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Abstract
Bayesian optimization (BO) is a popular paradigm
for optimizing the hyperparameters of machine
learning (ML) models due to its sample efficiency.
Many ML models require running an iterative
training procedure (e.g., stochastic gradient de-
scent). This motivates the question whether in-
formation available during the training process
(e.g., validation accuracy after each epoch) can be
exploited for improving the epoch efficiency of
BO algorithms by early-stopping model training
under hyperparameter settings that will end up
under-performing and hence eliminating unneces-
sary training epochs. This paper proposes to unify
BO (specifically, Gaussian process-upper confi-
dence bound (GP-UCB)) with Bayesian optimal
stopping (BO-BOS) to boost the epoch efficiency
of BO. To achieve this, while GP-UCB is sample-
efficient in the number of function evaluations,
BOS complements it with epoch efficiency for
each function evaluation by providing a principled
optimal stopping mechanism for early stopping.
BO-BOS preserves the (asymptotic) no-regret per-
formance of GP-UCB using our specified choice
of BOS parameters that is amenable to an ele-
gant interpretation in terms of the exploration-
exploitation trade-off. We empirically evaluate
the performance of BO-BOS and demonstrate its
generality in hyperparameter optimization of ML
models and two other interesting applications.

1. Introduction
The state-of-the-art machine learning (ML) models have
recently reached an unprecedented level of predictive per-
formance in several applications such as image recognition,
complex board games, among others (LeCun et al., 2015;
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Silver et al., 2016). However, a major difficulty faced by ML
practitioners is the choice of model hyperparameters which
significantly impacts the predictive performance. This calls
for the need to develop hyperparameter optimization algo-
rithms that have to be sample-efficient since the training
of many modern ML models consumes massive computa-
tional resources. To this end, Bayesian optimization (BO)
is a popular paradigm due to its high sample efficiency and
strong theoretical performance guarantee (Shahriari et al.,
2016). In particular, the BO algorithm based on the Gaus-
sian process-upper confidence bound (GP-UCB) acquisition
function has been shown to achieve no regret asymptotically
and perform competitively in practice (Srinivas et al., 2010).

Many ML models require running an iterative training proce-
dure for some number of epochs such as stochastic gradient
descent for neural networks (LeCun et al., 2015) and boost-
ing procedure for gradient boosting machines (Friedman,
2001). During BO, any query of a hyperparameter setting
usually involves training the ML model for a fixed number of
epochs. Information typically available during the training
process (e.g., validation accuracy after each epoch) is rarely
exploited for improving the epoch efficiency of BO algo-
rithms, specifically, by early-stopping model training under
hyperparameter settings that will end up under-performing,
hence eliminating unnecessary training epochs. Note that
this objective is different from that of standard early stop-
ping during the training of neural networks, which is used
to prevent overfitting.

To address this challenging issue, a number of works have
been proposed to make BO more epoch-efficient: Freeze-
thaw BO (Swersky et al., 2014) explores a diverse collection
of hyperparameter settings in the initial stage by training
their ML models with a small number of epochs, and then
gradually focuses on (exploits) a small number of promising
settings. Despite its promising epoch efficiency, its perfor-
mance is not theoretically guaranteed and its computational
cost can be excessive. Multi-fidelity BO1 (Kandasamy et al.,
2016; 2017), as well as its extensions using predictive en-
tropy search (Zhang et al., 2017) and value of information
for fidelity selection (Wu & Frazier, 2017), reduces the
resource consumption of BO by utilizing low-fidelity func-
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tions which can be obtained by using a subset of the training
data or by training the ML model for a small number of
epochs. However, in each BO iteration, since the fidelity
(e.g., number of epochs) is determined before function eval-
uation, it is not influenced by information that is typically
available during the training process (e.g., validation accu-
racy after each epoch). In addition to BO, attempts have
also been made to improve the epoch efficiency of other
hyperparameter optimization algorithms: Some heuristic
methods (Baker et al., 2017; Domhan et al., 2015; Klein
et al., 2017) predict the final training outcome based on
partially trained learning curves in order to identify hyper-
parameter settings that are predicted to under-perform and
early-stop their model training. Hyperband (Li et al., 2017),
which dynamically allocates the computational resource
(e.g., training epochs) through random sampling and elimi-
nates under-performing hyperparameter settings by succes-
sive halving, has been proposed and shown to perform well
in practice. Both the learning curve prediction methods and
Hyperband can be combined with BO to further improve
the epoch efficiency (Domhan et al., 2015; Falkner et al.,
2018; Klein et al., 2017), but their resulting performances
are not theoretically guaranteed. Despite these recent ad-
vances, we still lack an epoch-efficient algorithm that can
incorporate early stopping into BO (i.e., by exploiting infor-
mation available during the training process) and yet offer a
theoretical performance guarantee, the design of which is
likely to require a principled decision-making mechanism
for determining the optimal stopping time.

Optimal stopping is a classic research topic in statistics and
operations research regarding sequential decision-making
problems whose objective is to make the optimal stopping
decision with a small number of observations (Ferguson,
2006). In Bayesian optimal stopping (BOS) or Bayesian
sequential design, the decision between stopping vs. continu-
ing is made to maximize the expected utility or, equivalently,
minimize the expected loss (Powell & Ryzhov, 2012). BOS
has found success in application domains such as finance
(Longstaff & Schwartz, 2001), clinical design (Brockwell &
Kadane, 2003; Müller et al., 2007; Wathen & Thall, 2008),
and economics (Davis & Cairns, 2012). The capability of
BOS in providing a principled optimal stopping mechanism
makes it a prime candidate for introducing early stopping
into BO in a theoretically sound and rigorous way.

This paper proposes to unify Bayesian optimization (specifi-
cally, GP-UCB) with Bayesian optimal stopping (BO-BOS)
to boost the epoch efficiency of BO (Section 3). Intu-
itively, GP-UCB is acclaimed for being sample-efficient
in the number of function evaluations while BOS can reduce
the required number of epochs for each function evalua-
tion. BO-BOS unifies the best of both worlds to yield an
epoch-efficient hyperparameter optimization algorithm. In-
terestingly, in spite of the seemingly disparate optimization

objectives of GP-UCB vs. BOS (respectively, objective func-
tion v.s. expected loss), BO-BOS can preserve the trademark
(asymptotic) no-regret performance of GP-UCB with our
specified choice of BOS parameters that is amenable to an el-
egant interpretation in terms of the exploration-exploitation
trade-off (Section 4). Though the focus of our work here is
on epoch-efficient BO for hyperparameter tuning, we addi-
tionally evaluate the performance of BO-BOS empirically
in two other interesting applications to demonstrate its gen-
erality: policy search for reinforcement learning, and joint
hyperparameter tuning and feature selection (Section 5).

2. Background and Notations
2.1. Bayesian Optimization (BO) and GP-UCB
Consider the problem of sequentially maximizing an un-
known objective function f : D → R representing the val-
idation accuracy over a compact input domain D ⊆ Rd of
different hyperparameter settings for training an ML model:
In each iteration t = 1, . . . , T , an input query zt , [xt, nt]
of a hyperparameter setting (comprising N0 < nt ≤ N
training epochs and a vector xt of the other hyperparam-
eters) is selected for evaluating the validation accuracy f
of the ML model to yield a noisy observed output (valida-
tion accuracy) yt , f(zt) + ε with i.i.d. Gaussian noise
ε ∼ N (0, σ2) and noise variance σ2. Since every eval-
uation of f is costly (Section 1), our goal is to strategi-
cally select input queries to approach the global maximizer
z∗ , arg maxz∈D f(z) as rapidly as possible. This can be
achieved by minimizing a standard BO objective such as
the simple regret ST , f(z∗) − maxt∈{1,...,T} f(zt). A
BO algorithm is said to guarantee no regret asymptotically
if it satisfies limT→∞ST = 0, thus implying that it will
eventually converge to the global maximum.

To guarantee no regret, the belief of f is modeled by a
Gaussian process (GP). Let {f(z)}z∈D denote a GP, that
is, every finite subset of {f(z)}z∈D follows a multivariate
Gaussian distribution (Rasmussen & Williams, 2006). Then,
a GP is fully specified by its prior mean µ(z) and covariance
k(z, z′) for all z, z′ ∈ D, which are, respectively, assumed
w.l.o.g. to be µ(z) = 0 and k(z, z′) ≤ 1 for notational
simplicity. Given a column vector yT , [yt]

>
t=1,...,T of

noisy outputs observed from evaluating f at the selected
input queries z1, . . . , zT ∈ D after T iterations, the GP
posterior belief of f at some input z ∈ D is a Gaussian with
the following posterior mean µT (z) and variance σ2

T (z):

µT (z) , kT (z)>(KT + σ2I)−1yT ,

σ2
T (z) , k(z, z)− kT (z)>(KT + σ2I)−1kT (z)

(1)

where KT , [k(zt, zt′)]t,t′=1,...,T and kT (z) ,
[k(zt, z)]>t=1,...,T . In each iteration t of BO, an input query
zt ∈ D is selected to maximize the GP-UCB acquisition
function (Srinivas et al., 2010) that trades off between ob-
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serving an expected maximum (i.e., with a large GP poste-
rior mean µt−1(z)) given the current GP belief of f (i.e.,
exploitation) vs. that of high predictive uncertainty (i.e.,
with a large GP posterior variance σ2

t−1(z)) to improve
the GP belief of f over D (i.e., exploration). That is,
zt , arg maxz∈D µt−1(z) +

√
βtσt−1(z) where the pa-

rameter βt > 0 is set to trade off between exploitation vs.
exploration for guaranteeing no regret asymptotically with
high probability.

2.2. Bayesian Optimal Stopping (BOS)
BOS provides a principled mechanism for making the
Bayes-optimal stopping decision with a small number of
observations. As shall be seen in Algorithm 1, in each itera-
tion t of BO-BOS, BOS is used to early-stop model training
under the selected input hyperparameters xt that will end
up under-performing, hence reducing the required number
of training epochs. In a BOS problem, the goal is to de-
cide whether to stop and conclude either hypothesis/event
θt = θt,1 or θt = θt,2 corresponding to terminal decision d1
or d2, or to gather one more observation via the continuation
decision d0. Let yt,n′ be the noisy output (validation accu-
racy) observed in epoch n′ and yt,n , [yt,n′ ]

>
n′=1,...,n be a

vector of noisy outputs observed up till epoch n in iteration
t. Recall from Section 2.1 that in iteration t, the ML model
is trained using the selected input hyperparameter setting
[xt, nt] to yield the noisy observed output (validation accu-
racy) yt. So, yt = yt,nt for t = 1, . . . , T . After each epoch
n, the posterior belief of event θt is updated to Pr(θt|yt,n)
which will be used to compute the expected losses of termi-
nal decisions d1 and d2. Such a loss function l has to encode
the cost of making a wrong decision. Define ρt,n(yt,n) as
the minimum expected loss among all decisions in epoch n:

ρt,n(yt,n) , min{ Eθt|yt,n [l(d1, θt)], Eθt|yt,n [l(d2, θt)],

cd0 + Eyt,n+1|yt,n [ρt,n+1(yt,n+1)] }
(2)

for n = N0 + 1, . . . , N − 1 where the first two terms are
the expected losses of terminal decisions d1 and d2, the last
term sums the immediate cost cd0 and expected future loss
of making the continuation decision d0 to continue model
training in the next epoch n+ 1 to yield the noisy observed
output (validation accuracy) yt,n+1, and ρt,N (yt,N ) ,
min{ Eθt|yt,N [l(d1, θt)], Eθt|yt,N [l(d2, θt)] }. Since ρt,n
depends on ρt,n+1, it naturally prompts the use of backward
induction to solve the BOS problem (2) exactly, which is
unfortunately intractable due to an uncountable set of possi-
ble observed outputs yt,n+1. This computational difficulty
can be overcome using approximate backward induction
techniques (Brockwell & Kadane, 2003; Müller et al., 2007)
whose main ideas include using summary statistics to repre-
sent the posterior beliefs, discretizing the space of summary
statistics, and approximating the expectation terms via sam-
pling. Appendix A describes a commonly-used approximate
backward induction algorithm (Müller et al., 2007).

Solving the BOS problem (2) yields a Bayes-optimal de-
cision rule in each epoch n: Take the Bayes-optimal stop-
ping decision if the expected loss of either terminal deci-
sion d1 or d2 is at most that of the continuation decision
d0, that is, min{ Eθt|yt,n [l(d1, θt)], Eθt|yt,n [l(d2, θt)] } ≤
cd0 + Eyt,n+1|yt,n [ρt,n+1(yt,n+1)]. Otherwise, continue
model training to yield the noisy observed output (validation
accuracy) yt,n+1 and repeat this rule in the next epoch n+1.

3. BO-BOS Algorithm
In this section, we will describe our proposed BO-BOS algo-
rithm (Section 3.1) and define the loss function l in BOS (2)
such that it can serve as an effective early-stopping mech-
anism in BO (Section 3.2). We focus on problem settings
where the objective function f is bounded and monotoni-
cally increasing in n:
Assumption 1. (a) f(z) ∈ [0, 1] for all z ∈ D and (b)
f([x, n]) ≤ f([x, n+ 1]) for all x and n = 1, . . . , N − 1.

Assumption 1a is not restrictive since it applies to any
bounded f with a proper transformation. Assumption 1b
holds reasonably well in a number of important ML prob-
lems: (a) f represents the validation accuracy of an ML
model and n denotes the number of training epochs or the
number of selected features during feature selection, and (b)
f represents the (discounted) cumulative rewards (assuming
non-negative rewards) in reinforcement learning (RL) and n
denotes the number of steps taken by the agent in the envi-
ronment. Our experiments in Section 5 will demonstrate that
BO-BOS outperforms the state-of-the-art hyperparameter
optimization algorithms in these ML problems.

3.1. Algorithm Description

In each iteration t of BO-BOS (Algorithm 1), the input
hyperparameters xt are selected to maximize the GP-UCB
acquisition function with the input dimension of training
epochs fixed at N (line 2). The ML model is trained using
xt for N0 initial training epochs to yield the noisy observed
outputs (validation accuracies) yt,N0 (line 3). After that,
the BOS problem is solved (line 5) to obtain Bayes-optimal
decision rules (see Sections 2.2 and 3.2). Then, in each
epoch n > N0, model training continues under xt to yield
the noisy observed output (validation accuracy) yt,n (line
8). If both of the following conditions are satisfied (line 9):

C1. BOS decision rule in epoch n outputs stopping decision;

C2. σt−1([xt, N ]) ≤ κ σt−1([xt, n]) ,

then model training is early-stopped in epoch nt = n. Other-
wise, the above procedure is repeated in epoch n+1. If none
of the training epochs n = N0 + 1, . . . , N − 1 satisfy both
C1 and C2, then nt = N (i.e., no early stopping). Finally,
the GP posterior belief (1) is updated with the selected input
hyperparameter setting zt = [xt, nt] and the corresponding
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noisy observed output (validation accuracy) yt = yt,nt (line
11). BO-BOS then proceeds to the next iteration t+ 1.

To understand the rationale of our choices of C1 and C2, the
BOS decision rule in C1 recommends the stopping decision
to early-stop model training in epoch n if it concludes that
model training under xt for N epochs will produce a valida-
tion accuracy not exceeding the currently found maximum
in iterations 1, . . . , t− 1; this will be formally described in
Section 3.2. On the other hand, C2 prefers to evaluate the
validation accuracy f of the ML model with the input query
[xt, n] of fewer training epochs n < N than [xt, N ] if the
uncertainty of the validation accuracy f([xt, N ]) achieved
by model training under xt for N epochs is not more than a
factor of κ ≥ 1 of that of f([xt, n]) for n epochs; the degree
of preference is controlled by parameter κ. Thus, by satis-
fying both C1 and C2, C2 lends confidence to the resulting
performance of model training under xt forN epochs that is
concluded by C1 to be underwhelming. So, model training
can be early-stopped in epoch nt = n. More importantly,
both C1 and C2 are necessary for theoretically guaranteeing
the no-regret performance of BO-BOS (Section 4).

3.2. BOS for Early Stopping in BO
Let the currently found maximum in iterations 1, . . . , t− 1
be denoted as y∗t−1 , maxt′∈{1,...,t−1} yt′ . In the context
of early stopping in BO, BOS has to decide in each epoch
n of iteration t whether model training under xt for N
epochs will produce a validation accuracy not more than
the currently found maximum (offset by a noise correction
term ξt), i.e., f([xt, N ]) ≤ y∗t−1 − ξt where y∗0 , 0 and
ξt is defined later in Theorem 1. To achieve this, the ter-
minal decisions d1 and d2 and the continuation decision
d0 in BOS are defined as follows: d1 stops and concludes
that f([xt, N ]) ≤ y∗t−1 − ξt, d2 stops and concludes that
f([xt, N ]) > y∗t−1−ξt, and d0 continues model training for
one more epoch. Then, the event θ (Section 2.2) becomes

θt =

{
θt,1 if f([xt, N ]) ≤ y∗t−1 − ξt ,
θt,2 otherwise .

Algorithm 1 BO-BOS
1: for t = 1, 2, . . . , T do
2: xt ← arg maxx µt−1([x, N ]) +

√
βtσt−1([x, N ])

3: Train model using xt for N0 epochs to yield yt,N0

4: n← N0

5: Solve BOS problem (2) to obtain decision rules
6: repeat
7: n← n+ 1
8: Continue model training using xt to yield yt,n
9: until (n = N) ∨ (C1 ∧ C2)

10: nt = n
11: Update GP posterior belief (1) with zt = [xt, nt] and

yt = yt,nt

We define l(d1, θt) and l(d2, θt) of the respective terminal
decisions d1 and d2 as 0-K loss functions which are com-
monly used in clinical designs (Jiang et al., 2013; Lewis &
Berry, 1994) due to their simplicity and interpretablility:

l(d1, θt) , K11θt=θt,2 and l(d2, θt) , K21θt=θt,1 (3)

where the parameters K1 > 0 and K2 > 0 represent the
costs of making the wrong terminal decisions d1 and d2,
respectively. Since f([xt, N ]) is not known in epoch n <
N , the expected losses of terminal decisions d1 and d2 have
to be evaluated instead:

Eθt|yt,n [l(d1, θt)] = K1Pr(θt = θt,2|yt,n) ,

Eθt|yt,n [l(d2, θt)] = K2Pr(θt = θt,1|yt,n) .
(4)

According to (4), if K1 (K2) is set to +∞, then
Eθt|yt,n [l(d1, θt)] = +∞ (Eθt|yt,n [l(d2, θt)] = +∞). Con-
sequently, terminal decision d1 (d2) is never recommended.
The above definitions are plugged into (2) to derive the mini-
mum expected loss ρt,n(yt,n) in epoch n = N0 +1, . . . , N .

Our formulation of the BOS problem (2) for early stopping
in BO can be solved using an adapted approximate back-
ward induction algorithm: To account for Assumption 1b,
a kernel with a prior bias towards exponentially decaying
learning curves (Swersky et al., 2014) is used to fit a GP
model to the validation errors 1− yt,N0 of the ML model
trained for N0 initial epochs. Samples are then drawn from
the resulting GP posterior belief for forward simulation of
sample paths from epochs N0 + 1 to N , which are used
to estimate the Pr(θt|yt,n) and Pr(yt,n+1|yt,n) terms neces-
sary for approximate backward induction. Following some
applications of BOS (Jiang et al., 2013; Müller et al., 2007),
the average validation error is used as the summary statistic.
Our adapted approximate backward induction algorithm is
explained in detail in Appendix B. Note that the use of the
kernel favoring exponentially decaying learning curves in
generating the forward simulation samples is critical for
incorporating our prior knowledge about the behavior of
learning curves, which gives BO-BOS an advantage over
multi-fidelity BO algorithms which do not exploit this prior
knowledge, thus contributing to the favorable performance
of BO-BOS.

After our BOS problem is solved, Bayes-optimal decision
rules are obtained and used by C1 in BO-BOS (Algorithm 1):
Specifically, after model training to yield validation accu-
racy yt,n (line 8), the summary statistic is first updated
to
∑n
n′=1 yt,n′/n and the BOS decision rule in epoch n

recommends a corresponding optimal decision. If the rec-
ommended decision is d1 (i.e., stopping and concluding
f([xt, N ]) ≤ y∗t−1 − ξt), then model training under xt
is early-stopped in epoch n (assuming that C2 is satis-
fied). Otherwise, model training continues under xt for
one more epoch and the above procedure is repeated in
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epoch n + 1 until the last epoch n = N is reached. Note
that terminal decision d2 (i.e., stopping and concluding
f([xt, N ]) > y∗t−1 − ξt) does not align with the BO ob-
jective of sequentially maximizing f . So, when the recom-
mended decision is d2, there is no early stopping and model
training continues under xt for one more epoch.

4. Theoretical Analysis
The goal of the theoretical analysis is to characterize the
growth of the simple regret ST of the proposed BO-BOS
algorithm and thus show how the algorithm should be de-
signed in order for ST to asymptotically go to 0, i.e., for
the algorithm to be no regret. To account for the addi-
tional uncertainty introduced by BOS, we analyze the ex-
pected regret, in which the expectation is taken with re-
spect to the posterior probabilities from the BOS algorithms:
Pr(f([xt, N ]) > y∗t−1 − ξt|yt,nt).

We make the following assumption on the smoothness of
the objective function f :

Assumption 2. Assume for the kernel k, for some a and b,

Pr(supz∈D |∂f/∂zj | > L) ≤ a exp(−(L/b)2)

for j = 1, . . . , d where zj is the j-th component of input z.

Assumption 2 is satisfied by some commonly used kernels
such as the Square Exponential kernel and Matérn kernel
with ν > 2 (Srinivas et al., 2010). For simplicity, we as-
sume that the underlying domainD is discrete, i.e. |D| <∞.
However, it is straightforward to extend the analysis to gen-
eral compact domain by following similar analysis strategies
as those in Appendix A.2. of (Srinivas et al., 2010). Theo-
rem 1 below shows an upper bound on the expected simple
regret of the BO-BOS algorithm.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Let
δ, δ′, δ′′ ∈ (0, 1), βt , 2 log(|D|t2π2/(6δ)), and τT ,∑T
t=1 1nt<N be the number of BO iterations in which early

stopping happens from iterations 1 to T . Let κ be the pa-
rameter used in C2. At iteration t, the BOS algorithm is run
with the corresponding fixed cost parameters K2 and cd0 ,
as well as iteration-dependent cost parameter K1,t, ξ1 , 0,
and ξt ,

√
2σ2 log(π2t2(t− 1)/(6δ′′)) for t > 1. Then

∀T ≥ 1, with probability of at least 1− δ − δ′ − δ′′,

E[ST ] ≤ κ
√
TC1βT γT
T

+

∑T
t=1 ηt
T

+
1

T
Nb

√
log

da

δ′
τT

in which ηt ,
K2+cd0
K1,t

, C1 = 8/log(1 + σ−2), γT is the
maximum information gain about the function f from any
set of observations of size T , and the expectation is w.r.t.∏
t∈{t′|t′=1,...,T,nt′<N}

Pr(f([xt, N ]) > y∗t−1 − ξt|yt,nt)
used in the BOS algorithm.

Theorem 2 below states how the BOS parameters should be
chosen to make BO-BOS asymptotically no-regret:

Theorem 2. In Theorem 1, ifK1,t is an increasing sequence
such that K1,1 ≥ K2 + cd0 and that K1,t goes to +∞ in
finite number of BO iterations, then, with probability of at
least 1− δ − δ′ − δ′′, E[ST ] goes to 0 asymptotically.

The proof of both theorems is presented in Appendix C.
The first term in the upper bound of E[ST ] in Theorem 1
matches that of the simple regret of the GP-UCB algorithm
(up to the constant κ). Note that the theoretical results rely
on the exact solution of the BOS problems; however, in
practice, a trade-off exists between the quality of the approx-
imate backward induction and the computational efficiency.
In particular, increasing the number of forward simulation
samples and making the grid of summary statistics more
fine-grained both lead to better approximation quality, while
increasing the computational cost. Recommended approxi-
mation parameters that work well in all our experiments and
thus strike a reasonable balance between these two aspects
are given in Section 5.

Interestingly, the choice of an increasing K1,t sequence
as required by Theorem 2 is well justified in terms of the
exploration-exploitation trade-off. As introduced in section
3.2, K1 represents how much we would like to penalize
the BOS algorithm for falsely early-stopping (taking deci-
sion d1). Therefore, increasing values of K1 implies that,
as the BO-BOS algorithm progresses, we become more
and more cautious at early-stopping. In other words, the
preference of BOS for early stopping diminishes over BO
iterations. Interestingly, this corresponds to sequentially
shifting our preference from exploration (using small num-
ber of epochs) to exploitation (using large number of epochs)
throughout all runs of the BOS algorithms, which is an im-
portant decision-making principle followed by many sequen-
tial decision-making algorithms such as BO, multi-armed
bandit, reinforcement learning, among others.

Another intriguing interpretation of the theoretical results
is that the growth rate of the K1,t sequence implicitly de-
termines the trade-off between faster convergence of the
BO algorithm (smaller number of BO iterations) and more
computational saving in each BO iteration (smaller number
of training epochs on average). In particular, if K1,t grows
quickly, the second and third terms in the upper bound in
Theorem 1 both decay fast, since ηt is inversely related to
K1,t and large penalty for early stopping results in small τT ;
as a result, a large number of hyperparameters are run with
N epochs and the resulted BO-BOS algorithm behaves simi-
larly to GP-UCB, which is corroborated by the upper bound
on E[ST ] in Theorem 1 since the first term dominates. On
the other hand, if the K1,t sequence grows slowly, then the
second and third terms in Theorem 1 decay slowly; conse-
quently, these two terms dominate the regret and the resulted
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algorithm early-stops very often, thus leading to smaller
number of epochs on average, at the potential expense of
requiring more BO iterations. Furthermore, the constant κ
used in C2 also implicitly encodes our relative preference
for early-stopping. Specifically, large values of κ favor early
stopping by relaxing C2: σt−1([xt, n]) ≥ σt−1([xt, N ])/κ;
however, more early-stopped function evaluations might
incur larger number of required BO iterations as can be ver-
ified by the fact that larger κ increases the first regret term
in Theorem 1 (which matches the regret of GP-UCB). In
practice, as a result of the above-mentioned trade-offs, the
best choices of the BOS parameters and κ are application-
dependent. In addition, to ensure desirable behaviors of
BOS, the BOS parameters should be chosen with additional
care. In particular, cd0 should be small, whereasK1,t should
be of similar order withK2 initially. In Section 5, we recom-
mend some parameters that work well in all our experiments
and thus are believed to perform robustly in practice.

5. Experiments and Discussion
The performance of BO-BOS is empirically compared with
four other hyperparameter optimization algorithms: GP-
UCB (Srinivas et al., 2010), Hyperband (Li et al., 2017),
multi-fidelity BO algorithm called BO with continuous ap-
proximations (BOCA) (Kandasamy et al., 2017), and GP-
UCB with learning curve prediction using an ensemble
of Bayesian parametric regression models (LC Prediction)
(Domhan et al., 2015). Freeze-thaw BO is not included in
the comparison since its implementation details are compli-
cated and not fully available. We empirically evaluate the
performance of BO-BOS in hyperparameter optimization of
logistic regression (LR) and convolutional neural networks
(CNN), respectively, in Sections 5.1 and 5.2, and demon-
strate its generality in two other interesting applications in
Section 5.3. Due to lack of space, additional experimental
details are deferred to Appendix D.

5.1. Hyperparameter Optimization of LR

We first tune three hyperparameters of LR trained on the
MNIST image dataset. Although both the K1,t sequence
and κ determine the trade-off between the number of BO
iterations and the number of epochs on average as mentioned
in section 4, for simplicity, we fix κ = 2 and investigate the
impact of different sequences of K1,t values.

As shown in Fig. 1, the sequences (K1,t)a, (K1,t)b and
(K1,t)c lead to similar performances, all of which outper-
form GP-UCB. On the other hand, the algorithm with fixed
K1 values ((K1,t)d), despite having fast performance im-
provement initially, eventually finds a worse hyperparameter
setting than all other algorithms. This undesirable perfor-
mance results from the fact that fixed K1 values give con-
stant penalty to falsely early-stopping throughout all runs of

Figure 1. Best-found validation error of logistic regression v.s. the
total number of epochs (averaged over 10 random initializations).
K2 = 99 and cd0 = 1 are fixed; K1,1 = 100 for all four
BO-BOS algorithms; for t > 1, the different K1,t sequences
are: (K1,t)a =

K1,t−1

0.89
; (K1,t)b =

K1,t−1

0.95
; (K1,t)c =

K1,t−1

0.99
;

(K1,t)d =
K1,t−1

1.0
= K1,1.

the BOS algorithms, and as the incumbent validation error
decreases, the preference of the algorithm for early stopping
will increase, thus preventing the resulting algorithm from
beginning to exploit (running promising hyperparameter
settings with N epochs). This observation demonstrates the
necessity of having an increasing sequence of K1,t values,
thus substantiating the practical relevance of our theoretical
analysis (Theorem 2). The sequence (K1,t)b, as well as
the values of K2 = 99 and cd0 = 1, will be used in the
following experiments if not further specified.

5.2. Hyperparameter Optimization of CNN

In this section, we tune six hyperparameters of CNN using
two image datasets: CIFAR-10 (Krizhevsky, 2009) and
Street View House Numbers (SVHN) (Netzer et al., 2011).
Note that the goal of the experiments is not to compete with
the state-of-the-art models, but to compare the efficiency
of different hyperparameter tuning algorithms, so no data
augmentation or advanced network architectures are used.

As shown in Figures 2a and 2b, BO-BOS outperforms all
other algorithms under comparison in terms of the run-time
efficiency. Note that the horizontal axis, which represents
the wall-clock time, includes all the time spent during the
algorithms, including the running time of machine learning
models, the approximate backward induction used to solve
BOS, etc. Although Hyperband is able to quickly reduce the
validation error in the initial stage, it eventually converges
to sub-optimal hyperparameter settings compared with both
GP-UCB and BO-BOS. Similar findings have been reported
in previous works (Klein et al., 2017; Falkner et al., 2018)
and they might be attributed to the pure-exploration nature
of the algorithm. Our BO-BOS algorithm, which trades
off exploration and exploitation, is able to quickly surpass
the performance of Hyperband and eventually converges to
significantly better hyperparameter settings. In addition, we
also ran the BOHB algorithm (Falkner et al., 2018) which
combines Hyperband and BO; however, BOHB did not
manage to reach comparable performance with the other
algorithms in these two tasks. We observed that the sub-
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(a) CIFAR-10.

(b) SVHN.
Figure 2. Best-found validation error of CNN v.s. run-time (aver-
aged over 30 random initializations).

optimal behavior of Hyperband and BOHB observed here
can be alleviated if the search space of hyperparameters is
chosen to be smaller, in which case the advantage of pure
exploration can be better manifested. The unsatisfactory
performance of BOCA might be explained by the fact that
it does not make use of the intermediate validation errors
when selecting the number of epochs. In contrast, BO-BOS
takes into account the observations after each training epoch
when choosing the optimal stopping time, and thus is able
to make better-informed decisions. Moreover, since BOCA
is designed for general scenarios, the useful assumption
of monotonic learning curve utilized by BO-BOS is not
exploited; therefore, BOCA is expected to perform better
if the fidelity levels result from data sub-sampling. LC
Prediction performs similarly to GP-UCB, which might be
because the predicted final values of the learning curves
are used as real observations in the GP surrogate function
(Domhan et al., 2015), thus invalidating the theoretical guar-
antee and deteriorating the convergence of GP-UCB, which
offsets the computational saving provided by early stopping.
BO-BOS, on the other hand, offers theoretically guaranteed
convergence, thus allowing explicit control over the trade-
off between the speed of convergence and the reduction in
the average number of epochs, as discussed in Section 4.

5.3. Novel Applications of the BO-BOS Algorithm

5.3.1. POLICY SEARCH FOR RL

Thanks to its superb sample efficiency, BO has been found
effective for policy search in RL (Wilson et al., 2014), espe-
cially when policy evaluation is costly such as gait optimiza-
tion for robots (Lizotte et al., 2007) and vehicle navigation
(Brochu et al., 2010). In policy search, the return of a policy

is usually estimated by running the agent in the environment
sequentially for a fixed number of steps and calculating the
cumulative rewards (Wilson et al., 2014). Thus, the sequen-
tial nature of policy evaluation makes BO-BOS an excellent
fit to improve the efficiency of BO for policy search in RL.

We apply our algorithm to the Swimmer-v2 task from Ope-
nAI Gym, MuJoCo (Brockman et al., 2016; Todorov et al.,
2012), and use a linear policy consisting of 16 parame-
ters. Each episode consists of 1000 steps, and we treat
every m consecutive steps as one single epoch such that
N = 1000/m. Direct application of BO-BOS in this task
is inappropriate since the growth pattern of cumulative re-
wards differs significantly from the evolution of the learning
curves of ML models (Appendix D.3). Therefore, the re-
wards are discounted (by γ) when calculating the objective
function, because the pattern of discounted return (cumu-
lative rewards) bears close resemblance to that of learning
curves. Note that although the value of the objective func-
tion is the discounted return, we also record and report the
corresponding un-discounted return, which is the ultimate
objective to be maximized. As a result, N and γ should
be chosen such that the value of discounted return faith-
fully aligns with its un-discounted counterpart. Fig. 3 plots
the best (un-discounted) return in an episode against the
total number of steps, in which BO-BOS (with N = 50
and γ = 0.9) outperforms GP-UCB (for both γ = 0.9 and
γ = 1.0). The observation that the solid red line shows
better returns than the two dotted red lines might be because
overly small γ (0.75) and overly large N (100) both enlarge
the disparity between discounted and un-discounted returns
since they both downplay the importance of long-term dis-
counted rewards. Moreover, not discounting the rewards
(γ = 1) leads to poor performance, corroborating the ear-
lier analysis motivating the use of discounted rewards. The
results demonstrate that even though BO-BOS is not imme-
diately applicable in the original problem, it can still work
effectively if the problem is properly transformed, which
substantiates the general applicability of BO-BOS. More-
over, we also applied Hyperband in this task, but it failed
to converge to a comparable policy to the other methods
(achieving an average return of around 2.5), which further
supports our earlier claim stating that Hyperband under-
performs when the search space is large because there are
significantly more parameters (16) than the previous tasks.

Interestingly, both BO-BOS and GP-UCB use significantly
less steps to substantially outperform the benchmarks2

achieved by some recently developed deep RL algorithms,
in which the best-performing algorithm (Deep Deterministic
Policy Gradients) achieves an average return of around 120.
Although the simplicity of the task might have contributed
to their overwhelming performances, the results highlight

2https://spinningup.openai.com/en/latest/spinningup/bench.html
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Figure 3. Best-found return (averaged over 5 episodes) v.s. the total
number of steps of the robot in the environment (averaged over 30
random initializations) using the Swimmer-v2 task. The BO-BOS
algorithm is run with different values of N (the maximum number
of epochs) and γ (the discount factor).

Figure 4. Best-found validation error of XGBoost v.s. run-time
(averaged over 30 random initializations), obtained using joint
hyperparameter tuning and feature selection.

the considerable potential of BO-based policy search algo-
rithms for RL. Note that following the common practice
in RL, Fig. 3 is presented in terms of the total number of
steps instead of run-time; we believe the additional com-
putation required by BOS can be easily overshadowed in
large-scale RL tasks, as demonstrated in the previous ex-
periments. Most modern RL algorithms rely on enormous
number of samples, making their applications problematic
when sample efficiency is of crucial importance (Arulku-
maran et al., 2017). As shown above, BO-BOS achieves
significantly better results than popular deep RL algorithms
while at the same time being far more sample-efficient, thus
potentially offering practitioners a practically feasible op-
tion in solving large-scale RL problems.

5.3.2. JOINT HYPERPARAMETER TUNING AND FEATURE
SELECTION

Beside hyperparameter tuning, feature selection is another
important pre-processing step in ML, to lower computa-
tional cost and boost model performance (Hall, 2000). There
are two types of feature selection techniques: filter and
wrapper methods; the wrapper methods, such as forward
selection (which starts with an empty feature set and in each
iteration greedily adds the feature with largest performance
improvement), have been shown to perform well, although
computationally costly (Hall & Smith, 1999). Interestingly,
as a result of the sequential nature of wrapper methods, they

can be naturally solved by BO-BOS by simply replacing the
sequential training of ML models with forward selection.

In this task, we tune four hyperparameters of the gradi-
ent boosting model (XGBoost (Chen & Guestrin, 2016))
trained on an email spam dataset. We additionally compare
with Hyperband since it was previously applied to random
feature approximation in kernel methods (Li et al., 2017).
As shown in Fig. 4, BO-BOS again delivers the best per-
formance in this application. Consistent with Fig. 2, the
wall-clock time includes all the time incurred during the
algorithms. The K1,t sequence is made smaller than be-
fore: K1,t = K1,t−1/0.99, because in this setting, more
aggressive early stopping is needed for BO-BOS to show
its advantage. Although Hyperband works well for random
feature approximation (Li et al., 2017), it does not perform
favourably when applied to more structured feature selection
techniques. Both hyperparameter optimization and feature
selection have been shown to be effective for enhancing the
performance of ML models. However, performing either
of them in isolation may lead to sub-optimal performance
since their interaction is un-exploited. Our results suggest
that BO-BOS can effectively improve the efficiency of joint
hyperparameter tuning and feature selection, making the
combined usage of these two pre-processing techniques a
more practical choice.

6. Conclusion
This paper describes a unifying BO-BOS framework that in-
tegrates BOS into BO in a natural way to derive a principled
mechanism for optimally stopping hyperparameter evalua-
tions during BO. We analyze the regret of the algorithm, and
derive the BOS parameters that make the resulting BO-BOS
algorithm no-regret. Applications of BO-BOS to hyperpa-
rameter tuning of ML models, as well as two other novel
applications, demonstrate the practical effectiveness of the
algorithm. For future work, we plan to use BO-BOS in
other applications with iterative function evaluations and
generalize BO-BOS to the batch3 (Daxberger & Low, 2017)
and high-dimensional (Hoang et al., 2018) BO settings, as
well as to the non-myopic context by appealing to existing
literature on nonmyopic BO (Ling et al., 2016) and active
learning (Cao et al., 2013; Hoang et al., 2014a;b; Low et al.,
2008; 2009; 2011; 2014a). For applications with a huge
budget of function evaluations, we like to couple BO-BOS
with the use of distributed/decentralized (Chen et al., 2012;
2013a;b; 2015; Hoang et al., 2016; 2019; Low et al., 2015;
Ouyang & Low, 2018) or online/stochastic (Hoang et al.,
2015; 2017; Low et al., 2014b; Xu et al., 2014; Yu et al.,
2019) sparse GP models to represent the belief of the un-
known objective function efficiently.

3A closely related counterpart is batch active learning (Low
et al., 2012; Ouyang et al., 2014).
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B. Multi-fidelity Bayesian optimisation with continuous
approximations. In Proc. ICML, pp. 1799–1808, 2017.

Klein, A., Falkner, S., Springenberg, J. T., and Hutter, F.
Learning curve prediction with Bayesian neural networks.
In Proc. ICLR, 2017.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Master’s thesis, Department of Computer
Science, University of Toronto, 2009.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. Na-
ture, 521(7553):436–444, 2015.

Lewis, R. J. and Berry, D. A. Group sequential clinical tri-
als: A classical evaluation of Bayesian decision-theoretic
designs. J. American Statistical Association, 89(428):
1528–1534, 1994.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and
Talwalkar, A. Hyperband: A novel bandit-based approach
to hyperparameter optimization. JMLR, 18(1):6765–6816,
2017.

Ling, C. K., Low, K. H., and Jaillet, P. Gaussian process
planning with Lipschitz continuous reward functions: To-
wards unifying Bayesian optimization, active learning,
and beyond. In Proc. AAAI, pp. 1860–1866, 2016.

Lizotte, D. J., Wang, T., Bowling, M. H., and Schuurmans,
D. Automatic gait optimization with Gaussian process
regression. In IJCAI, pp. 944–949, 2007.

Longstaff, F. A. and Schwartz, E. S. Valuing American
options by simulation: A simple least-squares approach.
The Review of Financial Studies, 14(1):113–147, 2001.

Low, K. H., Dolan, J. M., and Khosla, P. Adaptive multi-
robot wide-area exploration and mapping. In Proc. AA-
MAS, pp. 23–30, 2008.

Low, K. H., Dolan, J. M., and Khosla, P. Information-
theoretic approach to efficient adaptive path planning for
mobile robotic environmental sensing. In Proc. ICAPS,
pp. 233–240, 2009.

Low, K. H., Dolan, J. M., and Khosla, P. Active Markov
information-theoretic path planning for robotic environ-
mental sensing. In Proc. AAMAS, pp. 753–760, 2011.

Low, K. H., Chen, J., Dolan, J. M., Chien, S., and Thomp-
son, D. R. Decentralized active robotic exploration and
mapping for probabilistic field classification in environ-
mental sensing. In Proc. AAMAS, pp. 105–112, 2012.

Low, K. H., Chen, J., Hoang, T. N., Xu, N., and Jaillet,
P. Recent advances in scaling up Gaussian process pre-
dictive models for large spatiotemporal data. In Ravela,
S. and Sandu, A. (eds.), Dynamic Data-Driven Environ-
mental Systems Science: First International Conference,
DyDESS 2014, pp. 167–181. LNCS 8964, Springer Inter-
national Publishing, 2014a.

Low, K. H., Xu, N., Chen, J., Lim, K. K., and Özgül, E. B.
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A. Approximate Backward Induction for Bayesian Optimal Stopping
In this section, we will present a commonly-used approximate backward induction algorithm for solving the BOS problem.
The algorithm uses summary statistics to compactly represent the posterior belief Pr(θt|yt,n) which is computed from the
prior belief Pr(θt) and the noisy outputs yt,n observed up till epoch n in iteration t.

In the approximate backward induction algorithm of Müller et al. (2007), the entire space of summary statistics is firstly
partitioned into a number of discrete intervals in each epoch, which results in a two-dimensional domain with one axis
being the number of epochs and the other axis representing the discretized intervals of the summary statistic (i.e., assuming
the summary statistic is one-dimensional). In the beginning, a number of sample paths are generated through forward
simulation: Firstly, a large number of samples are drawn from the prior belief Pr(θt). Then, for each sample drawn from
Pr(θt), an entire sample path is generated from epochs 1 to N through repeated sampling. In this manner, each sample path
leads to a curve in the 2-D domain and fully defines N posterior beliefs with one in each epoch. Starting from the last epoch
N , for each interval, the expected loss of a terminal decision d1 or d2 is evaluated for every sample path ending in this
interval (since each such sample path ends with a particular posterior belief in epoch N ), and their empirical average is
used to approximate the expected loss of the particular terminal decision for this interval. The minimum of the expected
losses among the two terminal decisions is the expected loss for this particular interval, which is equivalent to (2) except that
decision d0 is not available in the last epoch N .

Next, the algorithm proceeds backwards from epoch n = N − 1 all the way to epoch n = 1. In each epoch n, the expected
loss of each terminal decision is evaluated in the same way as that in the last epoch N , as described above. To evaluate the
expected loss of the continuation decision for an interval, for each sample path passing through this interval, the expected loss
for the interval that it passes through in the next epoch n+ 1 is recorded and an average of all the recorded expected losses
in the next epoch n+ 1 is summed with the cost cd0 of observing the noisy output yt,n+1 to yield the expected loss of the
continuation decision d0 for this particular interval; this is equivalent to approximating the Eyt,n+1|yt,n [ρt,n+1(yt,n+1)]+cd0
term in (2) via Monte Carlo sampling of the posterior belief Pr(yt,n+1|yt,n). Following (2), the minimum of the expected
losses among all terminal and continuation decisions is the expected loss for this particular interval and the corresponding
decision is recorded as the optimal decision when the summary statistic falls into this interval. Then, the algorithm continues
backwards until epoch n = 1 is reached. After the algorithm has finished running, the optimal decision computed in every
pair of epoch and interval will form the optimal decision rules which serve as the output of the approximate backward
induction algorithm.

B. Approximate Backward Induction Algorithm for Solving BOS Problem in BO-BOS
In this section, we will describe the approximate backward induction algorithm for solving the BOS problem (line 5) in each
iteration of BO-BOS (Algorithm 1), which is adapted from the algorithm introduced in Appendix A.

To account for Assumption 1b in the approximate backward induction algorithm, we adopt the kernel k introduced
in (Swersky et al., 2014) to incorporate the inductive bias that the learning curve (in the form of validation error) of the ML
model is approximately exponentially decreasing in the number of training epochs, which can be expressed as

k(n, n′) ,
∫ ∞
0

exp(−λn) exp(−λn′) φ(λ) dλ =
βα

(n+ n′ + β)
α (5)

for all epochs n, n′ = 1, . . . , N where φ is a probability measure over λ that is chosen to be a Gamma prior with parameters
α and β. The above kernel (5) is used to fit a GP model to the validation errors 1− yt,N0

of the ML model trained using xt
for a fixed number N0 of initial epochs (e.g., N0 = 8 in all our experiments when N = 50), specifically, by computing
the values of parameters α and β in (5) via Bayesian update (i.e., assuming that the validation errors follow the Gamma
conjugate prior with respect to an exponential likelihood). Samples are then drawn from the resulting GP posterior belief for
forward simulation of sample paths from epochsN0 +1 toN , which are used to estimate the Pr(θt|yt,n) and Pr(yt,n+1|yt,n)
terms necessary for approximate backward induction. Fig. 5 plots some of such sample paths and demonstrates that the GP
kernel in (5) can characterize a monotonic learning curve (Assumption 1b) well.

Following the practices in related applications of BOS (Brockwell & Kadane, 2003; Jiang et al., 2013; Müller et al., 2007),
the average validation error (or, equivalently, average validation accuracy) over epochs 1 to n is used as the summary
statistics. Firstly, the entire space of summary statistics is partitioned into a number of discrete intervals in each epoch,
which results in a two-dimensional domain with one axis being the number of epochs and the other axis representing the
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Figure 5. Forward simulation of some sample paths drawn from a GP posterior belief based on the kernel in (5).

discretized intervals of the summary statistic (i.e., average validation error). Next, a forward simulation of a large number
(i.e., 100, 000 in all our experiments) of sample paths is performed using the GP kernel in (5), as described above. Each
sample path corresponds to a curve in the 2-D domain. Starting from the last epoch N , for each interval, we consider all
sample paths ending in this interval and use the proportion of such sample paths with a validation accuracy (from model
training for N epochs) larger than the currently found maximum (offset by a noise correction term) to estimate the posterior
probability Pr(θt = θt,2|yt,N ) = Pr(f([xt, N ]) > y∗t−1 − ξt|yt,N ), which is in turn used to evaluate the expected losses of
the terminal decisions d1 and d2 for this interval.4 The minimum of the expected losses among the two terminal decisions is
the expected loss for this particular interval.

Next, the algorithm proceeds backwards from epoch n = N − 1 all the way to epoch n = N0 + 1. In each epoch n, the
expected loss of each terminal decision is evaluated in the same way as that in the last epoch N , as described above. The
expected loss of the continuation decision d0 is evaluated in the same way as that in Appendix A: For each sample path
passing through an interval in epoch n, the expected loss for the interval that it passes through in the next epoch n + 1
is recorded and an average of all the recorded expected losses in the next epoch n + 1 is summed with the cost cd0 of
observing the validation accuracy yt,n+1 to yield the expected loss of the continuation decision d0 for this particular interval.
Note that this step is equivalent to approximating the Eyt,n+1|yt,n [ρt,n+1(yt,n)] term in (2) via Monte Carlo sampling of
the posterior belief Pr(yt,n+1|yt,n). Following (2), the minimum of expected losses among all terminal and continuation
decisions is the expected loss for this particular interval and the corresponding decision is recorded as the optimal decision
to be recommended when the summary statistic falls into this particular interval. Then, the algorithm continues backwards
until epoch n = N0 + 1 is reached. We present in Algorithm 2 the pseudocode for the above-mentioned approximate
backward induction algorithm for ease of understanding.

After solving our BOS problem for early stopping in BO using the approximate backward induction algorithm described
above, Bayes-optimal decision rules are obtained in every pair of epoch and interval. Fig. 6 shows an example of optimal
decision rules obtained from solving an instance of our BOS problem where the white, yellow, and red regions correspond
to recommending optimal continuation decision d0 and terminal decisions d1 and d2, respectively. In particular, after model
training under xt to yield the validation error 1− yt,n in epoch n, the summary statistic is updated to the average validation
error over epochs 1 to n. The updated summary statistic falls into an interval with a corresponding optimal decision to be
recommended. For example, Fig. 6 shows that if the summary statistic falls into the yellow region in any epoch n, then the
optimal terminal decision d1 is recommended to early-stop model training under xt (assuming that C2 is satisfied). If the
summary statistic falls into any other region, then model training continues under xt for one more epoch and the above
procedure is repeated in epoch n+ 1 until the last epoch n = N is reached. This procedure, together with C2, constitutes
lines 6 to 9 in Algorithm 1.

4In contrast to the approximate backward induction algorithm of Müller et al. (2007) (Appendix A), we employ a computationally
cheaper way to approximate the expected losses of the terminal decisions for an interval.
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Algorithm 2 Approximate Backward Induction Algorithm for Solving BOS Problem in BO-BOS
1: Partition the domain of summary statistics into M discrete intervals
2: Train the ML model using xt for N0 epochs
3: Generate a large number of forward simulation samples using kernel (5)
4: Let n = N
5: for m = 1, 2, . . . ,M do
6: Find all sample paths ending in interval m at epoch n, denoted as S
7: Estimate Pr(θt = θt,2|yt,n) = Pr(f([xt, N ]) > y∗t−1 − ξt|yt,n) by the proportion of S that end up (after N epochs)

having larger validation accuracy than y∗t−1 − ξt
8: Calculate the expected losses of the terminal decisions d1 and d2 using (4)
9: Use the minimum of these two expected losses as the expected loss of epoch n and interval m

10: for n = N − 1, N − 2, . . . , N0 + 1 do
11: for m = 1, 2, . . . ,M do
12: Find all sample paths passing through interval m at epoch n, denoted as S
13: Estimate Pr(θt = θt,2|yt,n) = Pr(f([xt, N ]) > y∗t−1 − ξt|yt,n) by the proportion of S that end up (after N

epochs) having larger validation accuracy than y∗t−1 − ξt
14: Calculate the expected losses of the terminal decisions d1 and d2 using (4)
15: ld0,n+1,m = 0
16: for each sample path s in S do
17: ld0,n+1,m = ld0,n+1,m+ the expected loss of the interval reached by s at epoch n+ 1
18: ld0,n+1,m = ld0,n+1,m/|S|
19: Calculate the expected loss of the continuation decision d0 as: Eyt,n+1|yt,n [ρt,n+1(yt,n)] + cd0 = ld0,n+1,m + cd0
20: Use the minimum expected losses among d1, d2 and d0 as the expected loss of epoch n and interval m (follow-

ing (2)), and record the corresponding decision as the optimal decision
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Figure 6. An example of optimal decision rules obtained from solving an instance of our BOS problem: White, yellow, and red regions
correspond to recommending optimal continuation decision d0 and terminal decisions d1 and d2, respectively. The sample paths cannot
reach the black regions due to the use of the GP kernel in (5) for characterizing a monotonic learning curve (Assumption 1b).



Bayesian Optimization Meets Bayesian Optimal Stopping

C. Proof of Theorems 1 and 2
In this section, we prove the theoretical results in this paper.

C.1. Regret Decomposition

In this work, it is natural and convenient to define the instantaneous regret at step t as rt = f(z∗) − f∗t , in which z∗ is
the location of the global maximum: z∗ = argmaxzf(z), and f∗t is the maximum observed function value from iterations
1 to t: f∗t = maxt′=1,...,t f(zt′). Subsequently, the cumulative regret and simple regret after T iterations are defined as
RT =

∑T
t=1 rt and ST = mint=1,...,T rt respectively. As a result, as long as we can show that RT grows sub-linearly in

T , then we can conclude that the average regret RTT asymptotically goes to 0; therefore, ST vanishes asymptotically since
it is upper-bounded by the average regret: ST ≤ RT

T . In contrast to the more commonly used definition of instantaneous
regret: rt = f(z∗) − f(zt), the slightly modified definition introduced here is justified in the sense that the induced
definition of simple regrets, which is the ultimate goal of the theoretical analysis, obtained in both cases are equivalent, i.e.,
mint=1,...,T f(z∗)− f∗t = mint=1,...,T f(z∗)− f(zt).

The instantaneous regret defined above can be further decomposed as

rt =f(z∗)− f∗t = f(z∗)− max
t′=1,...,t

f(zt′)

=f(z∗)−max{f∗t−1, f(zt)}
(6)

Note that in our algorithm, the BO iterations can be divided into two types: 1) t+ such that nt+ = N : those iterations that
are not early-stopped; and 2) t− such that nt− < N : those that are early-stopped. For all t+, it follows from Equation 6 that
rt = f(z∗) −max{f∗t−1, f(zt)} ≤ f(z∗) − f(zt) = f(z∗) − f([xt, nt]) = f(z∗) − f([zt, N ]) , rt+ ; for all t−, from
Equation 6, we have that rt = f(z∗)−max{f∗t−1, f(zt)} ≤ f(z∗)− f∗t−1 , rt− . In the following, we will focus on the
analysis of the sum of all rt+ and all rt− : R′T =

∑
t+ rt+ +

∑
t− rt− . As a result of the definition, R′T is an upper bound

of RT , therefore, sub-linear growth of R′T implies that RT also grows sub-linearly.

Next, note that for all t− such that nt− < N (when xt is early-stopped),

rt− = f(z∗)− f∗t−1 = f(z∗)− f([xt, N ]) + f([xt, N ])− f∗t−1
(1)

≤ f(z∗)− f([xt, nt]) + f([xt, N ])− f∗t−1
(7)

in which (1) results from Assumption 1. As a result, R′T can be re-written as

R′T
(1)
=

∑
{t|nt=N}

[f(z∗)− f([xt, N ])] +
∑

{t|nt<N}

[f(z∗)− f∗t−1]

=
∑

{t|nt=N}

[f(z∗)− f([xt, N ])] +
∑

{t|nt<N}

[f(z∗)− f([xt, N ])] +
∑

{t|nt<N}

[f([xt, N ])− f∗t−1]

(2)

≤
∑

{t|nt=N}

[f(z∗)− f([xt, N ])] +
∑

{t|nt<N}

[f(z∗)− f([xt, nt])] +
∑

{t|nt<N}

[f([xt, N ])− f∗t−1]

(3)
=

T∑
t=1

[f(z∗)− f([xt, nt])] +
∑

{t|nt<N}

[f([xt, N ])− f∗t−1]

,
T∑
t=1

rt,1 +
∑

{t|nt<N}

rt,2

, RT,1 +RT,2

(8)

in which (1) makes use of the definition of R′T , (2) results from Equation 7 and (3) follows by combining the first two terms
on the previous line. The first term following (3) of Equation 8 is summed over all time steps, whereas the second term is
only summed over those time steps that are early-stopped (nt < N ). As mentioned earlier, in the sequel, we will attempt to
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prove an upper bound on the expected value of R′T ,

E[R′T ] ≤ E[RT,1] + E[RT,2] (9)

in which the expectation is taken with respect to the posterior probabilities used in the BOS problems, corresponding to
those iterations that are early-stopped: Πt∈{t′|t′=1,...,T,nt′<N}Pr(f([xt, N ]) > y∗t−1 − ξt|yt,nt). Note that the probability
distributions are independent across all the early-stopped iterations, therefore, for each early-stopped iteration t, the
expectations of both rt,1 and rt,2 are only taken over the specific distribution: Pr(f([xt, N ]) > y∗t−1 − ξt|yt,nt); whereas
for each not-early-stopped iteration t, E[rt,1] = rt,1 (whereas rt,2 is absent). In the next two sections, we will prove upper
bounds on E[RT,1] and E[RT,2] respectively.

C.2. Upper Bound on E[RT,1]

In this section, we will upper-bound the term E[RT,1]. As mentioned in the main text, for simplicity, we will focus on the
case in which the underlying domain D is discrete, i.e., |D| <∞. To begin with, we will need a supporting lemma showing
a uniform upper bound over the entire domain.

Lemma 1. Suppose that δ ∈ (0, 1) and βt , 2 log(|D|t2π2/6δ). Then, with probability ≥ 1− δ

|f(z)− µt−1(z)| ≤ β1/2
t σt−1(z) ∀z ∈ D, t ≥ 1 .

The proof of lemma 1 makes use of standard Gaussian tail bounds and a number of union bounds, and the proof is identical
to the proof of lemma 5.1 in (Srinivas et al., 2010). The next supporting lemma makes use of the Lipschitz continuity of f to
bound the differences between function values whose inputs only differ by the dimension corresponding to the number of
training epochs.

Lemma 2. Suppose that Assumption 2 holds and let δ′ ∈ (0, 1). Then, with probability ≥ 1− δ′,

|f([x, N ])− f([x, n])| ≤ Nb
√

log
da

δ′
∀x, n = 1, . . . , N .

Proof. Let z = [x, n] denote the input to the objective function f . Assumption 2, together with a union bound over
j = 1, . . . , d, implies that with probability ≥ 1− dae−(Lb )2 ,

|f(z)− f(z′)| ≤ L||z− z′||1 ∀z ∈ D

Since [x, N ] and [x, n] differ only by the dimension corresponding to the number of training epochs, we have that

|f([x, N ])− f([x, n])| ≤ LN

Then, the lemma follows by letting δ′ = dae−(
L
b )

2

.

The next lemma bounds E[rt,1] by the Gaussian process posterior standard deviation with some scaling constants.

Lemma 3. Let δ, δ′ ∈ (0, 1) and κ ≥ 1 be the constant used in C2 in the BO-BOS algorithm. Then, at iteration t of the
BO-BOS algorithm, we have that, with probability ≥ 1− δ − δ′,

E[rt,1] ≤ 2κβ
1/2
t σt−1([xt, nt]) +Nb

√
log

da

δ′
1nt<N .

Proof. Firstly, with probability ≥ 1− δ,

f(z∗)
(1)
= f([x∗, N ])

(2)

≤ µt−1([x∗, N ]) + β
1/2
t σt−1([x∗, N ])

(3)

≤ µt−1([xt, N ]) + β
1/2
t σt−1([xt, N ]) (10)

in which (1) follows from Assumption 1 which states that, for each x, the function value is monotonically non-decreasing in
the number of training epochs, which implies that at the (unknown) global maximum z∗, the dimension corresponding to the
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number of epochs is equal to N . (2) makes use of Lemma 1, whereas (3) is due to the way xt is selected in the algorithm,
i.e., xt = argmaxxµt−1([x, N ]) +

√
βtσt−1([x, N ]). As a result, we have that with probability ≥ 1− δ − δ′

E[rt,1] = E[f(z∗)− f([xt, nt])]
(1)

≤ E[β
1/2
t σt−1([xt, N ]) + µt−1([xt, N ])− f([xt, nt])]

= E[β
1/2
t σt−1([xt, N ]) + µt−1([xt, N ])− f([xt, N ]) + f([xt, N ])− f([xt, nt])]

(2)

≤ E[2β
1/2
t σt−1([xt, N ])] + E[f([xt, N ])− f([xt, nt])]

(3)

≤ E[2β
1/2
t σt−1([xt, N ])] +Nb

√
log

da

δ′
1nt<N

(4)

≤ 2β
1/2
t σt−1([xt, N ]) +Nb

√
log

da

δ′
1nt<N

(5)

≤ 2κβ
1/2
t σt−1([xt, nt]) +Nb

√
log

da

δ′
1nt<N

(11)

in which (1) follows from Equation 10, and (2) results from Lemma 1 and the linearity of the expectation operator. 1nt<N
in (3) is the indicator function, which takes the value of 1 if the event nt < N is true and 0 otherwise. (3) is obtained
by analyzing two different cases separately: if nt = N (xt is not early-stopped), then E[f([xt, N ]) − f([xt, nt])] = 0;

if nt < N (xt is early-stopped), then E[f([xt, N ]) − f([xt, nt])] ≤ E[Nb
√

log da
δ′ ] = Nb

√
log da

δ′ with probability
≥ 1 − δ′ following Lemma 2. (4) is due to the fact that σt−1([xt, N ]) only depends on the observations up to step
t − 1 and is not dependent on the probability Pr(f([xt, N ]) > y∗t−1 − ξt|yt,nt). (5) follows from the design of the
algorithm; in particular, if nt < N , then κσt−1([xt, nt]) ≥ σt−1([xt, N ]) is guaranteed by C2; otherwise, if nt = N , then
κσt−1([xt, nt]) ≥ σt−1([xt, nt]) = σt−1([xt, N ]) since κ ≥ 1.

Subsequently, we can upper bound E[RT,1] =
∑T
t=1 E[rt,1] by extensions of Lemma 5.3 and 5.4 from (Srinivas et al., 2010),

which are presented here for completeness. The following lemma connects the information gain about the objective function
with the posterior predictive variance, whose proof results from straightforward extension of Lemma 5.3 of (Srinivas et al.,
2010).

Lemma 4. Let yT be a set of observations of size T , and let fT be the corresponding function values. The information gain
about fT from observing yT is

I(yT ; fT ) =
1

2

T∑
t=1

log[1 + σ−2σ2
t−1([xt, nt])] .

Next, we use the following lemma to bound the sum of the first term of the expected instantaneous regret as given in Lemma
3.

Lemma 5. Let δ ∈ (0, 1), C1 , 8
log(1+σ−2) , βt , 2 log(|D|t2π2/6δ), and γT , maxA∈D,|A|=T I(yA; fA) is the maximum

information gain about f from any subset of size T . Then,

T∑
t=1

2β
1/2
t σt−1([xt, nt]) ≤

√
TC1βT I(yT ; fT ) ≤

√
TC1βT γT .

Proof. Firstly, we have that

(2β
1/2
t σt−1([xt, nt]))

2 = 4βtσ
2
t−1([xt, nt])

(1)

≤ 4βTσ
2[σ−2σ2

t−1([xt, nt])]

(2)

≤ 4βTσ
2 σ−2

log(1 + σ−2)
log[1 + σ−2σ2

t−1([xt, nt])]

≤ βT
8

log(1 + σ−2)

1

2
log[1 + σ−2σ2

t−1([xt, nt])]

(12)
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in which (1) holds since βt is monotonically increasing in t; (2) results from the fact that σ−2x ≤ σ−2

log(1+σ−2) log[1 + σ−2x]

for x ∈ (0, 1], whereas 0 < σ2
t−1([xt, nt]) ≤ 1. Next, summing over t = 1, . . . , T , we get

T∑
t=1

(2β
1/2
t σt−1([xt, nt]))

2 ≤ βT
8

log(1 + σ−2)

1

2

T∑
t=1

log[1 + σ−2σ2
t−1([xt, nt])]

(1)
= βT

8

log(1 + σ−2)
I(yT ; fT )

(2)

≤ C1βT γT

(13)

in which (1) results from Lemma 4, and (2) follows from the definitions of C1 and γT . Next, making use of the Cauchy-
Schwarz inequality, we get

T∑
t=1

2β
1/2
t σt−1([xt, nt]) ≤

√
T

√√√√ T∑
t=1

(2β
1/2
t σt−1([xt, nt]))2

≤
√
C1TβT γT

(14)

which completes the proof.

Next, putting everything together, we get the follow lemma on the upper bound on E[RT,1].

Lemma 6. Suppose that Assumptions 1 and 2 hold. Let δ, δ′ ∈ (0, 1), C1 = 8/ log(1 + σ−2), βt = 2 log(|D|t2π2/6δ),
κ ≥ 1 be the constant used in C2 in the BO-BOS algorithm, and γT = maxA∈D,|A|=T I(yA; fA). Let τT =

∑T
t=1 1nt<N

be the number of BO iterations in which early stopping happens from iterations 1 to T . Assume that f is a sample from a
GP, and y(z) = f(z) + ε∀z ∈ D in which ε ∼ N(0, σ2). Then, with probability ≥ 1− δ − δ′,

E[RT,1] =

T∑
t=1

E[rt,1] ≤ κ
√
TC1βT γT +Nb

√
log

da

δ′
τT ∀T ≥ 1 .

Proof.

E[RT,1]
(1)
=

T∑
t=1

E[rt,1]
(2)

≤
T∑
t=1

[2κβ
1/2
t σt−1([xt, nt]) +Nb

√
log

da

δ′
1nt<N ]

(3)

≤ κ
√
TC1βT γT +

T∑
t=1

Nb

√
log

da

δ′
1nt<N

= κ
√
TC1βT γT +Nb

√
log

da

δ′

T∑
t=1

1nt<N

= κ
√
TC1βT γT +Nb

√
log

da

δ′
τT

(15)

in which (1) follows from the linearity of the expectation operator, (2) results from Lemma 3, and (3) follows from Lemma
5.

C.3. Upper Bound on E[RT,2]

In this section, we prove an upper bound on E[RT,2]. A few supporting lemmas will be presented and proved first. To begin
with, the next lemma derives the appropriate choice of the incumbent values used in the BOS problems in different iterations
of the BO-BOS algorithm.

Lemma 7. Let the objective function f be a sample from a GP and y(z) = f(z) + ε∀z ∈ D in which ε ∼ N(0, σ2). Let
δ′′ ∈ (0, 1). At iteration t > 1, define f∗t−1 , maxt′=1,...,t−1 f(zt′) and y∗t−1 , maxt′=1,...,t−1 yt′; for iteration t = 1,
define f∗0 , 0 and y∗0 , 0. Then with probability ≥ 1− δ′′,

f∗t−1 ≥ y∗t−1 − ξt ∀t ≥ 1
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in which

ξt =

√
2σ2 log

π2t2(t− 1)

6δ′′
∀t > 1

and ξ1 = 0.

Proof. The lemma trivially holds for t = 1. Assume we are at iteration t > 1 of the BO-BOS algorithm, and let
t′ ∈ {1, 2, . . . , t− 1}. Since yt′ = f(zt′) + ε, in which ε ∼ N(0, σ2), we have that yt′ ∼ N(f(zt′), σ

2). Making use of
the upper deviation inequality for Gaussian distribution and the definition of ξt, we get

Pr[yt′ ≥ f(zt′) + ξt] ≤ e−
ξt

2

2σ2 =
6δ′′

π2t2(t− 1)
(16)

Denote the event that {∃ t′ ∈ {1, 2, . . . , t − 1} s.t. yt′ ≥ f(zt′) + ξt} as At. Next, taking a union bound over the entire
observation history t′ ∈ {1, 2, . . . , t− 1}, we get

Pr[At] ≤
t−1∑
t′=1

Pr[yt′ ≥ f(zt′) + ξt]

≤(t− 1)
6δ′′

π2t2(t− 1)
=

6δ′′

π2t2

(17)

which implies that at iteration t, with probability ≥ 1 − 6δ′′

π2t2 , yt′ − f(zt′) < ξt ∀t′ ∈ {1, 2, . . . , t − 1}, which further
suggests that y∗t−1 − f∗t−1 ≤ ξt at iteration t. Next, taking a union bound over t ≥ 1, we get

Pr[∃t ≥ 1 s.t.At holds] ≤
∑
t≥1

Pr[At] ≤
∑
t≥1

6δ′′

π2t2
= δ′′ (18)

which suggests that, with probability ≥ 1− δ′′, y∗t−1 − f∗t−1 ≤ ξt ∀t ≥ 1, and thus completes the proof.

The next lemma shows that, with appropriate choices of the incumbent value, the posterior probability used in Bayesian
optimal stopping is upper-bounded.
Lemma 8. If in iteration t of the BO-BOS algorithm, the BOS algorithm is run with the incumbent value y∗t−1 − γt and the
corresponding cost parameters K1, K2 and cd0 , and the algorithm early-stops after nt < N epochs, then with probability
≥ 1− δ′′,

Pr(f([xt, N ]) > f∗t−1|yt,nt) ≤
K2 + cd0
K1

∀t ≥ 1 . (19)

Proof. Recall that when running the Bayesian optimal stopping algorithm in iteration t of BO-BOS, we only early-stop the
experiment (nt < N ) when we can safely conclude that the performance of the currently evaluated hyperparameter xt will
end up having smaller (or equal) validation accuracy than the currently observed optimum offset by a noise correction term:
y∗t−1 − ξt; i.e., when the expected loss of decision d1 is the smallest among all decisions. Therefore, when the evaluation of
xt is early-stopped after nt < N epochs, we can conclude that

K1Pr(f([xt, N ]) > y∗t−1 − ξt|yt,nt)

≤Eyt,nt+1|yt,nt

[
min{K1Pr(f([xt, N ]) > y∗t−1 − ξt|yt,nt+1),K2Pr(f([xt, N ]) ≤ y∗t−1 − ξt|yt,nt+1),

Eyt,nt+2|yt,nt+1
[ρt,nt+2(yt,nt+2)] + cd0}

]
+ cd0

≤Eyt,nt+1|yt,nt [K2Pr(f([xt, N ]) ≤ y∗t−1 − ξt|yt,nt+1)] + cd0

≤K2Eyt,nt+1|yt,nt [Pr(f([xt, N ]) ≤ y∗t−1 − ξt|yt,nt+1)] + cd0

≤K2 + cd0

(20)

Equation 20, together with Lemma 7, implies that

Pr(f([xt, N ]) > f∗t−1|yt,nt) ≤Pr(f([xt, N ]) > y∗t−1 − ξt|yt,nt)

≤K2 + cd0
K1

(21)
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which holds uniformly for all t ≥ 1 with probability ≥ 1− δ′′.

Subsequently, we use the next Lemma to upper-bound E[R2
T ] by the BOS cost parameters. We set K2 and cd0 as constants,

and use different values of K1 in different iterations t of the BO-BOS algorithm, which is represented by K1,t.

Lemma 9. In iteration t of the BO-BOS algorithm, define K2+cd0
K1,t

, ηt. Then, with probability ≥ 1− δ′′,

E[RT,2] ≤
T∑
t=1

ηt ∀T ≥ 1 .

Proof. Recall that according to Assumption 1, the value of the objective function f is bounded in the range [0, 1]. In iteration
t, assume we early-stop the evaluation of xt after nt < N epochs, then

E[f([xt, N ])− f∗t−1|yt,nt ]
(1)

≤ E[1f([xt,N ])−f∗t−1>0|yt,nt ] = Pr(f([xt, N ]) > f∗t−1|yt,nt) (22)

Step (1) in Equation 22 is because x ≤ 1x>0 ∀x ∈ [−1, 1] and substituting x = f([xt, N ]) − f∗t−1. As a result, with
probability ≥ 1− δ′′

E[RT,2]
(1)
=

∑
{t|nt<N}

E[rt,2]
(2)
=

∑
{t|nt<N}

E[f([xt, N ])− f∗t−1|yt,nt ]
(3)

≤
∑

{t|nt<N}

Pr(f([xt, N ]) > f∗t−1|yt,nt)

(4)

≤
∑

{t|nt<N}

ηt ≤
T∑
t=1

ηt

(23)

in which (1) follows from the linearity of expectation, (2) holds because the Expectation of rt,2 is taken over Pr(f([xt, N ]) >
y∗t−1 − ξt|yt,nt), (3) results from Equation 22, and (4) follows from Lemma 8. This completes the proof.

C.4. Putting Things Together

In this section, we put everything from the previous two sections together to prove the main theorems.

C.4.1. PROOF OF THEOREM 1

Theorem 1 can be proven by combining Lemmas 6 and 9, and making use of the fact that ST ≤ RT
T .

C.4.2. PROOF OF THEOREM 2

Below we analyze the asymptotic behavior of each of the three terms in the upper bound of E[ST ] in Theorem 1, which is
re-presented here for ease of reference.

E[ST ] ≤ κ
√
TC1βT γT
T

+

∑T
t=1 ηt
T

+
1

T
Nb

√
log

da

δ′
τT . (24)

The first term in the upper bound of E[ST ] Firstly, the first term in the upper bound matches the upper bound on the
simple regret of the GP-UCB algorithm (Srinivas et al., 2010) (up to the constant κ). The maximum information gain,
γT , has been analyzed for a few of the commonly used kernels in GP (Srinivas et al., 2010). For example, for the Square
Exponential kernel, γT = O((log T )d+1), whereas for the Matérn kernel with ν > 1, γT = O(T d(d+1)/(2ν+d(d+1)) log T ).
Plugging both expressions of γT into Theorem 1, together with the expression of βT as given in Theorem 1, shows that both
kernels lead to sub-linear growth of the term

√
TC1βT γT , which implies that the first term in the upper bound of E[ST ]

asymptotically goes to 0.

The second term in the upper bound of E[ST ] Given that K1,t is an increasing sequence with K1,1 ≥ K2 + cd0 , the
series

∑T
t=1 ηt =

∑T
t=1

K2+cd0
K1,t

grows sub-linearly, thus making the second term in the upper bound of E[ST ] given in

Theorem 1,
∑T
t=1 ηt
T , asymptotically go to 0.
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The third term in the upper bound of E[ST ] Next, suppose that K1,t becomes +∞ for the first time at iteration T0.
Since K1,t is a non-decreasing sequence, K1,t = +∞ for all t ≥ T0. Therefore, for t ≥ T0, decision d1 will never be taken
and the algorithm will never early-stop. In other words, nt = N for all t ≥ T0.

Therefore, we can conclude that τT ≤ T0 for all T ≥ 1. As a result, the last term in the upper bound on E[ST ] in Theorem 1
can be upper-bounded by

τT
T
Nb

√
log

da

δ′
≤
T0Nb

√
log da

δ′

T
= O

(
1

T

)
(25)

which asymptotically goes to 0 as T goes to +∞, because the numerator term is a constant. Therefore, this term also
asymptotically vanishes in the upper bound.

To summarize, if the BOS parameters are selected according to Theorem 2, we have that

E[ST ] = O

(√
TβT γT
T

+

∑T
t=1 ηt
T

+
1

T

)
(26)

and E[ST ] goes to zero asymptotically.

D. Additional Experimental Details
In each experiment, the same initializations (6 initial points if not further specified) are used for all BO-based methods:
GP-UCB, BOCA, LC Prediction, and BO-BOS. The Square Exponential kernel is used for BOCA since the algorithm
is only given for this kernel (Kandasamy et al., 2017), the other BO-based algorithms use the Matérn kernel; the kernel
hyperparameters are updated by maximizing the Gaussian process marginal likelihood after every 10 BO iterations. In the
BO-BOS algorithm, since the number of training epochs is an input to the GP surrogate function, some of the intermediate
observations (n < N ) can be used as additional input to GP to improve the modeling of the objective function. However,
using the observation after every epoch as input leads to poor scalability. Therefore, for all experiments with N = 50 (which
include most of the experiments), we use the observations after first, 10-th, 20-th, 30-th and 40-th epochs as additional
inputs to the GP surrogate function; whereas for the RL experiment with N = 100 in section 5.3.1, we use the 1-th, 20-th,
40-th, 60-th and 80-th intermediate observations as additional inputs. 100,000 forward simulation samples are used for
each BOS algorithm; the grid size of the discretized summary statistics is set to 100; for simplicity, the incumbent value
at iteration t is chosen as y∗t−1 = maxt′=1,...,t−1 yt′ , thus ignoring the observation noise. In the LC Prediction algorithm
(Domhan et al., 2015), learning curve prediction is performed after every 2 epochs. In Hyperband (Li et al., 2017), the
successive halving parameter η is set to 3 as recommended by the original authors, and the maximum number of epochs
is set to N = 80 (we observed that setting N = 80 led to better performance than N = 50 since it allows the Hyperband
algorithm to run for more epochs overall).

D.1. Hyperparameter Tuning for Logistic Regression

In the first set of experiments, we perform hyperparameter tuning for a simple ML model, logistic regression (LR). The
LR model is trained using the MNIST image dataset, which consists of 70,000 images of the 10 digits, corresponding to a
10-class classification problem. Three hyperparameters are tuned: the batch size (20 to 500), L2 regularization parameter
(10−6 to 1.0), and learning rate (10−3 to 0.1). We use 80% of the images as the training set and the remaining 20% as the
validation set.

Some of the learning curves during a particular run of the BO-BOS algorithm is shown in Fig. 7. It can be observed
that the learning curves that show minimal potential in achieving small validation errors are early-stopped, whereas the
promising hyperparameter settings are run for larger number of epochs. The reliability of the early stopping achieved by the
BO-BOS algorithm is demonstrated in Fig. 8. In this figure, the green triangles correspond to the learning curves that are not
early-stopped (nt = N ), and the red circles represent the final validation errors (after training for the maximum number of
epochs N ) that could have been reached by the early-stopped learning curves (nt < N ). Note that the red circles are shown
only for the purpose of illustration and are not observed in practice. As displayed in the figure, the early stopping decisions
made during the BO-BOS algorithm are reliable, since those early-stopped learning curves all end up having large validation
errors.
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Figure 7. Some learning curves during the BO-BOS algorithm.
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Figure 8. Illustration of the effectiveness of the early stopping decisions made during the BO-BOS algorithm.

D.2. Hyperparameter Tuning for Convolutional Neural Networks

Next, we tune the hyperparameters of convolutional neural networks (CNN) using the CIFAR-10 (Krizhevsky, 2009) and
Street View House Numbers (SVHN) dataset (Netzer et al., 2011). Both tasks correspond to 10-class classification problems.
For CIFAR-10, 50, 000 images are used as the training set and 10,000 images are used as the validation set; for SVHN,
73,257 and 26032 images are used as the training and validation sets respectively following the original dataset partition. The
CNN model consists of three convolutional layers (each followed by a max-pooling layer) followed by one fully-connected
layer. We tune six hyperparameters in both experiments: the batch size (32 to 512), learning rate (10−7 to 0.1), learning
rate decay (10−7 to 10−3), L2 regularization parameter (10−7 to 10−3), the number of convolutional filters in each layer
(128 to 256), and the number of units in the fully-connected layer (256 to 512). In addition to the results in Figure 2, the
corresponding figures with standard error is presented below in Figures 9 and 10, which demonstrate the robustness of the
performance advantages of BO-BOS.
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Figure 9. Best-found validation error of CNN v.s. run-time using the CIFAR-10 dataset, with standard error (averaged over 30 random
initializations).
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Figure 10. Best-found validation error of CNN v.s. run-time using the SVHN dataset, with standard error (averaged over 30 random
initializations).

D.3. Policy Search for Reinforcement Learning

We apply our algorithm to a continuous control task: the Swimmer-v2 environment from OpenAI Gym, MuJoCo (Brockman
et al., 2016; Todorov et al., 2012). The task involves controlling two joints of a swimming robot to make it swim forward
as fast as possible. The state of the robot is represented by an 8-dimensional feature vector, and the action space is
2-dimensional corresponding to the two joints. We use a linear policy, in which the policy is represented by an 8× 2 matrix
that maps each state vector to the corresponding action vector. In this setting, the input parameters, x, to the GP-UCB and
BO-BOS algorithms are the 16 parameters of the policy matrix, and the objective function is the discounted cumulative
rewards in an episode. Each episode of the task consists of 1,000 steps. We set N (the maximum number of epochs) to
be smaller than 1, 000 by treating a fixed number of consecutive steps as one single epoch. E.g., we can set N = 50 or
N = 100 by treating every 20 or 10 consecutive steps as one epoch respectively. The rewards are clipped, scaled, and
normalized such that the discounted cumulative rewards of each episode is bounded in the range [0, 1]; for each evaluated
policy, we also record the un-discounted and un-scaled cumulative rewards, which are the ultimate objective to be maximized
and reported in Fig. 3 in the main text. Each policy evaluation consists of running 5 independent episodes with the given
policy, and returning the average discounted cumulative rewards, i.e., average return, as the observed function value.
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As mentioned in the main text, the rewards are discounted in order to make the objective function, the discounted cumulative
rewards, resemble the learning curves of ML models, such that the BO-BOS algorithm can be naturally applied. This
rationale is illustrated in Fig. 11, which plots some example un-discounted (γ = 1.0) and discounted (γ = 0.9) cumulative
rewards respectively. The figures indicate that, compared with un-discounted cumulative rewards, discounted cumulative
rewards bear significantly closer resemblance to the learning curves of ML models, thus supporting the claim made in the
main text motivating the use of discounted rewards, as well as the experimental results shown in Fig. 3 (specifically, the
poor performance of the curve corresponding to N = 50 and γ = 1.0). In addition to the results presented in the main text
in section 5.3.1, we further present the results with standard errors in Fig. 12, to emphasize the significant performance
advantage offered by BO-BOS compared with GP-UCB. To avoid clutter, we only present the results with error bar for
GP-UCB with γ = 1.0 and BO-BOS with N = 50 and γ = 0.9, which are best-performing settings for GP-UCB and
BO-BOS respectively.
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(a) Un-discounted (γ = 1.0).
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(b) Discounted (γ = 0.9).

Figure 11. Example curves of un-discounted and discounted cumulative rewards

D.4. Joint Hyperparameter Tuning and Feature Selection

In this set of experiments, we use the gradient boosting model (XGBoost (Chen & Guestrin, 2016)), tuning four hyperparam-
eters: the learning rate (10−3 to 0.5), maximum depth of each decision tree (2 to 15), feature sub-sampling ratio for each tree
(0.3 to 1.0), and L1 regularization parameter (0.0 to 5.0). We use the email spam dataset from the UCI Machine Learning
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Figure 12. Best-found return (averaged over 5 episodes) v.s. the total number of steps of the robot in the environment (averaged over 30
random initializations) using the Swimmer-v2 task, with standard error.
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Figure 13. Best-found validation error of XGBoost v.s. run-time with standard error (averaged over 30 random initializations), obtained
using joint hyperparameter tuning and feature selection.

Repository (Dheeru & Karra Taniskidou, 2017), which represents a binary classification problem: whether the email is a
spam or not. We use 3065 emails as the training set and the remaining 1536 emails as the validation set; each email consists
of 57 features. The maximum number of features for each hyperparameter setting is set as N = 50. In addition to Figure 4
in the main text, the same plot with error bar (standard error) is shown in Figure 13.


