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Abstract
Production systems operating on a growing do-
main of analytic services often require generating
warm-start solution models for emerging tasks
with limited data. One potential approach to ad-
dress this challenge is to adopt meta learning to
generate a base model that can be adapted to solve
unseen tasks with minimal fine-tuning. This how-
ever requires the training processes of previous
solution models of existing tasks to be synchro-
nized. This is not possible if these models were
pre-trained separately on private data owned by
different entities and cannot be synchronously
re-trained. To accommodate for such scenarios,
we develop a new personalized learning frame-
work that synthesizes customized models for un-
seen tasks via fusion of independently pre-trained
models of related tasks. We also establish perfor-
mance guarantee for the proposed framework and
demonstrate its effectiveness empirically.

1. Introduction
Existing machine learning algorithms are efficient when the
training data are abundant. However, when the training data
of a target task is not sufficiently available, most algorithms
are not designed to reuse knowledge from existing solu-
tion models of related tasks. Take for example a learning
scenario on personal assistant devices. One device might
be asked to recommend movies while others are asked to
recommend other entertainment contents that align with a
user’s preference. This leads to situations where one user
might have a good on-device model for a certain content
(movies) but not for others (music), especially for those that
have not been requested before. For such situations, the rel-
evant user-generated data for the task is scarcely available,
and thus, training a model from scratch is not effective.

To address this issue, potential approaches include meta
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(Finn et al., 2017; Yoon et al., 2018) and personalized feder-
ated learning (Fallah et al., 2020; Dinh et al., 2020) aim to
synchronize the training processes across different models
to distill the common parts of their inferential knowledge
into a base model. Once learned, the base model can either
be used directly in the same task context or be further tuned
with private data to generate a personalized model for a
new task. For example, a base model can learn to represent
different contents in terms of common genres and make
recommendations based on user preference regarding their
mixing proportion, which can be fine-tuned for a new user
(i.e., new task) with limited preferential data.

Nonetheless, to compute the base model, these approaches
require local models to synchronize their training processes
such that their extracted features and corresponding parame-
ters are aligned. This ensures that all models will operate on
the same representation space, which ensures local updates
to parameters modeling different aspects of data will not
be misaligned. From a practical perspective, however, this
solution is not suitable in production systems that compart-
mentalize into separately pre-trained workflows maintained
by different product groups (Su et al., 2018), which prefer a
decoupled architecture such that updates to those workflow
models can be implemented fast to drive business growth.

Furthermore, another drawback of the existing meta learning
platform is that it does not have a fine-grained representa-
tion that characterizes and accounts for different levels of
relevance across tasks when learning a base model. This can
be seen from its generic assumption that tasks are sampled
from the same distribution (Finn et al., 2017), which lacks
a sense of fidelity: if the task distribution is multi-modal,
tasks that were drawn from the same mode would be more
related to one another. Putting this in the context of user-
centric personalization, a base model crafted out of relevant
user (task) models from the same sub-population of the tar-
get user (task) is more informative than one learned from a
generic population comprising diverge sub-populations.

In light of the above, we argue that the abilities to distill and
reuse inferential knowledge from independently pre-trained
solution models; and to assess and prioritize distillation from
the most relevant models in new task contexts are keys to
address the aforementioned challenges. This motivates us to
develop a new personalized learning framework that learns
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by separating task-agnostic patterns from task-specific pat-
terns that were woven into each pre-trained model. For a
new task, the invariant patterns are put together into a base
model which is fused with a personalized component in-
corporating specific patterns distilled from existing solution
models of relevant tasks. Our specific contributions include:

1. A meta-model embedding representation that charac-
terizes pre-trained models as observations drawn from a
generative network parameterized by a base and a specific
component (Section 3.1). The base component is generated
from a deep parametric prior while the specific component
is modeled as the output of Gaussian processes (GP) (Ras-
mussen & Williams, 2006) on the space of (user’s) task’s
meta data. Learning these GPs helps predict the specific
component of a target model as a weighted average of ex-
isting models’. Here, the weights are derived from the GPs’
covariance kernels which provide a natural measurement for
the relevance between two tasks (Section 3.2).

2. A matching algorithm (Section 3.3) that learns to capture
the correspondence between latent coordinates that repre-
sent the embeddings of different models. This stems from
the fact that parameters of models trained in isolation do
not align in their featurization, such as neurons at the same
positions of different neural nets might be coded to extract
different features. Ignoring this deteriorates the personalized
performance, as shown in Section 5.

3. A variational approximation algorithm (Section 3.4) that
simultaneously optimizes the meta-model embedding, the
GP prior that captures the modeling correlation across dif-
ferent tasks, and the above encoding alignment between
latent coordinates that represent the embeddings of different
models to fit observations of pre-trained models.

4. A theoretical analysis (Section 4) that establishes a prob-
ably approximately correct (PAC) bound on the generalized
performance gap between a personalized model for a target
task and its oracle model. The derived bound reveals how
the process of fine-tuning a personalized model can be in-
corporated seamlessly into the learning of the meta-model
embedding to tighten the bound.

5. An empirical evaluation of the resulting framework on
several datasets (Section 5). The evaluation shows that the
personalized model fine-tuned with limited data performs
competitively to a model built on extensive data.

2. Related Works
2.1. Meta Learning

To facilitate fast adaptation into unseen tasks (e.g., new
users with unknown preference who recently subscribe to
a service provider), meta learning (Finn et al., 2017; Yoon
et al., 2018) aims to compute a base model initializer for a

given distribution of task (or description of task) which can
be well adapted to any unseen tasks (drawn from the same
task distribution) without requiring much training data.

In this setup, each task is indexed with a task descriptor
τ that incorporates its meta data. The task distribution is
then characterized as a distribution p(τ ) over such descrip-
tors. Meta learning then iterates between sampling tasks and
learning local solutions initialized with the current estimate
of the base model, and re-calibrating it via minimizing the
average loss over the sampled tasks incurred by incorporat-
ing task-specific differential changes to the base model and
using it as an initializer. For a more technical summarization,
readers are referred to (Hoang et al., 2020).

2.2. Federated Learning and Model Fusion

Federated learning (McMahan et al., 2017; Smith et al.,
2017; Brisimi et al., 2018; Nishio & Yonetani, 2018; Yang
et al., 2018) is the study of algorithms that learn from mul-
tiple private data sources which cannot be centralized for
processing. These algorithms alternate between learning
a local model from private data and distilling them into a
federated model solving the same task. For multi-task sce-
narios which require personalization at each local node, the
recent works of (Fallah et al., 2020; Dinh et al., 2020) have
introduced a multi-centered variant for federated learning
which is more suitable for personalized learning. These
approaches however require all local models to be trained
synchronously to facilitate knowledge transfer.

To cope with situations where synchronized training is not
possible, model fusion approaches (Hoang et al., 2019a;b;
Yurochkin et al., 2019a;b; Hoang et al., 2020) recently
emerged as new alternatives in case local models are pre-
trained and decoupled. For example, the works of Yurochkin
et al. (2019a;b) adopt a Bayesian modeling approach where
each local model is treated as a realization of a latent
global model distributed by a random process, which can
be learned to infer the federated model. These works how-
ever are restricted to single-task settings where local models
were pre-trained to solve the same task.

3. Model Fusion for Personalized Learning

This section presents the key components of our personal-
ized learning framework, which includes: (a) a meta-model
embedding representation that views each local model as an
observation drawn from a deep generative model parame-
terized by a common base and a specific component (Sec-
tion 3.1); (b) a set of Gaussian process (GP) mappings, from
a task’s meta data to its specific component (Section 3.2);
(c) an encoding alignment model that re-orders the embed-
ding components to match with different (implicit) semantic
arrangements wired in different pre-trained models (Sec-



Model Fusion for Personalized Learning

Figure 1. Workflow diagram of our meta-model embedding (left) and its representation in formal notations of probabilistic graphical
model (right). In the graphical model, diamond nodes represent parameters, shaded circle nodes denote observed random variables, and
circle nodes (with no shade) denote the unobserved/latent random variables.

tion 3.3); and (d) a variational approximation algorithm that
learns the aforementioned components (Section 3.4). Fig. 1
gives a workflow diagram and probabilistic graphical model
of our framework. Implementation details regarding these
parameterizations are provided in Appendix A.

3.1. Meta-Model Embedding Representation

Let Q1(x;γ1), . . . , Qn(x;γn) denote n models which
were previously trained on different sources of private data
to solve n different tasks indexed by meta information
τ 1, . . . , τn. For the rest of the paper, we overload the nota-
tion τ i to refer to the task i and the contextual information
of task i interchangeably. Each model is parameterized
by a weight vector γi that was learned to minimize a loss
function Li(γ) on a private dataset Di = {x(i)

` , y
(i)
` }

mi
`=1.

In our learning scenario, we get access to the models
Q1(x;γ1), . . . , Qn(x;γn) and their learned parameteriza-
tion γ1, . . . ,γn but not their training data. Then, given a
new task τ ∗ with limited data D∗, we are interested in im-
proving the learning of γ∗ by leveraging our observations
of the related models’ learned parameterization γ1, . . . ,γn.

To achieve this, we treat the observed parameterization
{γi}ni=1 as random samples drawn from a conditional gen-
erative model γi ∼ p(γ|w∅,wi; ν). Here, w∅ ∼ p(w∅)
denotes the base component and wi = g(τ i) denotes the
specific component that encodes the contextual information
τ i. The distribution of g captures the relevance between
the tasks’ specific components, i.e. via cov[g(τ i),g(τ j)].
This reveals a new perspective of personalized learning that
surgically exposes the latent relationship between solution
models of related tasks in their parameterization space. Such
perspective provides an alternative to the existing optimiza-
tion view of personalized federated learning (Fallah et al.,
2020; Dinh et al., 2020), which allows practitioners to ex-
press their domain knowledge of tasks and their modeling
relevance via a prior distribution over g(τ ) (Section 3.2).

Its learned posterior can then be used to sample a person-
alized component w∗ for τ ∗, which is then crossed with a
sample of the base w∅ ∼ p(w∅;α) to induce a predictive
distribution over the target model γ∗ ∼ p(γ|w∗,w∅; ν).
The most likely γ∗ can then be used as a zero-shot person-
alized initializer1 for the solution model of γ∗. Importantly,
one caveat of the aforementioned representation is that it im-
plicitly assumes existing solution models γ1, . . . ,γn align
in their parameterization spaces, which is often not the case
if the training processes of these models were decoupled.

That is, if models γi and γj were trained separately with
different initialization then there is no guarantee that their
corresponding `-th components, e.g. the `-th neuron in a
perceptron, were devised to capture the same kind of infor-
mation. Thus, without accounting for such misalignment,
the above meta model might end up weaving components2

[γ1]`, [γ2]` . . . [γn]` encoding different modeling aspects
into the same component [γ∗]` of the personalized initializer
γ∗. This will result in worse performance (Section 5).

To avoid this, we augment our meta representation with
a combinatoric optimization component that learns to re-
arrange each pre-trained model’s embedding vector into a
single canonical order. This however adds more complexity
to our meta-model optimization since it now involves a
mix of both continuous and discrete parameters, which is a
technical challenge that we address in Section 3.4.

3.2. Non-Parametric Task-Personalized Embedding

To capture the statistical relevance between different solu-
tion models, we learn a non-parametric GP prior over g(τ ).

1γ∗ can also be further trained incrementally with τ ∗’s few
shots of data if such information is available.

2We use [γ]` to denote the `-th element of the vector γ.
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3.2.1. GAUSSIAN PROCESS PRIOR

More concretely, we model the prior distribution over each
dimension gκ(τ ) = [g(τ )]eκ=1 of the vector-valued func-
tion g(τ ) by a separate Gaussian process (GP) (Rasmussen
& Williams, 2006). Each GP is parameterized by a kernel
function kκ(τ , τ ′) such that for any subset of tasks {τ i}ni=1,
their personalized outputs {gκ(τ i)}ni=1 are distributed by a
multivariate normal with zero mean and covariance matrix
Kκ whose entries [Kκ]ij are characterized by a kernel func-
tion kκ(τ i, τ j ;φκ) parameterized by φκ. The predictive
distribution of gκ(τ ∗) can be derived in closed-form as a
conditional Gaussian with predictive mean and variance,

E [gκ(τ ∗)] = kκ
>

∗ Kκ−1

gκ ,

V [gκ(τ ∗)] = kκ(τ ∗, τ ∗)− kκ
>

∗ Kκ−1

kκ
>

∗ , (1)

where we denote gκ = [gκ(τ 1), . . . , gκ(τn)]
> and kκ∗ =

[kκ(τ ∗, τ 1), . . . , k
κ(τ ∗, τn)]

>. In the above form, it can
be seen that the kernel-parameterized vector Kκ−1

kκ∗ is
learned to characterized the relevance between τ ∗ and
τ 1, . . . , τn in terms of their personalized encoding g(τ ∗)
and g(τ 1), . . . ,g(τn). This relevance vector is treated as
a weighted combination of g(τ 1), . . . ,g(τn) that approxi-
mates g(τ ∗) as shown in the expression of E[gκ(τ ∗)] above.

This expression however incurs a prohibitive O(n3) and
O(n2) cost of computation and memorization in the grow-
ing number n of previously solved tasks. More importantly,
this does not account for the localized and decoupled rele-
vance of tasks across different sub-populations, thus lacking
a sense of fidelity for personalization that we motivated
earlier in Section 1. To mitigate this, we instead adopt a
sparse approximation of Gaussian process (Snelson, 2007)
(as detailed next) from a broader literature of sparse methods
(Smola & Bartlett, 2001; Seeger et al., 2003; Quiñonero-
Candela & Rasmussen, 2005; Quiñonero-Candela et al.,
2007; Titsias, 2009; Titsias & Lázaro-Gredilla, 2013; Hens-
man et al., 2013; Lázaro-Gredilla et al., 2010; Hoang et al.,
2015; 2016; 2017; Yu et al., 2019) for fast GP inference.

3.2.2. SPARSE LOCALIZED GAUSSIAN PROCESS PRIOR

Here, we assume that there exists a set of m representa-
tive tasks τ (+) = {τ+

1 , τ
+
2 , . . . , τ

+
m} such that for each

κ 3, gκ(τ+
1 ), gκ(τ

+
2 ), . . . , gκ(τ

+
m) decouples the statistical

dependence of gκ(τ 1), gκ(τ 2), . . . , gκ(τn) in p separate
blocks, each of which corresponds to a sub-population of
related tasks. That is, let τ (1), τ (2), . . . , τ (p) denote the p
blocks of tasks and let sκ = [gκ(τ

+
1 ), . . . , gκ(τ

+
m)]>. Let

gκ(τ
(o)) and gκ(τ (r)) to abbreviate the more cluttering no-

tations [gκ(τ )]τ∈τ (o) and [gκ(τ )]τ∈τ (r) .

3In practice, we have a separate representative set for each di-
mension but for simplicity, we use a single set notation. Extension
to multiple sets can be done by adding additional subscriptions.

If τ ∗ ∈ τ (r) and o 6= r, gκ(τ ∗) and gκ(τ (o)) are inde-
pendent given sκ and gκ(τ

(r)). Likewise, gκ(τ (o)) and
gκ(τ

(r)) are independent given sκ, which implies

gκ

(
τ (o)

)
| sκ ∼ N

(
Kκ
o+Kκ−1

++ sκ, Kκ
oo −Qκ

oo

)
(2)

where the terms defining the covariance are Qκ
oo =

Kκ
o+Kκ−1

++ Kκ
+o and Kκ

++ = [kκ(τ i, τ j)]ij with τ i, τ j ∈
τ (+), Kκ

o+ = [kκ(τ i, τ j)]ij with τ i ∈ τ (o), τ j ∈ τ (+).

Then, for each encoding dimension κ, it follows that the
distribution of gκ(τ ∗) conditioned on sκ and gκ(τ (r)), via
assuming τ ∗ is in the same cluster that hosts τ (r), is a
Gaussian (Snelson, 2007; Hoang et al., 2015) centered at

E
[
gκ(τ ∗)

]
=

(
Kκ
∗+Γ++ + Kκ

∗rΓr+

)
sκ

+
(
Kκ
∗+Γ+r + Kκ

∗rΓrr

)
gκ

(
τ (r)

)
(3)

where the matrices Γ++,Γr+,Γ+r and Γrr are the corre-
sponding blocks of the following partitioned matrix,[

Γ++ Γ+r

Γr+ Γrr

]
=

[
Kκ

++ Kκ
+r

Kκ
r+ Kκ

rr

]−1
. (4)

Next, we have by our GP assumption, sκ ∼ N
(
0,Kκ

++

)
which allows us to marginalize out sκ in Eq. (3) above. It
simplifies w∗’s κ-th component as [w∗]κ = gκ(τ ∗) where

E
[
gκ(τ ∗)

]
=

(
Kκ
∗+Γ+r + Kκ

∗rΓrr

)
gκ

(
τ (r)

)
. (5)

This gives us averaged predictions of each dimension κ of
the specific component w∗ separately. These are however
independent variables that must be aligned and combined to
capture their correlating effect on the generation of the ob-
served and potentially misaligned model parameterizations
γ1,γ2, . . . ,γn as discussed previously in Section 3.1. This
is addressed next in Section 3.3 below.

3.3. Encoding Alignment for Model Embedding

Specifically, we use the following model parameterized by
ν = {A1, . . . ,An, λ} to map from (wi,w∅) to γi:

γi∼N

(
Aimλ

([
w∅
wi

])
,diag

[
Aivλ

([
w∅
wi

])])
(6)

where λ denotes a learnable parameterization of the two
(deep) neural nets mλ and vλ that map from the concate-
nated vector of wi and w∅ to a mean vector and a diagonal
covariance matrix of a normal distribution over γi. In addi-
tion, the permutation matrix Ai re-orders the components
of the corresponding model’s parameterization vector γi
into a canonical order that is used to generate γ∗ for τ ∗,

γ∗ ∼ N

(
mλ

([
w∅
w∗

])
, diag

[
vλ

([
w∅
w∗

])])
(7)
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Thus, let d = |γ1| = . . . = |γn| = |γ∗| denotes the model
size. Each permutation Ai is a d × d binary matrix such
that Auv

i = 1 implies the u-th component of γi encodes the
same modeling aspect as the v-th component of γ∗. By the
property of permutation matrix, for any u = 1, . . . , d, we
also have Au1

i + . . .+Aud
i = 1. In Section 3.4.2 below, we

propose an algorithm to learn this parameterization along
with the previously introduced parameters.

3.4. Learning to Personalize

Given the aforementioned representations (see Fig. 1), learn-
ing to personalize is reduced to learning the respective pa-
rameters that define those representations, which include:

(a) the parameters ν = {A1, . . . ,An, λ} of the crossing
model p(γ|w∅,w) in Eq. (5);

(b) the kernel parameters φκ, which are now extended to
include the representative tasks τ+

1 . . . τ
+
m that define our

sparse localized Gaussian process prior, which maps from a
task’s context information τ i to its personal encoding wi;

(c) the generative parameters α that defines p(w∅;α).

These parameters can be re-grouped into a discrete set A =
{A1, . . . ,An} and a continuous set ζ = {(φκ)κ, λ, α}.
If A is fixed, ζ can be learned via standard variational
approximation. Likewise, the optimization of A reduces to
a linear-sum assignment task if ζ is fixed.

3.4.1. LEARNING ζ GIVEN A

This is derived in three steps: (I) setting up a meta-model
evidence to be optimized; (II) approximating it with a varia-
tional lower-bound to make it tractable; and (III) choosing
a surrogate posterior parameterization as the centerpiece of
the lower-bound to facilitate efficient optimization.

I. Meta-Model Evidence. We first derive the likelihood of
γ = {γi}ni=1 conditioned on τ = {τ i}ni=1. This intuitively
measures the statistical strength of our meta-model based
on the evidence of our observations,

log p (γ|τ ) = log Ew∅

[
h (w∅)

]
, (8)

where the expectation is over p(w∅;α) and the auxiliary
function4 h(w∅) is given below (see Appendix B):

h(w∅) = Eg

[
n∏
i=1

p
(
γi|wi = g

(
τ i

)
,w∅; ν

)]
. (9)

The expectation is over g , {gκ}κ ∼
∏e
κ=1 p(g

κ;φκ)
with gκ = [gκ(τ 1), . . . , gκ(τn))] as defined previously in
Eq. (1). Inside the expectation, p(γi|wi,w∅; ν) is defined

4Here, the dependence on task context τ is suppressed to avoid
cluttering the notation.

in Eq. (6). Furthermore, since we use the sparse localized
GP prior in Section 3.2.2 to characterize g, it follows that

p
(
gκ;φκ

)
= Esκ

[
p∏
o=1

p
(
gκo | sκ, τ (o);φκ

)]
, (10)

where p(gκo | sκ, τ
(o);φκ) is defined in Eq. (2) and the

expectation is over the prior p(sκ) = N(sκ;0,K
κ
++;φκ).

The factorization in Eq. (8) to Eq. (10) is derived from the
conditional independence encoded in the graphical model
in Fig. 1 and the use of sparse localized GP prior.

II. Optimization via Variational Approximation. Maxi-
mizing Eq. (8) however is notoriously difficult due to the
intractability of the outer expectation. To circumvent this,
we adopt the idea of variational optimization which derives
and optimizes a lower-bound of log p(γ|τ ). This is achieved
via the following variational inequality (see Appendix C):

log p(γ|τ ) ≥ Eq

[
log p

(
γ,w∅,w, s|τ

)]

− Eq

[
log q

(
w∅,w, s;ω

)]
(11)

for any distribution q(w∅,w, s;ω) with ω being its parame-
terization such that q(w∅,w, s;ω) is absolutely continuous
with p(w∅,w, s|γ). This distribution is over w∅, w =
{wi}ni=1 and s = {sκ}eκ=1. It can be further shown that the
difference between the LHS and RHS of the above inequal-
ity is in fact the KL divergence between q(w∅,w, s;ω) and
p(w∅,w, s|γ) (Kingma & Welling, 2013). Thus, if ω can
be chosen such that q(w∅,w, s;ω) ≡ p(w∅,w, s|γ), the
gap between the LHS and RHS of Eq. (11) disappears and
maximizing the RHS is the same as maximizing log p(γ|τ ).

In comparison to the exact form of log p(γ|τ ) in Eq. (8), the
expression of the RHS of Eq. (11) however is more practical
for numerical optimization. This is a well-known fact in that
one can push the derivative operator over the generative meta
model’s parameters inside the RHS’s expectation operator,
thus revealing its closed-form stochastic gradient that is
unbiased since the freely parameterized q only depends
on ω. In contrast, the same cannot be done for the exact
expression of log p(γ|τ ) whose outer-most expectation is
over terms that depend on p’s parameterization.

Thus, computing the (stochastic) gradient of the RHS in
Eq. (11) reduces to computing the term inside its first ex-
pectation, log p(γ,w∅,w, s|τ ). This is straight-forward
following the factorization encoded in the diagram of Fig. 1.
Due to limited space, its formal graphical model is deferred
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to Appendix A. In particular, we have

log p
(
γ,w∅,w, s|τ

)
=log p

(
γ|w,w∅

)
+ log p

(
w|s, τ

)
+log p

(
w∅

)
+

e∑
κ=1

log p
(
sκ

)
(12)

Plugging in w = {wi}ni=1, γ = {γi}ni=1 and the statisti-
cal independence given w∅, the first term on the RHS of
Eq. (12) can be further expanded as:

log p
(
γ|w,w∅

)
=

n∑
i=1

log p
(
γi|wi,w∅; ν

)
(13)

where wi = g(τ i) and the generative process of γi is
parameterized by ν. Next, we also have:

log p
(
w|s, τ

)
=

p∑
o=1

e∑
κ=1

log p
(
gκo | sκ, τ (o);φκ

)
(14)

where tasks were clustered into p partitions and each factor
p(gκo | sκ, τ (o);φκ) is derived previously in Eq. (2) follow-
ing our sparse localized GP prior assumption (Section 3.2.2).

Then, log p(sκ) = log p(sκ;φκ) = logN(sκ;0,K
κ
++;φκ)

is parameterized by kernel parameters φκ, which include
the representative tasks τ (+) as introduced in Section 3.2.2.
This is collectively referred to as φ = {φκ}eκ=1 and will
be learned via optimizing Eq. (11). Last, log p(w∅) =
log p(w∅;α) is parameterized by α which defines a genera-
tive model of the base component w∅ a priori.

III. Posterior Surrogate Parameterization. Having ex-
pressed the first summand of the variational lower-bound in
Eq. (11) in terms of the basic blocks of our meta representa-
tion parameterized with (α, φ, ν), we next parameterize

log q
(
w∅,w, s

)
, log q

(
w∅;ω

)
+

e∑
κ=1

log p
(
sκ;φκ

)
+

p∑
o=1

e∑
κ=1

log p
(
gκo | sκ, τ (o);φκ

)
(15)

Plugging Eq. (15) into the RHS of Eq. (11), the difficult
terms log p(gκo | sκ, τ (o);φκ) cancel out with their matches
in Eq. (14), which contribute to the first term in the lower-
bound’s expression. As such, the lower-bound in Eq. (11)
can now be re-written as

L
(
α, φ, ν, ω

)
=

n∑
i=1

Eq

[
log p

(
γi|wi,w∅; ν

)]

− DKL

(
q
(
w∅;ω

)∥∥∥p(w∅;α
))

. (16)

One advantage of this surrogate choice is that it eliminates
the difficult terms inside the expectation which reduces the

number of parameters involved in the computation of the
stochastic gradient. For the expectation, one can avoid
explicit integration over those terms via forward sampling.

3.4.2. LEARNING A GIVEN ζ

Eq. (16) above can be optimized via re-parameterized sam-
pling (Kingma & Welling, 2013) with respect to ζ only. This
excludes the discrete permutation matrices A1, . . . ,An. So,
to learn these, we observe that p(γi|wi,w∅; ν)

= N
(
γi|Aim

i
λ,diag

[
Aiv

i
λ

] )
=

d∏
u=1

N

(
[γi]u

∣∣∣ d∑
v=1

Auv
i

[
mi
λ

]
v
,

d∑
v=1

Auv
i

[
viλ
]
v

)
(17)

where mi
λ and viλ are short-hands for mλ(wi,w∅) and

vλ(wi,w∅), respectively, and d = |γi| is the model size
as defined previously. Thus, taking logarithm on both sides
of Eq. (17) and re-arranging the log-Gaussian terms shows
that log p(γi|wi,w∅; ν) = Li (see Appendix D) where

Li =

d∑
u=1

d∑
v=1

Auv
i logN

(
[γi]u | [mi

λ]v, [v
i
λ]v

)
. (18)

Hence, letting Duv
i , logN

(
[γi]u | [mi

λ]v, [v
i
λ]v
)

and
plugging Eq. (18) into Eq. (16) yield:

L
(
α, φ, ν, ω

)
=L

(
A, ζ, ω

)
=

n∑
i=1

d∑
u=1

d∑
v=1

Auv
i Eq

[
Duv
i

]
−DKL

(
q
(
w∅;ω

)∥∥∥p(w∅;α
))

(19)

where as mentioned before at the beginning of Section 3.4,
(A, ζ) is a re-grouping of (α, φ, ν) to explicitly isolate the
discrete parameters in A from the rest. From Eq. (19), it
appears that the learning of A reduces to a set of maximum
weighted bipartite matching tasks where we solve for each
Ai independently per model. This is possible since we have
already fixed and isolated the other continuous parameters
such that the divergence DKL and cost terms Eq[Duv

i ] are
constant with respect to A, which can be computed and
cached in the previous step of learning ζ while fixing A.

For a more practical tuning, we can also alternate between
fitting A and an additional personalized performance fitting
of the meta model on the observed training tasks. That
is, for each pre-trained model γi of training task τ i, let
qi(γ) denote the induced distribution over the personalized
model for τ i, we will re-fit the differentiable parameteri-
zation of the meta model to minimize the average predic-
tion difference between γ ∼ qi(γ) and γi via minimiz-
ing Eγ∼qiEx∼Di [`(γ(x),γi(x))] where `(γ(x),γi(x)) is
a function measuring the difference between γ and γi on x.
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This is similar to a previously explored idea (Yurochkin
et al., 2019a) of matching neurons that extract similar fea-
tures across different networks. In addition, there is also
a potential alternative to learn these permutations via the
Gumbel-Sinkhorn Networks (Mena et al., 2018). This ap-
proach relaxes the discrete permutation variables into con-
tinuous variables where gradient-based optimization tech-
niques can be applied, enabling an end-to-end training strat-
egy. Exploring this parameterization is beyond the scope of
this work but could be an interesting follow-up.

4. Theoretical Analysis
Let D∗ denote the data distribution of τ ∗ from which its m-
shot examples {xi, yi}mi=1 were drawn independently. Let
`γ(x, y) denote the loss of predicting γ(x) when the ground
truth is y, and assume that the loss is non-negative, bounded
and admits triangle inequalities `γ(x, y) ≤ `γ(x,γ′(x)) +
`γ′(x, y) and `γ(x,γ′(x)) ≤ `γ(x, y) + `γ′(x, y).

Then, let γ◦∗ , argminγ E(x,y)∼D∗ [`γ(x, y)] denote the
oracle model for τ ∗. Let q , q(γ∗|γ) denote a candidate
distribution of γ∗ which our method aims to optimize. Then,
let G(γ◦∗) = E(x,y)∼D∗ [`γ◦∗(x, y)] and Eγ∗∼q[G(γ∗)] de-
note the corresponding generalized losses of γ◦∗ and q on τ ∗.
We can establish a non-trivial bound on the gap between
G(γ◦∗) and Eγ∗∼q[G(γ∗)] in Theorem 1 below.

Theorem 1. Let π be any reference distribution over γ∗
and `† denote the upper-bound for `γ(x, y) over (γ,x, y).
Assume there exists constants c > 0 and r > 1 such that

Pr

(
`γ◦∗(x, y) >

1

r
G(γ◦∗)

)
≤ c exp

(
1

r
G(γ◦∗)− 2`†

)
Then, with probability at least 1 − δ over the choices of
{(xi, yi)}mi=1, the following holds uniformly for all q:∣∣∣∣∣G(γ◦∗)−Eγ∗∼q

[
G(γ∗)

]∣∣∣∣∣ ≤ DKL

(
q
∥∥∥π)+

1

r
G
(
γ◦∗

)
+log

(
1

m

m∑
i=1

Eγ∗∼π

[
exp
[
`γ∗

(
xi, yi

)]]
+Cm

)

where Cm = poly
(
m, c, log

(
1
δ

))
and limm→∞Cm = 0.

A detailed proof of this result is deferred to Appendix E.
Intuitively, the assumption of Theorem 1 asserts that the
chance for the oracle to incur a loss worse than a fraction
of its generalized loss is vanishingly small if c is small and
r is large5. This is reasonably expected if the oracle model
within our model space is highly accurate. When this hap-
pens, we can further show in Lemma 2 of Appendix E that
by choosing π to be a distribution over γ∗ induced by the

5Note that by definition G(γ◦∗) ≤ `† , sup `γ(x, y) where
the supremum is over γ and (x, y).

(α, φ, ν)-part of a global maximizer of Eq. (16), the opti-
mal q induced via its ω-part would make the divergence
term above vanished. As this is exactly what optimizing
Eq. (16) aims to achieve, one can rationalize that the pro-
posed method is in fact working to tighten the gap between
the personalized model γ∗ for τ ∗ and its oracle γ◦∗.

Fine-Tuning. The performance bound in Theorem 1 also
suggests a principled recipe for combining both the meta-
model learning and fine-tuning towards τ ∗ via minimizing

H(q, π)= log

(
1

m

m∑
i=1

Eγ∗∼π

[
exp
[
`γ∗

(
xi, yi

)]])
− L(q)

where L(q) is the short-hand for L(α, φ, ν, ω) in Eq. (16).
Here, a data term is added to the optimization of −L(q),
which prefers parameters that fit the data well. Then, if
(α, φ, ν, ω) is a global minimizer of H and π is a distribution
of γ∗ represented in terms of its (α, φ, ν)-part as stated in
Lemma 2, the corresponding ω-part must induce a q that
makes DKL(q‖π) vanished. Otherwise, we could replace it
with another ω that zeroes out DKL(q‖π) which increases
L(q) (see Lemma 1, Appendix E) and leads to a better
solution to minimizing H, which contradicts our premise.
Hence, minimizing H would cancel DKL(q‖π) and further
work to reduce the data term to practically tighten the bound.

5. Experiments
5.1. Sine Prediction Dataset

In this experiment, each task is to build a regression net
that predicts the output of a sine function. For training,
our method is presented with a set of pre-trained nets for
some observed sine functions. At test time, the personalized
model generated by our method 6 is evaluated on unseen
functions with only a few shots of data for tuning.

Task Description. For each task, the task descriptor τ is
a tuple of two scalars (a, b), denoting the magnitude and
the phase of the sine function a · sin(x + b). We sample
200 sine functions from 5 different domains with diverging
ranges for a and b as train set. Another 100 were reserved
as test set. Each pre-trained model is a 1-layer neural net
with 100 hidden neurons, [1-100-1], with ReLU activation.

Comparison. The normalized RMSE of the personalized
net [1-100-1] generated by our method is compared against
those (with the same architecture) of other baselines includ-
ing (a) a cold-start method that trains the neural net from
scratch with few-shot data; (b) MAML (Finn et al., 2017)
which (unlike ours) synchronizes the model training pro-
cesses of different tasks to compute a one-recipe-fit-all base
net; and (c) a variant of MAML that uses a higher capacity

6Our code: https://github.com/zevergreenz/
model_fusion_for_personalized_learning

https://github.com/zevergreenz/model_fusion_for_personalized_learning
https://github.com/zevergreenz/model_fusion_for_personalized_learning
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Figure 2. Visual excerpts demonstrating how well the warm-start neural net with architecture [1-100-1] generated by MAML and our
method fit 2 unseen sine functions in 0-, 10-, 20- and 40-shot settings. For more visualization, readers are referred to Appendix A.

0-SHOT 10-SHOT 20-SHOT 30-SHOT 40-SHOT

OURS [1-100-1] 0.135± 0.09 0.114± 0.03 0.029± 0.01 0.021± 0.01 0.017± 0.01
OURS [1-100-1] (NO ALIGN) 0.357± 0.01 0.125± 0.01 0.043± 0.01 0.036± 0.01 0.028± 0.01
COLD-START [1-100-1] 0.445± 0.26 0.149± 0.03 0.085± 0.05 0.076± 0.05 0.052± 0.04
MAML [1-100-1] 0.446± 0.12 0.281± 0.18 0.161± 0.07 0.149± 0.06 0.142± 0.06
MAML [1-40-40-1] 0.258± 0.11 0.022± 0.02 0.014± 0.01 0.014± 0.01 0.012± 0.01

Table 1. Reported performance of our method (with and without embedding alignment), cold-start and MAML on the sine synthetic dataset.
The results is averaged over all domains and independent runs. More detailed comparison benchmarks are provided in Appendix A.

net, [1-40-40-1], with 2 layers and 40 neurons each.

The results (with mean and standard deviation) are aver-
aged over multiple independent runs and are collectively
reported in Tables 1 and 5 of Appendix A along with some
visualization on Fig. 2. Our observations are:

1. Using the same [1-100-1] architecture, the personalized
nets generated by our method perform significantly better
than those generated by other comparison baselines. Even
against the higher-capacity net [1-40-40-1] of MAML, our
[1-100-1] net still achieves better performance in the 0-shot
setting. In other few-shot settings, it performs slightly worse
than the [1-40-40-1] since the latter’s higher capacity net is
expected to be more efficient in absorbing the fine-tuning
information. In contrast, the performance of the [1-100-1]
net produced by MAML is surprisingly worse than even the
cold-start baseline’s, especially in the 0-shot setting. This
is however not unexpected in this scenario where the task
samples are designed to be highly polarized in ranges, which
makes it harder for MAML to learn a one-recipe-fit-all net,
especially if it is constrained to use a simple architecture.

2. Our reported results across diverging sine domains in
Table 5 of Appendix A similarly show that MAML’s perfor-
mance is also worse than our models within each domain
due to its lack of specialization. This can be seen visually in
Fig. 2 which shows the 0-shot models produced by MAML
fitting the sine functions very crudely while ours matching
them more accurately. This is consistent with our observa-

tion above that for polarized task distributions, it is often
hard for MAML to find a one-recipe-fit-all base net.

3. The performance of our personalized nets also appears to
deteriorate most significantly in the 0-shot setting (Table 1)
if we disable the embedding alignment which accounts for
the fact that models trained in isolation do not align in the
featurization of their parameters. This is expected since, in
the 0-shot setting, there is no training data to help the model
recognize and correct the misalignment via fine-tuning.

5.2. MNIST Dataset (LeCun et al., 2010)

In this experiment, each task is to build a classifier for a
subset of digits. During training, our algorithm is presented
with pre-trained neural net classifiers, which are generated
to distinguish between different K-subset of the digits. At
test time, given only a few shots of examples, the task is to
generate new classifiers for unseen K-subsets of digits.

Task Description. For each task, the task descriptor τ
is a binary vector of size 10, specifying which digits are
included in the task. We sample 40 tasks for training, 15
tasks are reserved as the test set. Each pre-trained classifier
is a 1-layer neural network with 100 hidden neurons, [784-
100-10], with ReLU activation and softmax output.

Comparison. The classification accuracy of the personal-
ized classifiers generated by our method is compared against
those (with the same architecture) of other baselines includ-
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K = 2 K = 3
MNIST 0–SHOT 1–SHOT 10–SHOT 0–SHOT 1–SHOT 10–SHOT

COLD-START − 56.70± 8.47 93.58± 2.88 − 45.86± 0.96 74.94± 0.17
MAML 50.56± 0.48 67.55± 5.02 94.77± 1.88 33.36± 0.02 47.43± 1.94 75.47± 1.96
OURS 66.92± 9.68 78.33± 5.48 97.87± 3.29 39.81± 10.83 60.35± 9.23 92.37± 2.19

K = 4 K = 5
MNIST 0–SHOT 1–SHOT 10–SHOT 0–SHOT 1–SHOT 10–SHOT

COLD-START − 58.76± 0.68 85.00± 0.09 − 53.64± 0.75 81.19± 0.33
MAML 25.04± 0.07 63.42± 2.03 87.74± 2.19 20.04± 0.35 57.93± 2.68 82.94± 0.32
OURS 49.20± 9.02 71.35± 11.77 90.98± 2.71 63.49± 10.21 76.79± 9.67 90.35± 2.94

Table 2. Reported K-way classification accuracy of our generated model, MAML’s model and the cold model on the MNIST dataset.

METHODS 20-DIM 30-DIM 40-DIM
OURS (WITH EMBEDDING ALIGNMENT) 1.16± 0.27 1.16± 0.26 1.22± 0.29
COLD-START CF 1.59± 1.27 2.02± 3.14 1.58± 1.54
1-NEAREST NEIGHBOR 1.26± 0.32 1.29± 0.33 1.28± 0.32
AUTOREC (SEDHAIN ET AL., 2015) 1.55± 0.72
NEURAL MF (HE ET AL., 2017) 1.55± 1.23 1.51± 1.05 1.43± 1.28
DEEP FM (GUO ET AL., 2017) 1.47± 1.02 1.55± 0.92 1.51± 1.28
ORACLE CF (KOREN ET AL., 2009) 0.97± 0.09 1.05± 0.11 1.01± 0.07

Table 3. Reported personalized performance (RMSE) of our method, oracle CF (Koren et al., 2009) and several cold-start recommendation
baselines to predict user-movie ratings on the MovieLens Dataset (Harper & Konstan, 2015) with different user embedding sizes.

ing (a) a cold-start method that trains the neural net from
scratch with few-shot data; (b) MAML which computes a
base network, then fine-tuning on the few-shot data. Our
results in Table. 2 show that our method’s performance is
substantially better than the rest. Similar to the results from
the sine experiment, the advantage of our method is more
pronouncing when there are fewer examples (0/1-shot).

5.3. Movie-Len Dataset (Harper & Konstan, 2015)

This experiment focuses on the cold-start collaborative fil-
tering (CF) task using the 10K-MovieLens dataset. The
task is to predict the rating of an existing item by an unseen
user given a collection of previous user-item ratings. Dif-
ferent from the traditional CF setting where a rating matrix
between existing users and items is provided, our scenario
only provides pre-trained embedding vectors for existing
users and items but not their rating data.

Task Description. We reserve a subset of items (300 out
of 1682) as context items. For each existing user, his/her
interactions with this set are reserved as meta data and are
excluded from the interaction features used for generating
his/her embedding. We also reserve a subset of users (143
out of 943) as unseen users.

A vanilla CF is run on a subset of user-item interactions span-
ning the portion of 800 seen users and 1382 items, which
generates a pre-trained embedding for each user/item. The
rating data used to run this is unknown to our method. For
each unseen user, our method generates a 0-shot embedding
based on his/her meta data. A dot-product between user and
item embeddings is then be computed to predict the rating.

Comparison. We compare the RMSE incurred by the 0-
shot embedding for unseen users generated by our method
against those of (a) an oracle CF that has access to the
entire rating data, whose performance serves as an upper
bound; and (b) other cold-start recommendation baselines
that runs a vanilla CF on the unseen users’ available ratings
on context items. Our observation in Table 3 below shows
that our method’s performance is closest to the oracle and is
substantially better than the rest.

6. Conclusion
This paper introduces a new personalized learning frame-
work capable of extracting and fusing knowledge from ex-
isting pre-trained models to generate customized models
in new task contexts. Unlike existing approaches to per-
sonalization via meta and personalized federated learning,
our method does not require synchronizing the training pro-
cesses of existing task models. This is more practical when
only pre-trained models exist and cannot be further tuned.
Our method is analyzed in both theory and experiment.
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