead, it
maintains a belief B over the set S of all possible states,
that is, B(S) is the probability that the environment is in
the state S ∈ S such that

∑
S∈S B(S) = 1. At every time

step, the POMDP controller issues an action A ∈ A and
makes an observation Z ∈ Z from the environment. Based
on the action A and observation Z, the prior belief B is
updated by Bayes’ rule to the posterior belief B′ as follows:

B′(S′) = η P (Z|S′)
∑
S∈S

P (S′|S,A)B(S)

where η , 1/P (Z|B,A) is a normalizing constant. A policy
π for the POMDP controller is defined as a mapping from
each belief B to an action A. Solving a POMDP involves
choosing the optimal policy π∗ that maximizes the expected
reward for any given belief B:

π∗(B) = arg max
A∈A

∑
Z′∈Z

R(B′)P (Z′|B,A) .

When the number of targets and active cameras increases,
the state space and hence the belief space of the POMDP
grow exponentially. Therefore, computing the optimal pol-
icy incurs exponential time. Fortunately, by exploiting the
structure of our surveillance problem, the optimal policy for
a given belief B can be computed efficiently.

In this framework, we proposed a greedy solution for MOMT
problem in partially observable surveillance environment that
is scalable in number of targets. As shown in simulations in
[11], our POMDP framework can scale up to 20 targets in
real-time. The real camera experiments of our MDP and
POMDP frameworks, show the feasibility of our decision-
theoretic approach in real world surveillance.

5. EXPERIMENTS AND DISCUSSIONS
In this section, we present empirical evaluation of our

decision-theoretic frameworks for MOMT and FOMT surveil-
lance tasks. Our proposed frameworks are simulated in
Player/Stage simulator to perform extensive experimenta-
tions and implemented using real Axis 214 PTZ cameras to
demonstrate its feasibility in real surveillance system. In
all our frameworks, we assume that the delay in moving
the camera to a specified state is negligible as the state-of-
the-art cameras are capable of panning/tilting at a speed of
360◦/sec [1]. Also in our MDP frameworks, we assume that
the static cameras are calibrated accuratelty such that the
3D position of the targets are minimal. This is achieved by
placing the cameras at high altitude. In order to maintain
the stability of our policies in all our frameworks, we com-
pute the policies for every 3 to 5 seconds. It is important
to point out that there is no standard benchmark surveil-
lance environments and datasets for active camera networks
to compare our proposed approach with the other systems in
the literature. We measure the average of percentage of tar-
gets being observed (denoted by PercentObs in the graphs)
by the active cameras over finite number of iterations for
MOMT tasks and average minimum observation time (de-
noted as Fairness in graphs) of all the targets over finite
number of iterations for FOMT tasks.

5.1 Simulation Results
Figure 3 shows the results of MDP framework for MOMT

task in a corridor setup of 40 × 5 discrete target locations,
4 active cameras each with 3 discrete PTZ positions and
50 targets. It has been observed that our MDP framework
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Figure 3: Performance evaluation of MDP framework

for MOMT task in corridor setup: (a) non-clustered tar-

gets and (b) clustered targets. In the graph, MDP de-
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notes the baseline approach in which cameras are con-
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outperforms other approaches in maximizing the number of
targets because, the transition model in MDP helps to pre-
dict the next locations of the targets and the cameras are
controlled to look at the predicted locations of the targets.
The performance is much better when the targets move in
clusters.
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Figure 4: Performance evaluation of MDP framework

for FOMT task in hallway setup. In the graphs, fair −
MC2 achieves our FOMT task, equal − MC2 achieves

equal observation times of all targets, MDP achieves our

MOMT task, RRB observes targets based on round-robin

fashion, Sys denotes systematic panning of active cam-

eras to all its states, WoP denotes the baseline approach

in which cameras are controlled without predicting the

targets’ next locations.

Figure 4 shows the results of MDP framework for FOMT
task in a hallway setup of 30 × 20 discrete target loca-
tions, 5 active cameras each with 3 discrete PTZ positions
and 50 targets. Its been observed that our fairness met-
ric achieve better fairness by maximizing the minimum ob-
servation times of the targets when compared to other ap-
proaches. Also the performance is much better when the
cameras are controlled to focus on the predicted locations of
the targets when compared the the WoP method where the
cameras are controlled to observed the current locations of
the targets.

Figure 5 shows the results of our POMDP framework for
MOMT task in a corridor setup of 40× 5 discrete target lo-
cations and hall setup of 40×5 discrete target locations with
4 active cameras each with 3 discrete PTZ positions and 20
targets. Our POMDP-based approach performs better than
the MP approach due to its ability to keep track of the
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Figure 5: Performance evaluation of POMDP frame-

work for MOMT task in (a) corridor and (b) hall setup.

In the graphs, P denotes our POMDP framework for

MOMT task; MP denotes our MDP framework for

MOMT tasks without static cameras; MSP denotes our

MDP framework for MOMT task where Gaussian noise

is added to static camera observation; Sys denotes sys-

tematic panning of active cameras to all its states and

Stat denotes static placement of active cameras.

targets’ locations and directions through its Bayesian belief
update process. It outperforms the MSP approach because
the observations (i.e., target’s location) taken by the active
cameras in our POMDP controller are more accurate as com-
pared to the noisy observations taken by the static cameras
in the MSP approach. The Sys and Stat approaches suf-
fer from performance degradation because the cameras are
controlled independently of the targets’ information.

5.2 Real-camera Results

Camera 1 

Camera 2 
Camera 3 

Targets 

Figure 6: Real-camera experiment setups.

We have conducted real-camera experiments with 3 Axis
214 PTZ cameras to monitor up to 6 Lego robots (targets)
in an indoor lab environment as shown in Figure 6. Each
camera has 3 states. The states of the cameras are deter-
mined such that all the target’s locations of the environment
can be observed at high-resolution by at least one camera.
We have a static camera that can track these robots based
on OpenCV Camshift tracker. For MDP framework we had
a static camera that is calibrated to obtain the approximate
locations of the robots at every time step. The results of
our MDP and POMDP frameworks are show in our demo
video1

We have also conducted preliminary study on tracking
multi-targets using real-world surveillance footages. We em-
ployed a correlation filters based tracker [2] which reported
to operate at 669 frames per second on single target. Our
preliminary study shows that the correlation filters based
tracker can achieve real-time tracking on 8 targets with im-
age resolution of 1280× 960 pixels at 25 fps. Our next work

1http://www.comp.nus.edu.sg/~lowkh/camera.html



include the implementation of correlation filter based person
detector and evaluation of person tracking for PTZ cameras.

6. CONCLUSIONS AND FUTURE WORKS
In this paper, we have given an overview of our novel

decision-theoretic paradigm to control and coordinate mul-
tiple active cameras in surveillance. We focus on two surveil-
lance goals: (a) maximize the number of targets observed in
active cameras by guaranteeing the predefined image res-
olution and (b) achieve fairness in observation of multiple
targets. We proposed two novel decision-theoretic frame-
works: MDP and POMDP frameworks to control multiple
active cameras in fully observable and partially observable
surveillance environments. We exploit the conditional in-
dependence property between individual targets and active
cameras to improve the scalability in number of targets.

In future we would like to improve our works in the fol-
lowing ways: Firstly, we like to improve on the scalability
in number of cameras and show the generality of our ap-
proaches for different goals of the surveillance. One way
to do achieve this is to distribute the policy computation
to individual cameras and compute the approximate global
policy by passing messages between cameras. Secondly, our
POMDP framework has been designed to solve only MOMT
task. So we would like to extend our MDP framework for
FOMT task to POMDP framework. Thirdly, we have tested
our frameworks with robots in indoor setup. We would like
to port all our frameworks and evaluate them in real-world
setup. Lastly, we would like to consider consumer grade
wearable visual sensors and mobile robots [7, 8] as part
of the surveillance environment. While CCTV camera has
been used as a primary surveillance platform, most of the
surveillance environment are generally partially observable
as stated in Section 1. The wearable visual sensors and
mobile robots can provide addition information on the un-
observed area. It is also more suitable to conduct high level
visual analysis, such as person-of-interest detection, which
can be used to prioritize the task for active multi-camera
surveillance.
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