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Abstract
In distributionally robust Bayesian optimization
(DRBO), an exact computation of the worst-case
expected value requires solving an expensive con-
vex optimization problem. We develop a fast
approximation of the worst-case expected value
based on the notion of worst-case sensitivity that
caters to arbitrary convex distribution distances.
We provide a regret bound for our novel DRBO
algorithm with the fast approximation, and em-
pirically show it is competitive with that using
the exact worst-case expected value while incur-
ring significantly less computation time. In order
to guide the choice of distribution distance to be
used with DRBO, we show that our approxima-
tion implicitly optimizes an objective close to an
interpretable risk-sensitive value.

1. Introduction
Bayesian optimization (BO) is a powerful paradigm for effi-
ciently optimizing an unknown/black-box objective function
f(x) (Garnett, 2022) w.r.t. action/decision variable x with
a limited budget of costly function evaluations. As a result,
there is a fast growing interest in the application of BO to
many complex real-world optimization problems like hyper-
parameter optimization of machine learning models (Chen
et al., 2018), molecule search in automated chemical de-
sign (Griffiths & Hernández-Lobato, 2020), to name a few.

In practice, the black-box objective function often depends
on a random context/environment variable c beyond our
control s.t. the goal now is to maximize the expected
value Ep [f(x, c)] w.r.t. some distribution p of c (Toscano-
Palmerin & Frazier, 2018). For example, consider the prob-
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lem of optimizing the expected size of a crop where x repre-
sents the soil nutrient concentrations and can be controlled,
while c represents the average temperature in a month and
is uncontrolled. The introduction of the random context c
gives rise to new BO problem settings that aim to be risk-
averse and avoid worst-case scenarios by optimizing risk
measures of f(x, c) instead (Cakmak et al., 2020; Nguyen
et al., 2021a;b). Such works assume that the distribution of
c is stationary and is either known or can be estimated well.

Distributionally robust BO (DRBO) was concurrently intro-
duced by Kirschner et al. (2020) and Nguyen et al. (2020)
and adapts the framework of distributionally robust opti-
mization (DRO) in operations research (Rahimian & Mehro-
tra, 2019) to BO. DRBO considers the setting where c is
subject to distribution shift, i.e., its distribution may be
different from our prior knowledge. To be distributionally
robust is thus to select the action x that maximizes the worst-
case expected value, i.e., Eq [f(x, c)] under the worst-case
distribution q of c selected by an adversary from some set of
possible distributions. Such an approach provides another
form of robustness, specifically, to an incorrect knowledge
of the distribution of c rather than to the undesirable out-
comes of c. In the earlier crop example, this corresponds to
being robust to an incorrect knowledge of the distribution of
the average temperature in a month which may be constantly
shifting due to climate change.

A complex real-world optimization problem usually has
several sources of randomness, so context c is multi-
dimensional. For instance, the average temperature in a
month, fertilizer composition, and crop genotypes may all
be subject to distribution shift. If the outcomes of the multi-
dimensional c are discretized into a finite set C and a reason-
able discretization density is used for each dimension, then
|C| can grow large quickly. This work allows DRBO to be
scaled to a large |C|. In contrast, existing DRBO algorithms
scale poorly in |C|: The algorithm of Kirschner et al. (2020)
has to solve a convex optimization problem with |C| vari-
ables to obtain the worst-case expected value, which incurs
up to O(|C|3) time. Nguyen et al. (2020) have devised an
efficient method to do so based on Lagrange multipliers, but
it is tied to a specific choice of distribution distance used to
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Table 1. Comparing time complexity of DRBO algorithms utilizing the EXACT worst-case expected value (Kirschner et al., 2020) vs. our
fast approximation called MINIMAXAPPROX with various distribution distances d. The EXACT worst-case expected value is obtained by
solving a general convex optimization problem with |C| variables using interior point methods which, we assume, incur O(|C|3) time.

Distribution distance d EXACT MINIMAXAPPROX

Maximum mean discrepancy (MMD) O(|C|3) O(|C|2)
Total variation (TV) O(|C|3) O(|C|)
Modified χ2-divergence (χ2) O(|C|3) O(|C|)
Wasserstein metric (W) O(|C|6) O(|C|2)

construct the set of possible alternative distributions. When
using general distances, their algorithm also needs to solve
the expensive convex optimization problem. In conventional
DRO where f is fully known, this may be tolerable since the
optimization only has to be performed once. However, in
DRBO where f needs to be learned and the optimization has
to be performed separately for each action and BO iteration,
the computational burden can become excessive.

This paper presents an efficient approximation of the worst-
case expected value (i.e., solution of the convex optimization
problem) by leveraging the notion of worst-case sensitiv-
ity introduced in a recent development in the operations
research literature on DRO (Gotoh et al., 2020). This en-
ables us to develop a novel DRBO algorithm for efficiently
solving real-world problems where the context c has more
than a few dimensions. In addition, our algorithm caters to
arbitrary convex distribution distances: while the previous
works have each utilized a specific distribution distance, we
consider four distances, namely, maximum mean discrep-
ancy (MMD) (Gretton et al., 2012), total variation (TV),
χ2-divergence (χ2), and the Wasserstein metric (W) (Moha-
jerin Esfahani & Kuhn, 2018) and discuss the model selec-
tion problem of choosing an appropriate distance for a given
application. Specifically, our proposed approximation can
be exploited for guiding this choice based on interpretable
risk-sensitive values (i.e., trade-off between expected value
and a notion of risk). For example, using χ2 with our DRBO
algorithm implicitly optimizes an objective close to a mean-
variance trade-off which can be useful for growing crops if
similarly-sized crops (e.g., fruits) are preferred for logisti-
cal reasons. Concretely, the contributions of our work here
include the following:

• We propose a fast approximation of the worst-case ex-
pected value (i.e., solution of the inner convex optimiza-
tion problem in DRBO) by leveraging the worst-case
sensitivity, which reduces the incurred time as shown in
Table 1 (Sec. 4);
• We derive a regret bound for our novel DRBO algorithm

utilizing the fast approximation and show that its asymp-
totic regret is of the same order as that using the exact
worst-case expected value (Sec. 5);
• To guide the choice of distribution distance for a given

application, we show that our algorithm implicitly opti-
mizes an objective close to an interpretable risk-sensitive
value (Sec. 6); and
• We provide empirical results to show that our algorithm

utilizing the fast approximation scales significantly better
in the context set size |C| and yet performs comparably
to that using the exact worst-case expected value, while
outperforming non-robust ones (Sec. 7).

2. Related Work
DRBO was concurrently proposed by Kirschner et al. (2020)
and Nguyen et al. (2020). These works (and ours) focus
on robustness to distribution shift. Other prior works on
BO with random context have more commonly focused
on robustness to poor outcomes of c and assume a station-
ary distribution of c. Beyond the expected value (Toscano-
Palmerin & Frazier, 2018), these works have considered risk
measures like value-at-risk (VaR) and conditional VaR (Cak-
mak et al., 2020; Nguyen et al., 2021a;b), and risk-sensitive
values like mean-variance (Iwazaki et al., 2021). The work
of Bogunovic et al. (2018) considers robustness to adver-
sarial perturbations of inputs, which translates to seeking
‘wider’ local maxima.

3. Distributionally Robust Bayesian
Optimization (DRBO)

DRBO involves optimizing a black-box objective function
f : X ×C → R over the set X ⊂ Rm of possible controlled
actions/decisions x (i.e., action set) and the set C ⊂ Rn
of possible uncontrolled contexts c (i.e., context set) to be
chosen by the environment. In this work, we treat X and
C as finite sets and consider a probability simplex over the
context set C. Let Cj denote the j-th element of C.

A conventional BO algorithm seeks the global maximum
of f by sequentially querying f through noisy observations
yt := f(xt, ct) + ξt for iteration t = 1, . . . , T where ξ ∼
N (0, σ2). The queries are assumed to be costly in terms of
time or other resources and it is thus preferred to find the
maximum using as few queries as possible. Since f is un-
known, we model f probabilistically using a Gaussian pro-
cess (GP) (Williams & Rasmussen, 2006) belief whose pos-
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Algorithm 1 Generalized DRBO (Kirschner et al., 2020)

1: Input: GP with kernel k, score function α
2: for iteration t = 1 to T do
3: Obtain reference distribution pt and margin εt
4: Compute ucbtx := (µt(x, Cj)+βtσt(x, Cj))>j=1,...,|C|
5: Select action xt = argmaxx∈X α(ucbtx, pt, εt)
6: Observe ct ∼ p∗t and yt = f(xt, ct) + ξt
7: Update GP posterior with Dt+1 := {(xi, ci, yi)}ti=1

8: end for

terior p(f |Dt, x, c) = N (µt(x, c), σ
2
t (x, c)) of f at action-

context query (x, c) and in iteration t has the following
mean and variance given the datasetDt := {(xi, ci, yi)}t−1i=1

of past queries and observations from iterations 1 to t− 1:

µt(x, c) := kt(x, c)
>(Kt + σ2I)−1ϕt

σ2
t (x, c) := k(x, c;x, c)−kt(x, c)>(Kt + σ2I)−1kt(x, c)

where ϕt := (yi)
>
i=1,...,t−1 is a column vector of obser-

vations, k : X × C × X × C → R is a positive def-
inite kernel, kt(x, c) := (k(x, c;xi, ci))

>
i=1,...,t−1, and

Kt := (k(xi, ci;xj , cj))i,j=1,...,t−1. Briefly, the choice of
k determines the reproducing kernel Hilbert space (RKHS)
of functions that the GP posterior mean function will reside
in (Schölkopf et al., 2002) and can be thought of as encoding
our prior knowledge of f , which we assume to lie in the
RKHS associated with k.

As mentioned above, the context vector c within a query is
beyond our control. To describe the environment’s random
choice of c, in each iteration t, we associate a reference
distribution pt ∈ R|C| (subject to 1>pt = 1 and pt ≥ 0)1

with c, which represents a form of prior knowledge on the
distribution of c. DRO considers the setting where c is sub-
ject to distribution shift, i.e., there exists an unknown true
distribution p∗t s.t. c ∼ p∗t instead. We define an uncertainty
set Ut ⊂ R|C| to be containing all possible p∗t and be an
εt-ball around pt w.r.t. distribution distance d and margin εt.
Concretely, q ∈ Ut ⇐⇒ d(pt, q) ≤ εt subject to 1>q = 1
and q ≥ 0.1 We consider the worst-case scenario in which
after an action xt ∈ X is selected, an adversary chooses the
worst possible q ∈ Ut to minimize the expected value. We
refer to this quantity as the worst-case expected value:2

Vd,t(εt, g) := minq∈Ut Eq [g] := minq∈Ut q
>g (1)

where g ∈ R|C| is in general a column vector of outcome val-
ues and in this work, g := f(x, ·) := (f(x, Cj))>j=1,...,|C|
after selecting action x ∈ X . DRO then adopts a max-
imin approach by selecting the action that maximizes

1We use ≥ to denote a component-wise inequality for vectors.
2To ease the notation, we abuse it slightly by letting Eq [g] :=

q>g and Ep [g] := p>g.

the worst-case expected value maxx∈X Vd,t(εt, f(x, ·)) =
maxx∈X minq∈Ut Eq [f(x, ·)].2 DRBO combines BO and
DRO by introducing the additional challenge of learning
f along with solving DRO. The work of Kirschner et al.
(2020) has defined the following cumulative robust regret
incurred by the selected actions xt for t = 1, . . . , T :

RT =
∑T
t=1 Vd,t(εt, f(x

∗
t , ·))− Vd,t(εt, f(xt, ·)) ,

x∗t := argmaxx∈X Vd,t(εt, f(x, ·)) .
(2)

The goal is then to select xt in each iteration t = 1, . . . , T
s.t. RT (2) is minimized. Algo. 1 details a generalized ver-
sion of the DRBO algorithm based on the ‘General’ setting
in (Kirschner et al., 2020): It exploits a popular BO acquisi-
tion function (Srinivas et al., 2010) called upper confidence
bound (UCB) as a surrogate function of f for computing a
column vector ucbtx of |C| UCB values over every possible
context Cj for j = 1, . . . , |C| given an action x and a choice
of exploration parameter βt for deriving the regret bound
in Sec. 5, as defined in line 4 of Algo. 1. Our generalized
version comes from the introduction of a score function
α(g := ucbtx, pt, εt) that outputs a score for action x and is
set as the worst-case expected value Vd,t(εt, g := ucbtx) (1)
in (Kirschner et al., 2020). Since the constraints are convex,
computing this exactly requires solving a convex optimiza-
tion problem. However, standard solvers such as the com-
monly used interior-point methods involve solving systems
of linear equations with at least |C| variables (|C|2 variables
for the Wasserstein metric), which incursO(|C|3) time if no
additional structure in the system can be exploited (Boyd
& Vandenberghe, 2004). This convex optimization prob-
lem has to be solved separately for each action and itera-
tion, which incurs O(|C|3|X |T ) time over all iterations and
hence scales poorly in |C|.3 Since |C| grows exponentially
with dimensionality n (by assuming that each dimension
is discretized into at least some fixed number of points),
the DRBO algorithm becomes computationally unwieldy if
context c ∈ C has more than a few dimensions. To boost the
scalability of Algo. 1 to a large |C|, we will propose a fast
approximation of the worst-case expected value (Sec. 4) to
be used as the score function α, which reduces the incurred
O(|C|3) time to either O(|C|) or O(|C|2) time (depending
on the distribution distance being used).

In each iteration t, the DRBO algorithm (Algo. 1) selects an
action xt to maximize the score function α (line 5), observes
the context ct ∼ p∗t chosen by the environment and the
resulting yt (line 6), and updates the GP posterior belief
with Dt+1 = Dt

⋃{(xt, ct, yt)} (line 7).

3We have reported the worst-case time complexity here: In
practice, repeatedly solving a convex optimization problem with
different parameters can be sped up using techniques like caching
the KKT matrix factorization when using interior-point methods.
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4. Fast Approximation of Worst-case
Expected Value with Worst-case Sensitivity

In this section, we will describe a fast approximation of
the worst-case expected value Vd(εd, g) by leveraging the
notion of worst-case sensitivity (Gotoh et al., 2020). From
here on, we will drop the dependence on iteration t to ease
notations unless necessary.

Note that Vd(εd, g) for some reference distribution p and
vector g of outcome values is convex in the d-specific margin
εd if d is also convex in εd (Ben-Tal et al., 2010) where

εd :=

{
ε if d = MMD, TV, orW ,√
ε if d = χ2 .

Such a convexity implies that the linear approximation of
Vd(εd, g) at any εd is a lower bound. In particular, we can
consider the linear approximation of Vd(εd, g) centered at
εd = 0 (i.e., when Vd(εd, g) = Ep [g] since the adversary
can only choose p):2

Wd(εd, g) := Ep [g] + εd Sd(g) (3)

where Sd(g) is the gradient of Vd(εd, g) w.r.t. εd as εd →
0. Gotoh et al. (2020) have named Sd(g) the worst-case
sensitivity and derived closed-form expressions of Sd(g) for
various d. It turns out that Sd(g) can be interpreted as a
notion of risk (e.g., variance, range) whose specific form
depends on d. This turns (3) into a risk-sensitive value
which is a trade-off between the expected value Ep [g] and
a notion of risk Sd(g) to be further discussed in Sec. 6.
Table 2 lists the distribution distances d considered in our
work along with their worst-case sensitivities Sd(g).
Interestingly, the worst-case sensitivity for several distribu-
tion distances can be computed in closed form in O(|C|)
time. We leverage this key insight to efficiently compute
a lower bound Wd(εd, g) (3) of Vd(εd, g), which can be
optimized instead of solving the expensive convex optimiza-
tion problem needed to compute Vd(εd, g). The worst-case
sensitivity for TV and χ2 can be computed in O(|C|) time,
and that of W can be computed in O(|C|2) time. Due to
the Gram matrix inverse M−1 in the worst-case sensitivity
for MMD, calculating it exactly incurs O(|C|3) time. So,
we propose to approximate M with the identity matrix in a
similar manner as that in (Staib & Jegelka, 2019) and our
approximation of the worst-case sensitivity for MMD is

ŜMMD(g) =
(
g>g − g>1/|C|

)1/2 (4)

which can be computed in O(|C|) time. We will account
for this approximation in our regret bound (Sec. 5) and
empirically show in Sec. 7 that it can still preserve the
competitive performance. We will defer the discussion of
its approximation quality to Appendix B.

However, Wd(εd, g) (3) is only accurate at small εd and
decreases unboundedly as εd →∞. So, we design a more
refined approximation V̂d(εd, g) at larger εd called MINI-
MAXAPPROX as it aims to minimize the maximum possible
approximation error

∣∣∣Vd(εd, g)− V̂d(εd, g)∣∣∣ incurred:2

V̂d(εd, g) :=


Ep [g] + εd(Td+Sd(g))

2 if 0 ≤ εd < ε′d ,
Ep[g]+εdTd+mini[g]i

2 if ε′d ≤ εd < ε∗d ,

mini[g]i if εd ≥ ε∗d ;
(5)

where

Td := (mini[g]i − Ep [g])/ε∗d ,
ε∗d := min{εd | Vd(εd, g) = mini[g]i} ,
ε′d := (mini[g]i − Ep [g])/Sd(g) .

(6)

MINIMAXAPPROX is a piecewise linear bisection of the
region in which Vd(εd, g) (1) may lie, which we call the
valid region. Fig. 1 illustrates an example of Vd(εd, g),
Wd(εd, g) (3), valid region, and the MINIMAXAPPROX

V̂d(εd, g) (5). The construction of the valid region uses two
additional pieces of available information: (a) minimum
value mini[g]i of Vd(εd, g) (i.e., when q is a vector of 0’s
except for 1 at the argmini[g]i-th component), which we re-
fer to as the worst value, and (b) the corresponding εd = ε∗d
at which that value is attained, i.e., Vd(ε∗d, g) = mini[g]i (6).
The upper bounding line with gradient Td (see Fig. 1) can
be constructed due to the convex Vd(εd, g): Supposing
Vd(εd, g) is above the upper bounding line, its gradient
would have to decrease at some point to reach the worst
value at ε∗d, hence making it non-convex. Also, Wd(εd, g)
(3) is a lower bounding line due to the convex Vd(εd, g).
Finally, since Vd(εd, g) is non-increasing in εd, the worst
value is a lower bounding line as well. So, Vd(εd, g) can
in fact be any valid convex function that satisfies all these
bounds. To minimize the maximum possible approximation
error, MINIMAXAPPROX is a piecewise linear bisection of
the valid region so that for any εd, the distance between
the upper bound of Vd(εd, g) and V̂d(εd, g) is equal to that
between the lower bound of Vd(εd, g) and V̂d(εd, g).

For d = TV, χ2, or W , the required quantities mini[g]i,
Ep [g], and ε∗d can be computed in O(|C|) time. For
d = MMD, computing ε∗MMD requires O(|C|2) time since
MMD(p, q) is required to compute ε∗MMD and it involves
a quadratic form with a |C| × |C| matrix. Together
with our approximation ŜMMD(g) (4), MINIMAXAPPROX

V̂d(εMMD, g) (5) incursO(|C|2) time in total. In general, our
proposed MINIMAXAPPROX can be used with any convex
distribution distance d, provided that Sd can be efficiently
computed. The time efficiency benefits will vary with the
choice of d.



Efficient Distributionally Robust Bayesian Optimization with Worst-case Sensitivity

Table 2. Distribution distances d and their worst-case sensitivities Sd(g) in closed form considered in our work here. The worst-case
sensitivity for MMD is from (Staib & Jegelka, 2019) while that for TV, χ2, andW are from (Gotoh et al., 2020). The Gram matrix
M ∈ R|C|×|C| is constructed by applying the MMD kernel kM to all pairs of contexts in C, i.e., M = (kM (Ci, Cj))i,j=1,...,|C|. ForW , γ
is a discrete joint distribution with support C × C (represented as a |C| × |C| matrix) whose marginals are q and p.

Distribution distance d d(q, p) Worst-case sensitivity Sd(g)
Maximum mean ‖q − p‖M :=

√
(q − p)>M(q − p) −

√
g>M−1g − (g>M−11)2/(1>M−11)

discrepancy (MMD)
Total variation (TV) ‖q − p‖1 −0.5 (maxi [g]i −mini [g]i)

χ2-divergence (χ2)
∑|C|
i=1[p]i · 0.5([q]i/[p]i − 1)2 −(2Vp[g])1/2

Wasserstein metric (W) minγ∈4C×C
∑|C|
i,j=1[γ]ij ‖Ci − Cj‖W −

(
maximaxj ([g]i − [gj ]) / ‖Ci − Cj‖W

)
with arbitrary norm ‖·‖W where

∑|C|
j=1[γ]ij = [q]i ,

∑|C|
i=1[γ]ij = [p]j

Figure 1. Illustrative example of a convex worst-case expected
value Vd(εd, g) (1), Wd(εd, g) (3) around εd = 0, and MINI-
MAXAPPROX V̂d(εd, g) (5).

5. Theoretical Analysis
In this section, we will first bound the error incurred by
approximating the worst-case expected value (1) with MIN-
IMAXAPPROX (5). We will then exploit this error bound to
derive the regret bound for Algo. 1 utilizing MINIMAXAP-
PROX as the score function α instead. Our first result below
derives an εd-dependent bound on the approximation error:

Proposition 1. Suppose that a reference distribution p, a
margin εd ≥ 0, and a vector g of outcome values are
given. The error incurred by approximating Vd(εd, g) (1)
with V̂d(εd, g) (5) is bounded by2∣∣∣Vd(εd, g)− V̂d(εd, g)∣∣∣ ≤

0.5εd(Td − Sd(g)) if 0 ≤ εd < ε′d ,

0.5(1− εd
ε∗d
) (Ep [g]−mini[g]i) if ε′d ≤ εd < ε∗d ,

0 if εd ≥ ε∗d .

Its proof is in Appendix A.1. From Proposition 1, when
0 ≤ εd < ε′d, the error bound tightens with a decreas-
ing εd, which preserves the fine approximation quality of
Wd(εd, g) (3) when εd is small. When ε′d ≤ εd < ε∗d, the er-
ror bound tightens with an increasing εd, which aligns with
the intuition that Vd(εd, g) is likely close to the worst value
mini[g]i when εd is large. One can then expect that the

maximum possible approximation error for any value of εd
(i.e., an εd-independent bound) occurs exactly at εd = ε′d, as
formalized in the next result on the εd-independent bound:

Corollary 2. Suppose that a reference distribution p, a
margin εd ≥ 0, and a vector g of outcome values are
given. The error incurred by approximating Vd(εd, g) (1)
with V̂d(εd, g) (5) is bounded by2

|Vd(εd, g)−V̂d(εd, g)| ≤
1

2
(Ep [g]−min

i
[g]i)

(
1− Td
Sd(g)

)
with equality when εd = ε′d.

Its proof is in Appendix A.2. From Corollary 2, the
maximum approximation error for any εd is small when
Ep [g] −mini[g]i is small, i.e., each outcome value [g]i is
close to all other outcome values. In this case, the adversary
cannot vary the worst-case expected value Vd(εd, g) much.
The result below (see its proof in Appendix A.3) specifies
the εd-independent bound for each distribution distance d
considered in this work and accounts for our approximation
ŜMMD(g) (4) of the worst-case sensitivity for MMD:

Proposition 3. Suppose that a reference distribution p, a
margin εd ≥ 0, and a vector g of outcome values are given.
The d-specific error incurred by approximating Vd(εd, g)

with V̂d(εd, g) and SMMD(g) with min
(
ŜMMD(g), Td

)
is

bounded by2

|Vd(εd, g)−V̂d(εd, g)| ≤ Ad(g) := Ed (Ep [g]−mini[g]i)

where

Ed :=



1 + Td/max (‖g‖ , ‖g‖M−1) if d = MMD,
0.5 + Td/(maxi[g]i −mini[g]i) if d = TV,
0.5 + Td/(8Vp[g])1/2 if d = χ2,

0.5 + Td/max
i

max
j

[g]i − [gj ]

‖Ci − Cj‖W
if d =W .

From Proposition 3, since Td ≥ SMMD(g), we approximate
SMMD(g) with min

(
ŜMMD(g), Td

)
. The denominator of

the second term in Ed can be interpreted as the ‘complexity’
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of g whose definition changes with distribution distance
d: For TV, the complexity is the range of values in g. For
MMD, the complexity is the maximum between the L2-
norm of g vs. ‖g‖M−1 :=

√
g>M−1g, the latter of which

is a finite-dimensional analog of the RKHS norm associated
with the MMD kernel kM (i.e., a measure of complexity for
functions in an RKHS (Williams & Rasmussen, 2006)). As
g increases in complexity, the error bound increases. By
exploiting this error bound, we can derive a regret bound for
Algo. 1 using MINIMAXAPPROX as the score function α:

Theorem 4. Suppose that p∗t ∈ Ut for t = 1, . . . , T . With
probability of at least 1− δ, the cumulative robust regret (2)
for Algo. 1 utilizing MINIMAXAPPROX (5) is bounded by

RT ≤ 4βT

√
T

(
γT + 4 log

12

δ

)
+

T∑
t=1

(2B′d,tεd,t+2Amax
d,t )

(7)
where βt = σ

√
log det(I +Kt) + 2 log(2/δ) + B, B

is the upper bound of the RKHS norm of f , γT is the
kernel-dependent maximum information gain, Amax

d,t :=

max(Ad,t(ucbtxt
), Ad,t(ucbtx∗t )) where Ad,t(·) is the error

bound in Proposition 3, and B′d,t is a complexity parameter
for fxt := f(xt, ·) and d given by

B′d,t :=



‖fxt
‖M−1 if d = MMD ,

‖fxt‖ if d = TV ,√
2 ‖fxt‖ if d = χ2 ,

‖fxt‖
miniminj 6=i ‖Ci − Cj‖W

if d =W .

Its proof is in Appendix A.4. For the squared expo-
nential kernel, γT = O((log T )d+1) ≤ O(

√
T ) (Srini-

vas et al., 2010). Also, log det(I + KT ) ≤
max{(xt,ct)}Tt=1

log det(I +Kt) = O(γT ) (Srinivas et al.,
2010). The first term in (7) is thus sublinear in T . The sec-
ond term, however, is linear in T . So, the regret bound
for Algo. 1 utilizing the fast MINIMAXAPPROX (5) to
achieve greater time efficiency is of the same order of T as
that for the DRBO algorithm of Kirschner et al. (2020).
While both algorithms are unfortunately not no-regret4,
using V̂d(εd, g) (5) is theoretically no worse than using
Vd(εd, g) (1) in terms of the dependence of their resulting
regret bounds on T . Furthermore, Theorem 4 reveals the
following insight: A more refined approximation entails a
tighter regret bound, which suggests that future DRBO algo-
rithms with improved approximations may perform better
empirically.

6. Selection of Distribution Distance
We have used four distribution distances MMD, TV, χ2,
and W to construct the uncertainty set Ut in Algo. 1. A
practitioner is not limited to these selections as any convex
distribution distance d can be used, provided that Sd can
be efficiently computed. A natural question is which distri-
bution distance should be used for a particular application.
In this section, we show that our approximation provides
insights for a practitioner to select a suitable distance based
on interpretable notions of risk. Gotoh et al. (2020) have
noted that the DRO literature provides ‘little guidance’ on
how to select a distribution distance and proposed worst-
case sensitivity as the link between distribution distance and
interpretable risk-sensitive values like mean-variance trade-
off (χ2) and mean-range trade-off (TV). SinceWd(εd, g) (3)
has the form of a risk-sensitive value, it is more easily inter-
preted than DRO: If large variance in outcomes is undesir-
able (e.g., a farm wants large crops but roughly of the same
size for logistical reasons), then one may optimize for mean-
variance trade-off. If extreme outliers are undesirable (e.g.,
a portfolio manager wants good returns but avoid massive
losses), then one may optimize for mean-range trade-off.

Without any assumptions on the DRO solution that can in-
volve any convex function within the valid region (Fig. 1),
it is difficult to formally link the DRO solution to that asso-
ciated with the risk-sensitive value. However, the difference
between MINIMAXAPPROX (5) (as a surrogate) and the
risk-sensitive value (3) for εd < ε′d can be obtained:

V̂d(εd, g)−Wd(εd, g) = εd (Td − Sd(g)) /2 . (8)

Since Td ≥ Sd(g) (6) (Fig. 1), the difference is linear and
non-decreasing in εd, which indicates that MINIMAXAP-
PROX is likely to prefer similar actions (e.g., recall g = ucbtx
when used with Algo. 1) as the risk-sensitive value when
εd is small, and this preference is likely to diverge when
εd is large. The same conclusion may be reached with the
true DRO solution Vd(εd, g) by assuming that Vd(εd, g) is
strongly convex with parameter µ > 0. Hence, we conclude
that the choice of distribution distance can indeed be guided
by the risk-sensitive value associated with the worst-case
sensitivity for each distance as the preferred actions are
likely to be similar at least for small εd.

From (8), the difference between MINIMAXAPPROX and
the risk-sensitive value depends on the worst value mini[g]i
in Td. The influence of worst value is more easily interpreted
by rewriting MINIMAXAPPROX (5) for εd < ε′d as2

V̂d(εd, g) =

(
1− εd

2ε∗d

)
Ep [g] +

εd
2
Sd(g) +

εd
2ε∗d

min
i
[g]i .

4Kirschner et al. (2020) and Nguyen et al. (2020) have devel-
oped no-regret algorithms for the ‘Simulator’ setting in which ct
can be selected. This differs from the ‘General’ setting considered
in this work, which we find to be the most realistic in practice.
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Figure 2. Synthetic Random Functions: Mean and standard error of cumulative robust regret (lower is better) for Algo. 1 utilizing
MINIMAXAPPROX, WCS, EXACT, and GP-UCB with different distribution distances d and means of reference distribution.
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(d) d =W
Figure 3. Plant Maximum Leaf Area: Mean and standard error of cumulative robust regret (lower is better) for Algo. 1 utilizing
MINIMAXAPPROX, WCS, EXACT, and GP-UCB with different distribution distances d and means of reference distribution.
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Figure 4. Wind Power Dataset: Mean and standard error of cumulative reward (higher is better) for Algo. 1 utilizing MINIMAXAPPROX,
WCS, EXACT, and GP-UCB with different distribution distances d.

In this form, MINIMAXAPPROX can be interpreted as a
weighted sum similar to the risk-sensitive value, except that
we shift some weight from expected value Ep [g] and the
notion of risk Sd(g) (thereby forgoing optimality in the
risk-sensitive value) to the worst value mini[g]i to be robust
to distribution shift. We thus recommend practitioners to
select d based on the relevance of its associated notion of
risk to the application since optimizing for distributional
robustness with d is implicitly optimizing an objective close
to the associated risk-sensitive value. Note that there are also
practical considerations when choosing d; we defer a full
discussion of these practical considerations to Appendix C.

7. Experiments and Discussion
We empirically evaluate the performance of Algo. 1 utilizing
MINIMAXAPPROX (5), the simpler Wd(εd, g) (3) (termed
WCS), EXACT worst-case expected value (1) (Kirschner
et al., 2020), or the non-robust Ept

[
ucbtx

]
(termed GP-

UCB)2 as a replacement of the score function α in line
5, the latter two of which are baselines. In all experi-
ments except that with the wind power dataset, we use
a Gaussian distribution as the reference distribution pt
(mixed with a low-weighted uniform distribution when
using χ2 for numerical reasons) and the uniform distri-

bution as the true distribution p∗t . We perform the ex-
periments with multiple means for pt. To ensure that
the uncertainty set Ut includes p∗t , we set the margin εt
to be the distance between pt and p∗t . For the Wasser-
stein metric, we use the `2 norm. Refer to Appendix D
for further experimental details. The code is available at
https://github.com/sebtsh/fast-drbo.

Synthetic Random Functions. We evaluate the perfor-
mance of the tested algorithms on 2-D random functions
drawn from a GP prior where the first dimension is the
action and the second is the context. Fig. 2 shows results
of the cumulative robust regret averaged over 10 random
functions with 10 random initial observations each. MINI-
MAXAPPROX incurs a lower cumulative robust regret than
both the non-robust GP-UCB and the simpler WCS and
performs comparably to EXACT in several cases. We addi-
tionally show in Appendix E that the robust regret of EXACT
using a ‘wrong’ distribution distance is higher when robust
regret is measured w.r.t. some other ‘true’ distance. This
confirms that a penalty is incurred when the wrong distance
for an application is selected and highlights the importance
of choosing the right distance for a given application.

Plant Maximum Leaf Area. We evaluate the performance
of the tested algorithms in finding the acidity condition of a

https://github.com/sebtsh/fast-drbo
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Figure 5. COVID-19 Test Allocation: Mean and standard error of cumulative robust regret (lower is better) for Algo. 1 utilizing
MINIMAXAPPROX, WCS, EXACT, and GP-UCB with different distribution distances d and means of reference distribution.
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Figure 6. Computation Time: Mean CPU time (lower is better) incurred by MINIMAXAPPROX, WCS, EXACT, and GP-UCB vs. size
of context set with different distribution distances d.

medium that maximizes the worst-case expected value of the
leaf area of Marchantia plants (i.e., surrogate for crop yield)
attained after a certain period. Precision agriculture is an im-
portant use case of DRBO as there may be multiple sources
of distribution shift of the context variables (uncontrolled
nutrients) such as unobservable variations in the fertilizer or
soil due to manufacturer error. This objective function was
built using kernel ridge regression on data collected from
real-world experiments. The action variable is pH and the
context variable is ammonium concentration. Fig. 3 shows
results of the cumulative robust regret obtained over 10 ran-
dom sets of 10 initial observations. MINIMAXAPPROX out-
performs the non-robust GP-UCB and simpler WCS while
performing competitively with EXACT in several cases.

Wind Power Dataset. To evaluate the performance of
the tested algorithms on real-world distribution shift, we
use wind power data from the Open Power System Data
project (Wiese et al., 2019). Weather effects are particu-
larly susceptible to distribution shift due to general unpre-
dictability and climate change. The task is to predict the
(scalar) amount of wind power generated in the next hour
over a month. The reward obtained depends on the pre-
dicted value x (action) and the actual value c (context) and
is modeled by the inventory cost function from (Kirschner
et al., 2020): r(x, c) = 0.1max (c− x, 0) + min (x, c) −
5max (x− c, 0). Ideally, x should be as close to c as pos-
sible without exceeding c as there is a large penalty for
over-predicting. We use the empirical distribution of wind
power in an hour from 2010-2012 as the reference distribu-
tion. We then run Algo. 1 with the environment providing
the actual wind power in an hour over a month from 2013
and calculate the cumulative reward obtained. Fig. 4 shows
results of the mean and standard error of the cumulative

reward over the 12 months in 2013. The robustness to dis-
tribution shift allows the three robust algorithms to obtain a
higher cumulative reward than the non-robust GP-UCB.

COVID-19 Test Allocation. To evaluate the performance
of the tested algorithms on real-world use cases with multi-
dimensional contexts, we use the COVID-19 epidemic
model from (Cashore et al., 2020b). Data-driven epidemic
policymaking is a compelling use case for DRBO as an
incorrect estimation of the underlying distribution may lead
to widespread illness. In this experiment, we have three
populations and want to allocate a limited number of tests
in order to minimize the number of COVID-19 cases in a
given timeframe. The action variable is a 2-D vector indi-
cating the proportion of tests to be allocated to the first and
second populations; the proportion allocated to the third
population is constrained by these proportions. The context
variable is a 3-D vector indicating the proportions of initial
COVID-19 cases distributed, respectively, among the first
and second populations, and the transmission probability;
the total number of initial cases is fixed. Fig. 5 shows results
of the cumulative robust regret obtained over 5 random sets
of 10 initial observations. MINIMAXAPPROX outperforms
GP-UCB and WCS and is competitive with EXACT, except
for χ2 with mean (0, 0, 0)> of reference distribution where
GP-UCB performs well due to a case of the non-robust
solution being close to the robust one. However, MINI-
MAXAPPROX incurs a lower final immediate regret than
GP-UCB (resp., mean of 0.0146 and 0.0218 over the last 5
iterations), thus indicating that MINIMAXAPPROX finds the
more robust solution in the end even though the cumulative
robust regret is higher. With |C| = 550, MINIMAXAPPROX
and EXACT with d = MMD took about 27 and 161 sec-
onds in CPU time, respectively. When one more dimension
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Figure 7. Error-time Trade-off: Mean approximation error vs. CPU time incurred by MINIMAXAPPROX, and Pareto frontier of mean
approximation error vs. CPU time incurred by truncated convex optimization.

is added (i.e., |C| = 5500), their incurred times increase,
respectively, to about 223 seconds and > 41 hours, hence
demonstrating the infeasibility of EXACT when |C| is large.

Computation Time. We empirically confirm the time effi-
ciency benefit of MINIMAXAPPROX by constructing context
sets of various sizes (through increasing the discretization
density) on a random function and measuring the incurred
time to compute a solution. Fig. 6 shows results of the mean
CPU time (seconds) vs. the size of the context set. The time
incurred by EXACT noticeably increases as the size of the
context set increases with a greater than linear scaling for
MMD, while our approximations exhibit negligible growth
in incurred time with the size of the context set.

Accuracy-time Trade-off. Since MINIMAXAPPROX trades
off approximation quality of the worst-case expected value
for greater time efficiency, a natural question is whether a
better trade-off can be obtained by simply truncating (i.e.,
early stopping) a convex optimization solver used by Algo. 1
with EXACT worst-case expected value (1) (Kirschner et al.,
2020) to produce intermediate solutions with reduced solu-
tion quality and incurred time. Fig. 7 shows a comparison
between these two algorithms on a 2-D random function
from a GP prior as the objective function. The mean approx-
imation error and CPU time are computed over 20 actions
with a context set size of 10000 and 900 using MMD andW ,
respectively. It can be observed that the trade-off achieved
by MINIMAXAPPROX lies well beyond the Pareto frontier
of truncated convex optimization (i.e., truncated at different
numbers of solver iterations), thus confirming that the time
efficiency gain by MINIMAXAPPROX is significant.

8. Conclusion
This paper describes a novel fast approximation based on
worst-case sensitivity that enables DRBO to scale to large
context sets and provides interpretability to guide the choice
of distribution distance. For future work, it is interest-
ing to perform a meta-study over distribution distances
to determine if one can be automatically selected based

on a secondary optimization objective such as a partic-
ular risk-sensitive value. While this work and previous
ones have focused on discrete action and context sets, fu-
ture work can study DRBO over continuous sets. We
may also extend our work to the ‘Data-driven’/‘Simulator’
setting in (Kirschner et al., 2020) and look into better
yet tractable approximations of worst-case sensitivity for
MMD. Finally, we plan to generalize our DRBO algo-
rithm to nonmyopic BO (Kharkovskii et al., 2020b; Ling
et al., 2016), high-dimensional BO (Hoang et al., 2018),
batch BO (Daxberger & Low, 2017), private outsourced
BO (Kharkovskii et al., 2020a), preferential BO (Nguyen
et al., 2021d), federated/collaborative BO (Dai et al., 2020b;
2021; Sim et al., 2021), meta-BO (Dai et al., 2022), and
multi-fidelity BO (Zhang et al., 2017; 2019) settings, handle
information-theoretic acquisition functions (Nguyen et al.,
2021c;e), incorporate early stopping (Dai et al., 2019), de-
layed feedback (Verma et al., 2022), and/or recursive rea-
soning (Dai et al., 2020a), and consider its application to
neural architecture search (Shu et al., 2022a;b) and inverse
reinforcement learning (Balakrishnan et al., 2020). For ap-
plications with a huge budget of function evaluations, we
like to couple our DRBO algorithm with the use of dis-
tributed/decentralized (Chen et al., 2012; 2013a;b; 2015;
Hoang et al., 2016; 2019; Low et al., 2015; Ouyang & Low,
2018), online/stochastic (Hoang et al., 2015; 2017; Low
et al., 2014; Xu et al., 2014; Yu et al., 2019b), or deep (Yu
et al., 2019a; 2021) sparse GP models to represent the belief
of the unknown objective function efficiently.
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A. Proofs
A.1. Proof of Proposition 1

Proposition 1. Suppose that a reference distribution p, a margin εd ≥ 0, and a vector g of outcome values are given. The
error incurred by approximating Vd(εd, g) (1) with V̂d(εd, g) (5) is bounded by2

∣∣∣Vd(εd, g)− V̂d(εd, g)∣∣∣ ≤

0.5εd(Td − Sd(g)) if 0 ≤ εd < ε′d ,

0.5(1− εd/ε∗d) (Ep [g]−mini[g]i) if ε′d ≤ εd < ε∗d ,

0 if εd ≥ ε∗d .

Proof. When 0 ≤ εd < ε′d, since Vd(εd, g) is convex in εd, Vd(εd, g) is lower bounded by the worst case sensitivity linear
approximation (3) at εd = 0 and upper bounded by the linear function Ep [g] + εdTd:

Ep [g] + εdSd(g) ≤ Vd(εd, g) ≤ Ep [g] + εdTd (9)

Ep [g] + εdSd(g)−
(
Ep [g] +

1

2
εd(Sd(g) + Td)

)
≤ Vd(εd, g)− V̂d(εd, g) (10)

≤ Ep [g] + εdTd −
(
Ep [g] +

1

2
εd(Sd(g) + Td)

)
(11)

1

2
εd(Sd(g)− Td) ≤ Vd(εd, g)− V̂d(εd, g) ≤

1

2
εd(Td − Sd(g)) (12)

−1

2
εd(Td − Sd(g)) ≤ Vd(εd, g)− V̂d(εd, g) ≤

1

2
εd(Td − Sd(g)) . (13)

Since Td ≥ Sd(g),

|Vd(εd, g)− V̂d(εd, g)| ≤
1

2
εd(Td − Sd(g)), for 0 ≤ εd < ε′d . (14)

When ε′d ≤ εd < ε∗d, Vd(εd, g) is lower bounded by the minimum possible value of V given by the worst value mini[g]i and
upper bounded by the linear function Ep [g] + εdTd:

min
i
[g]i ≤ Vd(εd, g) ≤ Ep [g] + εdTd (15)

1

2
(min

i
[g]i − Ep [g]− εdTd) ≤ Vd(εd, g)− V̂d(εd, g) ≤

1

2
(Ep [g] + εdTd −min

i
[g]i) (16)

−1

2
(Ep [g] + εdTd −min

i
[g]i) ≤ Vd(εd, g)− V̂d(εd, g) ≤

1

2
(Ep [g] + εdTd −min

i
[g]i) . (17)

Since Ep [g] + εdTd ≥ mini[g]i,

|Vd(εd, g)− V̂d(εd, g)| ≤
1

2
(Ep [g] + εdTd −min

i
[g]i) (18)

=
1

2
(Ep [g] + εd

(
mini[g]i − Ep [g]

ε∗d

)
−min

i
[g]i) (19)

=
ε∗d − εd
2ε∗d

(
Ep [g]−min

i
[g]i

)
, for ε′d ≤ εd < ε∗d . (20)

When εd ≥ ε∗d, Vd(εd, g) = mini[g]i from the definition of ε∗d and the fact that Vd(εd, g) is non-increasing in εd. Hence,

|Vd(εd, g)− V̂d(εd, g)| = |min
i
[g]i −min

i
[g]i| (21)

= 0, for εd ≥ ε∗d . (22)
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A.2. Proof of Corollary 2

Corollary 2. Suppose that a reference distribution p, a margin εd ≥ 0, and a vector g of outcome values are given. The
error incurred by approximating Vd(εd, g) (1) with V̂d(εd, g) (5) is bounded by2

|Vd(εd, g)− V̂d(εd, g)| ≤
1

2
(Ep [g]−min

i
[g]i)

(
1− Td
Sd(g)

)
with equality when εd = ε′d.

Proof. Since Td ≥ Sd(g), the upper bound 1
2εd(Td − Sd(g)) from (14) is non-decreasing in εd. When 0 ≤ εd < ε′d, we

thus have the εd-independent upper bound

|Vd(εd, g)− V̂d(εd, g)| ≤
1

2
ε′d(Td − Sd(g)), for 0 ≤ εd < ε′d . (23)

Since Td ≤ 0, the upper bound 1
2 (Ep [g] + εdTd −mini[g]i) from (18) is non-increasing in εd. When ε′d ≤ εd < ε∗d, we thus

have the εd-independent upper bound

|Vd(εd, g)− V̂d(εd, g)| ≤
1

2
(Ep [g] + ε′dTd −min

i
[g]i), for ε′d ≤ εd < ε∗d . (24)

Subtracting the upper bound in (24) from (23),

1

2
ε′d(Td − Sd(g))−

1

2
(Ep [g] + ε′dTd −min

i
[g]i) =

1

2
(min

i
[g]i − Ep [g]− ε′dSd(g)) (25)

=
1

2
(min

i
[g]i − Ep [g]− (min

i
[g]i − Ep [g])) (26)

= 0 . (27)

Both upper bounds thus have the same value. Since the approximation error is zero for εd ≥ ε∗d, we conclude that for all
εd ≥ 0,

|Vd(εd, g)− V̂d(εd, g)| ≤
1

2
ε′d(Td − Sd(g)) (28)

=
1

2
(min

i
[g]i − Ep [g])

( Td
Sd(g)

− 1

)
(29)

=
1

2
(Ep [g]−min

i
[g]i)

(
1− Td
Sd(g)

)
. (30)

A.3. Proof of Proposition 3

Proposition 3. Suppose that a reference distribution p, a margin εd ≥ 0, and a vector g of outcome values are given. The
d-specific error incurred by approximating Vd(εd, g) with V̂d(εd, g) and SMMD(g) with min

(
ŜMMD(g), Td

)
is bounded by2

|Vd(εd, g)− V̂d(εd, g)| ≤ Ad(g) := Ed (Ep [g]−mini[g]i)

where

Ed :=



1 + Td/max (‖g‖ , ‖g‖M−1) if d = MMD ,

0.5 + Td/(maxi[g]i −mini[g]i) if d = TV ,

0.5 + Td/(8Vp[g])1/2 if d = χ2 ,

0.5 + Td/max
i

max
j

[g]i − [gj ]

‖Ci − Cj‖W
if d =W .

Proof. We begin with the general approximation error from Corollary 2:

|Vd(εd, g)− V̂d(εd, g)| ≤
1

2
(Ep [g]−min

i
[g]i)

(
1− Td
Sd(g)

)
, for εd ≥ 0 . (31)
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The bounds for TV, χ2, and W are attained by simply substituting in the closed form for their worst-case sensitivities
(listed in Table 2). The proof for MMD is more involved as we have to account for the approximation of SMMD(g) with
S̃MMD(g) := min

(
{ŜMMD(g), Td}

)
. We first define

Smin := min
(
{SMMD(g), S̃MMD(g)}

)
(32)

Smax := max
(
{SMMD(g), S̃MMD(g)}

)
(33)

ε′min :=
mini[g]i − Ep [g]

Smin
(34)

ε′max :=
mini[g]i − Ep [g]

Smax
(35)

ε̃′d :=
mini[g]i − Ep [g]
S̃MMD(g)

(36)

V̂min(εd, g) :=


Ep [g] + 1

2εd(Td + Smin), if 0 ≤ εd < ε′min
1
2 (Ep [g] + εdTd +mini[g]i) , if ε′min ≤ εd < ε∗d
mini[g]i, if εd ≥ ε∗d

(37)

V̂max(εd, g) :=


Ep [g] + 1

2εd(Td + Smax), if 0 ≤ εd < ε′max
1
2 (Ep [g] + εdTd +mini[g]i) , if ε′max ≤ εd < ε∗d
mini[g]i, if εd ≥ ε∗d

(38)

Ṽd(εd, g) :=


Ep [g] + 1

2εd(Td + S̃MMD(g)), if 0 ≤ εd < ε̃′d
1
2 (Ep [g] + εdTd +mini[g]i) , if ε̃′d ≤ εd < ε∗d
mini[g]i, if εd ≥ ε∗d

(39)

where d = MMD. In particular, V̂d is equivalent to either V̂min or V̂max, and Ṽd is equivalent to the other. The proof considers
the general case where it is unknown which corresponds to which. Since Smin and Smax are negative, 0 ≤ ε′min ≤ ε′max ≤ ε∗d.
When 0 ≤ εd < ε′min,

V̂max(εd, g)− V̂min(εd, g) = Ep [g] +
1

2
εd(Td + Smax)−

(
Ep [g] +

1

2
εd(Td + Smin)

)
(40)

=
1

2
εd(Smax − Smin) . (41)

Since Smax ≥ Smin, 1
2εd(Smax − Smin) is non-decreasing in εd. By substituting εd = ε′min, we obtain the εd-independent

upper bound

V̂max(εd, g)− V̂min(εd, g) ≤
1

2

(
mini[g]i − Ep [g]

Smin

)
(Smax − Smin) (42)

=
1

2
(Ep [g]−min

i
[g]i)

(
1− Smax

Smin

)
, for 0 ≤ εd < ε′min (43)

and the corresponding lower bound by substituting εd = 0

V̂max(εd, g)− V̂min(εd, g) ≥ 0, for 0 ≤ εd < ε′min . (44)

When ε′min ≤ εd < ε′max,

V̂max(εd, g)− V̂min(εd, g) = Ep [g] +
1

2
εd(Td + Smax)−

1

2

(
Ep [g] + εdTd +min

i
[g]i

)
(45)

=
1

2

(
Ep [g] + εdSmax −min

i
[g]i

)
. (46)
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Since Smax ≤ 0, εdSmax is non-increasing in εd. By substituting εd = ε′min, we obtain the εd-independent upper bound

V̂max(εd, g)− V̂min(εd, g) ≤
1

2

(
Ep [g] +

(
mini[g]i − Ep [g]

Smin

)
Smax −min

i
[g]i

)
(47)

=
1

2

(
Ep [g]−min

i
[g]i −

(
Ep [g]−min

i
[g]i

) Smax

Smin

)
(48)

=
1

2
(Ep [g]−min

i
[g]i)

(
1− Smax

Smin

)
, for ε′min ≤ εd ≤ ε′max (49)

and the corresponding lower bound by substituting εd = ε′max

V̂max(εd, g)− V̂min(εd, g) ≥
1

2

(
Ep [g] + ε′maxSmax −min

i
[g]i

)
(50)

= 0, for ε′min ≤ εd ≤ ε′max . (51)

When εd ≥ ε′max,

V̂max(εd, g)− V̂min(εd, g) = 0 . (52)

From Equations (43), (49) and (52), we obtain the global upper bound

V̂max(εd, g)− V̂min(εd, g) ≤
1

2
(Ep [g]−min

i
[g]i)

(
1− Smax

Smin

)
. (53)

From Equations (44), (51) and (52), we obtain the global lower bound

V̂max(εd, g)− V̂min(εd, g) ≥ 0 . (54)

We thus have that ∣∣∣V̂max(εd, g)− V̂min(εd, g)
∣∣∣ ≤ 1

2
(Ep [g]−min

i
[g]i)

(
1− Smax

Smin

)
, for εd ≥ 0 . (55)

Since Vd(εd, g) is convex, Td ≥ SMMD(g). By definition, Td ≥ S̃MMD(g). Hence,∣∣∣V̂max(εd, g)− V̂min(εd, g)
∣∣∣ ≤ 1

2
(Ep [g]−min

i
[g]i)

(
1− TdSmin

)
(56)

=
1

2
(Ep [g]−min

i
[g]i)

1− Td
min

(
{ŜMMD(g),SMMD(g)}

)
 (57)

≤ 1

2
(Ep [g]−min

i
[g]i)

(
1− Td

min ({−‖g‖ ,−‖g‖M−1})

)
(58)

where the first inequality arises since Smin ≤ 0 and the last inequality applies Lemma 7. Finally,∣∣∣Vd(εd, g)− Ṽd(εd, g)∣∣∣ ≤ ∣∣∣Vd(εd, g)− V̂d(εd, g)∣∣∣+ ∣∣∣V̂d(εd, g)− Ṽd(εd, g)∣∣∣ (59)

≤ 1

2
(Ep [g]−min

i
[g]i)

(
1− Td
SMMD(g)

)
+

1

2
(Ep [g]−min

i
[g]i)

(
1− Td

min ({−‖g‖ ,−‖g‖M−1})

)
(60)

≤ 1

2
(Ep [g]−min

i
[g]i)

1− Td
min

(
{ŜMMD(g),SMMD(g)}

)
+ (61)

1

2
(Ep [g]−min

i
[g]i)

(
1− Td

min ({−‖g‖ ,−‖g‖M−1})

)
(62)

≤ (Ep [g]−min
i
[g]i)

(
1− Td

min ({−‖g‖ ,−‖g‖M−1})

)
(63)

= (Ep [g]−min
i
[g]i)

(
1 +

Td
max ({‖g‖ , ‖g‖M−1})

)
(64)
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where the first inequality applies the triangle inequality, the second inequalty uses Corollary 2 to bound∣∣∣Vd(εd, g)− V̂d(εd, g)∣∣∣ and the fact that the bound for
∣∣∣V̂max(εd, g)− V̂min(εd, g)

∣∣∣ bounds
∣∣∣V̂d(εd, g)− Ṽd(εd, g)∣∣∣, the third

inequality arises since Td ≤ 0, and the fourth inequality applies Lemma 7 again, which concludes the proof.

A.4. Proof of Theorem 4

Theorem 4. Suppose that p∗t ∈ Ut for t = 1, . . . , T . With probability of at least 1− δ, the cumulative robust regret (2) for
Algo. 1 utilizing MINIMAXAPPROX (5) is bounded by

RT ≤ 4βT

√
T

(
γT + 4 log

12

δ

)
+

T∑
t=1

(2B′d,tεd,t + 2Amax
d,t ) (65)

where βt = σ
√
log det(I +Kt) + 2 log(2/δ)+B,B is the upper bound of the RKHS norm of f , γT is the kernel-dependent

maximum information gain, Amax
d,t := max(Ad,t(ucbtxt

), Ad,t(ucbtx∗t )) where Ad,t(·) is the error bound in Proposition 3,
and B′d,t is a complexity parameter for fxt := f(xt, ·) and d given by

B′d,t :=



‖fxt‖M−1 if d = MMD ,

‖fxt
‖ if d = TV ,√

2 ‖fxt
‖ if d = χ2 ,
‖fxt
‖

miniminj 6=i ‖Ci − Cj‖W
if d =W .

Proof. The proof follows the steps of the proof of Theorem 2 from (Kirschner et al., 2020) except for the introduction of
the approximation error induced by our approximation of Vd(εd, g) with V̂d(εd, g), and the complexity parameter B′d,t that
depends on the choice of d.

We begin by recalling the definition of the vector of upper confidence bound values associated with action x at iteration t
ucbtx ∈ R|C|:

[ucbtx]j := µt(x, Cj) + βtσt(x, Cj), ∀j ∈ [|C|] . (66)

In this proof, we switch to the inner product notation to ease the notation.

We define the worst-case distributions associated with an action x and a set of outcome values (which may be either the true
function values or the upper confidence bound values):

qucbt
x ∈ argmin

q∈Ut
〈q, ucbtx〉 (67)

qfx ∈ argmin
q∈Ut

〈q, fx〉 (68)

The robust regret at iteration t is

rt =min
q∈Ut

Eq [f(x∗t , ·)]− min
q∈Ut

Eq [f(xt, ·)] (69)

≤ 〈qucbt
x∗t

, ucbtx∗t 〉 − 〈q
f
xt
, fxt
〉 (70)

since ucbtx∗t ≥ fx∗t . We now introduce the approximation error upper bound Ad,t. We have that

V̂d(εd, ucbtxt
) ≤ 〈qucbt

xt
, ucbtxt

〉+Ad,t (71)

〈qucbt
x∗t

, ucbtx∗t 〉 −Ad,t ≤ V̂d(εd, ucbtx∗t ) (72)

V̂d(εd, ucbtx∗t ) ≤ V̂d(εd, ucbtxt
) (73)

where the last inequality uses the fact that at iteration t we choose the xt that maximizes V̂d(εd, ucbtxt
). Adding these 3

inequalities together,

V̂d(εd, ucbtxt
) + 〈qucbt

x∗t
, ucbtx∗t 〉 −Ad,t + V̂d(εd, ucbtx∗t ) ≤ 〈q

ucbt
xt

, ucbtxt
〉+Ad,t + V̂d(εd, ucbtx∗t ) + V̂d(εd, ucbtxt

) (74)

〈qucbt
x∗t

, ucbtx∗t 〉 ≤ 〈q
ucbt
xt

, ucbtxt
〉+ 2Ad,t (75)
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Applying this inequality to (70),

rt ≤ 〈qucbt
xt

, ucbtxt
〉+ 2Ad,t − 〈qfxt

, fxt
〉 (76)

≤ 〈p∗t , ucbtxt
〉 − 〈qfxt

, fxt〉+ 2Ad,t (77)

= 〈p∗t , fxt〉+ 〈p∗t , ucbtxt
− fxt〉 − 〈qfxt

, fxt〉+ 2Ad,t (78)

= 〈p∗t , ucbtxt
− fxt〉+ 〈p∗t − qfxt

, fxt
〉+ 2Ad,t (79)

≤ 2βt〈p∗t , σt(xt, ·)〉+ 〈p∗t − qfxt
, fxt
〉+ 2Ad,t (80)

where the second inequality uses the fact that qucbt
xt

is the worst-case distribution and the third inequality uses the fact that
fxt

lies within the confidence bounds with probability at least 1− δ (Lemma 9).
We now consider the term 〈p∗t − qfxt

, fxt
〉. The bound for this term depends on the distribution distance d.

For MMD, applying Lemma 5,

〈p∗t − qfxt
, fxt〉 ≤

∥∥p∗t − qfxt

∥∥
M
‖fxt‖M−1 (81)

≤ 2εMMD,t ‖fxt‖M−1 . (82)

For TV, applying the Cauchy-Schwarz inequality,

〈p∗t − qfxt
, fxt
〉 ≤

∥∥p∗t − qfxt

∥∥ ‖fxt
‖ (83)

≤
∥∥p∗t − qfxt

∥∥
1
‖fxt
‖ (84)

≤ 2εTV,t ‖fxt‖ (85)

where the second inequality arises from the fact that the L1-norm of a vector is greater than or equal to its L2-norm.
For χ2, again applying the Cauchy-Schwarz inequality,

〈p∗t − qfxt
, fxt
〉 ≤

∥∥p∗t − qfxt

∥∥ ‖fxt
‖ (86)

≤
(
‖p∗t − p‖+

∥∥qfxt
− p
∥∥) ‖fxt

‖ (87)

≤
(√

2χ2(p∗t , p) +

√
2χ2(qfxt , p)

)
‖fxt‖ (88)

≤ 2
√
2εχ2,t ‖fxt‖ (89)

where the second inequality applies the triangle inequality and the third inequality applies Lemma 6.
ForW , from (84),

〈p∗t − qfxt
, fxt
〉 ≤

∥∥p∗t − qfxt

∥∥
1
‖fxt
‖ (90)

≤ 2

miniminj 6=i ‖Ci − Cj‖W
εW,t ‖fxt‖ (91)

where the second inequality applies Lemma 8. We thus have the generalized regret bound

rt ≤ 2βt〈p∗t , σt(xt, ·)〉+ 2B′d,tεd,t + 2Ad,t (92)

B′d,t :=


‖fxt
‖M−1 if d = MMD ,

‖fxt
‖ if d = TV ,√

2 ‖fxt
‖ if d = χ2 ,

‖fxt‖ /miniminj 6=i ‖Ci − Cj‖W if d =W .

(93)

εd,t :=

{
εt, if d = MMD, TV, orW ,
√
εt, if d = χ2 .

(94)
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The cumulative regret RT is then given by

RT =

T∑
t=1

rt (95)

≤
T∑
t=1

2βt〈p∗t , σt(xt, ·)〉+
T∑
t=1

(2B′d,tεd,t + 2Ad,t) (96)

≤ 4βT

√
T

(
γT + 4 log

12

δ

)
+

T∑
t=1

(2B′d,tεd,t + 2Ad,t) (97)

where
∑T
t=1 2βt〈p∗t , σt(xt, ·)〉 is bounded by the same method as in the proof of Theorem 2 in (Kirschner et al., 2020),

which completes the proof.

A.5. Lemmas

Lemma 5. For any two vectors q, p ∈ Rn and positive definite symmetric matrix M ∈ Rn×n,

〈q, p〉 ≤ ‖q‖M ‖p‖M−1 (98)

where ‖q‖M :=
√
q>Mq.

Proof.

(‖q‖M ‖p‖M−1)
2
= q>Mqp>M−1p . (99)

Since M is a positive definite symmetric matrix, it can be decomposed into M = UDU> where U ∈ Rn×n is an orthogonal
matrix with columns that together form an orthonormal basis of Rn and D ∈ Rn×n is a diagonal matrix with positive entries
that are the eigenvalues of M . M−1 can then be decomposed into M−1 = UD−1U>. Since the diagonal entries of D and
D−1 are positive, they may be further decomposed as D = D

1
2D

1
2 and D−1 = D−

1
2D−

1
2 where D

1
2 , D−

1
2 ∈ Rn×n are

diagonal matrices with entries as the square roots of the corresponding entries in D and D−1 respectively.

q>Mqp>M−1p = q>UDU>qp>UD−1U>p (100)

= q>UD
1
2D

1
2U>qp>UD−

1
2D−

1
2U>p . (101)

Define q̂ := D
1
2U>q and p̂ := D−

1
2U>p.

q>UD
1
2D

1
2U>qp>UD−

1
2D−

1
2U>p = q̂>q̂p̂>p̂ (102)

= (‖q̂‖ ‖p̂‖)2 . (103)

By the Cauchy-Schwarz inequality,

(‖q̂‖ ‖p̂‖)2 ≥ (q̂>p̂)2 (104)

=
(
q>UD

1
2D−

1
2U>p

)2
(105)

= (q>p)2 (106)

= 〈q, p〉2 . (107)

Taking the square root on both sides of the inequality completes the proof.

Lemma 6. For any two discrete probability vectors q, p ∈ Rn,
∑n
i=1[q]i =

∑n
i=1[p]i = 1,

‖q − p‖2 ≤ 2χ2(q, p) (108)

where χ2(q, p) :=
∑n
i=1[p]iφ(

[q]i
[p]i

), φ(x) := 1
2 (x− 1)2 is the χ2-divergence.
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Proof.

‖q − p‖2 = 〈q − p, q − p〉 (109)

=

n∑
i=1

([q]i − [p]i)
2 . (110)

Since ([q]i − [p]i)
2 and [p]i are positive for all i,

n∑
i=1

([q]i − [p]i)
2 ≤

n∑
i=1

1

[p]i
([q]i − [p]i)

2 (111)

=

n∑
i=1

1

[p]i
([q]2i − 2[q]i[p]i + [p]2i ) (112)

=

n∑
i=1

(
[q]2i
[p]i
− 2[q]i + [p]i

)
(113)

=

n∑
i=1

[p]i

(
[q]2i
[p]2i
− 2

[q]i
[p]i

+ 1

)
(114)

= 2

n∑
i=1

[p]iφ

(
[q]i
[p]i

)
(115)

= 2χ2(q, p) . (116)

Lemma 7. Let SMMD(g) := −
√
g>M−1g − (g>M−11)2

1>M−11
be the MMD worst-case sensitivity from (Staib & Jegelka, 2019),

where g ∈ Rn, M ∈ Rn×n is a positive definite matrix and 1 ∈ Rn has all entries equal to 1. SMMD(g) is bounded by

− ‖g‖M−1 ≤ SMMD(g) ≤ 0 (117)

where ‖g‖M :=
√
g>Mg.

Proof. From Appendix C in (Staib & Jegelka, 2019), −SMMD(g) can be re-written as

−SMMD(g) =
√

(g − γ1)>M−1(g − γ1) (118)

γ :=
1>M−1g

1>M−11
. (119)

Since M is positive definite, M−1 is also positive definite. The above re-written form thus implies that −SMMD(g) ≥ 0.
Since M−1 is positive definite, 1>M−11 ≥ 0 and hence (g>M−11)2

1>M−11
≥ 0. Together, these imply that

g>M−1g − (g>M−11)2

1>M−11
≤ g>M−1g (120)

= ‖g‖2M−1 . (121)

We thus have the following bounds on the MMD worst-case sensitivity:

0 ≤ −SMMD(g) ≤ ‖g‖M−1 (122)
−‖g‖M−1 ≤ SMMD(g) ≤ 0 . (123)
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Lemma 8. For any two discrete probability vectors q, p ∈ Rn,
∑n
i=1[q]i =

∑n
i=1[p]i = 1 with support C,

‖q − p‖1 ≤
2

cmin
W(q, p) (124)

cmin := min
i

min
j 6=i
‖Ci − Cj‖W (125)

whereW(q, p) := minγ∈4n×n

∑n
i=1

∑n
j=1[γ]ij · ‖Ci − Cj‖W is the Wasserstein metric with arbitrary norm ‖·‖W , and

γ is a discrete joint distribution with support C × C (represented as a |C| × |C| matrix) whose marginals are q and p, i.e.,∑|C|
i=1[γ]ij = [p]j ,

∑|C|
j=1[γ]ij = [q]i.

Proof. Define γ∗ := argminγ∈4n×n

∑n
i=1

∑n
j=1[γ]ij ·‖(Ci − Cj)‖W to be the joint distribution that achieves the minimum

of the expected cost. For all 1 ≤ i ≤ n,
[γ∗]ii ≤ min([q]i, [p]i) (126)

since either
∑n
j=1[γ

∗]ij > [q]i or
∑n
i=1[γ

∗]ij > [p]i otherwise. Since max([q]i, [p]i) = min([q]i, [p]i) + |[q]i − [p]i|,

n∑
i=1

[γ∗]ii + |[q]i − [p]i| ≤
n∑
i=1

max([q]i, [p]i). (127)

Since
∑n
i=1 min([q]i, [p]i) + max([q]i, [p]i) = 2,

n∑
i=1

[γ∗]ii +max([q]i, [p]i) ≤ 2. (128)

Taking (128) - (127),

n∑
i=1

[γ∗]ii ≤ 2−
(

n∑
i=1

[γ∗]ii + |[q]i − [p]i|
)

(129)

2

n∑
i=1

[γ∗]ii ≤ 2−
n∑
i=1

|[q]i − [p]i| (130)

‖q − p‖1 ≤ 2

(
1−

n∑
i=1

[γ∗]ii

)
(131)

≤ 2

 n∑
i=1

n∑
j=1,j 6=i

[γ∗]ij

 (132)

‖q − p‖1 · cmin ≤ 2

 n∑
i=1

n∑
j=1,j 6=i

[γ∗]ij · cmin

 (133)

≤ 2

 n∑
i=1

n∑
j=1,j 6=i

[γ∗]ij · ‖Ci − Cj‖W

 (134)

= 2

 n∑
i=1

n∑
j=1

[γ∗]ij · ‖Ci − Cj‖W

 (135)

= 2W(q, p) (136)

‖q − p‖1 ≤
2

cmin
W(q, p) . (137)
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Figure 8. The mean and standard error of the rank of the best action selected by MINIMAXAPPROX with the MMD worst-case sensitivity
approximation ŜMMD(g) (4), w.r.t. the ranking of actions induced by MINIMAXAPPROX with the true MMD worst-case sensitivity
SMMD(g) (1 is lowest, lower is better). The top row shows the results with a reference mean of 0 and the bottom row shows the results
with a reference mean of 1. The results are averaged across 5 different 2-D random functions drawn from a GP prior, with 20 actions.

Theorem 4 relies on the following result on a high probability bound on the absolute difference between the GP posterior
mean and the true function at any action, context and iteration. This result has been presented in various forms in various
works on online optimization (Srinivas et al., 2010; Abbasi-Yadkori, 2012; Chowdhury & Gopalan, 2017). We reproduce
the result as stated in (Kirschner et al., 2020):

Lemma 9. With probability at least 1− δ, for any x ∈ X , c ∈ C at any iteration t ≥ 1,

|µt(x, c)− f(x, c)| ≤ βtσt(x, c) (138)

where βt = σ
√
log det (I +Kt) + 2 log

(
1
δ

)
+B and B is the upper bound of the RKHS norm of f .

B. MMD Worst-case Sensitivity Approximation Quality

In this section, we discuss the quality of the worst-case sensitivity approximation ŜMMD(g) (4) which replaces the Gram
matrix M in the MMD worst-case sensitivity SMMD(g) with the identity matrix, in order to avoid the O(|C|3) time matrix
inversion.

Observe that the term g>g = ‖g‖2 appears in ŜMMD(g). If we use a larger discretization density over the context, the size
of the context set |C| will increase. This causes ‖g‖2 to increase unboundedly as |C| increases, since g ∈ R|C|. In the true
MMD worst-case sensitivity SMMD(g) (Table 2), the corresponding term is a finite-dimensional analog of the RKHS norm
squared g>M−1g = ‖g‖2M−1 . We empirically observe that ‖g‖2M−1 increases much less as |C| increases. This occurs
because g>M−1g becomes a better approximation of the RKHS norm squared (which we assume to be bounded) of the
underlying function that produces g as |C| → ∞. This suggests that the approximation ŜMMD(g) becomes a worse one as
|C| increases, and indeed we empirically observe this effect. This aligns with intuition since the larger |C| is, the more time
we save by avoiding the matrix inversion.

Nevertheless, we observe that the approximation does not degrade performance much in the experiments in Sec. 7 using
ŜMMD(g), including the COVID-19 test allocation experiments with a relatively large context set size of |C| = 550.
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We hypothesize that, although ŜMMD(g) may be a poor approximation in numerical value, using MINIMAXAPPROX with
ŜMMD(g) preserves the ranking of actions induced by using MINIMAXAPPROX with SMMD(g), i.e., a ‘good’ action according
to SMMD(g) is also a ‘good’ action according to ŜMMD(g). Figure 8 shows the mean and standard error of rank of the best
action selected by MINIMAXAPPROX with ŜMMD(g), w.r.t. the ranking of actions induced by MINIMAXAPPROX with
SMMD(g), averaged over 5 different 2-D random functions drawn from a GP prior. We observe that MINIMAXAPPROX with
ŜMMD(g) tends to select the best action when ε is small or large, since MINIMAXAPPROX is most accurate at those values
of ε. As |C| increases, the range of ε at which MINIMAXAPPROX with ŜMMD(g) picks suboptimal actions (i.e. actions
with rank higher than 1) increases, and the average rank appears to increase as well, which is explained by the poorer
approximation as |C| increases. Nevertheless, we do observe that MINIMAXAPPROX with ŜMMD(g) generally picks high
ranking actions which empirically supports our hypothesis that MINIMAXAPPROX with ŜMMD(g) approximately preserves
the ranking of actions induced by using MINIMAXAPPROX with SMMD(g) and thus leads to good performance. Other
tractable approximations of M , such as with block-diagonal or banded matrices, are possible as well and the quality of such
approximations is left to future work.

C. Practical Considerations for Distribution Distance Selection
In this section, we discuss some practical considerations when selecting d for an application and give examples with popular
distances, namely the Wasserstein metric, MMD, TV and χ2.

Computational considerations. For example, general φ-divergences of the form
∑C
i=1[p]iφ([q]i/[p]i) are undefined when

supp (p) * supp (q), which is likely to cause issues if p is an empirical distribution. DRO with the Wasserstein distance
involves solving a linear optimization problem with variable size |C|2 which has time complexity greater than O(|C|4) and
is intractable for large context sets. The MMD constraint has a full-rank, dense Hessian which precludes efficient methods
of solving the KKT system with interior-point methods for convex optimization (Boyd & Vandenberghe, 2004), compared
to the TV and χ2 constraints have either 0 or a diagonal Hessian and hence can be solved relatively efficiently.

Modelling correlations between contexts. For example, the Wasserstein distance requires a metric between context points
and (informally) models the cost to turn one probability distribution into another using the metric as the cost. MMD uses
a kernel to model the correlations between context points. TV and χ2 do not model the correlations between points. For
example, consider the distribution that has almost all probability mass on Cj , and a small probability mass distributed
evenly among all other context points, denoted δj . TV(δj , δj+1) = TV(δj , δj+i)∀i, 1 − j ≤ i ≤ |C| − j. Similarly,
χ2(δj , δj+1) = χ2(δj , δj+i)∀i, 1− j ≤ i ≤ |C| − j. This may be undesirable for a particular application: For example, if
the context were average temperature, a distribution of this form with most of the mass on 25.1◦C should certainly be close
to one with most of the mass on 25.2◦C and not to one with most of the mass on 35◦C, yet TV and χ2 would give the same
distance.

D. Experiment Details
In all experiments (except Computation Time), βt = 2∀t ∈ [T ], σ2 = 0.001. We use the ECOS convex optimization
solver (Domahidi et al., 2013) was used for the EXACT acquisition function and computing the true robust solution. If
ECOS fails for any reason, we use the SCS convex optimization solver (O’Donoghue et al., 2016) instead.

D.1. Random Functions

The 2-D random functions are drawn from a GP prior using an ARD squared exponential kernel with lengthscale 0.05 in
each dimension. The domain of each function is [0, 1]2 and each dimension uses a discretization density of 20. The reference
distributions were N (0, 0.02) and N (0.5, 0.02) truncated outside the domain and normalized. The true distribution was the
uniform distribution. The modelling GP uses the ground-truth kernel and observational variance.

D.2. Plant Maximum Leaf Area

The domain of the function is [0, 1]2, normalized from the objective function’s true domain of [2.5, 6.5] for pH and [0, 30]
for ammonium in mM. Each dimension uses a discretization density of 50. The reference distributions were N (0, 0.02) and
N (1, 0.02) truncated outside the domain and normalized. The true distribution was the uniform distribution. The modelling
GP uses an ARD squared exponential kernel with lengthscale 0.1 in each dimension and the ground-truth observational
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variance. The objective function values were normalized by subtracting the data mean and dividing by the data standard
deviation.

D.3. Wind Power Dataset

The domain of the function is [0, 1]2. The actual power in a month is then normalized to this range. Each dimension uses
a discretization density of 50. The modelling GP uses an ARD squared exponential kernel with lengthscale 0.1 in each
dimension and the ground-truth observational variance.

D.4. COVID-19 Test Allocation

This objective function uses the simulator from (Cashore et al., 2020b) which was used to study group testing protocols for
the reopening of Cornell University (Cashore et al., 2020a) and for the general U.S. population (Frazier et al., 2020).

The domain of the function is [0, 1]5. Each dimension uses a discretization density of 10. The first two dimensions is the
action variable x determining the proportion of tests to be allocated to the first and second populations respectively, and the
remaining proportion is allocated to the third. Hence, [x]1 + [x]2 ≤ 1 and the invalid actions are removed from the domain,
leading to an action set of size 55. The remaining three dimensions is the context variable c. The first two dimensions of
the context are the proportions of COVID-19 initial cases allocated to the first and second populations respectively, and
the remaining proportion is allocated to the third. Hence, [c]1 + [c]2 ≤ 1 and the invalid contexts are removed from the
domain. The last dimension of the context determines the transmission probability given by 0.1[c]3 + 0.1. The context set
has size 550. Each population has size 10000, there are 5000 tests and 1250 initial COVID-19 cases. Instead of running the
simulator for every query, the objective function was constructed with kernel ridge regression on data collected by running
the simulator on inputs in a Sobol sequence over the domain. For the full list of simulator hyperparameters, refer to the code
repository. The reference distributions were N ((0, 0, 0)>, 0.02I) and N ((1, 0, 0)>, 0.02I) truncated outside the domain
and normalized. The modelling GP uses an ARD squared exponential kernel with lengthscale 0.2 in each dimension and
the ground-truth observational variance. The objective function values were normalized by subtracting the data mean and
dividing by the data standard deviation.

D.5. Computation Time and Time-accuracy Trade-off

All measured CPU times were averaged across 20 actions. The SCS convex optimization solver (O’Donoghue et al., 2016)
was used to construct the Pareto frontier for truncated convex optimization.

D.6. Implementation

The experiments were implemented in Python, and the major packages used were NumPy (Harris et al., 2020),
GPflow (Matthews et al., 2017) and CVXPY (Diamond & Boyd, 2016; Agrawal et al., 2018). For a full list of pack-
ages and versions, refer to the code repository.

E. EXACT with Wrong Distances
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(a) d = MMD
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(b) d = TV
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(c) d = χ2

Figure 9. Random functions from GP prior: Mean and standard error of cumulative robust regret (lower is better) for Algo. 1 utilizing
EXACT worst-case expected value (1) (Kirschner et al., 2020) with different distribution distances d and means of reference distribution.
The distribution distance d in the sub-caption indicates the true distribution distance with which the cumulative robust regret is calculated.

To test the hypothesis that using the wrong distance leads to sub-optimal performance when the robust regret is calculated
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using some true distance, we run Algo. 1 with EXACT on 2-D random functions drawn from a GP prior. Fig. 9 shows
that using the true distance largely leads to lower cumulative robust regret, compared to when the wrong distance is used.
While the cumulative robust regret of χ2 is lower than that of TV when TV is the true distance, the immediate regret of TV
(averaged over the last 5 iterations) is 0, indicating that in all random functions the algorithm converges to the robust action
at the end when the true distance is used, while that of χ2 is non-zero, indicating that the algorithm does not converge to
the robust action at the end when the wrong distance is used. We observe this effect for all true distances: When the true
distance is used, the immediate regret is 0 at the end, while it is non-zero when wrong distances are used. This experiment
illustrates the importance of choosing the right distance when there is some true (possibly unknown) objective that is the
most suitable for a particular application.


