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Abstract
Bayesian optimization (BO) is a popular tool for
optimizing complex and costly-to-evaluate black-
box objective functions. To further reduce the
number of function evaluations, any party per-
forming BO may be interested to collaborate
with others to optimize the same objective func-
tion concurrently. To do this, existing BO algo-
rithms have considered optimizing a batch of in-
put queries in parallel and provided theoretical
bounds on their cumulative regret reflecting inef-
ficiency. However, when the objective function
values are correlated with real-world rewards (e.g.,
money), parties may be hesitant to collaborate if
they risk incurring larger cumulative regret (i.e.,
smaller real-world reward) than others. This paper
shows that fairness and efficiency are both neces-
sary for the collaborative BO setting. Inspired by
social welfare concepts from economics, we pro-
pose a new notion of regret capturing these prop-
erties and a collaborative BO algorithm whose
convergence rate can be theoretically guaranteed
by bounding the new regret, both of which share
an adjustable parameter for trading off between
fairness vs. efficiency. We empirically demon-
strate the benefits (e.g., increased fairness) of our
algorithm using synthetic and real-world datasets.

1. Introduction
Bayesian optimization (BO) (Dai et al., 2019; 2020a;b; Ling
et al., 2016; Zhang et al., 2019) is a popular tool for opti-
mizing complex (e.g., possibly noisy, non-convex, and/or
with no closed-form expression/derivative) and costly-to-
evaluate black-box objective functions given a limited bud-
get. BO algorithms can achieve competitive optimization
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performance by sequentially selecting input queries for eval-
uating the objective function f to trade off between sampling
at or close to a likely maximizer (i.e., exploitation) vs. sam-
pling in an unobserved input region (i.e., exploration). BO
has been used in a wide variety of real-world applications
such as hyperparameter tuning of machine learning (ML)
models (Shahriari et al., 2015), drug development, chemi-
cal/material design (Griffiths & Hernández-Lobato, 2020;
Zhang et al., 2020), hotspot discovery via a mobility-on-
demand (MoD) system with autonomous vehicles (AVs)
(Chen et al., 2013; 2015; Kharkovskii et al., 2020), among
others. In these applications, each function evaluation (e.g.,
evaluating molecular properties, MoD AV cruising to a lo-
cation) is economically costly and/or time-consuming. Nat-
urally, any party who performs BO would be interested in
reducing the number of function evaluations and hence the
cost/time needed. One appealing solution is collaborative
ML (Sim et al., 2020) which allows every party to share
data from function evaluations with the other parties opti-
mizing the same f concurrently instead of evaluating the
expensive f on its own. The works of Cheng et al. (2020)
and Fitch (2018) have discussed the importance and benefits
of collaboration in drug discovery and precision agriculture.

At first glance, existing batch BO algorithms (Daxberger &
Low, 2017; Desautels et al., 2014; Wu & Frazier, 2016) may
seem like a suitable solution. In each iteration, these algo-
rithms select a batch of input queries and each input query is
assigned to a collaborating party for evaluating f in parallel.
However, these batch BO algorithms do not optimize the
assignment of input queries to parties. Some parties may
be unintentionally assigned input queries to evaluate f with
only small values. This possibility discourages collaboration
and data sharing. Why is this so? Each party usually incurs
some cost to evaluate f and is particular about its value as it
is often correlated with some real-world reward. Any party
would not want to unfairly receive smaller real-world re-
ward and less valuable information than other collaborating
parties. For example, when companies operating MoD AVs
collaborate to discover mobility demand hotspots, a party
evaluating at a location with a higher mobility demand is
more likely to pick up passengers and earn fares. So, any
MoD company would not want to solely evaluate at loca-
tions with low mobility demand and altruistically provide
information to the other parties. When farmers collaborate



Collaborative Bayesian Optimization with Fair Regret

to optimize the conditions (e.g., fertilizer composition) to
grow crops, a farmer would not like to always test condi-
tions with poor yield to benefit others. Likewise, a research
group collaborating with others in chemical or drug design
would not want to study significantly fewer or less promis-
ing molecules than the others.

Then, what guarantees should a collaborative BO algorithm
provide to address every party’s concerns? Firstly, the al-
gorithm must have good efficiency: It should be able to
maximize the evaluated function values across all parties
(i.e., cumulative utility) and simultaneously find the maxi-
mizer. The cumulative utility (CU) here is closely related
to the notion of cumulative regret used to measure the opti-
mization performance of several BO algorithms (Daxberger
& Low, 2017; Desautels et al., 2014; Hoang et al., 2018;
Srinivas et al., 2010). Next, to avoid the unfair real-world re-
wards in the aforementioned examples, the algorithm needs
to ensure fairness by reducing differences between the CUs
of all parties. However, incorporating both efficiency and
fairness in a BO algorithm is nontrivial due to the lack of
a formal notion of fairness and the trade-off between them.
The trade-off arises as fairness can be achieved by prevent-
ing some parties from getting larger CUs. For example, the
fair strategy of selecting the same input queries for all parties
may hurt efficiency due to redundant function evaluations.

To address this challenge, our work here considers a col-
laborative BO mechanism where a trusted mediator jointly
selects the input queries for all parties based on their data,
as in batch BO algorithms. A new notion of regret is defined
based on a social welfare concept from economics for cap-
turing both inefficiency and unfairness. We then design a
collaborative BO algorithm whose convergence rate can be
theoretically guaranteed by bounding the new regret, i.e., the
algorithm would not produce inefficient and unfair assign-
ments. This is novelly achieved by considering each party’s
CU up to the previous BO iteration when selecting input
queries in the current BO iteration to reduce unfairness. The
specific contributions of our work here include:

• Defining new notions of fair regret based on a social
welfare concept economics called the generalized Gini
social-evaluation function (G2SF) (Weymark, 1981) that
considers both efficiency and fairness (Sec. 3);

• Proposing a collaborative BO algorithm that can theoreti-
cally guarantee its convergence rate by bounding the new
fair regret, achieve asymptotic no-regret performance, and
address the concern of collaborative fairness (Sec. 4);

• Designing an adjustable parameter that can be used to
trade off between fairness vs. efficiency in both the new
fair regret and our collaborative BO algorithm (Sec. 3);

• Demonstrating the increased fairness and other properties
of our collaborative BO algorithm empirically (Sec. 5).

To the best of our knowledge, this is the first algorithm
that addresses collaborative fairness in BO and considers
fairness in the cumulative sense. The only other fair BO
work (Perrone et al., 2020) has focused on mitigating biases
in the outputs, which is a different line of fairness concept.
More literature related to fairness (including the various
fairness concepts in multi-armed bandit) and incentivizing
exploration will be discussed later in Sec. 6.

2. Problem Formulation and Background
Our problem setting considers n parties jointly optimiz-
ing a black-box objective function f : X → R where
X ⊂ Rd denotes a domain of d-dimensional input feature
vectors.1 We assume that each party can evaluate the ob-
jective function f at any input x ∈ X and the availability
of a trusted mediator2 whom every honest party is will-
ing to share its data with. In each iteration t = 1, . . . , T ,
the mediator selects an input query xit to be assigned to
each party i who then evaluates f at the assigned input xit
to observe a noisy realized output yit , f(xit) + ε where
ε ∼ N (0, σ2) with noise variance σ2. Let [n] , {1, . . . , n}.
Let Xt , (xit)i∈[n] and yt , (yit)

>
i∈[n] be an input ma-

trix and the corresponding vector of noisy realized out-
puts in iteration t, respectively. After t iterations, the
mediator has a pooled dataset D1:t , (X1:t,y1:t) where
X1:t , (Xj)j=1,...,t and y1:t , (yj)j=1,...,t. The number
T of iterations can be decided in advance or determined
when any party wishes to leave the collaboration.

2.1. Batch Bayesian Optimization (BO)

The objective of a conventional batch BO is to find a global
maximizer x∗ , arg maxx∈X f(x) of the objective func-
tion f . To achieve this, the black-box objective function
f is modeled as a Gaussian process (GP), that is, every
finite subset of {f(x)}x∈X follows a multivariate Gaus-
sian distribution (Rasmussen & Williams, 2006). A GP is
fully specified by its prior mean mx , E[f(x)] and co-
variance kxx′ , cov[f(x), f(x′)] for all x,x′ ∈ X . In
iteration t, a GP model can produce a predictive distribu-
tion of the function outputs fXt

, (f(xit))i∈[n] at any input
matrix Xt: p(fXt |D1:t−1) = N (µXt|D1:t−1

,ΣXt|D1:t−1
)

where µXt|D1:t−1
and ΣXt|D1:t−1

are, respectively, the pre-
dictive/posterior mean vector and covariance matrix which
can be computed analytically (Hoang et al., 2015; 2016).

Then, in each iteration t, a batch BO algorithm selects a
batch of inputs Xt ∈ Xn to maximize some acquisition
function that is computed using the predictive distribution

1Our theoretical analysis considers a discrete input domain.
However, our results can be generalized to a continuous, compact
input domain via a suitable discretization (Srinivas et al., 2010).

2In reality, the mediator can be a government agency or an
industry association who acts in everyone’s best interest equally.
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of fXt
. For example, the distributed batch GP upper confi-

dence bound (DB-GP-UCB) algorithm (Daxberger & Low,
2017) selects Xt that trades off between sampling inputs
with large posterior mean (i.e., exploitation) vs. those with
high information gain on fX (i.e., exploration):

maxXt∈Xn 1>µXt|D1:t−1
+
√
αtI[fX ;yt | D1:t−1] (1)

where parameter αt is set to trade off between exploitation
vs. exploration for bounding its cumulative regret (Sec. 2.2),
while I[fX ;yt | D1:t−1] = 0.5 log | I + σ−2ΣXt|D1:t−1

|
is the information gain (or, equivalently, reduction in uncer-
tainty) on fX by evaluating f at Xt to observe yt given the
dataset D1:t−1 from previous iterations 1, . . . , t − 1, and
is larger when the inputs within Xt are more diverse and
dissimilar to the inputs X1:t−1 from earlier iterations.

2.2. Regret and Utility

The above DB-GP-UCB algorithm is designed to minimize
the full cumulative regret which is a common BO objective.
Let rit , f(x∗)−f(xit) be the instantaneous regret incurred
by assigning xit to party i in iteration t. The full instanta-
neous regret is the sum of instantaneous regrets incurred by
all parties of the batch in iteration t: rt ,

∑n
i=1 r

i
t. The

full cumulative regret is the sum of full instantaneous re-
grets over iterations t = 1, . . . , T : RT ,

∑T
t=1 rt. When

a BO algorithm asymptotically achieves no regret (i.e.,
limT→∞RT /T = 0), it will eventually converge to a global
maximum and every party will evaluate f at the assigned
maximizer x∗.

Let the utility uit , f(xit) achieved by party i in iteration t
be the function output f(xit) that it has evaluated at the as-
signed xit. The full utility is the sum of utilities achieved by
all parties of the batch in iteration t: ut ,

∑n
i=1 u

i
t. The full

cumulative utility is the sum of full utilities over iterations
t = 1, . . . , T : UT ,

∑T
t=1 ut. Both ut and UT are con-

sidered measures of efficiency. The full cumulative regret
equals to the loss in utility from not knowing x∗ beforehand:
RT = nTf(x∗)− UT . So, minimizing RT is equivalent to
maximizing UT . Though RT is more commonly used than
UT in the BO literature, we have introduced the notion of
utility to ease the discussion of the concept of fairness.

The properties formalized below are satisfied by rt and
ut. Such properties should also be satisfied by alternative
notions of regret and utility so that achieving no regret would
imply convergence to a global maximum for every party:

E1 Monotonicity. If the utility of any party improves in
any iteration t, ceteris paribus, then ut should increase
and rt should decrease: Let {uit}i∈[n] and {ûit}i∈[n]
denote any two sets of utilities achieved by parties
i ∈ [n] in iteration t, and rt (ut) and r̂t (ût) be the
corresponding full instantaneous regrets (full utilities).

For t = 1, . . . , T ,

∀i ∈ [n] (uit > ûit) ∧ (∀j ∈ [n] \ {i} ujt = ûjt )⇒
(ut > ût) ∧ (rt < r̂t) .

E2 Instantaneity. The full instantaneous regret in iteration
t is 0 if every party i ∈ [n] is assigned x∗ to evaluate f :
For t = 1, . . . , T ,

(∀i ∈ [n] xit = x∗)⇒ rt = 0 .

2.3. Social Welfare and Fairness

In this subsection, we will introduce a number of social wel-
fare and fairness concepts from economics which will be ref-
erenced later in this paper. Suppose that there are n parties
and each party i ∈ [n] has a utility ai. Let a , (ai)i∈[n] be a
utility vector. A social welfare function projects a utility vec-
tor to a real value and naturally induces an ordering (�) of
the utility vectors: A utility vector b is preferred over a (i.e.,
denoted as a � b) if the social welfare SW (b) of b is larger
than the social welfare SW (a) of a: SW (a) < SW (b).
Some commonly considered social welfare functions and
orderings (Endriss, 2018) are listed below:

Utilitarian social welfare (USW) is defined as a sum of the
utilities of all parties i ∈ [n]: SWutil(a) ,

∑n
i=1 a

i. Max-
imizing the USW maximizes the averaged utility over all
parties, but it does not consider fairness. For example, given
n = 3, the utility vector (3, 3, 3) is obviously fairer than
(1, 1, 7), but their USWs are the same. The full cumulative
utility UT defined in Sec. 2.2 is a form of USW.

Egalitarian (max-min) social welfare (ESW) is defined
as the minimum utility of any party i ∈ [n]: SWegal(a) ,
mini∈[n] a

i. ESW prefers the fairer outcome of (3, 3, 3)
over (1, 1, 7).

Leximin ordering is an ordering method that cannot be
induced from any social welfare function. A utility vector
b is preferred over a in a Leximin ordering (i.e., denoted
as a �lex b) iff a and b are identical, or after sorting in
ascending order to obtain a∗ and b∗, there exists an i ∈ [n]
s.t. ai∗ < bi∗ and aj∗ = bj∗ for all j < i. Note that this implies
SWegal(a) ≤ SWegal(b). Leximin ordering extends the idea
of maximizing the utility of the worst-off party in ESW to
the second worst-off party next, then the third, and so on.

Next, how do we decide if the ordering a � b is fair? Intu-
itively, given a utility vector a, if a party with a higher utility
transfers ≤ 1/2 of its excess utility to another worse-off
party, then it will result in a new utility vector b with more
similar utilities and so, b should be preferred for fairness.
This central intuition on fairness is captured by the Pigou-
Dalton principle (PDP) (Dalton, 1920; Pigou, 1912). For-
mally, a social welfare function or an ordering satisfies PDP
in a strong sense if b is preferred over a (i.e., a ≺ b) when-
ever there exist i, j ∈ [n] s.t. (a) ∀k ∈ [n] \ {i, j} ak = bk,
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(b) ai + aj = bi + bj , and (c) |ai − aj | > |bi − bj |. To
satisfy the PDP in the weak sense, we only require that
a � b. For an unfairness metric represented by a function
H to satisfy the PDP, we will instead require H(a) > H(b)
which means that the unfairness in a is more than that in
b. This general concept of fairness gives us flexibility in
selecting a fair and efficient notion of social welfare.

3. Notions of Fair Regret in Collaborative BO
Recall that we consider n parties jointly optimizing a com-
mon black-box objective function f . A mediator repeatedly
selects separate input queries to be assigned to different
parties who then evaluate f at these assigned inputs. During
the BO process, each party shares its data with the medi-
ator only and does not know the data of the other parties.
Such an information asymmetry process provides two key
implications. Firstly, each party prefers to stay in the col-
laboration instead of leaving to optimize f independently
because evaluating f at the inputs assigned by the mediator
is the only way to benefit from more data gathered by all
the parties.3 Next, it prevents any self-interested party from
evaluating f at inputs with large function values/real-world
rewards discovered by the other parties, which may increase
unfairness. Moreover, it protects the privacy of the parties
(e.g., location history of MoD AV). To incentivize any self-
interested party (e.g., an MoD company or a research group)
to join the collaboration, our work proposes a collaborative
BO algorithm that considers both efficiency and fairness
when selecting the input queries. To do this, the conven-
tional batch BO objective of minimizing the full cumulative
regret RT (Sec. 2.2) is no longer suitable since it is equiv-
alent to maximizing the full cumulative utility which is a
form of USW (Sec. 2.3) — no fairness is considered during
the BO process. A new notion of regret, which incorporates
both efficiency and fairness, is needed.

Following the notations in Sec. 2.2, let U iT ,
∑T
t=1 u

i
t be

the individual cumulative utility (CU) of party i, and uT ,
(U iT )i∈[n] be a vector of individual CUs of all parties. We
can define a generalized CU by aggregating the individual
CUs of all parties in a utility vector uT using a function W
which projects uT to a real value: GUT , W (uT ). Note
that GUT = UT when W is set as USW. In our work here,
we propose a suitable function W such that maximizing
W corresponds to (a) maximizing the individual CU of
each party (i.e., efficiency) and (b) reducing the differences
between the individual CUs of all parties (i.e., fairness). To
achieve this, W can be any welfare function that satisfies
both monotonicity (E1) and the PDP. We will also define
W using the generalized Gini social-evaluation function

3We will show this implication later via empirical evaluation.
A rigorous mechanism that can incentivize the parties to adhere to
the mediator and stay in the collaboration is left to future work.

(G2SF) since it is more general than the welfare functions
described in Sec. 2.3 and, more importantly, provides an
adjustable parameter that can be used to trade off between
efficiency vs. fairness, as detailed in Sec 3.2.

3.1. Fair Regret

Given the generalized CU (i.e., GUT ), we can define a
generalized cumulative regret similar to that described in
Sec. 2.2: GRT , W (Tf∗) − GUT where f∗ , f(x∗)1.
Though it seems natural and ideal to consider minimizing
GRT directly, it is challenging to do so within the itera-
tive BO process since GUT = W (uT ) depends on the
dataset of every party in all the BO iterations and may not
be decomposable into independent terms across iterations
t = 1, . . . , T for certain choices of W , unlike UT that can
be decomposed into additive terms u1, . . . , uT .

To tackle this challenge, we propose to greedily optimize the
trade-off between efficiency vs. fairness in each BO iteration
instead. Specifically, let U it ,

∑t
t′=1 u

i
t′ be the individual

t-step cumulative utility (t-CU) of party i for t = 1, . . . , T
and ut , (U it )i∈[n] be a vector of individual t-CUs of
all parties. Correspondingly, let the generalized t-CU be
gt ,W (ut). We define a new notion of instantaneous fair
regret st by subtracting gt from the maximally achievable
value in iteration t:

st ,W (f∗ + ut−1)− gt (2)

= W ((f(x∗) + U it−1)i∈[n])−W ((f(xit) + U it−1)i∈[n])

where the equality is due to the definition of ut and uit =
f(xit). To understand (2), for t = 1, . . . , T , the maximally
achievable value of the individual t-CU of any party i ∈ [n]
is f(x∗) + U it−1 instead of tf(x∗) as its individual (t− 1)-
CU U it−1 achieved in previous iterations 1, . . . , t−1 cannot
be changed. This new fair regret satisfies instantaneity (E2
in Sec. 2.2) since st = 0 if xit = x∗ for all i ∈ [n]. Then, a
fair cumulative regret can be defined as ST ,

∑T
t=1 st.

From Sec. 2, before iteration t, any party i can only ob-
serve the noisy realized outputs (yit′)

>
t′=1,...,t−1 instead of

the noiseless function outputs (f(xit′))
>
t′=1,...,t−1. Conse-

quently, since each party i does not know the value of U it−1,
U it−1 should not be directly used in our algorithm. Instead,
it is reasonable to use the noisy realized/observed variant
of the individual (t− 1)-CU: λit ,

∑t−1
t′=1 y

i
t′ as the parties

are particular about observing the realized outputs (e.g., mo-
bility demand correlating with the resulting income) in the
real-world applications.4 So, we can modify st to obtain a
revised notion of instantaneous fair regret s′t instead:

s′t ,W ((f(x∗) + λit)i∈[n])−W ((f(xit) + λit)i∈[n]) (3)

4In practice, when f is unknown/black-box, RT and UT are
computed by also approximating f(xi

t) with yit.
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which still satisfies instantaneity (E2) since s′t = 0 if xit =
x∗ for all i ∈ [n]. Similarly, let g′t ,W ((f(xit) +λit)i∈[n]).

Remark 1. We consider fairness in individual t-CUs among
the parties in every BO iteration t = 1, . . . , T instead of
only at the final iteration T . This is desirable for real-world
applications as the parties may be concerned about fairness
during the BO process and may not fix T in advance.

Remark 2. Cooperative game theory (CGT) (Chalkiadakis
et al., 2011) is another framework that may be incorporated
into BO to achieve fairness by distributing/assigning the
rewards/input queries to all parties according to their data
valuations. Our work here chooses to adopt social welfare
concepts instead of CGT as the social welfare functions are
cheaper to compute and easier to incorporate into BO than
the data valuation functions (e.g., Shapley value) from CGT.
However, we will empirically study a CGT concept known
as individual rationality which states that each party should
not be worse off via collaborating than working alone.

3.2. Generalized Gini Social-Evaluation Function

Our above notion of fair regret (3) is defined over a general
welfare function W . We will next introduce the specific
form of W that is used in our BO algorithm. The Gini
index is a popular measure of income inequality and is
related to the Gini social-evaluation function (GSF). A fairer
distribution of incomes should have a smaller Gini index and
larger GSF value. Formally, let 〈w1, . . . , wn〉 be a sequence
of positive and non-increasing weights, w , (wi)i∈[n] be
a weight vector, and φ be a sorting operator that sorts the
elements of its input vector (e.g., ut) in an ascending order
and returns a new sorted vector. GSF is a subclass of ordered
weighted average functions. According to GSF, we can
define the generalized t-CU as

gt ,W (ut) = w>φ(ut) (4)

s.t. its corresponding Gini weights are set as odd numbers
in a descending order: wi = 2(n − i) + 1 for all i ∈
[n]. Intuitively, (4) assigns a larger weight wi to a smaller
individual t-CUU it and outputs a larger gt for a utility vector
ut whose elements are more similar, which aligns with our
intuition that such values of individual t-CUs of all parties
are fairer and more desirable. For example, given 2 parties,
the gt with utility vector (5, 5) is W (5, 5) = 20 which is
larger than gt with (8, 2) or (2, 8) (i.e., 3× 2 + 1× 8 = 14).
However, both their CUs are equal (i.e., 5 + 5 = 8 + 2).

As there is no strong reason for the Gini weights or any other
choice of weights, the work of Weymark (1981) has gener-
alized W to the generalized Gini social-evaluation function
(G2SF) which allows an arbitrary sequence of positive non-
increasing weights. Positive weights address “monotonic-
ity” (E1), while pairing non-increasing (decreasing) weights
with increasing utilities has been shown to satisfy the PDP

in the weak (strong) sense (see Axiom 6 in (Weymark, 1981)
for more details) and thus addresses “fairness”. The weights
w can be used to trade off between efficiency vs. fairness,
as discussed later in Sec. 3.3.

3.3. Efficiency vs. Fairness in the Fair Regret

When W is set as a G2SF function, the weights w can be
used to trade off between efficiency vs. fairness in g′t (or s′t)
and gt (or st). For simplicity, we will focus our discussion
in this section on gt (or st) but it would also apply to g′t (or
s′t). To devise a way to control the efficiency vs. fairness
trade-off, we start by examining two extreme cases:

• If wi = 1 for all i ∈ [n], then gt reduces to USW
(Sec. 2.3). Maximizing gt would lead to maximum ef-
ficiency (i.e., largest UT ). The fair cumulative regret is
ST = RT since in each of its additive terms st (2), U it−1
in its first and second terms would cancel out.

• If w1 = 1 and wi = 0 for i = 2, . . . , n, then gt reduces
to ESW (Sec. 2.3) which only considers the utility of the
worst-off party. In this case, st does not satisfy mono-
tonicity (E1 in Sec. 2.2) as the utilities of the other n− 1
parties are assigned a weight of 0 and hence ignored.

In the first case, the weights are identical, while in the
second case, the relative difference between w1 vs. wi for
i = 2, . . . , n is large. Intuitively, smaller relative differences
between wi’s would cause the larger weighted utilities to
make up a bigger proportion of gt and hence cause gt to
induce an ordering that may prefer more efficient but less
fair utility vectors. To better control the differences between
the non-increasing wi for all i ∈ [n], we set wi = ρi−1 with
0 < ρ ≤ 1 s.t. a single parameter ρ can be used to trade off
between efficiency vs. fairness, as detailed below:
Proposition 1. Set wi = ρi−1 for all i ∈ [n] with 0 <
ρ ≤ 1. Then, st will satisfy monotonicity (E1) and the
Pigou-Dalton principle (PDP) on fairness. Moreover, when

• ρ = 1, W is USW s.t. gt and st only satisfy the PDP in
the weak sense;

• 0 < ρ < 1, gt and st satisfy PDP in the strong sense;

• ρ→ 0, wi/w1 → 0 for i = 2, . . . , n, and the preference
of utility vectors induced by gt converges to that of ESW
and Leximin ordering: a �lex b⇔W (a) < W (b).

Its proof is in Appendix B.1. Informally, Proposition 1 holds
as 〈w1, . . . , wn〉 forms a decreasing sequence that satisfies
the conditions of PDP outlined in the work of Weymark
(1981) and the convergence to leximin ordering is described
in the work of Endriss (2018). Concretely, suppose that
there are 3 parties. The party with the largest, mid, and
smallest U it is weighted 1, ρ, and ρ2, respectively. As ρ
decreases from 1 to 0, the relative differences between the
parties’ weights increase. Minimizing the fair regret st
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defined w.r.t. ρ would lead to more fairness and smaller Ut.

Remark 3. How would gt compare with ut when varying ρ?
Note that as ρ increases,

∑n
i=1 wi increases and becomes n

when ρ = 1. For a better comparison, we should use nor-
malized weights wi/

∑n
i=1 wi to compute the normalized

gt. For a fixed (f(xit) + U it−1)i∈[n], when ρ decreases, the
normalized weights of the parties with smaller individual
t-CUs increase, hence decreasing the normalized gt to be
less than ut/n. The normalized gt and ST (i.e., computed
using the normalized weights) will be used in Sec. 5.

Remark 4. There are other ways to set w to control the
trade-off between efficiency vs. fairness. For example, we
can set wi = ρ(n − i) + 1 for all i ∈ [n] with ρ > 1
s.t. the weight wi decreases linearly in i, like in the original
Gini weights (see paragraph after (4)). However, it is not
used as the preference of utility vectors induced by gt con-
verges to Leximin ordering more slowly, as compared to the
exponentially decreasing weights in Proposition 1.

4. Collaborative BO with Fair Regret
We will now design a collaborative BO algorithm whose
convergence rate can be theoretically guaranteed by bound-
ing its fair (cumulative) regret s′t (3) (S′T ,

∑T
t=1 s

′
t).

5

To achieve this, we propose a variant of the DB-GP-UCB
algorithm (Sec. 2.1) which jointly selects n input queries
Xt = (xit)i∈[n] to be assigned to all n parties in each itera-
tion t by maximizing the following acquisition function that
accounts for fairness via G2SF:

Xt , arg max
Xt∈Xn

n∑
i=1

wiφi((λ
i
t + µxi

t|D1:t−1
)i∈[n])

+
√
αtI(fX ;yt | D1:t−1)

(5)

where φ is the same sorting operator defined previously
in (4), φi is the i-th element of the sorted vector returned
by φ, λit ,

∑t−1
t′=1 y

i
t′ is a realized/observed variant of the

individual (t− 1)-CU (i.e., U it−1) of each party i, and αt is
still a parameter that is set to trade off between exploitation
vs. exploration. The first (exploitation) term in (5) is an
ordered weighted average of λit + µxi

t|D1:t−1
for all i ∈ [n]

and thus satisfies both monotonicity (E1) and the PDP.

In each iteration t, our collaborative BO algorithm (5) se-
lects n input queries Xt and assigns each input query xit
in Xt to party i for evaluating the objective function f .
Such a selection has to trade off between (a) sampling near
to a likely maximizer (i.e., with a large posterior mean
µxi

t|D1:t−1
), (b) sampling inputs that can yield large infor-

mation gain I(fX ;yt | D1:t−1) to improve the belief of fX
(i.e., exploration), and (c) balancing the expected individ-
ual t-CUs between the parties by correcting past observed

5BO algorithms usually cannot minimize RT or S′T directly.

unfairness in λit. To achieve (c), the parties with smaller
λit should exploit inputs with larger posterior mean while
the parties with larger λit may be assigned to sample inputs
with large information gain. Specifically, given any Xt,
the first term in (5) is maximized when the party with the
k-th smallest λit is assigned to evaluate f at x with the k-th
largest µx|D1:t−1

due to the PDP property of function W
(see Appendix B.2). So, our algorithm requires both ordered
weighted averaging and λit to achieve fairness. Note that
without the second exploration term, maximizing our ac-
quisition function in (5) is equivalent to maximizing each
party’s expected utility separately. Though G2SF is only
applied to the first exploitation term in (5), fairness affects
the second exploration term and the exploitation-exploration
trade-off through αt which will be defined in Theorem 1.

Remark 5. One may be inspired by the acquisition function
in (5) to consider an alternative two-step batch BO algorithm
to incorporate fairness: (a) Select Xt using the DB-GP-UCB
algorithm (1), and (b) permute the order of xit in Xt s.t. xit
with a larger expected utility µxi

t|D1:t−1
is assigned to (or

paired with) a smaller λit. However, this heuristic can only
partially alleviate some fairness concerns as it will ignore
the numerical values of each λit when selecting Xt and may
be less aggressive at correcting for past unfairness. More
importantly, it does not allow us to control the trade-off
between efficiency vs. fairness.

4.1. Regret Bound

The convergence rate of our collaborative BO algorithm (5)
can be theoretically guaranteed via a probabilistic bound on
its fair cumulative regret S′T :

Theorem 1. Let δ ∈ (0, 1), γT , maxX1:T
I[fX ;y1:T ], C

be a constant with C ≥ I[fx; (yi
′

t )>i′∈[i] | D1:t−1] for all i ∈
[n− 1], x ∈ X , and t = 1, . . . , T , C1 , 4/ log (1 + σ−2),
and αt , C1(

∑n
i=1 w

2
i ) exp (2C) log (|X |t2π2/(6δ)) .

Then, for the modified fair cumulative regret S′T incurred
by our collaborative BO algorithm (5), S′T =

∑T
t=1 s

′
t ≤

2(TαT γT )1/2 holds with probability of at least 1− δ.

Its proof and more details about the constants can be found
in Appendix B.3. With the exception of αt, the constants
are the same as the ones defined in the work of Daxberger &
Low (2017). Theorem 1 implies that limT→∞ S′T /T = 0
and our algorithm can eventually converge to a global maxi-
mum, hence achieving asymptotic no-regret performance.
That is, there exists an iteration t where s′t = 0 and all par-
ties evaluate f at x∗ with no inefficiency and unfairness
introduced. By bounding s′t, we bound the inefficiency
and unfairness (i.e., adjusted based on historical observed
utilities) introduced in iteration t, i.e., we rule out some
inefficient and less fair assignments, as described in Fig. 1.

Note that a smaller ρ for our collaborative BO algorithm
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Figure 1. Overview of our notion of instantaneous fair regret: s′t
considers λi

t (i.e., realized/observed variant of individual (t− 1)-
CU which cannot be changed) and is the loss in the generalized
t-CU g′t from evaluating f at {xi

t}i∈[n] instead of the maximizer
x∗. As W captures both efficiency and fairness, when s′t > 0, s′t
reflects the inefficiency from not evaluating x∗ in iteration t and
some unfairness. The red and blue boxes enclose assignments with
the same full utility ut of values a and b, respectively. A fairer
assignment is of a darker shade and increases g′t. By bounding s′t,
we rule out some assignments due to their inefficiency (almost the
entire red box) or unfairness (pale blue).

would lead to relatively more input queries selected for ex-
ploration over exploitation due to two reasons: (a) Observe
that αt in Theorem 1 depends on the weights wi’s of G2SF.
A smaller ρ will lead to a greater ratio of

√∑n
i=1 w

2
i in

the exploration term to
∑n
i=1 wi (i.e., total weight of the

exploitation term). (b) Even after adjusting for the ratio, a
smaller ρ would lead to a smaller exploitation term in (5)
(see Remark 3 in Sec. 3.3). This increased exploration may
cause the observed standard full cumulative regret RT (and
possibly S′T ) to increase. Furthermore, as the order of par-
ties in the computation of g′t may change across iterations, a
smaller ρ (i.e., associated with more fairness) would reduce
the efficiency of multiple parties.

5. Experiments and Discussion
This section empirically evaluates the performance and prop-
erties of our collaborative BO algorithm using a benchmark
function: Hartmann-6d, and three real-world collaborative
black-box optimization problems: (a) hyperparameter tun-
ing of a logistic regression (LR) model with a mobile sensor
dataset (Anguita et al., 2013), (b) hyperparameter tuning
of a convolutional neural network (CNN) with federated
extended MNIST (FEMNIST) dataset (Caldas et al., 2018),
and (c) mobility demand hotspot discovery on a traffic
dataset (Chen et al., 2013). The performance of our collabo-
rative BO algorithm is compared with that of the distributed
batch GP-UCB (DB-GP-UCB) algorithm (Daxberger &
Low, 2017) which has been empirically shown to outper-
form several existing batch BO algorithms (Daxberger &
Low, 2017; Kharkovskii et al., 2020) but, like them, does
not consider fairness. Note that DB-GP-UCB is equivalent
to our algorithm with ρ = 1, i.e., each party’s expected indi-
vidual t-CU has equal weight. We evaluate the performance

of the tested algorithms in terms of the following metrics:

• Inefficiency, measured using full cumulative regret (CR)
(Sec. 2.2) averaged across parties, i.e., RT /n;

• Unfairness, measured using Ut/n − gt which is the dif-
ference between the averaged individual t-CU vs. the
generalized t-CU. When computing gt, we set6 ρ = 0.2
and normalize the weights wi s.t.

∑n
i=1 wi = 1 for a

fair comparison. So, Ut/n − gt is the generalized Gini
absolute inequality indices (Weymark, 1981) and is an
unfairness metric that satisfies PDP as gt satisfies PDP
(Proposition 1) and Ut/n is a constant if the precondition
of PDP holds. Its minimum value is 0 when U it for all
i ∈ [n] are equal (i.e., the fairest outcome);

• Unfairness and inefficiency, measured together using the
normalized ST by setting ρ = 0.2. For the real-world
experiments, as f(xit) is unknown, we approximate f(xit)
with yti for all i ∈ [n] and t = 1, . . . , T and so, ST = S′T .

We aim to show that our collaborative BO algorithm with
ρ < 1 can improve fairness and observe the effect on effi-
ciency. Following the previous GP-UCB works (Kandasamy
et al., 2015; 2016) and our theoretical result (Theorem 1),
we set αt = c1d(

∑n
i=1 w

2
i ) log (c2t) in (5). We consider

two settings: (i) Fix c1: c1 and c2 are fixed across different
ρ’s, and (ii) Vary c1: c2 is fixed but c1 varies for different
ρ’s s.t. the ratio of

√∑n
i=1 w

2
i in the exploration term to∑n

i=1 wi (i.e., total weight of the exploitation term) is a
constant. Recall from the last paragraph of Sec. 4.1 that a
smaller ρ will increase the exploration relative to exploita-
tion and hence reduce the efficiency. Setting (ii) is used to
elaborate and mitigate this effect. Details on the choices of
c1 and c2 are shown in Appendix C.1.

For each experiment, we repeat 10 runs of BO with differ-
ent random seeds and plot the standard error as the error
bars. The objective function is modeled as a GP with kxx′
chosen to be a squared exponential kernel. We describe
the experimental setting of each tested objective function
below:

Hartmann-6d function. We consider n = 3 parties. The
objective function f has d = 6 input dimensions in [0, 1]6.
In each run, 10 data points are randomly selected for each
party as initialization (i.e., T0 = 10 in Algorithm 1 of
Appendix A).

Hyperparameter tuning of LR with mobile sensor
dataset. We consider n = 5 parties and each party trains a
LR model for activity recognition using sensor data gathered
by 10 mobile sensors.7 These parties collaborate to tune

6Note that this is distinct from ρ used in (5) which is varied in
each experiment.

7Every party represents a company who owns the data of multi-
ple users. They share a common objective function as the distribu-
tions of the companies’ data pooled from multiple users are likely
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three hyperparameters of a LR: batch size in [20, 100], L2
regularization parameter and learning rate in [10−5, 1]. The
output of the objective function is the validation accuracy
of the LR model. We set T0 = 2. Every party is particular
about its individual CU and the best uit that it has evaluated
as it would use the corresponding LR model for real-world
activity recognition.

Hyperparameter tuning of CNN with FEMNIST. We
consider n = 10 parties and each party trains a CNN for
character recognition using handwritten digits from 10 au-
thors. The parties collaborate to tune three hyperparameters:
learning rate, learning rate decay, and regularization param-
eters in [10−5, 1]. The output of the objective function is
the validation accuracy of the CNN model and T0 = 2.

Mobility demand hotspot discovery on traffic dataset.
The traffic dataset includes 2506 input regions, each of
which has a mobility demand.8 We adopt the settings in
(Chen et al., 2015; Kharkovskii et al., 2020) and consider
n = 8 parties. Each party is a company that operates a
fleet of MoD AVs and wants to discover the region with
the highest mobility demand.9 If an MoD AV picks up a
passenger, the company deploys another MoD AV to take
its place. In each BO iteration, the mediator would assign
each company to evaluate the mobility demand at an input
region that is connected/near to its current input region. This
constraint makes it harder to achieve efficiency and fairness
as an MoD AV cruising in low mobility demand regions
cannot evaluate at known higher mobility demand regions
that are too far away. The aim here is to show that our
collaborative BO algorithm can improve fairness.10

Observations about the notions of regret. Fig. 2 shows
results of the full CR RT /n and fair CR ST against dif-
ferent ρ’s used in our collaborative BO algorithm (5) for
each experiment. It can be observed that as ρ decreases, the
inefficiency metric RT /n generally increases for both fixed
and varying c1. This is expected since with a smaller ρ, the
relative weight of the exploration term in (5) is larger and
the exploitation term is smaller (i.e., discussed in Sec. 4.1
and Proposition 1), which reduces efficiency. However, in
Fig. 2b, RT /n decreases when ρ decreases from 1 to around
0.7. This may be due to the objective function of the LR
being easy to maximize. For example, there are multiple
hyperparameters that can achieve similar competitive valida-

to be similar.
8Appendix C.1 visualizes the mobility demand distribution.
9An MoD AV visiting a higher mobility demand region is more

likely to pick up passengers, earn fares, and collect more useful
information.

10The efficiency of our collaborative BO algorithm in this exper-
iment can be improved via a non-myopic approach (Kharkovskii
et al., 2020), or relaxing the locality constraints and adopting dis-
crete optimization techniques to maximize the acquisition function.
However, this is non-trivial and not the focus of this work.
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Figure 2. Full CRRT /n and normalized fair CR ST averaged over
10 BO runs incurred by the tested algorithms using different ρ’s
in (5). The dotted horizontal lines represent the results of ρ = 1
(i.e., DB-GP-UCB).

tion accuracies for LR. Therefore, increasing the exploration
(i.e., decreasing ρ) may lead to earlier discovery of inputs
with small regret and thus improve efficiency.

Moreover, as ρ decreases from 1 to 0.2, Fig. 2 shows that
the fair CR ST , which measures both inefficiency and un-
fairness, first decreases and then increases. In Fig. 2, we
plot the fair CR ST of DB-GP-UCB (equivalent to ours with
ρ = 1) as a dotted line to aid comparison with ST of other
ρ’s. The decrease of ST is due to the improved fairness (and
possibly efficiency) while the subsequent increase of ST is
due to larger inefficiency having a dominant effect. For each
experiment, since DB-GP-UCB (ρ = 1) does not consider
fairness, its ST may be larger than those with smaller ρ’s
even though itsRT /n (when ρ = 1) is smaller. Furthermore,
it can be observed that when ρ is small, the blue lines (Vary
c1) usually lie below the red lines (Fix c1), which shows
that varying c1 can reduce the inefficiency significantly. In
Figs. 2b-c, the gap between ST and RT /n, which reflects
unfairness, is the largest when ρ = 1. This is expected as
when ρ = 1, the mediator may unintentionally assign a party
to evaluate at inputs with smaller function values multiple
times. In Appendix C.2, we plot more graphs including
Rt/n vs. iteration t for various ρ’s; the observations are
similar to the above.

Observations about fairness. To evaluate the fairness
achieved by the tested algorithms, Fig. 3 shows results of
the unfairness metric Ut/n − gt averaged over iterations
t = 1, . . . , T against different ρ’s used in our collabora-
tive BO algorithm (5). It can be observed that for all the
experiments, the averaged (Ut/n − gt) decreases as ρ de-
creases. This observation holds for various choices of fixed
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Figure 3. Averaged (Ut/n− gt) incurred by the tested algorithms
using different ρ’s in (5) for various objective functions.

c1 and even for varying c1. Combining this observation
with that about RT /n, we suggest to use varying c1 in the
real-world applications for achieving more fairness and ef-
ficiency. However, one may ask whether an increase in
Ut/n− gt is due to more unfairness or the increase of the
Ut/n alone. To answer this question, we plot Ut/n − gt
vs. Ut/n for different ρ’s in Appendix C.3. It shows that
even for the same Ut/n, Ut/n − gt generally decreases
when ρ decreases, which indicates that our collaborative BO
algorithm with a smaller ρ can achieve fairer outcomes.

Individual rationality. In CGT, a desirable property of a
collaboration is individual rationality, which states that each
party should not be worse off via collaborating than working
alone (Chalkiadakis et al., 2011). In our collaborative BO
setting, it is individually rational for any party to participate
in the collaboration if it can obtain a better estimate of
x∗ for the same CR or, alternatively, smaller CR for the
same estimate of x∗ compared to performing BO alone. In
Appendix C.5, we show that for some ρ’s, our collaborative
BO algorithm would satisfy this property by assuming that
parties would perform GP-UCB (Srinivas et al., 2010) on
their own. More experimental results on the simple regret,
collaborative BO with n = 50 parties, and some detailed
analysis of λit are given in Appendix C.

6. Related Work
To the best of our knowledge, there is no existing work on
collaborative fairness in BO. The closely related works are
multi-armed bandit (MAB) with various fairness considera-
tions and batch BO, as summarized in Table 1. Our work
builds upon batch BO but additionally minimizes the differ-
ences between the individual CUs of all parties to encourage
collaboration. The MAB works consider significantly dif-

Table 1. Summary of related works.
Description References

Batch BO. Select the input of each
party one at a time

(Alvi et al., 2019; Azimi et al., 2010; Contal et al., 2013;
Desautels et al., 2014; González et al., 2016)

Batch BO. Optimize the batch of in-
puts jointly

(Chevalier & Ginsbourger, 2013; Daxberger & Low,
2017; Shah & Ghahramani, 2015; Wu & Frazier, 2016)

MAB. Fairness across arms (Liu et al., 2017; Patil et al., 2020)

MAB. Fairness between objectives (Busa-Fekete et al., 2017)

MAB. Fairness across parties (Hossain et al., 2020)

MAB. Incentivizing exploration (Frazier et al., 2014; Mansour et al., 2020)

ferent notions of fairness. Only the work of Hossain et al.
(2020) has studied fairness across parties but its setting dif-
fers as every party receives a (different) utility whenever
an arm is pulled. The incentivizing exploration (IE) works
are not designed to ensure fairness across parties. Instead,
they tackle a separate problem of incentivizing each self-
interested party to adopt the mediator’s recommendation
and explore arms with smaller utility, which benefits the
group but may not benefit itself. Another key difference
is that in most IE applications, parties are less keen on ex-
ploration as they are not intent on finding the maximizer
x∗ and do not participate in multiple rounds. Nevertheless,
designing a fair and incentive-compatible (Mansour et al.,
2020) collaborative BO algorithm that does not rely on ex-
ternal incentives (e.g., monetary payment) is an important
but nontrivial future work.

7. Conclusion
This paper describes the first BO algorithm that considers
collaborative fairness. We propose new notions of fair (cu-
mulative) regret and a collaborative BO algorithm whose
convergence rate can be theoretically guaranteed by bound-
ing the new fair regret. By controlling parameter ρ, the par-
ties can select a set of weights for G2SF to trade off between
efficiency vs. fairness. This is empirically demonstrated us-
ing a benchmark function and three real-world experiments.
With this collaborative BO algorithm that considers each
party’s historical utilities, a mediator can ensure fairness
across iterations while greedily selecting input queries for
the current iteration. By considering fairness in every itera-
tion up to T , the differences between the (historical) CUs
of all parties are reduced and can thus be corrected without
significantly hurting efficiency in the current iteration.
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McMahan, H. B., Smith, V., and Talwalkar, A. LEAF:
A benchmark for federated settings. arXiv:1812.01097,
2018.

Chalkiadakis, G., Elkind, E., and Wooldridge, M. Computa-
tional aspects of cooperative game theory. In Brachman,
R. J., Cohen, W. W., and Dietterich, T. G. (eds.), Synthesis
Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers, 2011.

Chen, J., Low, K. H., and Tan, C. K.-Y. Gaussian process-
based decentralized data fusion and active sensing for
mobility-on-demand system. In Proc. RSS, 2013.

Chen, J., Low, K. H., Jaillet, P., and Yao, Y. Gaussian pro-
cess decentralized data fusion and active sensing for spa-
tiotemporal traffic modeling and prediction in mobility-
on-demand systems. IEEE Trans. Autom. Sci. Eng., 12:
901–921, 2015.

Cheng, F., Ma, Y., Uzzi, B., and Loscalzo, J. Importance of
scientific collaboration in contemporary drug discovery
and development: A detailed network analysis. BMC
Biology, 18(138), 2020.

Chevalier, C. and Ginsbourger, D. Fast computation of the
multi-points expected improvement with applications in
batch selection. In Proc. LION, pp. 59–69, 2013.

Contal, E., Buffoni, D., Robicquet, A., and Vayatis, N. Paral-
lel Gaussian process optimization with upper confidence
bound and pure exploration. In Proc. ECML/PKDD, pp.
225–240, 2013.

Dai, Z., Yu, H., Low, B. K. H., and Jaillet, P. Bayesian
optimization meets Bayesian optimal stopping. In Proc.
ICML, pp. 1496–1506, 2019.

Dai, Z., Chen, Y., Low, B. K. H., Jaillet, P., and Ho, T.-H. R2-
B2: Recursive reasoning-based Bayesian optimization for
no-regret learning in games. In Proc. ICML, 2020a.

Dai, Z., Low, B. K. H., and Jaillet, P. Federated Bayesian
optimization via Thompson sampling. In Proc. NeurIPS,
pp. 9687–9699, 2020b.

Dalton, H. The measurement of the inequality of incomes.
The Economic Journal, 30(119):348–361, 1920.

Daxberger, E. A. and Low, B. K. H. Distributed batch
Gaussian process optimization. In Proc. ICML, pp. 951–
960, 2017.

Desautels, T., Krause, A., and Burdick, J. W. Parallelizing
exploration-exploitation tradeoffs in Gaussian process
bandit optimization. JMLR, 15:4053–4103, 2014.

Endriss, U. Lecture notes on fair division.
arXiv:1806.04234, 2018.

Fitch, D. Opinion: The value of collaboration in Ag tech-
nology, 2018. URL https://www.precisionag.
com/digital-farming/.

Frazier, P., Kempe, D., Kleinberg, J., and Kleinberg, R.
Incentivizing exploration. In Proc. EC, pp. 5–22, 2014.
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